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Abstract

The widespread adoption of tablets and smartphones, and an abundance
of data-hungry mobile applications, are overwhelming wireless networks
with increased demand and introduce considerable traffic diversity. Oper-
ators struggling to continuously add capacity and upgrade their architecture
have resorted instead to building denser deployments to improve spectral ef-
ficiency. By increasing the number of cells a user can associate with, (i) user
quality of service (QoS) can be improved, and (ii) traffic canbe offloaded
from congested base stations, to achieve better load balancing. However,
these two goals are not always aligned. To this end, we develop an analytical
framework for optimal user association in future HetNets that investigates
the potential tradeoffs between user- and network-relatedperformance, in a
more realistic setup encompassing additional key features: (i) different types
of user flows, and (ii) uplink and downlink performance. We believe this bet-
ter reflects the diversity of the services offered to users and their impact on
system performance. We evaluate our proposed framework through exten-
sive simulations, and provide some qualitative and quantitative insights on
the related tradeoffs.

Index Terms

User-association, Heterogeneous Cellular Networks, QoS metrics, 5G
architecture, traffic differentiation, link split, load balancing.
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1 Introduction

Lately, heterogeneous networks (HetNets) have been widely discussedin the
LTE-A (Long Term Evolution - Advanced) [1]. In a HetNet,small cells(SC) are
deployed along with macrocells to improve spatial reuse, and provide additional
capacity in areas with dense usage (i.e., “hotspots”), such as train stations, airports
or malls. The higher the deployment density, the better the chance that a user
equipment (UE) can be associated with a nearby base station (BS) with high signal
strength, and the more the options to balance the load.

However, denser deployments experience high spatio-temporal load variations,
and require more sophisticated load-balancing and user association algorithms [2].
Addressing such issues becomes even more challenging when one considers Het-
Nets, i.e. networks consisted of BSs with different transmit powers. There are
two key concerns when assigning a UE to a BS: (i) choosing the BS that maxi-
mizes the QoS for this user (e.g. thephysical date rate); (ii) ensuring that the load
across BSs is balanced, to avoid congestion. We will refer to the former asthe
user-perspectiveand the latter as thenetwork-perspective1. These two goals are
often conflicting. Standard SINR-based association might lead a UE to choose a
high-power or nearby BS, to maximize it’s rate, but this BS might already be con-
gested on the radio or backhaul link [3]. A recently proposed framework [4] makes
an important first step towards investigating this relationship between user- and
network-related performance, when performing user association. A parameterized
objective is used which jointly captures both metrics, with a parameterα control-
ling which of the two objectives carries more importance. An optimal association
rule is then derived for this objective.

Nevertheless, the above framework [4], as well as a number of follow upworks
in this context, are relatively simplified, not taking into account key featuresof fu-
ture networks. Firstly, most existing studies consider homogeneous traffic pro-
files. For example, [4–6] assume that all flows generated by a UE are “best-
effort” (or “elastic”). Modern and future networks will have to deal withhigh
traffic differentiation, with certain flows being able to require specific,dedicated
resources [1], [7, 8]. Such dedicated flows do not “share” BS resources like best-
effort ones, are sensitive to additional QoS metrics, and affect cell load differently.

Additionally, the majority of related studies consider downlink (DL) traffic
only [4, 5, 9]. A user-association criterion that takes into account only the uplink
(UL) or only the DL is not sufficient according to [10]. More precisely,the asym-
metric transmit powers between the UEs and different BSs differentiate the DL and
UL physical data rates significantly. To this end, associating a UE with the BS that
offers the highest DL SINR, may lead to subpar UL performance or require high

This work was supported by the European Research Council under theEuropean Commu-
nity Seventh Framework Programme (FP7/2012- 2015) under the ICT theme of DG-CONNECT
no 317941 (iJOIN).

1User performance can also be affected by congestion, when a BS is overloaded. However, we
make this simple distinction to facilitate our discussion.
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UE transmission power. What is more, the traffic load on the DL and UL may vary
significantly, due to the asymmetric traffic applications [11]. For instance, when
a user is browsing he consumes resources mostly from the downlink, whenup-
loading a video from the uplink, or when playing an online interactive video game
from both downlink and uplink. Summarizing, a proper user-association scheme
becomes even more complex if one considers the user and network performance in
the DL and the ULjointly.

To this end, we revisit the problem of user association in a more complex setup.
We use the basic methodology proposed in [4] as our starting point, and extend
the framework considerably, to include these key additional dimensions, namely
traffic heterogeneity, and differentiation in UL and DL traffic. Specifically, our
contributions can be summarized as follows:
1) We introduce dedicated flows into the framework, along with a different schedul-
ing discipline and QoS metrics; an optimal rule can still be derived when jointly
considering user- and network-related performance for both types offlows.
2) We take into account the differentiation between DL and UL traffic and prove
that an optimal association rule can also be derived that jointly considers DLand
UL performance.
3) We show that our framework also applies when UL and DL traffic of the same
UE can be “split” to different BSs [12], as a disruptive architectural design for
future 5G networks [13].
4) We include all the above features into the cost function, and prove an opti-
mal rule for the complete setting. Interestingly, the optimal rule when considering
multiple objectives resembles a (weighted) harmonic mean of the individual asso-
ciation rules.
5) We further investigate the complex tradeoffs involvedquantitativelyto provide
some initial insights and guidelines about user-association policies in future Het-
Nets, and sketch a potential implementation of our algorithm using a Software
Defined Network (SDN) architecture.

