
Intelligent Agents : a way to reduce the gap between applications and networks

Raul Oliveira, Jacques Labetoulle
Corporate Communications Department

Institute Eurecom
06904 SOPHIA ANTIPOLIS CEDEX, France.

Abstract

Network Management (NM) has been in some way an
activity apart from any other carried on the networks. Mon-
itoring networks and systems resources independently from
how users and applications are using them, has proven to
be an inadequate approach since in most of the situations
it’s impossible to trace the relationship between network
or systems faults and the applications affected by them.
Furthermore, the degradation of network and systems re-
sources can be considered as a fault from an application
point of view, and there aren’t any form to be aware of this
degradation/fault, since applications requirements are not
known to the network management system (NMS), and even
when it happens the network can apparently still be viewed
as functioning. Currently, the management efforts are used
mostly to diagnose the origin of the faults, or to notify the
systems administrators of the presence of a fault which in
our opinion could be perceived by the network manager at
very late stage.

In this article we propose a way to bring the manage-
ment closer to application and user requirements. The
approach relies on spreading intelligent agents through
network segments or domains, these agents being the man-
agement front-ends responsible to: collect QoS require-
ments concerning application operation over the network,
monitor required resources, perform when possible cor-
rective actions, or at least provide management staff with
powerful data so that they can take the corrective actions
faster than before. We expect to benefit from being aware
of how network and systems are used to develop a proactive
management in real time, without the burden of classical
approaches.

1 Introduction

Over the years the fact that network management sys-
tems (NMS) hadn’t been efficient enough to prevent faults,
or able to alert critical applications of them, have conduced
developers to insert fault detection functionalities in sev-

eral applications running in industrial environments. In our
opinion this results on effort duplication and spreading of
vital information concerning the same problem over dif-
ferent and non connected entities, without any advantage
from both sides. As a consequence, applications still don’t
have complete data about faults, whether in real time or not,
and also they can’t do anything more than prevent catas-
trophic behaviors based on information they have obtained.
From the NMS side the problem is in some way similar,
because without application information concerning net-
work inability to accomplish its tasks properly it couldn’t
react before the problems or symptoms become faults that
require human intervention.

This article claims that all activities of fault detection,
diagnosis and corrective actions should be completely dele-
gated to the NMS. To make feasible this approach the NMS
obviously needs some more information than which it has
at disposal currently. An application, as a network user,
must believe that the network and associated services will
always operate reliably and consequently doesn’t need to
perform any special effort to detect faults. However, this
constitutes in some way an undefined target, depending on
too many factors. Hence, the application should provide
the NMS with precise requirements concerning operations
over the network, from which the NMS should be able to
offer the desired reliability.

Having an application believing that the network never
fails is a comfort from the application point of view but
isn’t a pragmatic approach, so we think that it should be an
NMS obligation to notify its users when the network is not
anymore able to ensure the negotiated quality of service. As
a last possibility, which "theoretically" should not happen,
the application that haven’t received an NMS alarm but also
doesn’t have a service responding appropriately, can issue
a complaint about the network delivered quality of service.

The proposed framework entails several questions to an
NMS such as: precocious diagnosis of faults, individual-
ized diagnosis accordingly to application critical needs, and
autonomous decision over which corrective actions should
be taken in real time.

Current NMS doesn’t have any mechanism that per-

mits such an approach, they are not prepared to perform
precocious diagnosis since they are mainly designed to dis-
tinguish between healthy or faulty services, which is not
enough. NMS should be endowed with capabilities to deal
with the lack of information between these two states, upon
which it will be possible to detect some symptoms of on-
coming faults.

Until now the NMS don’t have any mechanism to spe-
cialize observations dynamically accordingly to what is
really important in the network environment. This special-
ization depends obviously upon current network "users"
and their critical requirements. Thus the NMS must also be
able to receive application’s requirements from which it will
determine the subset of services/subsystems that should be
monitored, as well as to send alarms to the appropriate
users in case of inability to maintain a correct behavior of
network services. Finally, and by far the most complex, the
proactive side of this framework, requires the NMS to be
able to decide which corrective actions to trigger to bring
the network services to their optimum state.

Most of the issues raised here, even if we admited they
could be configured more or less in nowadays NMS, will
lead invariably to a high consumption of NMS resources
and a non negligible traffic overhead. The number of ser-
vices and associated subsystems in the network environ-
ment is extremely high, and one must remember that NMS
network bandwidth utilization under every circumstance
should be reduced especially during major network faults.

The current approach in our opinion will permit to re-
duce the gap between applications or users and the NMS,
making network management an interactive and indispens-
able tool, on which a critical environment will strongly
depends. Talking about interactiveness, who never gave
a phone call to his network manager asking what is hap-
pening? We extended the scope of this weak notion of
interactivity to a broader target, which seemed to us to be
of major importance: provide NMS with knowledge about
the users and their requirements.

