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Abstract—Obtaining accurate Channel State Information
(CSI) at multiple Transmitters (TXs) is critical to the perfor-
mance of many cooperative transmission schemes, including joint
precoding in the context of network MIMO. Practical CSI feed-
back and limited backhaul-based sharing creates degradations
of CSI which are specific to each TX, giving rise to a Distributed
(D-) CSI configuration. In the D-CSI broadcast channel setting,
each TX implements separate elements of the joint multi-user
precoder based on its own individual CSI estimate. In this work,
we presents a first finite-SNR regime rate analysis for a network-
MIMO (broadcast channel) under a distributed CSI setting. Of
particular importance is the notion of a “price of distributed-
ness” which penalizes the D-CSI setting over the conventional
centralized one with the same overall feedback quality. To tackle
this problem, we apply tools from the field of Random Matrix
Theory (RMT) to derive deterministic equivalents of the Signal
to Interference plus Noise Ratio (SINR) for a popular class of
precoders. Our key finding lies in the notion that the price of
distributedness converges to a predictable value, bounded away
from zero, as the number of antennas grows. 1

Index Terms—Multiuser channels, Cooperative communica-
tion, MIMO, Feedback Communications

I. INTRODUCTION

Cooperative and coordinated transmission methods where

multiple TXs exchange data and CSI related information

in the hope of mitigating mutual interference are currently

considered for next generation wireless networks [1]. With

perfect message and CSI sharing, the different TXs can be seen

as a unique virtual multiple-antenna array serving all RXs in a

multiple-antenna broadcast channel (BC) fashion [2]. Existing

joint precoding however requires global multi-user CSI at each

TX in order to achieve near optimal sum rate performance [3].

The problem of CSI imperfections has been a central one

in the literature on the BC. The cases of imperfect, noisy, or

delayed CSI has been heavily investigated in the past (e.g.

[3], [4]). Almost all of the past literature however typically

assumes centralized CSIT, i.e., that the precoding is based

on the basis of a single imperfect channel estimate which is

common to every TX. Although meaningful in the case of a

broadcast with a single transmitting device, this assumption

can be challenged when the joint precoding is carried out

across distant TXs linked by heterogeneous and imperfect

backhaul links or having to communicate without backhaul

1Pal de Kerret and David Gesbert acknowledge partial support of the
European research project SHARING, which is partly funded by the European
Union under its FP7 ICT Objective 1.1.

(over the air) among each other, as in the case of direct device-

to-device cooperation. In all these cases, it is expected that the

CSI exchange will introduce further delay and quantization

noise, thus making the CSI intrinsically TX-dependent. This

setting is referred to as distributed CSI (D-CSI) in the rest of

this paper.

From an information theoretic perspective, the study of TX

cooperation in the D-CSI setting raises several intriguing and

challenging open problems.

First, the capacity region of the broadcast channel under a

general D-CSI setting is unknown. In [5], a rate characteriza-

tion at high SNR is carried out using DoF analysis for the two

TXs scenario. This study highlighted the penalty associated

with the lack of a consistent CSI shared by the cooperating

TXs from a DoF point of view, when using a conventional

precoder. Interestingly, it was also shown that classical robust

precoders (i.e. made robust with respect to centralized forms

of CSI imperfections) [6] do not restore the DoF [5]. More im-

portantly, the finite SNR performance analysis is unchartered

territory. Although, the use of conventional linear precoders

that are unaware of the D-CSI structure is expected to yield a

loss with respect to a centralized (even imperfect) CSI setting,

the quantifying of this loss in the finite SNR regime (dubbed

here the “price of distributedness”) has not been addressed

previously.

The main goal of this paper is to study here comparatively

the average rate achieved by popular precoders (namely reg-

ularized Zero Forcing (ZF)) in the centralized and distributed

CSI settings. To render the problem amenable to closed form

analysis, we consider the large number of antenna regime.