The remainder of the paper is organized as follows: Section 2 outlines the con-
sidered scheduling disciplines and our system model. The proposed framework for
the optimal user-association is described in Section 3, and a flexible SDN imple-
mentation architecture in Section 4. Section 5 presents some simulation results,
and Section 6 concludes the paper.

2 System Model

Throughout this paper we assume a regionL ⊂ R
2 served by a set of BSsB,

that are either macro BSs (eNBs) or small cells (SCs). We usei ∈ B to index a
typical i-th BS. We letx ∈ L denote a location where a User Equipment (UE) is
located and a flow might initiate from. Moreover, we sketch the traffic arrival and
service models, with respect to (wrt) the additional dimensions discussed earlier.
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2.1 Traffic Arrival Model

To model the spatial traffic variation, we assume that flow arrivals follow an
inhomogeneous Poisson Point Process (PPP) with total arrival rateλ(x) per unit
area. Each new flow is [1]:

• a downlink (DL) flow with probabilityzDL, with direction from the BS to
the UE, or

• anuplink (UL) flow with probabilityzUL = 1−zDL, with direction from the
UE to the BS, independently.

Each DL (or UL) flow is also, independently [1,7,8]:

• adedicatedflow with probabilityzd = 1−zb; dedicatedbearers are allocated
for Guaranteed Bit Rate (GBR) type of traffic to meet the required bit rate or
latency constraints. These are differentiated by their QoS class of identifier
(QCI) ranging from 1 to 4 [1],

• a best-effort flow, with probabilityzb, related to non-GBR traffic, and QCI
from 5 to 9 [1].

The parameterszDL andzb depend on the traffic mix, and we assume them to be
input parameters. Using the Poisson splitting argument [14], it follows that there
are 4 independent, Poisson flow arrival processes with respective rates

λ1(x) = zDL ⋅ zb ⋅ λ(x), λ2(x) = zDL ⋅ zd ⋅ λ(x) (1)

λ3(x) = zUL ⋅ zb ⋅ λ(x), λ4(x) = zUL ⋅ zd ⋅ λ(x). (2)

Throughout the paper, we use indices 1,2,3,4 to refer to the following flow types:
DL best effort (1), DL dedicated (2), UL best effort (3), and UL dedicated (4),
respectively. Finally, Fig. 1 depicts their corresponding scheduling disciplines that
we elaborate on, in the remainder of this section.

2.2 Service model for best-effort flows

Best-effort flows are statistically multiplexed and have to compete for resources.
A lot of effort has been devoted to the study of the performance and scheduling al-
gorithms for such “elastic” types of traffic [14] [15].

We start with a simple scenario of a single DL (resp. UL) best-effort flow alone
in the cell, requested by a UE at locationx. Its received signal to interference plus
noise ratio (SINR) is

SINRi(x) = Gi(x)Pi

∑j≠iGj(x)Pj +N0

, (3)

whereN0 is the noise power,Pi the transmission power of BSi, andGi(x) repre-
sents the path loss and shadowing effects between the i-th BS and the UE located
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atx (it may also encompass antenna and coding gains etc). We assume that effects
of fast fading are filtered out [4,5].

We assume further that the available bandwidth of thei-th BS in the DL iswi,
and it is allocated between best effort and dedicated flows, as follows [8]: ζi ⋅wi is
the bandwidth allocated for best-effort flows and(1 − ζi) ⋅wi for dedicated flows,
respectively(0 ≤ ζi ≤ 1). We can use Shannon’s formula to derive thephysical
data ratefor DL best-effort flows atx:

ci,1(x) = ζi ⋅wi log2(1 +SINRi(x)). (4)

We similarly assume that the available UL bandwidth at BSi is Wi and further
split between UL best effort and dedicated flows wrt another parameter. Hence, the
physical rate for UL best-effort traffic is2 ci,3(x) = Zi ⋅Wi log2(1+SINRi(x)) atx.
Regarding the single DL flow, or single user, case,ci,1(x) is the effective service
rate (resp.ci,3(x) for UL). Theuser-perspective, wrt the DL traffic, corresponds to
attaching to the BSi that maximizes the rateci,1(x) (or ci,3(x) in the UL).

However, if there are multiple users and DL/UL best-effort flows sharingthe re-
spective capacities, the above values will correspond to the instantaneousrates, but
the effective rates will be decreased. We assume twoindependentsystems that fol-
low the Processor-Sharing (PS) scheduling discipline (M/G/1/PS system) [14, 15]
for the DL and UL best-effort flows, as shown in Fig. 1. PS is a popular schedul-
ing policy, due to its fairness properties, and is often used to model elastic traffic.
Hence, if we assume that the sizes of the best-effort flows (in bits) at location x are
drawn independently from two generic distributions, with meany(x) andY (x) in
the DL and UL, respectively, the corresponding utilizationdensitiesare

̺i,1(x) = λ1(x)
ci,1(x) ⋅ 1

y(x)

, ̺i,3(x) = λ3(x)
ci,3(x) ⋅ 1

Y (x)

. (5)

Note that̺i,1(x) (resp. ̺i,3(x)) is not the actual utilization of the resources of
BS i, but rather a measure of the intensity of best-effort traffic demand at location
x relative to the available capacity at locationx, by BS i. From thenetwork-
perspective, these utilizations should not exceed1 (to avoid congestion) and ideally
equalized among different cells (for load-balancing).

