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Optimal downlink-uplink user association in HetNets with
traffic differentiation

Nikolaos Sapountzis, Thrasyvoulos Spyropoulos, Navid Nikaein, andrigalim

Abstract

The widespread adoption of tablets and smartphones, andusdance
of data-hungry mobile applications, are overwhelming ilese networks
with increased demand and introduce considerable traffiersity. Oper-
ators struggling to continuously add capacity and upgrbde architecture
have resorted instead to building denser deployments toowegspectral ef-
ficiency. By increasing the number of cells a user can ast®owiigh, (i) user
quality of service (QoS) can be improved, and (ii) traffic ¢cenoffloaded
from congested base stations, to achieve better load batan&lowever,
these two goals are not always aligned. To this end, we deegl@nalytical
framework for optimal user association in future HetNetst timvestigates
the potential tradeoffs between user- and network-relpggtbrmance, in a
more realistic setup encompassing additional key feat(pedifferent types
of user flows, and (ii) uplink and downlink performance. Wédee this bet-
ter reflects the diversity of the services offered to usedsthrir impact on
system performance. We evaluate our proposed framewookighrexten-
sive simulations, and provide some qualitative and quetivé insights on
the related tradeoffs.

Index Terms

User-association, Heterogeneous Cellular Networks, Qe8ies, 5G
architecture, traffic differentiation, link split, loadlbacing.
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1 Introduction

Lately, heterogeneous networks (HetNets) have been widely discimstesl
LTE-A (Long Term Evolution - Advanced) [1]. In a HetNetmall cells(SC) are
deployed along with macrocells to improve spatial reuse, and provide addition
capacity in areas with dense usage (i.e., “hotspots”), such as train staii@usts
or malls. The higher the deployment density, the better the chance that a user
equipment (UE) can be associated with a nearby base station (BS) withidpigi s
strength, and the more the options to balance the load.

However, denser deployments experience high spatio-temporal laatdoas,
and require more sophisticated load-balancing and user associatiothatesd2].
Addressing such issues becomes even more challenging when oneccohéid-
Nets, i.e. networks consisted of BSs with different transmit powers. eTaes
two key concerns when assigning a UE to a BS: (i) choosing the BS that maxi-
mizes the QoS for this user (e.g. thieysical date ratg (ii) ensuring that the load
across BSs is balanced, to avoid congestion. We will refer to the formireas
user-perspectivand the latter as theetwork-perspective These two goals are
often conflicting. Standard SINR-based association might lead a UE tselao
high-power or nearby BS, to maximize it’s rate, but this BS might already be co
gested on the radio or backhaul link [3]. A recently proposed framiejdmakes
an important first step towards investigating this relationship between user- a
network-related performance, when performing user associationrahederized
objective is used which jointly captures both metrics, with a paraneeteamtrol-
ling which of the two objectives carries more importance. An optimal association
rule is then derived for this objective.

Nevertheless, the above framework [4], as well as a number of followanks
in this context, are relatively simplified, not taking into account key featofés-
ture networks. Firstly, most existing studies consider homogeneous tredfic p
files. For example, [4-6] assume that all flows generated by a UE ast-“be
effort” (or “elastic”). Modern and future networks will have to deal whigh
traffic differentiation, with certain flows being able to require specdiedicated
resources [1], [7,8]. Such dedicated flows do not “share” BSuees like best-
effort ones, are sensitive to additional QoS metrics, and affect celldderently.

Additionally, the majority of related studies consider downlink (DL) traffic
only [4,5,9]. A user-association criterion that takes into account omyuilink
(UL) or only the DL is not sufficient according to [10]. More precisghg asym-
metric transmit powers between the UEs and different BSs differentiateltlam®
UL physical data rates significantly. To this end, associating a UE with the &S th
offers the highest DL SINR, may lead to subpar UL performance oriredpugh

This work was supported by the European Research Council undetutmean Commu-
nity Seventh Framework Programme (FP7/2012- 2015) under the I&Metof DG-CONNECT
n® 317941 (iJOIN).

lUser performance can also be affected by congestion, when a BS is avedo&iowever, we
make this simple distinction to facilitate our discussion.



UE transmission power. What is more, the traffic load on the DL and UL may var
significantly, due to the asymmetric traffic applications [11]. For instancenwh
a user is browsing he consumes resources mostly from the downlink, wgien
loading a video from the uplink, or when playing an online interactive videoe
from both downlink and uplink. Summarizing, a proper user-associatioense
becomes even more complex if one considers the user and networknpainfoe in
the DL and the ULjointly.

To this end, we revisit the problem of user association in a more complex setup
We use the basic methodology proposed in [4] as our starting point, anadexte
the framework considerably, to include these key additional dimensionsipa
traffic heterogeneity, and differentiation in UL and DL traffic. Specificatiyr
contributions can be summarized as follows:

1) We introduce dedicated flows into the framework, along with a differgrdul-

ing discipline and QoS metrics; an optimal rule can still be derived when jointly
considering user- and network-related performance for both typibmne.