Specifically we let the number of transmit antennas and the

number of receive antennas jointly grow large with a fixed

ratio, thus allowing to use efficient tools from the field of RMT.

Although RMT has been applied in many works to the analysis

of wireless communications [See [7]–[12] among others], its

role in helping analyze cooperative systems with instantaneous

distributed CSI has received little attention before.

Our main contribution consists in providing a deterministic

equivalent for the average rate per user in a D-CSI setting

where each TX receives its own estimate of the global multi-

user channel matrix with the quality (in a statistical sense) of

this estimate varying from TX to TX. A key finding is that

although all SINR levels undergo classical hardening effect,

there is a non vanishing price associated to distributed CSI

feedback when compared with the centralized one.



II. SYSTEM MODEL

A. Transmission Model

We study a so-called network MIMO transmission where

n TXs jointly serve K Receivers (RXs). We are interested

in the finite-SNR rate performance at the RXs under linear

precoding structures. Each TX is equipped with MTX antennas

and the total number of transmit antennas is denoted by M ,

nMTX while every RX is equipped with a single-antenna. We

assume that the ratio of transmit antennas to the number of

users is fixed and given by β , M/K ≥ 1.

We further assume that the RXs have perfect CSI so as

to focus on the imperfectness of CSI feedback and exchange

among the TXs (due to limited feedback and exchange capa-

bility). We consider that the RXs treat interference as noise.

The channel from the n TXs to the K RXs is represented by

the multi-user channel matrix H ∈ C
K×M , whose elements

are chosen as i.i.d. NC(0, 1).
The transmission is then described as






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(1)

where yi ∈ C is the signal received at the i-th RX, hH
i =

eHi H ∈ C
1×M is the channel from all transmit antennas to

RX i, and η , [η1, . . . , ηK ]T ∈ C
K×1 is the normalized

Gaussian noise with its elements i.i.d. as NC(0, 1).
The transmitted multi-user signal x ∈ C

M×1 is obtained

from the symbol vector s , [sT
1, . . . , s

T
K ]T ∈ C

K×1 with its

elements i.i.d. NC(0, 1) as

x = Ts =
[

t1, . . . , tK
]







s1
...

sK






(2)

with T ∈ C
M×K being the multi-user precoder and ti ,

Tei ∈ C
M×1 being the beamforming vector used to transmit

to RX i. We consider for simplification the sum power

constraint ‖T‖2F = P .

Our main figure-of-merit is the average sum rate

R ,
1

K

K
∑

k=1

E [log2 (1 + SINRk)] (3)

where SINRk denotes the Signal-to-Interference and Noise

Ratio (SINR) at RX k and is defined as

SINRk ,

∣

∣hH
k tk
∣

∣

2

1 +
∑K

ℓ=1,ℓ 6=k

∣

∣hH
k tℓ
∣

∣

2 . (4)

B. Distributed CSIT Model

General transmit cooperation scenarios rely on local CSI to

be fedback to each TX, followed by an exchange mechanism

over a wired/wireless backhaul. Backhaul links are subject to

latency which cause TX-specific CSI degradation. Hence, a

suitable and general CSIT model is one whereby each TX

must make a precoding decision based on a TX-dependent

estimate of the global channel matrix, a problem known

in control theory as Team Decision [13]. Note that in our

model, no further communication (or message passing) is

allowed among TX. Specifically, TX j receives the multi-

user channel estimate Ĥ(j) ∈ C
K×M and designs its transmit

coefficient xj ∈ C
MTX×1 solely as a function of Ĥ(j). As a

first step, we assume in this work that the imperfect multi-user

channel estimate is modeled by

Ĥ(j) ,

√

1− (σ(j))2H+ σ(j)∆(j) (5)

with ∆(j) ∈ C
K×M having its elements i.i.d. NC(0, 1). The

extension to a non uniform description quality at each TX and

to correlated channel is carried out in the full version of this

paper [14].