2.3 Service model for dedicated flows

A dedicated flow is subject to admission control, as it requires some resources
for exclusive usage. If a user initiates a new dedicated flow (e.g. an online video
game) when the system is already using all its resources, the session will be“blocked”.
Thus, we chose to apply the M/G/k/k [14] (or,k-loss) system, wherek expresses

2In the UL scenario, we slightly abuse notation when referring to the SINR, which is of course the
SINR at BS i, when the UE transmits with some powerPUE . Also, the parametersζi, Zi could be
optimized globally or per BS, and could be equal or differentiated. Such an optimization is beyond
the scope of this paper, and we’ll assume these to be input parameters.
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the “maximum” number of dedicated flows the BS can serve simultaneously. In
queueing terms, this is the number of availableserversor resources.

However, each DL flow might demand a different dedicated rate, so we can
approximate theaverageresource constraintk for different BSs at locationx, as
follows [8]. Let there be different types of dedicated flows: a flow of typei requires
a data rate ofbi(x) bps, and the ratio of flows with ratebi(x) is equal tori (where
∑i ri = 1). Then, the average data rateE[b(x)] (in bps) for an incoming DL
dedicated flow atx is

E[b(x)] = ∑
i

bi(x)ri . (6)

The above is the average DL rate demand. The amount of bandwidth it takesto
serve this demand will also depend on the DL physical data rate at locationx,
which is, as we saw,

ci,2(x) = (1 − ζ) ⋅wi log2(1 +SINRi(x)). (7)

Similarly, we can derive the average UL rate demandedE[B(x)], and the UL
physical rateci,4(x). Hence, we can now estimate the maximum number of DL
dedicated flowski(x) at BSi (Ki(x) in the UL case), as shown in Fig. 1:

ki(x) = ci,2(x)
E[b(x)] , Ki(x) = ci,4(x)

E[B(x)] , i ∈ B. (8)

ki(x) can be seen as the number of “servers” (k) for dedicated slots in the above
M/G/k/k system at locationx. As the blocking probability of ak-loss system is
expected to be monotonically decreasing onk, the user-perspectivewrt the DL
dedicated flows corresponds to choose the BSi that offers the maximumki(x);
whereas wrt the UL the maximumKi(x).

Finally, while the above derives the expected amount of demanded resources
per flow, each flow might keep its resources for a different duration. Assuming
that this random duration comes from a generic distribution with mean1

µd
, we can

define utilization densities for dedicated resources as

̺i,2(x) = λ2(x)
ki(x)µd(x)

̺i,4(x) = λ4(x)
Ki(x)µd(x)

, (9)

Once more, a network operator would like to keep these values below1 in the
long run, which might lead to redirect a UE to a BS with a smallerki(x) for load-
balancing purposes.

3 User Association Problem

We are ready to formulate our optimization problem, and derive the optimal
association rules. In doing this, we introduce a routing functionpi,y(x), y ∈
{1,2,3,4} that specifies the probability that a flow of typey generated at location
x is routed to BSi. The association policy consists exactly in finding appropriate
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Figure 1: DL/UL service models for dedicated and best-effort traffic.

values for these routing probabilities. As it will turn out, the optimal values will
be either0 or 1, i.e. the optimal association rule will be deterministic. Before
proceeding to the optimization problem, we describe the feasible region for the
variablespi,y(x) that is mainly defined by the requirement that the capacity of no
BS is exceeded.

Definition (Feasibility): The setsfy of feasible BS loadsρy = (ρ1,y, ρ2,y, ...),
wherey = 1 concerns the best-effort utilization andy = 2 the dedicated one in the
DL, whereasy = 3 andy = 4 concern them in the UL, are given by

fy = {ρy ∣ ρi,y = ∫
L
̺i,y(x)pi,y(x)dx,

0 ≤ ρi,y ≤ 1 − ǫ,

∑
i∈B

pi,y(x) = 1,

0 ≤ pi,y(x) ≤ 1,∀i ∈ B,∀x ∈ L},

(10)

whereǫ is an arbitrarily small positive constant.

Lemma 3.1 The feasible setsf1, f2, f3, f4 are convex.

Proof 1 The proof for the feasible set of DL best-effort flowsf1 is presented in [4],
and can be easily adapted for the other three cases, as well.

Further constraints are introduced, depending on whether a UE at location x is
allowed to be attached to different BSs for: (i) different types of flows,(ii) different
link scenarios flows.
(i) While the offloading of different types of flows to different BSs might be al-
lowed in future setups (e.g. per flow offloading), it is currently not the case. Thus,
it should holdpi,1(x) = pi,2(x) andpi,3(x) = pi,4(x) ∀i ∈ B , i.e. all DL best-
effort and dedicated flows should be offloaded to the same BS; similarly in the
UL.
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(ii) Standard setups propose that a UE should be connected to a single BS forboth
UL and DL traffic, i.e. pi,1(x) = pi,2(x) = pi,3(x) = pi,4(x) ∀i ∈ B . However,
link-split [12], allows a UE to offload its UL and DL traffic to different BSs, so
pi,1(x) = pi,2(x) andpi,3(x) = pi,4(x) ∀i ∈ B is sufficient.