2) We take into account the differentiation between DL and UL traffic aoder
that an optimal association rule can also be derived that jointly consideenBL
UL performance.

3) We show that our framework also applies when UL and DL traffic of Hmes

UE can be “split” to different BSs [12], as a disruptive architecturaigle for
future 5G networks [13].

4) We include all the above features into the cost function, and provepan o
mal rule for the complete setting. Interestingly, the optimal rule when consglerin
multiple objectives resembles a (weighted) harmonic mean of the individual ass
ciation rules.

5) We further investigate the complex tradeoffs involegdntitativelyto provide
some initial insights and guidelines about user-association policies in fuktre H
Nets, and sketch a potential implementation of our algorithm using a Software
Defined Network (SDN) architecture.

The remainder of the paper is organized as follows: Section 2 outlinesthe co
sidered scheduling disciplines and our system model. The proposedioakfer
the optimal user-association is described in Section 3, and a flexible SDN imple-
mentation architecture in Section 4. Section 5 presents some simulation results,
and Section 6 concludes the paper.

2 System Model

Throughout this paper we assume a regibn R? served by a set of BSS,
that are either macro BSs (eNBs) or small cells (SCs). Weius#8 to index a
typical i-th BS. We letx € £ denote a location where a User Equipment (UE) is
located and a flow might initiate from. Moreover, we sketch the traffic dramd
service models, with respect to (wrt) the additional dimensions discusdest.ea



2.1 Traffic Arrival Model

To model the spatial traffic variation, we assume that flow arrivals follow an
inhomogeneous Poisson Point Process (PPP) with total arrivakadeper unit
area. Each new flow is [1]:

» adownlink (DL) flow with probability zp,, with direction from the BS to
the UE, or

* anuplink (UL) flow with probability z;;;, = 1 - zpy,, with direction from the
UE to the BS, independently.

Each DL (or UL) flow is also, independently [1, 7, 8]:

 adedicatedflow with probability z; = 1- z,; dedicatedbearers are allocated
for Guaranteed Bit Rate (GBR) type of traffic to meet the required bit rate o
latency constraints. These are differentiated by their QoS class of identifie
(QCI) ranging from 1 to 4 [1],

 abest-effort flow, with probability z;, related to non-GBR traffic, and QCI
from 5 to 9 [1].

The parametersp;, andz, depend on the traffic mix, and we assume them to be
input parameters. Using the Poisson splitting argument [14], it follows tleat th
are 4 independent, Poisson flow arrival processes with respeate® r

Al(m)ZZDL'Zb-/\(l'), )\g(x):zDL-zd-/\(m) (1)
)\3($) =ZUL " %b* )\(x), )\4(.%) =ZUL " %d )\(x) (2)

Throughout the paper, we use indices 1,2,3,4 to refer to the following flpasty
DL best effort (1), DL dedicated (2), UL best effort (3), and Ukdicated (4),
respectively. Finally, Fig. 1 depicts their corresponding schedulingptiises that
we elaborate on, in the remainder of this section.

2.2 Service model for best-effort flows

Best-effort flows are statistically multiplexed and have to compete for ressur
A lot of effort has been devoted to the study of the performance aretisting al-
gorithms for such “elastic” types of traffic [14] [15].

We start with a simple scenario of a single DL (resp. UL) best-effort flona
in the cell, requested by a UE at locationlts received signal to interference plus
noise ratio (SINR) is

SINRi() = ¥z Gj(x)Pj+ Ny’ @)

whereNj is the noise powet’; the transmission power of BSandG;(x) repre-
sents the path loss and shadowing effects between the i-th BS and the ltHelloca
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atz (it may also encompass antenna and coding gains etc). We assume ittat effe
of fast fading are filtered out [4, 5].

We assume further that the available bandwidth ofittleBS in the DL isw;,
and it is allocated between best effort and dedicated flows, as follgwg; [8v; is
the bandwidth allocated for best-effort flows afid- ¢;) - w; for dedicated flows,
respectively(0 < ¢; < 1). We can use Shannon’s formula to derive ggsical
data ratefor DL best-effort flows atr:

ci1(x) = G -w;logy (1 + SINR;(x)). 4)

We similarly assume that the available UL bandwidth at:BS W, and further
split between UL best effort and dedicated flows wrt another parantégerce, the
physical rate for UL best-effort trafficds; 3(z) = Z;-W; logy (1+SINR;(z)) atz.
Regarding the single DL flow, or single user, case(z) is the effective service
rate (respc; 3(x) for UL). Theuser-perspectivevrt the DL traffic, corresponds to
attaching to the B$ that maximizes the raig ; (x) (or ¢; 3(x) in the UL).