Before going through the solution that we propose for
this framework, we will review the state of the art in some
domains closely related to our work and on which it will
depend. For instance, our objectives are clearly situated
under the umbrella of network management automation.
And in this field one major aspect should be analyzed such
as the role of AI in NM automation. Then in section 3
we discuss how should looks like an adapted management
architecture. In section 4 we’ll present what is for us an
Intelligent e Agent (IA) and how it will be integrated in the
overall management architecture. We conclude in section 5
where an overview of the IA architecture is presented. Fi-
nally we go through the conclusions,starting with a possible
extension of this framework to traditional management en-

vironments, and finishing by resuming our expectations of
what should be in the future the role of an IA.

2 Network management automation

Network management automation have always been a
complex task for several reasons. For instance, network
configurations are not standard at all, changing whether
dependently upon types of activities or from environment
to environment. Even inside the same corporation, net-
work configuration evolution can be faster than what one
always expected at their installation. The distribution of
applications and their interactions with customer or net-
work servers is even worse from this point of view. These
might be seen as the main reasons to justify, until now,
the nonexistence of tools, upon which it will be possible
to build easily network management automation solutions.
Thus the achievement of real time network management is
a difficult target, although it’s one of the most important
ones, especially for industrial environments.

Some steps must be done to simplify the scenario in order
to pursuit in this direction. One hypothesis that seems to
be evident to us, is that the lack of information about what
is being used in the network oblige an autonomous system
to process huge quantities of data.

It’s well known that a user application requires only that
a subset of all the subsystems will be working correctly
among those existing in the network environment. Thus
maybe it doesn’t make sense to demand to an NMS to
monitor everything blindly.

Setting up traps or notifications upon some agent vari-
ables values having over-passed a determined threshold,
requires clearly considerably less effort than have a precise
view of actual and previous states of critical subsystems.
Thinking that, to prevent faults on subsystems in a reli-
able fashion, we might need base linings of their evolution,
clearly show us that the charge of the NMS will be unten-
able. This leads to the idea that the network and systems
management could be only concerned, for fine grain moni-
toring, on what is actually very important to the applications
(users). This approach however doesn’t exclude the mon-
itoring of other resources on the network that aren’t very
critical at the moment. The idea is just to concentrate the
efforts for fine grain monitoring in what is really necessary
currently, and from where the faults have higher probability
to come from (user point of view).

Network management automation concerns, three ma-
jor tasks: monitoring, analyze and reaction (take actions).
From the beginning, most of the work done in network and
systems management have been directed to the instrumen-
tation and communications point of view. Although this
is very important, for network maintainers the most im-
portant is to develop strategies that permit them to provide

users with a network service which is the most reliable as
possible.

Following the same reasons that we presented before it’s
clearly impossible to design network management applica-
tions from factory that will be able to successfully: monitor
the appropriate data, analyze these data accordingly to en-
vironment characteristics and take the correct actions to fix
up the problems.

The classical approach in commercial management plat-
forms is the provision of facilities allowing the operator to
define specialized data queries. This is usually done to set
up alarms, but the fault diagnosis and the corrective actions
must be taken by a human operator.

For a decentralized approach Management by Delega-
tion (MBD) concept [14] and elastic servers [7] enables
one to transfer management programs to an elastic server,
being these programs executed on behalf of a manager.
These programs or scripts composed of instructions car-
rying data queries, expression calculations and actions to
take upon the results of the previous analyses. Since these
programs could be transfered at any time it’s possible to
configure the network management activities according to
the current needs and network configuration. Although the
delegation of programs to elastic servers it done aiming at
decentralizing management and avoiding micro manage-
ment from a centralized manager station, it also proves
itself to be very useful towards network management au-
tomation. Nevertheless MBD depends heavily on network
manager expertise to write the programs to delegate, and so
it doesn’t address per si the real time network management
requirements concerning namely applications in industrial
environments.

One target that still is not to much explored is the net-
work management automation towards real time, so our
research will be mostly concerned with real time issues for
NMS’s.

Artificial Intelligence support

Network management automation is typically the shift
of acquired experience from network managers to au-
tonomous software applications. In doing it one expects
to reduce the reaction times for well known problems to
which the corrective actions are also known.

The challenge is to develop solutions that could trace
problems effectively, without mistake, in now a days com-
plex network environments. Most of the services offered
on a network have high dependence on several subsystems
being too hard to know precisely from where a problem
comes from. A problem detected by a user or application
on a service might not come from the subsystem imple-
menting the service, but from another upon which the later
depends. So the network expertise isn’t anymore mapped

on a first order heuristic rule and clearly needs some more
powerful inference mechanism to analyze and follow the
dependencies to find the trouble. Furthermore, it clearly
needs that we feed up the intelligent systems with enough
knowledge about network current configuration, services
dependencies on subsystems, interdependencies between
the subsystems and, as we claim, applications dependen-
cies on services.

At first glance expert systems would be the "el dorado",
but its utilization is still mostly appropriated to off-line op-
eration. In fact most of these systems are still today stand-
alone, working in isolation and independently of other sys-
tems performing, often, related tasks [8]. Besides other
criticism that we could explore, such handicaps are already
enough to reject this kind of solutions, for environments
where real time and cooperation are strong requirements.

Several knowledge representations techniques exist to-
day that might be applied to network management, espe-
cially in fault management field, ranging from : case based
reasoning (CBR), model based reasoning (MBR), neural
networks (NN) and Bayesian belief networks (BBN).