3.1 Optimal user-association for DL only flows

Let’s consider a scenario with both best-effort and dedicated flows, that are all
DL (i.e., no UL traffic considered). Following [4], we extend the cost-function to
consider performance for dedicated flows as well. The parameters{α1, α2} con-
trol the amount of load-balancing desired for best-effort and dedicated resources,
respectively. Parameterθ reflects which type of traffic is more important. Our cost
function is

φ
(DL)
α1,α2,θ

(ρDL) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i θ
(1−ρi,1)

1−α1

α1−1
+ (1 − θ) (1−ρi,2)1−α2

α2−1
, if α1, α2 ≠ 1

∑i θ log
1

(1−ρi,1)
+ (1 − θ) log 1

(1−ρi,2)
, if α1 = α2 = 1

∑i θ
[(1−ρi,1)]

1−α1

α1−1
+ (1 − θ) log 1

(1−ρi,2)
, if α2 = 1

∑i θ log
1

(1−ρi,1)
+ (1 − θ) (1−ρi,2)1−α2

α2−1
, if α1 = 1.

(11)

whereρDL = [ρ1;ρ2] andFDL = [f1; f2] depict the BS loads in the respective
dimensions and their feasible values.

Theorem 3.2 If the feasible domainFDL of the problem

min
ρDL

{φ(DL)
α1,α2,θ

(ρDL)∣ρDL ∈ FDL} (12)

is non-empty, the optimal user-association rule wrt the additional constraint pi,1(x) =
pi,2(x) discussed earlier, is

i(x) = argmax
i∈B

(1 − ρ∗i,1)α1(1 − ρ∗i,2)α2

e1(x)(1 − ρ∗i,2)α2 + e2(x)(1 − ρ∗i,1)α1

, (13)

whereρ∗DL = [ρ∗1 ;ρ∗2] is the optimal load vector (the solution to Problem (12)),

e1(x) = θy(x)zDLzb
ci,1(x)

ande2(x) = (1−θ)zDLzd
µ(x)ki(x)

.

Proof 2 The proof is presented in the Appendix.

“User vs. Network perspective (Fairness)”.α1 andα2 are the parameters that trade
off user related performance for network-related one. Detailed discussion for the
below claims regardingα1 can be found in [4], whereas regardingα2 in the Ap-
pendix.

• User-perspective:α1 = 0 maximizes the average physical rate for the best-
effort flows as defined in Eq. (4), whereasα2 = 0 maximizes the average
dedicated servers for dedicated flows as defined in Eq. (8)3.

3Here, since each UE is obliged to associate with the BS that maximizes itsSINR for a certain
bandwidth unit,spectral efficiencyis improved.
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• Optimizing related QoS metrics:if α1 = 2, the average delay is minimized,
since the cost function for best effort flows becomes equal to the expected
delay in an M/G/1/PS system. Ifα2 = 1 the corresponding optimal rule
becomes equivalent to the averageidle dedicated servers in a k-Loss system,
so the actual blocking probability for dedicated flows is minimized.

• Network Perspective:As α1 → ∞, we minimize the maximum BS utiliza-
tion, i.e. load balancing between theρ1 is achieved. Similar forα2 and
ρ2’s.

“Dedicated vs. best-effort flows performance”.Parameter0 ≤ θ ≤ 1 is a linear
weight factor deciding the importance of optimizing dedicated flow (θ → 0) vs.
best effort flow performance (θ → 1). Different operators might choose different
values at different times of day, service level agreements etc.

3.2 Optimal user-association for UL only flows

The case of UL traffic only is entirely symmetrical to the DL case just ad-
dressed. For completeness, we state the cost function and optimal association rule.

φ
(UL)
α3,α4,Θ

(ρUL) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑iΘ
(1−ρi,3)

1−α3

α3−1
+ (1 −Θ) (1−ρi,4)1−α4

α4−1
, if α3, α4 ≠ 1

∑iΘlog 1

(1−ρi,3)
+ (1 −Θ) log 1

(1−ρi,4)
, if α3 = α4 = 1

∑iΘ
(1−ρi,3)

1−α3

α3−1
+ (1 −Θ) log 1

(1−ρi,4)
, if α4 = 1

∑iΘlog 1

(1−ρi,3)
+ (1 −Θ) (1−ρi,4)1−α4

α4−1
, if α3 = 1.

(14)

If e3(x) = ΘY (x)zULzb
ci,3(x)

, e4(x) = (1−Θ)zULzd
µ(x)Ki(x)

, our rule becomes

i(x) = argmax
i∈B

(1 − ρ∗i,3)α3(1 − ρ∗i,4)α4

e3(x)(1 − ρ∗i,4)α4 + e4(x)(1 − ρ∗i,3)α3

. (15)

3.3 Optimal DL and UL user-association

We are now ready to considerjointly the DL and UL performance while decid-
ing the optimal user-associations. As already mentioned we are going to investigate
the optimal association rules either when UL/DL split is offered, or not.

3.3.1 “Split Scenario”

Link split (or DL/UL decoupling) allows each UE to be associated with two
BSs for its DL and UL offloading [12, 13], to maximize systems performance in
both dimensions. So, the independent DL and UL associations can be found by
separatelysolving the optimization problems described in Sections 3.1, 3.2, re-
spectively.
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3.3.2 “Non-Split Scenario”

However, depending on the operator’s capabilities, the link-split mightnot be
applicable. Hence, ifα = {α1, α2, α3, α4} we form a new cost function to opti-
mally associate each UE with only one BS wrt toτ :

φα,θ,Θ(ρ) = τφ(DL)
α1,α2,θ

(ρDL) + (1 − τ)φ(UL)
α3,α4,Θ

(ρUL) (16)

whereρ = [ρ1;ρ2;ρ3;ρ4] andF = [f1; f2; f3; f4].
“DL vs. UL performance”.0 ≤ τ ≤ 1 is a linear weight factor deciding the impor-
tance of optimizing the DL performance (τ → 1) vs. the UL performance (τ → 0).