Remark 1. Importantly, the D-CSI model encompasses the

conventional (centralized) CSI model by taking n = 1.

C. Regularized Zero Forcing with Distributed CSIT

We are interested in the impact of the D-CSIT model on the

rate performance for a conventional precoding method, hence

we focus on the example of the popular regularized ZF MISO

broadcast precoder [6], [15]. The precoder designed at TX j
is then assumed to take the form

T
(j)
rZF ,

(

Ĥ(j)(Ĥ(j))H +MαIM

)−1

Ĥ(j)

√
P√
Ψ

(6)

with regularization factor α > 0. We also define

Q(j) ,

(

Ĥ(j)(Ĥ(j))H

M
+ αIM

)−1

(7)

such that the precoder at TX j can be rewritten as

T
(j)
rZF =

1

M
Q(j)Ĥ(j)

√
P√

Ψ(j)
. (8)

The scalar Ψ(j) corresponds to the power normalization at

TX j. Hence, it holds that

Ψ(j) = ‖
(

Ĥ(j)(Ĥ(j))H +MαIM

)−1

Ĥ(j)‖2F. (9)

Upon concatenation of all TX’s precoding vectors, the effec-

tive global precoder denoted by TDCSI
rZF , is equal to

TDCSI
rZF ,


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




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2 T

(2)
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...
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











(10)

where EH
j ∈ C

MTX×M is defined as

EH
j ,

[

0MTX×(j−1)MTX
IMTX 0MTX×(n−j)MTX

]

. (11)

We furthermore denote the kth column of TDCSI
rZF (used to

serve RX k) by tDCSI
rZF,k.

Although the finite SNR rate analysis in the distributed CSI

model in (5) is challenging in the general case because of the

dependency of one user performance on all channel estimates,

some useful insights can be obtained in the large antenna

regime, as shown below.



III. DETERMINISTIC EQUIVALENT OF THE SINR

Our approach relies on the use of the following theorem

which is the basis of the RMT calculations based on the

Stieltjes transform.

Theorem 1. [10], [16] Consider the resolvent matrix Q ,
(

H
H
H

M
+ αIM

)−1

with the matrix H defined according to

Section II and α > 0. Let the matrix U be any matrix with

bounded spectral norm. Then,

1

M
tr (UQ)− δ

M
tr (U)

a.s.−−−−−−→
K,M→∞

0 (12)

where δ is the unique fixed point (and can be written trivially

in closed form) of the equation

x =
1

α+ 1
β(1+x)

. (13)

Using this theorem and the definition of δ, we can now state

our main result.

Theorem 2. Considering the D-CSI model described in Sec-

tion II, then

SINRk − SINRo
k

a.s.−−−−−−→
K,M→∞

0 (14)

with SINRo
k defined as

SINRo
k ,

(

1
n

∑n
j=1

√

1−(σ(j))2
)2

δ2

(1+δ)2

Iok + Γo

P

(15)

with Iok ∈ R given by

Iok,

n
∑

j=1

Γo

(1+δ)
2
n2

[

1−(σ(j))2+(1+δ)
2
(

−1+n+(σ(j))2
)]

+
n
∑

j=1

n
∑

j′=1
j′ 6=j

Γo
j,j′δ

(1+δ)
2
n2

[

−1+(1+δ)
(

−1 +(σ(j))2+(σ(j′))2
)]

(16)

while Γo ∈ R and Γo
j,j′ ∈ R are respectively defined as

Γo ,
δ2

β (1 + δ)
2 − δ2

(17)

Γo
j,j′ ,

√

(

1− (σ(j))2
) (

1− (σ(j′))2
)

δ2

β(1 + δ)2 −
(

1− (σ(j))2
) (

1− (σ(j′))2
)

δ2
. (18)

As expected, taking σ(j) = σ(j′) = 0 in Γo
j,j′ gives the

expression for Γo. The deterministic equivalent of the SINR

then simplifies to

SINRo
k =

δ2

Γo

(

1 + (1+δ)2

P

) . (19)

Remark 2. Equation (19) does not depend on n. This follows

from the fact that the distributed aspect of the CSI becomes

trivial when the CSI is perfect. Hence, only the total number

of transmit antennas (i.e., β = M/K) becomes a significant

parameter.