However, if there are multiple users and DL/UL best-effort flows shathinge-
spective capacities, the above values will correspond to the instantaia¢esisout
the effective rates will be decreased. We assumdaependensystems that fol-
low the Processor-Sharing (PS) scheduling discipline (M/G/1/PS systénig]L
for the DL and UL best-effort flows, as shown in Fig. 1. PS is a popwhedgul-
ing policy, due to its fairness properties, and is often used to model elasfic. tra
Hence, if we assume that the sizes of the best-effort flows (in bits) dtdocaare
drawn independently from two generic distributions, with mgémn) andY (x) in
the DL and UL, respectively, the corresponding utilizatiemsitiesare

@) ey s @) 5)

0i1(x) =
cii(z)- ﬁ ciz(z)- 7

~|

Note thatp; 1 («) (resp. g;3(z)) is not the actual utilization of the resources of
BS i, but rather a measure of the intensity of best-effort traffic demand atidwoc

x relative to the available capacity at locatien by BSi. From thenetwork-
perspectivethese utilizations should not excek(to avoid congestion) and ideally
equalized among different cells (for load-balancing).

2.3 Service model for dedicated flows

A dedicated flow is subject to admission control, as it requires some r&sourc
for exclusive usage. If a user initiates a new dedicated flow (e.g. aneovilileo
game) when the system is already using all its resources, the session‘wid&leed”.
Thus, we chose to apply the M/G/k/k [14] (drloss) system, wherk expresses

%|In the UL scenario, we slightly abuse notation when referring to the SINWR;hwis of course the
SINR at BS i, when the UE transmits with some powrerz. Also, the parameters, Z; could be
optimized globally or per BS, and could be equal or differentiated. Snap&imization is beyond
the scope of this paper, and we’'ll assume these to be input parameters.
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the “maximum” number of dedicated flows the BS can serve simultaneously. In
gueueing terms, this is the number of availat®eversor resources

However, each DL flow might demand a different dedicated rate, so we ca
approximate theverageresource constrairit for different BSs at locatiom:, as
follows [8]. Let there be different types of dedicated flows: a flow pityrequires
a data rate ob;(x) bps, and the ratio of flows with rate(x) is equal tor; (where
>iri = 1). Then, the average data ratgb(x)] (in bps) for an incoming DL

dedicated flow at is
E[b(x)] = Z bi (). (6)

The above is the average DL rate demand. The amount of bandwidth itttakes
serve this demand will also depend on the DL physical data rate at location
which is, as we saw,

ci2(x) =(1-¢) w;logy(1+ SINR;(z)). @)

Similarly, we can derive the average UL rate demandgd(x)], and the UL
physical rate; 4(z). Hence, we can now estimate the maximum number of DL
dedicated flowg:; () at BSi (K;(x) in the UL case), as shown in Fig. 1:

C¢,4(l')
E[B(x)]’

ki () = i2(x)

“Ee)

1€B. (8)
k;(x) can be seen as the number of “servers” (k) for dedicated slots in thve abo
M/G/k/k system at location:. As the blocking probability of &-loss system is
expected to be monotonically decreasingigrthe user-perspectivevrt the DL
dedicated flows corresponds to choose the:Blgat offers the maximunk;(z);
whereas wrt the UL the maximui; (x).

Finally, while the above derives the expected amount of demanded cesour
per flow, each flow might keep its resources for a different duratiossufing
that this random duration comes from a generic distribution with nﬁ%awe can
define utilization densities for dedicated resources as

A2(x) A4(z)
ki(z)pa() Ki(x)pa(z)’
Once more, a network operator would like to keep these values beliomthe

long run, which might lead to redirect a UE to a BS with a small€r) for load-
balancing purposes.

0i2(x) = 0ia(z) = 9)

3 User Association Problem

We are ready to formulate our optimization problem, and derive the optimal
association rules. In doing this, we introduce a routing funcgipp(z), y €
{1,2,3,4} that specifies the probability that a flow of typ@enerated at location
z is routed to BS. The association policy consists exactly in finding appropriate
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Figure 1: DL/UL service models for dedicated and best-effort traffic.

values for these routing probabilities. As it will turn out, the optimal values will
be either0 or 1, i.e. the optimal association rule will be deterministic. Before
proceeding to the optimization problem, we describe the feasible region for the
variablesp; ,(«) that is mainly defined by the requirement that the capacity of no
BS is exceeded.

Definition (Feasibility): The setg), of feasible BS loadg, = (p1,4, 02,4, ---)s
wherey = 1 concerns the best-effort utilization apd- 2 the dedicated one in the
DL, whereag, = 3 andy = 4 concern them in the UL, are given by

fy = {Py | piy = L 0y (7)piy(7)dr,
0<piy<l-—g,
Zpi,y(x) =1, (10)
1eB
0<piy(x)<1,VieB,Vae L‘},

wheree is an arbitrarily small positive constant.
Lemma 3.1 The feasible set§,, f2, f3, f4 are convex.