Theorem 3.3 If the feasible domainF of the problem

min
ρ
{φα,θ,Θ(ρ)∣ρ ∈ F} (17)

is non-empty, the optimal user-association rule wrt the additional constraint pi,1(x) =
pi,2(x) = pi,3(x) = pi,4(x), is

i(x) = argmax
i∈B

∏4

l=1((1 − ρ∗i,l)αl)
∑4

j=1 ej(x)∏4

l=1,l≠j((1 − ρ∗i,l)αl) , (18)

whereρ∗ = [ρ∗
1
;ρ∗

2
;ρ∗

3
;ρ∗

4
] is the optimal load vector,e1(x) = τ θy(x)zDLzb

ci,1(x)
, e2(x) =

τ
(1−θ)zDLzd
µ(x)ki(x)

, e3(x) = (1 − τ)ΘY (x)zULzb
ci,3(x)

ande4(x) = (1 − τ) (1−Θ)zULzd
µ(x)Ki(x)

.

Proof 3 The proof is presented in the Appendix.

Remark It is interesting to look a bit deeper into the above optimal association
rule. When considering multiple conflicting objectives, it is optimal to associate
a user to the BS that maximizes theharmonic meanof the individual association
rules when considering each objective alone. E.g., assume a simple scenario with
only UL and DL best-effort traffic. And assume the following BS options for a
user: (BS A) gives 50Mbps DL and only 1Mbps UL; (BS B) 200Mbps DLand
0.5Mbps UL; (BS C) 20Mbps DL and 5Mbps UL. If we care about UL andDL
traffic equally (i.e.τ = 0.5), one might assume that the BS with the highest sum
(or arithmetic average) of rates should be chosen (i.e. BS B). However,the optimal
BS, according to our rule is the BS that maximizes the harmonic mean, namely
BS C. Harmonic means appear in a number of physical examples, such as parallel
resistances, where the total resistance is the harmonic mean of the parallel ones.
In that case, increasing the total resistance would require increasing thesmallest
resistance. In that sense, the optimal rule can be seen as applying a max-min
principle among the various conflicting objectives. However, a number of systems
parameters (e.g,θ, τ , etc.) also enter the policy rule, changing the weights of
each “branch” on this harmonic mean. Note that, the harmonic mean usage further
allows to add more dimensions in our setup and flexibly derive the optimal rule.
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4 SDN-based Implementation

Now, we propose an online centralized algorithm that achieves global optimum
in an iterative manner. This algorithm takes as inputs (i) the overall network status,
and (ii) some high level system-parameters, in order to identify the optimal asso-
ciations. This procedure is rather facilitated from a SDN architecture that offers a
centralized programmable control for the underlying network. Following theSDN
outline, we consider four planes as illustrated in Fig. 2:
Application tier: The operator determines some system-related parameters (e.g.
α, θ, τ, ζ etc) based on the desired setup, and advertises them to the controller, at
the end of thek-th iteration period, or less frequently, depending on his policy.
Controller tier: At eachk period, the controller receives (i) the above-mentioned
system-related parameters, and (ii) some network-related parameters (e.g.zDL,
size-files etc) as well as the 4-dimensional load vectorρ(k) from the application and
network tier, respectively. Then, it determines and advertises to BSs the optimal
associations derived from Eq (13,15,18).
Network tier: Eachk-th period, BSs either apply or indicate to users the optimal
rules depending on how the association is managed in the network. At the endof
k, they measure and advertise to the controller their average load levelsρ(k), and
the network-relater parameters (e.g.zDL, size-files etc).
User tier: At eachk-th period, a UE at locationx is associated or triggers the
association procedure to the new BSs.

Figure 2: Applicability to the SDN architecture.

This simple iteration provably converges to the global optimal point with a
simple modification of the proof in [4].

5 Simulations

In this section we briefly present some numerical results and discuss related
insights. We consider a2 × 2 km2 area. Fig. 3(a) shows a color-coded map of
the heterogeneous traffic demandλ(x) (flows/hour per unit area) (blue implying
low traffic and red high), with 3 hotspots. Furthermore, we assume that this area
is covered by four macro BSs (shown with asterisks) and six SCs (shownwith
triangles) as depicted in Fig. 3(b)-(c), and Fig. 4(a)-(b). We also consider standard
parameters as adopted in 3GPP [16], listed in Table 14. Throughout this section, if

4As for (i) the sizes and ratios of different flows, (ii) splitting parameters,we can use different
values in order to capture different simulation scenarios.
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Table 1: Simulation Parameters
Parameter Variable Value

Transm. Power of Macro BS/ SC/ UE PeNB/PSC/PUE 43/24/12 dBm
System Bandwidth for DL, UL w/W 10/10 MHz

Noise Power Density N0 -174 dBm/Hz
Splitting parameter for DL, UL ζi, Zi 0.5/0.5

Average sizes: DL/UL best-eff. flows y(X)/Y (x) 100/20 Kbytes
Average traffic demands: DL/UL ded. flowsE[b(x)]/E[B(x)] 512, 256 kbps

Ratio of best-effort, ratio of DL flows zb, zDL 0.3,0.6

not explicitly mentioned, we assume the“Non-Split Scenario”, described in 3.3.2,
andθ = Θ = 0.5.