Furthermore, taking n = 1 corresponds to the centralized

CSI configuration and the deterministic equivalent simplifies

to:

SINRo
k=

(1− (σ(1))2δ2

Γo

(

(1−(σ(1))2+(1+δ)2(σ(1))2+ (1+δ)2

P

) . (20)

These two particular cases correspond to a centralized CSI

configuration and it can be verified that the expressions

obtained above match with the results for the centralized CSI

configuration given in [11, Theorem 14.1].

IV. PROOF OF THEOREM 2

Due to space limitations, only a sketch of the proof is

given in the main body of this paper. In particular, the

detailed steps of the derivation of a deterministic equivalent

for the interference term are relegated to the extended version

available online in [17]. Our calculation is built upon results

from both [9] and [10]. We also make extensive use of classical

RMT lemmas recalled in the Appendix. Note that Lemma 5

and Lemma 6 are novel and the proofs can be found in [17].

In particular, Lemma 5 extends [10, Lemma 15] and is an

interesting result in itself.

During the calculation we use the notation x ≍ y to denote

that x− y
a.s.−−−−−−→

K,M→∞
0.

A. Deterministic Equivalent for Ψ(j)

We start by finding a deterministic equivalent for Ψ(j). A

deterministic equivalent for Ψ(j) can be found in [9], but it

can also be obtained using Lemma 5 with σ(j) = σ(j′) = 0,

which gives

Ψ(j) ≍ Γo. (21)

It can be noted that, as expected from the definition of Ψ(j),

this deterministic equivalent does not depend on σ(j).

B. Deterministic Equivalent for hH
k t

DCSI
rZF,k:

Turning to the desired signal at RX k, we can write

hH
k t

DCSI
rZF,k =

n
∑

j=1

1

M

√
P√

Ψ(j)
hH
k EjE

H
j Q

(j)ĥ
(j)
k

(a)≍
√

P

Γo

n
∑

j=1

1
M
hH
k EjE

H
j Q

(j)
[k] ĥ

(j)
k

1 + 1
M
hH
k Q

(j)
[k]hk

(b)≍
√

P

Γo

n
∑

j=1

√

1−(σ(j))2
1
M
hH
k EjE

H
j Q

(j)
[k]hk

1+ 1
M
hH
k Q

(j)
[k]hk

(c)≍
√

P

Γo

n
∑

j=1

√

1−(σ(j))2
1
M

tr
(

EjE
H
j Q

(j)
[k]

)

1+ 1
M

tr
(

Q
(j)
[k]

)

(d)≍
√

P

Γo

1

n

n
∑

j=1

√

1−(σ(j))2
δ

1+δ
(22)

where (a) follows from Lemma 1 and the use of the determin-

istic equivalent derived for Ψ(j), (b) from Lemma 3, (c) from

Lemma 2, (d) from Lemma 4, the fundamental Theorem 1



and the unitary invariance of the distribution of H. It follows

then directly that

∣

∣hH
k t

DCSI
rZF,k

∣

∣

2≍ P

Γo





1

n

n
∑

j=1

√

1−(σ(j))2





2

δ2

(1+δ)
2 . (23)

C. Deterministic Equivalent for the Interference Term

Our first step is to write explicitly the interference term

using the definition of TDCSI in Subsection II-C and re-

place Ψ(j) by its deterministic equivalent Γo

Ik ,

K
∑

ℓ=1,ℓ 6=k

|hH
k t

DCSI
rZF,ℓ|2

= hH
k T

DCSI
rZF (TDCSI

rZF )Hhk − hH
k t

DCSI
rZF,k(t

DCSI
rZF,k)