Proof 1 The proof for the feasible set of DL best-effort flofvss presented in [4],
and can be easily adapted for the other three cases, as well.

Further constraints are introduced, depending on whether a UE at loeato
allowed to be attached to different BSs for: (i) different types of fldiisdifferent
link scenarios flows.
(i) While the offloading of different types of flows to different BSs might lbe a
lowed in future setups (e.g. per flow offloading), it is currently not treecdhus,
it should hOldpi,1($) = p¢72($) andpi’g(.%‘) = pi,4(l‘) VielBB, i.e. all DL best-
effort and dedicated flows should be offloaded to the same BS; similarly in the
UL.



(i) Standard setups propose that a UE should be connected to a singleligffor
UL and DL traffic, i.e. p;1(z) = pi2(x) = pi3(x) = pia(x) Vi € B . However,
link-split [12], allows a UE to offload its UL and DL traffic to different BSs, so
pijl(l’) = pijg(l’) andpig,(l’) = p¢74(l’) Vi € Bis sufficient.

3.1 Optimal user-association for DL only flows

Let’'s consider a scenario with both best-effort and dedicated flowsatball
DL (i.e., no UL traffic considered). Following [4], we extend the costefiion to
consider performance for dedicated flows as well. The paramgtersy, } con-
trol the amount of load-balancing desired for best-effort and dedica®ources,
respectively. Parametéreflects which type of traffic is more important. Our cost
function is
i 97(17,};‘117)11701 +(1- 49)4(17’7;'22,)117Q*2 Jifar, a0 #1
¢(DL) ( ) >, 0log 7(1_;‘11)7+ (1-0)log 7(1_;%2) Jfar=az=1
aq,a2,0 PDL Z 9[(1#71,,1)] 1

ay;-1

L (11)
+(1—9)10gm, if Qo = 1

Z,L-@log(l_;i“) +(1 —0)%, if g =1.
whereppy, = [p1;p2] andFpy = [ f1; f2] depict the BS loads in the respective
dimensions and their feasible values.

Theorem 3.2 If the feasible domaitFp;, of the problem
lgllji? {¢&?7i179(PDL)|PDL € fDL} (12)

is non-empty, the optimal user-association rule wrt the additional comsa, () =
pi2(x) discussed earlier, is

(1= p;1)* (1= pfp)™
i(x) = arg max : :

ieB e (Q:)(l _ pz2)o¢2 + 62(1‘)(1 — p;l)al ) (13)

wherep},; = [p];p5] is the optimal load vector (the solution to Problem (12)),
er(a) = LR andeaa) = St

Proof 2 The proof is presented in the Appendix.

“User vs. Network perspective (Fairnessyi.andas are the parameters that trade
off user related performance for network-related one. Detailed dismusor the
below claims regarding; can be found in [4], whereas regarding in the Ap-
pendix.

» User-perspectiver; = 0 maximizes the average physical rate for the best-
effort flows as defined in Eq. (4), whereas = 0 maximizes the average
dedicated servers for dedicated flows as defined in E#. (8)

3Here, since each UE is obliged to associate with the BS that maximiz&$MNs for a certain
bandwidth unitspectral efficiencys improved.



» Optimizing related QoS metricst a; = 2, the average delay is minimized,
since the cost function for best effort flows becomes equal to thecteghe
delay in an M/G/1/PS system. s = 1 the corresponding optimal rule
becomes equivalent to the averagje dedicated servers in a k-Loss system,
so the actual blocking probability for dedicated flows is minimized.

» Network PerspectiveAs a; — oo, we minimize the maximum BS utiliza-
tion, i.e. load balancing between thpe is achieved. Similar for, and
p2's.

“Dedicated vs. best-effort flows performancé®arametei) < 6§ < 1 is a linear
weight factor deciding the importance of optimizing dedicated fléw-( 0) vs.
best effort flow performance(— 1). Different operators might choose different
values at different times of day, service level agreements etc.

3.2 Optimal user-association for UL only flows

The case of UL traffic only is entirely symmetrical to the DL case just ad-
dressed. For completeness, we state the cost function and optimal &iseacii.