Before proceeding, we setup a metric that reflects the “network-related”per-
formance goal, namely load balancing. Hence, we introduce the Mean Squared
Error (MSE) between the utilization of different BSs, normalized to 1:

MSE1 = 1

2 ∗ h
∑
i

∑
j

(ρi,1 − ρj,1)2, (19)

whereh is the normalizing factor and is equal toh = ⌊N
2
⌋ × ⌈N

2
⌉, andN the

total number of BSs. The higher the MSE1, the more imbalanced the load for the
DL “best-effort” resources across different BSs. We can define similar metrics
MSE2,MSE3,MSE4 for the remaining utilization values.

User vs. Network Perspectivetrade-off is considered qualitatively in Fig. 3(b)-
3(c) along with Fig. 3(e) that quantifies via a Table some performance metrics,wrt
the DL scenario (Section 3.1). Concerning theuser-perspective, Fig. 3(b) outlines
the optimal associations ifα1 = α2 = 0. Thus, each UE is attached to the BS
that offers thehighest DL SINRand promises higher average DL physical rate for
best effort flowsE[c1], and more average “dedicated” serversE[k]; i.e. most of
UEs are attached to macro BSs due to their high power transmission, and fewerto
SCs, forming small circles around them. Consequently, macrocells are overloaded
and load imbalance within the cells is sharpened (increasedMSE1,MSE2; see
line 1 of Fig. 3(e)). However, in Fig. 3(c) we emphasize thenetwork-perspective
(load-balancing) and setα1 = α2 = 10. Now, (i) SCs increase their coverage area
in order to offload the overloaded macro BSs, (ii)all the “heavily” loaded (due to
the hotspots) BSs, shrink their coverage. Thus load imbalance is alleviated,at the
cost ofE[c1],E[k1] (see line 2 of Fig. 3(e)).

Although in the previous scenarios the best-effort- and dedicated- related traffic
rules (represented fromα1, α2) are aligned, one could ask how would two conflict-
ing optimization objectives affect our network? The answer lays in the usage of
θ, that judges which objective carries more importance. E.g., an operator has two
main goals: (i) to maximize the user QoS for “dedicated” traffic captured byE[k]
(setα2 = 0), (ii) to better balance the utilization of best-effort resources between

11



BSs (setα1 = 10). As shown in Fig. 3(d), ifθ → 0 E[k] is maximized, whereas as
θ → 1MSE1 is minimized, and each objective comes at the price of the other.

(a) Traffic arrival rate.
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(d) Ded. vs. Best-effort flows.

User perspective Network perspective
E[c1] (Mbps) E[k] MSE1 MSE2

Fig. 3(b)α{1,2} = 0 24.3 48 0.31 0.27
Fig. 3(c)α{1,2} = 10 21.3 42 0.003 0.002

(e) Quantitative considerations of different trade-offs.

Figure 3: Optimal user-associations wrt theα1, α2, θ, in the DL only scenario.

DL vs. UL performance(Section 3.3) is considered in Fig. 3(b), 4(a)-4(b).
These figures are supplemented by specific performance metrics of userperfor-
mance shown in Fig. 4(c). We remind to the reader that parameterτ trades-off
between the UL and DL performance. As already discussed, Fig. 3(b) outlines the
optimal associations if the whole emphasis is on theDL performance(τ = 1): how-
ever this hurts the UL performance due to the asymmetric transmission powers of
the UEs and BSs (see line 1 of Fig. 4(c)). In Fig. 4(a) we move the emphasison
theUL performance(τ = 0), and each UE is attached to the nearest BS, in order
to minimize the path loss [13] and enhance the UL performance; this hurts its DL
performance though (see line 3 of Fig. 4(c)). Finally, Fig. 4(b) shows the optimal
coverage areas when one assigns equal importance to the UL and DL performance
(i.e. τ = 0.5): this moderates both DL and UL performance (line 2 of Fig. 4(c)).

Hence, in the above-mentionedNon-Split Scenariois impossible to achieve op-
timal UL/DL performancesimultaneously. Usingτ , we can trade-off which carries
more importance while selecting a single BS for association, though. But, accord-
ing to the “Split Scenario” each UE is attached to two BSs: one that maximizes

12



its DL, and one that maximizes its UL performance, as shown in Fig. 3(b), 4(a),
respectively.
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(a) UL optimalτ = 0.
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(b) Equal emphasisτ = 0.5.

DL performance UL performance
E[c1] (Mbps) E[k] E[c3] (Mbps) E[K]

Fig. 3(b),τ = 1 24.3 48 6.5 25
Fig. 4(b),τ = 0.5 22.9 45 7.5 29
Fig. 4(a),τ = 0 18.1 36 8.5 33

(c) Quantitative considerations of different trade-offs.

Figure 4: Optimal user-associations wrtτ , for the pure user-persp. scenario.