Hhk

=
1

M2

n
∑

j=1

n
∑

j′=1

P√
Ψ(j)

√
Ψ(j′)

hH
k EjE

H
j Q

(j)(H
(j)
[k] )

H

·H(j′)
[k] Q

(j′)Ej′E
H
j′hk

≍ P

Γo

1

M2

n
∑

j=1

n
∑

j′=1

hH
k EjE

H
j Q

(j)
[k] (H

(j)
[k] )

H

·H(j′)
[k] Q

(j′)Ej′E
H
j′hk

+
P

Γo

1

M2

n
∑

j=1

n
∑

j′=1

hH
k EjE

H
j

(

Q(j)−Q
(j)
[k]

)

(H
(j)
[k] )

H

·H(j′)
[k] Q

(j′)Ej′E
H
j′hk. (24)

We can apply Lemma 2 for the first term to obtain that

1

M2
hH
k EjE

H
j Q

(j)
[k] (H

(j)
[k] )

HH
(j′)
[k] Q

(j′)Ej′E
H
j′hk

≍ 1

M2
tr
(

Ej′E
H
j′EjE

H
j Q

(j)
[k] (H

(j)
[k] )

HH
(j′)
[k] Q

(j′)
)

. (25)

It is then possible to apply Lemma 5 to obtain a deterministic

of the expression in (25). To obtain a deterministic equivalent

for the second term of (24), we use the following relation

Q(j) −Q
(j)
[k] = Q(j)

(

(Q
(j)
[k] )

−1 − (Q(j))−1
)

Q
(j)
[k] . (26)

Inserting (26) in the second term of (24) and using Lemma 6

provides expressions for which it is possible to apply Lemma 5

as in (25). Putting all the terms together and simplifying

concludes the proof.

V. SIMULATION RESULTS

We now verify using Monte-Carlo simulations the accuracy

of the asymptotic expression derived in Theorem 2. We

consider a network consisting of n = 3 TXs with a sum

power constraint given by P = 10 dB and we assume that

(σ(j))2 = σ2 = 0.1, ∀j = 1, . . . , n.

Remark 3. The fact that error variances are equally distributed

does not imply a centralized CSIT as CSI errors at the various

TXs remain independent of each other.
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Fig. 1: Average rate per user as a function of the number of

users K with (σ(j))2 = 0.1, ∀j.

We use for α its optimal value for the centralized case, given

by [9, eq. (53)]

αCCSI =
1 + σ2P

1− σ2

1

βP
. (27)

In Fig. 1, we show the rate per user as a function of the

number of users for a square setting where M = nMTX =
K (i.e., β = 1). For comparison purpose, we also show the

rate per user obtained in the case of centralized CSIT with

(σCCSI)2 = 0.1 and with perfect CSIT (obtained using n = 1
in Theorem 2). The large system deterministic equivalents are

shown to be accurate with just 20 to 30 users and antennas.

The cost of having distributed information is also highlighted

by the losses compared to the centralized configuration for the

same average feedback quality.

VI. CONCLUSION

We have studied regularized ZF joint precoding in a dis-

tributed CSI configuration. Using RMT tools, an analytical

expression has been derived to approximate the average rate

per user in the large system limits. This new deterministic

equivalent reveals the cost related not just to CSI feedback

limitation, but also to backhaul sharing limitations, and can

be helpful in terms of robust system design. The extension

to more general channel and CSI models are subject to

ongoing work [14]. The price of distributedness is evaluated

here for a conventional precoder, which further motivates the

development of novel precoding schemes being more suitable

to the distributed CSI setting.