Cyl-a . \l-ag
v, T @y leaa) T G a1

az—1 oag—-1

Zielogm+(1—@)logm,if az=oas=1

¢D¢ULQ) (pur) = —pig)iTes ) (14)
3,04,0 Zi@(l pa’:f)li+(1_6)10g7(17;j«4)’|f as =1
% ©log gt—y + (1~ 0) e if ag = 1.
If e3(z) = %&m, eq(x) = m—;ﬂﬁ, our rule becomes
(1= pya) (1 - L)
i(x) = arg max L3 14 (15)

B e3(w)(1-p; ) +eq(x)(1-ply)es

3.3 Optimal DL and UL user-association

We are now ready to considmintly the DL and UL performance while decid-
ing the optimal user-associations. As already mentioned we are going to imfestig
the optimal association rules either when UL/DL split is offered, or not.

3.3.1 *“Split Scenario”

Link split (or DL/UL decoupling) allows each UE to be associated with two
BSs for its DL and UL offloading [12, 13], to maximize systems performance in
both dimensions. So, the independent DL and UL associations can be figun
separatelysolving the optimization problems described in Sections 3.1, 3.2, re-
spectively.



3.3.2 “Non-Split Scenario”

However, depending on the operator’s capabilities, the link-split ntighbe
applicable. Hence, ifv = {a1, a9, a3, as} we form a new cost function to opti-
mally associate each UE with only one BS wrtrto

Pa,0,6(p) = ¢&1 an0(PDL) + (1= T)%?, anolouL) (16)
wherep = [p1; p2; p3; pa] @aNdF = [ f1; fo; f33 fa]-

“DL vs. UL performance”0 < 7 < 1 is a linear weight factor deciding the impor-
tance of optimizing the DL performance & 1) vs. the UL performancer(— 0).

Theorem 3.3 If the feasible domaitF of the problem
min {¢a,0.0(p)lp € (17)
P

is non-empty, the optimal user-association rule wrt the additional comsa, () =
pi2(r) = pi3(x) = pia(z),is
Iy (L= pf))

- , 18
= ST ) T oy (L 7)) (o)

wherep* = [p}; p5; ps; py ] is the optimal load vectoe, (z) = T%, eo(x) =

PO ea(o) - (1- 1) 2D andes (o) - (1-7) St

Proof 3 The proof is presented in the Appendix.

Remark Itis interesting to look a bit deeper into the above optimal association
rule. When considering multiple conflicting objectives, it is optimal to associate
a user to the BS that maximizes tharmonic mearof the individual association
rules when considering each objective alone. E.g., assume a simpleicaeitiar
only UL and DL best-effort traffic. And assume the following BS optionsdo
user: (BS A) gives 50Mbps DL and only 1Mbps UL; (BS B) 200Mbps &nhd
0.5Mbps UL; (BS C) 20Mbps DL and 5Mbps UL. If we care about UL dvid
traffic equally (i.e.7 = 0.5), one might assume that the BS with the highest sum
(or arithmetic average) of rates should be chosen (i.e. BS B). Hovteeawptimal
BS, according to our rule is the BS that maximizes the harmonic mean, namely
BS C. Harmonic means appear in a number of physical examples, suctafislpa
resistances, where the total resistance is the harmonic mean of the paradiel o
In that case, increasing the total resistance would require increasirsgnidléest
resistance. In that sense, the optimal rule can be seen as applying a max-min
principle among the various conflicting objectives. However, a numberstéms
parameters (e.qfi, 7, etc.) also enter the policy rule, changing the weights of
each “branch” on this harmonic mean. Note that, the harmonic mean us#ugr fur
allows to add more dimensions in our setup and flexibly derive the optimal rule.

9



4 SDN-based Implementation

Now, we propose an online centralized algorithm that achieves global aptimu
in an iterative manner. This algorithm takes as inputs (i) the overall netwaltss
and (ii) some high level system-parameters, in order to identify the optimal asso
ciations. This procedure is rather facilitated from a SDN architecture ffat@
centralized programmable control for the underlying network. Followindgshal
outline, we consider four planes as illustrated in Fig. 2:
Application tier: The operator determines some system-related parameters (e.g.
a, 0,7, etc) based on the desired setup, and advertises them to the controller, at
the end of thek-th iteration period, or less frequently, depending on his policy.
Controller tier: At eachk period, the controller receives (i) the above-mentioned
system-related parameters, and (ii) some network-related parameters fe.g.
size-files etc) as well as the 4-dimensional load veetorfrom the application and
network tier, respectively. Then, it determines and advertises to BSgthmeab
associations derived from Eq (13,15,18).
Network tier: Eachk-th period, BSs either apply or indicate to users the optimal
rules depending on how the association is managed in the network. At tref end
k, they measure and advertise to the controller their average load }étiglsind
the network-relater parameters (ezg.;,, size-files etc).
User tier: At eachk-th period, a UE at location is associated or triggers the
association procedure to the new BSs.

() F— uL ..
1oV
Operatqrje— SDN /\\"‘\

Controller
Figure 2: Applicability to the SDN architecture.

This simple iteration provably converges to the global optimal point with a
simple modification of the proof in [4].