Fig. 5 illustrates the impact of the user vs. network perspective trade-offwrt
differentτ . Firstly, givenτ = 0: α3 = 0 maximizesE[c3], and asα3 is increased
the network-perspective is enhanced (lowerMSE3) at the price of user-perspective
(decreasedE[c3]); this is consistent with our theory. However,for higher values
of τ ≻ 0: α3 = 0 does notmaximizeE[c3]. This is reasonable since the emphasis
put in the DL (τ ≻ 0) will attempt to enhance the DL performance, so associate the
users with the macro BSs (higher power transmission), and eventually: (i) overload
BSs UL resources, (ii) weaken the user UL rates. Interestingly, as we increaseα3

(move to load balancing) more users are associated with the SCs to offload the
macro BSs, consequentlyE[c3] is enhanced, up to the point that is maximized
and starts obeying the general decreasing rule. This constitutes a very interesting
trade-off since it suggests that we can achieveboth enhanced user and network
perspective, in different scenarios. Summing up, in the above-mentionedNon-
Split Scenariothe UL performance is bounded in terms ofE[c3] andMSE3 (the
bounds are assuredonly whenτ = 0); Split Scenariothough, always guarantees
these optimal bounds, as depicted in Fig. 5.

6 Conclusion

In this paper, we considered the user-association problem for future dense Het-
Nets. We propose a theoretical framework that optimally assigns users to BSs,
considering: (i) user-centric and network-centric performance goals, (ii) traffic
consisting of both best-effort and dedicated flows, and (iii) UL and DL perfor-
mance. Optimal association rules are analytically derived in our framework,for
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Figure 5: Trade-off: “user” vs “network” perspective in the UL scenario.

different scenarios. Finally, initial simulation results are presented that corroborate
the correctness of the framework, and reveal interesting tradeoffs.

7 Appendix

7.1 Impact ofα2 on the user and network perspective

To better elucidate the problem at hand we assumeθ → 0 (emphasize the dedi-
cated flows performance). (13) becomes5

i(x) = argmax
j∈B

kj(x)[(1 − ρ∗j,2)]α2 . (20)

From (20), ifα2 = 1 the average number ofidle “servers”kj,1(x) ⋅ (1 − ρ∗j,2) is
maximized. Equivalently, the actual blocking probability is minimized, since it is
monotonically decreasing on theidle servers [14]. Similarly, ifα2 = 0 or α2 →∞,
the optimal rule implies maximization ofk and load balancing (minimization of
the maximum utilization), respectively.

7.2 Proof of Eq. (13)

We prove that (13) is the optimal association rule of Problem (12), subjectto the
additional constraintpi,1(x) = pi,2(x). Let ρ∗ = [ρ∗

1
;ρ∗

2
] be the optimal solution

of Problem (12); this assumption can be relaxed sinceρ converges to the optimal
vectorρ∗, through an iteration algorithm analyzed in Section 4. Problem (12) is
a convex optimization because its feasible setF = [f1; f2] has been proved to be

convex in Lemma 3.1, and the objective functionφ(DL)
α,θ
(ρ) is also convex (due

to the summation and linear combinations of the convex functionφα(ρ) that is

5One can alsoanalytically derive the same association rule, by assumingθ → 0 directly in the
cost function (11), and further minimize it.
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proven to be convex in [4]). Hence, it is adequate to check the following condition
for optimality

⟨∇φ(DL)
α1,α2,θ

(ρ∗),∆ρ∗⟩ ≥ 0 (21)

for all ρ ∈ F , where∆ρ∗ = ρ − ρ∗. Let p(x) andp∗(x) be the associated routing
probability vectors forρ andρ∗, respectively. Using the deterministic cell coverage
generated by(13), the optimal association rule is given by:

p
∗
i (x) = 1{i = argmax

j∈B

(1 − ρ∗j,1)α1(1 − ρ∗j,2)α2

e1(x)(1 − ρ∗j,2)α2 + e2(x)(1 − ρ∗j,1)α1

}. (22)

Then the inner product in Eq. (21) can be written as:

⟨∇φ(DL)
α1,α2,θ

(ρ∗) ,∆ρ
∗⟩ = 2

∑
z=1

∂φ
(DL)
α1,α2,θ

∂ρz
(ρ∗) (ρz − ρ∗z)

= ∂φ
(DL)
α1,α2,θ

∂ρ1
(ρ∗)(ρ1 − ρ∗1) + ∂φ

(DL)
α1,α2,θ

∂ρ2
(ρ∗)(ρ2 − ρ∗2)

= θ∑
i∈B

1

(1 − ρi,1)α1

(ρi,1 − ρ∗i,1) + (1 − θ)∑
i∈B

1

(1 − ρi,2)α2

(ρi,2 − ρ∗i,2)
= ∑

i∈B

θ ∫L ̺i,1(x)(pi(x) − p∗i (x))dx(1 − ρi,1)α1

+ (1 − θ) ∫L ̺i,2(x)(pi(x) − p∗i (x))dx(1 − ρi,2)α2

= ∫
L
λ(x)∑

i∈B

(pi(x) − p∗i (x))[e1(x)(1 − ρ
∗
i,2)α2 + e2(x)(1 − ρ∗i,1)α1

(1 − ρ∗i,1)α1(1 − ρ∗i,2)α2

]dx,

(23)

wheree1(x) = θy(x)zDLzb
ci,1(x)

ande2(x) = (1−θ)zDLzd
µ(x)ki(x)

. Note that,

∑
i∈B

pi(x)e1(x)(1 − ρ
∗
i,2)α2 + e2(x)(1 − ρ∗i,1)α1

(1 − ρ∗i,1)α1(1 − ρ∗i,2)α2

≥

∑
i∈B

p
∗
i (x)e1(x)(1 − ρ

∗
i,2)α2 + e2(x)(1 − ρ∗i,1)α1

(1 − ρ∗i,1)α1(1 − ρ∗i,2)α2

(24)

holds becausep∗(x) in (22) is an indicator for the minimizer of
e1(x)(1−ρ

∗
i,2)

α2+e2(x)(1−ρ
∗
i,1)

α1

(1−ρ∗
i,1
)α1(1−ρ∗

i,2
)α2

.