APPENDIX

A. Classical Lemmas from the Literature

Lemma 1 (Resolvent Identities [10], [11]). Given any ma-

trix H ∈ C
K×M , let hH

k denote its kth row and Hk ∈
C

(K−1)×M denote the matrix obtained after removing the kth



row from H. The resolvent matrices of H and Hk are denoted

by Q ,
(

HHH+ αIM
)−1

and Qk ,
(

HH
k Hk + αIM

)−1

with α > 0 respectively. It then holds that

Q = Qk − 1

M

Qkhkh
H
k Qk

1 + 1
M
hH
k Qkhk

(28)

and

hH
k Q =

hH
k Qk

1 + 1
M
hH
k Qkhk

. (29)

Lemma 2 ( [10], [11]). Let (AN )N≥1,AN ∈ C
N×N be

a sequence of matrices such that lim sup ‖AN‖ < ∞, and

(xN )N≥1,xN ∈ C
N×1 be a sequence of random vectors of

i.i.d. entries of zero mean, unit variance, and finite 8th order

moment independent of AN . Then,

1

N
xH
NANxN − 1

N
tr (AN )

a.s.−−−−→
N→∞

0. (30)

Lemma 3 ( [10], [11]). Let (AN )N≥1,AN ∈ C
N×N be

a sequence of matrices such that lim sup ‖AN‖ < ∞, and

xN ,yN be random, mutually independent with i.i.d. entries

of zero mean, unit variance, finite 8th order moment, and

independent of AN . Then,

1

N
xH
NANyN

a.s.−−−−→
N→∞

0. (31)

Lemma 4 ( [9], [11]). Let Q and Qk be as given in Lemma 1.

Then, for any matrix A, we have

tr (A (Q−Qk)) ≤ ‖A‖2. (32)

B. New Lemmas

Lemma 5. Let Ĥ(j) (resp. Ĥ(j′)) be the imperfect multi-

user channel estimate at TX j (resp. TX j′) as described in

Section II. Let Q(j) ,

(

(H(j))HH
(j)

M
+ αIM

)−1

and Q(j′) ,
(

(H(j′))HH
(j′)

M
+ αIM

)−1

with α > 0 and j 6= j′. Then,

1

M2
tr
(

AQ(j)(H(j))HH(j′)Q(j′)
)

−
1
M

tr(A) δ2
√

c
(j)
0 c

(j′)
0

β(1 +δ)2

(

1+

√

c
(j)
0 c

(j′)
0 Y0

)

a.s.−−−−→
N→∞

0 (33)

with c
(j)
0 , 1 − (σ(j))2, c

(j′)
0 , 1 − (σ(j′))2, δ defined in

Theorem 1, and Y0 defined as

Y0 ,

√

c
(j)
0 c

(j′)
0 δ2

(

β (1 + δ)
2 − c

(j)
0 c

(j′)
0 δ2

) . (34)

Note that in the case where A = IM , the result simplifies to

1

M2
tr
(

Q(j)(H(j))HH(j′)Q(j′)
)

− Y0
a.s.−−−−→

N→∞
0. (35)

Lemma 6. Let L,R, Ā ∈ C
M×M be of uniformly bounded

spectral norm with respect to M and let Ā be invertible. Let

x,y have i.i.d. complex entries of zero mean, variance 1/M

and finite 8th order moment and be mutually independent as

well as independent of L,R, Ā. Then we have:

xHLA−1Rx ≍ uLR − c0uLuR
1 + c1u

1 + u
+ c22uLuR

u

1 + u

xHLA−1Ry ≍ uLR + c1c2uLuR
u

1 + u
− c2uLuR

1 + c1u

1 + u

with

A = Ā+ c0xx
H + c1yy

H + c2xy
H + c2yx

H

with c0 + c1 = 1 and c0c1 − c22 = 0, and

u ,
tr(Ā−1)

M
, uL ,

tr(LĀ−1)

M
,

uR ,
tr(Ā−1R)

M
, uLR ,

tr(LĀ−1R)

M
.
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