5 Simulations

In this section we briefly present some numerical results and discusdrelate
insights. We consider & x 2 km? area. Fig. 3(a) shows a color-coded map of
the heterogeneous traffic demaxid:) (flows/hour per unit area) (blue implying
low traffic and red high), with 3 hotspots. Furthermore, we assume thatréas a
is covered by four macro BSs (shown with asterisks) and six SCs (shatlin
triangles) as depicted in Fig. 3(b)-(c), and Fig. 4(a)-(b). We alssiden standard
parameters as adopted in 3GPP [16], listed in Tabldhroughout this section, if

“4As for (i) the sizes and ratios of different flows, (i) splitting parameters,can use different
values in order to capture different simulation scenarios.

10



Table 1: Simulation Parameters

Parameter \ Variable \ Value |
Transm. Power of Macro BS/ SC/UE | P.np/Psc/Pur | 43/24/12 dBm
System Bandwidth for DL, UL w|W 10/10 MHz
Noise Power Density Ny -174 dBm/Hz
Splitting parameter for DL, UL Gy Z; 0.5/0.5
Average sizes: DL/UL best-eff. flows y(X)/Y (x) 100/20 Kbytes
Average traffic demands: DL/UL ded. flowsE[b(z)]/E[B(z)] | 512, 256 kbps
Ratio of best-effort, ratio of DL flows Zby ZDL 0.3,0.6

not explicitly mentioned, we assume th¢on-Split Scenario’, described in 3.3.2,
andf = © = 0.5.

Before proceeding, we setup a metric that reflects the “network-related”
formance goal, namely load balancing. Hence, we introduce the Meangsqua
Error (MSE) between the utilization of different BSs, hormalized to 1:

1
MSE; = %h Z Z(pi,l - pi1)’, (19)
i J

where is the normalizing factor and is equal to= | 5| x [§], and NV the
total number of BSs. The higher the M§Ehe more imbalanced the load for the
DL “best-effort” resources across different BSs. We can defimglas metrics
MSEs, MSEs, MSE, for the remaining utilization values.

User vs. Network Perspectivade-off is considered qualitatively in Fig. 3(b)-
3(c) along with Fig. 3(e) that quantifies via a Table some performance metrics,
the DL scenario (Section 3.1). Concerning tiser-perspective-ig. 3(b) outlines
the optimal associations if; = as = 0. Thus, each UE is attached to the BS
that offers thehighest DL SINRand promises higher average DL physical rate for
best effort flowsE|[c; ], and more average “dedicated” servéifs:]; i.e. most of
UEs are attached to macro BSs due to their high power transmission, anddewer
SCs, forming small circles around them. Consequently, macrocells aleaded
and load imbalance within the cells is sharpened (incred¢éd>;, M SF-; see
line 1 of Fig. 3(e)). However, in Fig. 3(c) we emphasize tiework-perspective
(load-balancing) and set; = as = 10. Now, (i) SCs increase their coverage area
in order to offload the overloaded macro BSs, i) the “heavily” loaded (due to
the hotspots) BSs, shrink their coverage. Thus load imbalance is alle\aatie,
cost of E[c1 ], E[k1] (see line 2 of Fig. 3(e)).

Although in the previous scenarios the best-effort- and dedicated-aefatéc
rules (represented froma , a) are aligned, one could ask how would two conflict-
ing optimization objectives affect our network? The answer lays in theeushg
6, that judges which objective carries more importance. E.g., an operaawba
main goals: (i) to maximize the user QoS for “dedicated” traffic capturef |3y
(setas = 0), (ii) to better balance the utilization of best-effort resources between
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BSs (sety; = 10). As shown in Fig. 3(d), if — 0 E[k] is maximized, whereas as
0 — 1 M SE; is minimized, and each objective comes at the price of the other.

0
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1000 V
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2000 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0

500

1000

1500 °

(a) Traffic arrival rate. (b) Pure user-perspa; = az =
0.
50
=
%47
440 0.2 0.4 9 0.6 0.8 1
g
N 0.5
500 1000 1500 2000 OO 0.2 0.4 0 0.6 0.8 1
(c) Pure netw.perspa; = as = (d) Ded. vs. Best-effort flows.
10.
User perspective Network perspective
E[c1] (Mbps) | E[k] || MSE: | MSE,
Fig. 3(b)a(1.0, = 0 24.3 48 0.31 0.27
Fig. 3(C)ayy 2y = 10 21.3 42 0.003 0.002

(e) Quantitative considerations of different trade-offs.
Figure 3: Optimal user-associations wrt thg as, 6, in the DL only scenario.