Hence, (21) holds.

7.3 Proof of Eq. (18)

We prove that (18) is the optimal association rule of Problem (17), subject
to the additional constraintpi,1(x) = pi,2(x) = pi,3(x) = pi,4(x). Let ρ∗ =
[ρ∗

1
;ρ∗

2
;ρ∗

3
;ρ∗

4
] be the optimal solution of Problem (17); this assumption can be

relaxed sinceρ converges to the optimal vectorρ∗, through an iteration algorithm
analyzed in Section 4. Problem (17) is a convex optimization because its feasi-
ble setF = [f1; f2; f3; f4] has been proved to be convex in Lemma 3.1, and the
objective functionφα,θ,Θ(ρ) is also convex (due to the summation and linear com-
binations of the convex functionφα(ρ) that is proven to be convex in [4]). Hence,
it is adequate to check the following condition for optimality

⟨∇φα,θ,Θ(ρ∗),∆ρ∗⟩ ≥ 0 (25)

15



for all ρ ∈ F , where∆ρ∗ = ρ − ρ∗. Let p(x) andp∗(x) be the associated routing
probability vectors forρ andρ∗, respectively. Using the deterministic cell coverage
generated by(18), the optimal association rule is given by:

p
∗
i (x) = 1{i(x) = argmax

i∈B

∏4

l=1((1 − ρ∗i,l)αl)
∑4

j=1 ej(x)∏4

l=1,l≠j((1 − ρ∗i,l)αl)} (26)

Then the inner product in Eq. (25) can be written as:

⟨∇φα,θ,Θ (ρ∗) ,∆ρ
∗⟩ = 2

∑
z=1

∂φα,θ,Θ

∂ρz
(ρ∗) (ρz − ρ∗z)

= ∂φα,θ,Θ

∂ρ1
(ρ∗)(ρ1 − ρ∗1) + ∂φα,θ,Θ

∂ρ2
(ρ∗)(ρ2 − ρ∗2) + ∂φα,θ,Θ

∂ρ3
(ρ∗)(ρ3 − ρ∗3) + ∂φα,θ,Θ

∂ρ4
(ρ∗)(ρ4 − ρ∗4)

= θ∑
i∈B

1

(1 − ρi,1)α1

(ρi,1 − ρ∗i,1) + (1 − θ)∑
i∈B

1

(1 − ρi,2)α2

(ρi,2 − ρ∗i,2) + ϑ∑
i∈B

1

(1 − ρi,3)α3

(ρi,3 − ρ∗i,3)+
+ (1 − ϑ)∑

i∈B

1

(1 − ρi,4)α4

(ρi,2 − ρ∗i,4)
= ∑

i∈B

θ ∫L ̺i,1(x)(pi(x) − p∗i (x))dx(1 − ρi,1)α1

+ (1 − θ) ∫L ̺i,2(x)(pi(x) − p∗i (x))dx(1 − ρi,2)α2

+∑
i∈B

ϑ ∫L ̺i,3(x)(pi(x) − p∗i (x))dx(1 − ρi,3)α3

+

+ (1 − ϑ) ∫L ̺i,4(x)(pi(x) − p∗i (x))dx(1 − ρi,4)α4

= ∫
L
λ(x)∑

i∈B

(pi(x) − p∗i (x))⋅
⋅ [e1(x)∏4

l=2(1 − ρ∗i,l)αl
+ e2(x)∏4

l=1,l≠2(1 − ρ∗i,l)αl
+ e3(x)∏4

l=1,l≠3(1 − ρ∗i,l)αl
+ e4(x)∏3

l=1(1 − ρ∗i,l)αl

(1 − ρ∗i,1)α1(1 − ρ∗i,2)α2(1 − ρ∗i,3)α3(1 − ρ∗i,4)α4

]dx =

= ∫
L
λ(x)∑

i∈B

(pi(x) − p∗i (x))[∑
4

j=1 ej(x)∏4

l=1,l≠j(1 − ρ∗i,l)αl

∏4

l=1(1 − ρ∗i,l)αl

]dx.
(27)

whereρ∗ = [ρ∗
1
;ρ∗

2
;ρ∗

3
;ρ∗

4
] is the optimal load vector,e1(x) = τ θy(x)zDLzb

ci,1(x)
, e2(x) =

τ
(1−θ)zDLzd
µ(x)ki(x)

, e3(x) = (1−τ)ϑY (x)zULzb
ci,3(x)

ande4(x) = (1−τ) (1−ϑ)zULzd
µ(x)Ki(x)

. Note that,

∑
i∈B

pi(x)∑
4

j=1 ej(x)∏4

l=1,l≠j(1 − ρ∗i,l)αl

∏4

l=1(1 − ρ∗i,l)αl

≥ ∑
i∈B

p
∗
i (x)∑

4

j=1 ej(x)∏4

l=1,l≠j(1 − ρ∗i,l)αl

∏4

l=1(1 − ρ∗i,l)αl

(28)

holds becausep∗(x) in (26) is an indicator for the minimizer of
∑4

j=1 ej(x)∏
4

l=1,l≠j(1−ρ
∗
i,l
)αl

∏
4

l=1(1−ρ
∗
i,l
)αl

.

Hence, (25) holds.
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