DL vs. UL performancd€Section 3.3) is considered in Fig. 3(b), 4(a)-4(b).
These figures are supplemented by specific performance metrics operer-
mance shown in Fig. 4(c). We remind to the reader that parametierdes-off
between the UL and DL performance. As already discussed, Fig. G{lnes the
optimal associations if the whole emphasis is onDheperformancér = 1): how-
ever this hurts the UL performance due to the asymmetric transmission pdwers o
the UEs and BSs (see line 1 of Fig. 4(c)). In Fig. 4(a) we move the empbiasis
the UL performancgr = 0), and each UE is attached to the nearest BS, in order
to minimize the path loss [13] and enhance the UL performance; this hurts its DL
performance though (see line 3 of Fig. 4(c)). Finally, Fig. 4(b) showsfitimal
coverage areas when one assigns equal importance to the UL and fotogsrce
(i.e. 7 = 0.5): this moderates both DL and UL performance (line 2 of Fig. 4(c)).

Hence, in the above-mentionblbn-Split Scenarits impossible to achieve op-
timal UL/DL performancesimultaneouslyUsingr, we can trade-off which carries
more importance while selecting a single BS for association, though. Butdacco
ing to the “Split Scenarid each UE is attached to two BSs: one that maximizes

12



its DL, and one that maximizes its UL performance, as shown in Fig. 3(b), 4(a
respectively.

0

500

1000

1500

2000 0 500 1000 1500 2000 0 500 1000 1500 2000

(a) UL optimalr = 0. (b) Equal emphasis = 0.5.
DL performance UL performance
E[e1] (Mbps) | E[k] || E[cs] (Mbps) | E[K]
Fig. 3(b),7 =1 24.3 48 6.5 25
Fig. 4(b),7 = 0.5 22.9 45 7.5 29
Fig. 4(a),r =0 18.1 36 8.5 33

(c) Quantitative considerations of different trade-offs.
Figure 4: Optimal user-associations wrtfor the pure user-persp. scenario.

Fig. 5 illustrates the impact of the user vs. network perspective tradsroff
differentr. Firstly, givent = 0: a3 = 0 maximizesE[c3], and asvs is increased
the network-perspective is enhanced (lowes F) at the price of user-perspective
(decreased?[c3]); this is consistent with our theory. Howevéoy higher values
of T > 0: a3 = 0 does nomaximize E[cs]. This is reasonable since the emphasis
putin the DL ¢ > 0) will attempt to enhance the DL performance, so associate the
users with the macro BSs (higher power transmission), and eventuallye(ipad
BSs UL resources, (ii) weaken the user UL rates. Interestingly, asoeaseax;
(move to load balancing) more users are associated with the SCs to offload the
macro BSs, consequently[cs] is enhanced, up to the point that is maximized
and starts obeying the general decreasing rule. This constitutes a texgsting
trade-off since it suggests that we can achibe¢h enhanced user and network
perspective, in different scenarios. Summing up, in the above-mentidoad
Split Scenariadhe UL performance is bounded in termsiofcs] and M SE3 (the
bounds are assurazhly whenr = 0); Split Scenariadhough, always guarantees
these optimal bounds, as depicted in Fig. 5.

6 Conclusion

In this paper, we considered the user-association problem for futmsedHet-
Nets. We propose a theoretical framework that optimally assigns userssto BS
considering: (i) user-centric and network-centric performance gdalsraffic
consisting of both best-effort and dedicated flows, and (iii) UL and Difgoe
mance. Optimal association rules are analytically derived in our frameviark,
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Figure 5: Trade-off: “user” vs “network” perspective in the UL sa€o.

different scenarios. Finally, initial simulation results are presented thailoarate
the correctness of the framework, and reveal interesting tradeoffs.

7 Appendix

7.1 Impact of a, on the user and network perspective

To better elucidate the problem at hand we asséime) (emphasize the dedi-
cated flows performance). (13) becorhes

i(z) = argmax ki (2)[(1-pj2)]*. (20)

From (20), ifay = 1 the average number adle “servers™k; 1 (z) - (1 - pj,) is
maximized. Equivalently, the actual blocking probability is minimized, since it is
monotonically decreasing on tlidle servers [14]. Similarly, itve = 0 or aig — oo,

the optimal rule implies maximization &f and load balancing (minimization of
the maximum utilization), respectively.

7.2 Proof of Eq. (13)

We prove that (13) is the optimal association rule of Problem (12), sutioj&ut
additional constrainp; 1 (x) = p;2(z). Letp* = [p];p5] be the optimal solution
of Problem (12); this assumption can be relaxed spmcenverges to the optimal
vector p*, through an iteration algorithm analyzed in Section 4. Problem (12) is
a convex optimization because its feasible Bet [ f1; f2] has been proved to be
convex in Lemma 3.1, and the objective functi@;@”(p) is also convex (due
to the summation and linear combinations of the convex funafiofp) that is

°One can als@nalytically derive the same association rule, by assunfing 0 directly in the
cost function (11), and further minimize it.
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proven to be convex in [4]). Hence, it is adequate to check the follondmglition
for optimality

(Vo7 (o). Ap*) 20 (21)

for all p € F, whereAp* = p— p*. Letp(x) andp*(x) be the associated routing
probability vectors fop andp*, respectively. Using the deterministic cell coverage
generated by(13), the optimal association rule is given by:

* = 1{i = argmax (1=pj1)" (1= pj2)
pi () 1{ agﬁ% er(z)(1- pg2)a2+62(x)(1 p]l)m}' )

Then the inner product in Eq. (21) can be written as:

DL
¢( )

(Voo (p7), A07) = Zl o = (p") (p= - p2)

(DL) (DL)
¢ ¢o¢1 asg,f

- gp‘”"( P )1 = pi) + — 525 (") (o2 = p3)

0 (pa-pl) + (1-0) Y

B (L=pi1)™ “ W(Pm - piz2) (23)
5 V2@ i) ~pie)de  (1-0) J, pia(@)@ile) = pi(@))de
iB (1=pia)e (1- pin)o2

R R e e e e

wheree; (z) = %Z(i)”b andesy(z) = % Note that,

5 () A =pLa)* +a@) (1 pi)™

bilx * @ * @ -
ieB (1_Pi,1) 1(1_Pi,2) 2 24)
5 i (2B =P+ ea() (1)

& (1—ﬂ’f,1)0‘1(1—/3f,2)a2

( Y(A-pf 5) 2 +e2(z)(1-p7 1)1

holds becausg* (x) in (22) is an indicator for the minimizer o (T o157 )2

Hence, (21) holds.

7.3 Proof of Eq. (18)

We prove that (18) is the optimal association rule of Problem (17), subject
to the additional constraing; 1(z) = pi2(x) = pis(xz) = pia(z). Letp* =
[p1; p5; p5; p1] be the optimal solution of Problem (17); this assumption can be
relaxed since converges to the optimal vectpt, through an iteration algorithm
analyzed in Section 4. Problem (17) is a convex optimization because its feas
ble setF = [ fi1; f2; f3; f4] has been proved to be convex in Lemma 3.1, and the
objective functionp, ¢.e(p) is also convex (due to the summation and linear com-
binations of the convex functiof,, (p) that is proven to be convex in [4]). Hence,
it is adequate to check the following condition for optimality

(Voap0(p),Ap") 20 (25)
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for all p € F, whereAp* = p— p*. Letp(x) andp*(x) be the associated routing
probability vectors fop andp*, respectively. Using the deterministic cell coverage
generated by(18), the optimal association rule is given by:

I (1= pi)™) }
Z;l 165(x) Hl 1 l:tj((]' P; Do)
Then the inner product in Eq. (25) can be written as:

pi(z) = l{ (x) = arg max (26)

AN, )N ) .
(Voo (), 85°) = 3 Z20 () (5 - p2)

z=1 apz
- a%‘”j@(p*xm ~01) + T () (o= )+ T () (s = i) + a%*pe 2 () pa - pi)
9;:3(1 o )al(pzl pin) + (1= Q)Z;m(mz pn)+ﬂ§3m(ﬂi,3—pi,3)+
+(1- 19)2 —(pi,2 = pia)
zeB Py ) 4
=ZGILQI,1(29)(1%(I) pi(x))de  (1-9) [, 0i2(2)(pi(2) - pi(z))dz Zﬁ/Lem(w)(pz(w) pi(@))dz
iB (1=pia)e (1= piz2)22 iB (1-pis)es
, (1=9) [, eia(@)(pil) - pi(x))dw
(1= pia)>s

- [ 2@ L pi(@) - pi (@)

eB
[61(56) o (1= p7 )™ + ea(@) Ty gwa (1= )™ + €3(@) Ty s (1 - p70) ™ +ea(@) T, (1 - pzl)al] dz =
(1 pi) (L =pi2)2(1=piz)es(l-pf )
j:l e;j(x) Hl:l,l¢j(1 - pi,l)al
dx.
H?:1(1_P;l)al ] !

:fL)\(m) %;(pi(m)—;l)f(w))[

27)
wherep* = [p}; p3; ps; pi ] is the optimal load vectoe; (z) = 7’% ea(z) =
1-0)zprz Y (x)zyrz 1-9)zy 2
TUELL oy () = (1-7) PL2L% ande (x) = (1-7) S92E5L Note that,
‘ Zj:l ej(x) H?:Ll:tj(l_p:,l)al
R TN T o8
S Zp%(x) Z?:l ej(x) H?:l,latj(l - P;l)al
R M (1- ;)

,;] 1 J(x)nl 1l¢J(1 pzl)&l

holds becausg’ (x) in (26) is an indicator for the minimizer & -
Hl 1(1 P; l) l

Hence, (25) holds.
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