CBR is well suited for cases where a high number of
situations described by relations between symptoms and
faults exist, and where the environment isn’t to much dy-
namic so that set of cases become obsolete. The startup of
such an approach could suffer from the lacking of cases.
MBR supports decision making based on a formal prob-
lem model. This approach permits starting the operation
from the beginning with models constructed from design
data. The question is if the models accurately captures
the network behavior. If this is the case the operation of
such an approach proceeds by finding discrepancies be-
tween the modeled and observed behavior. NN and BBN
are what might be called probabilistic AI technologies and
are appropriate for alarm correlation since they can analyze
patterns of common behavior on networks, and can handle
ambiguity and incomplete data [9].

Machine learning accordingly to some authors [8], is an
issue to consider for future systems in order to keep pace
with accelerating change in network technology. In our
opinion this approach is the most complex one and should
be avoided while other possibilities in the AI domain are
explored. Most expertise in network management still non
assimilated and the sources of knowledge are not yet all
explored. Explore these sources should be the first goal to
achieve before going towards machine learning.

In this article we try to explore one of these sources.
Users and applications can play in fact a helpful role in
providing knowledge1 and hints to intelligent systems to
develop their activity, much in the same way it happens

1Knowledge here means how to adapt standard management proce-
dures to satisfy application requirements

nowadays between network managers and users, with the
difference that this done in real time will be much more
efficient. In our opinion, however, the real question remains
unanswered: do we really need artificial intelligence (AI)
techniques to build intelligent agents (autonomous software
processes)?

3 Management architecture

The management architecture that we propose to achieve
our goal of integrating users requirements in the network
management, and extend the level of automation, requires
a new type of entity with a dedicated role for that purpose.

In fact managing applications requirements from the
point of view of quality of service appears to be an impos-
sible task with the existing architecture of network man-
agement for several reasons :

� the managers are not provided with pertinent informa-
tion about application requirements,

� even with this information, the managers are located
too far from network resources and agents, and thus
the process of managing individual requirements of
applications may result in an excessive traffic load,

� dealing with this process may in any case result in an
overload of work for managers,

� the traditional agents cannot be modified to treat the
problem since they are designed in a very general
fashion and cannot be updated for the purpose of a
specific need.

It is thus necessary to create new concepts in term of
architecture and functionalities to deal with this problem.
Let us recall briefly the requirements this process implies:

� each (or carefully selected because of critical con-
straints) application must provide precise information
about its individual requirements to the Network Man-
agement System,

� the NMS should be able to execute specific observa-
tions (measurements, testings, ...) derived from the
application’s requirements, run adapted algorithms to
try to forecast and correct eventual future problems
and notify the managers and/or applications if the pro-
cess is not successful.

To be efficient, it is mandatory that the diagnosis is very
fast and takes place before the problem may appear at the
application level. This implies that the machine running
this process is close to the equipments (and thus to the
agents).

These processes can be considered in fact from the net-
work users point of view as management front ends. As
well, from the manager level they will be seen as au-
tonomous "agents" with delegated rights to perform net-
work management in an autonomous way, according to
established policies. As we justify in the section 4 man-
agement front ends will be called Intelligent Agents (IA).

The proposed architecture (described in figure 1) tries
to provide a realistic solution, by adding the following
elements to traditional management architecture:

Application

A

NE

Manager

IA IA IA IA

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

Management
Domain

Application context

Notification

Notification

MIB
values

Goals

Figure 1:Enhanced management architecture.

� an information, called the application context, is added
to the application. The context contains all pertinent
information about the application requirements, i.e.
identification of critical resources or services and the
qualityof service the application is waiting from them.
This information can be internal to the application, if
the application has been designed using the concepts
of our architecture (this will be possible for future ap-
plications). If not, the context can be added to existing
applications and executed just before the application is
launched. The context, when executed, sends a set of
information to a specific Intelligent Agent (IA) using
an appropriate Network Interface (defined in terms of
an API).

� any management area is provided with an IA, whose
architecture is described in figure 2. The first compo-
nent of the IA is a Context Manager who translates the
application requirements in terms of goals the IA must
achieve for the purpose of managing individual QoS.
The IA is also equipped with an internal engine exe-
cuting the tasks to satisfy the goals. Executing these
tasks may result in : performing specific observa-
tions on existing MIBs [11] [3] (when corresponding

agents are located in the same management area), per-
forming specific observations on programmable MIBs
(typically RMON [12] MIBs), launching tests on re-
sources (i.e. by sending periodically test requests to
critical resources or services), defining and sending
goals that other IAs must perform. The IA is thus
provided with two interfaces (one for emission, one
for reception) with all the other IAs.

Context Manager

Observation
&

Action
Engine

Goal Manager

Interface to applications

Interface to network resources

In
te

rf
ac

e
to

 o
th

er
 f

ro
nt

 e
nd

s

In
te

rf
ac

e
to

 o
th

er
 f

ro
nt

 e
nd

s

Figure 2:Intelligent Agent (management front-end)
general architecture.

It’s not clear until now how these agents can be dis-
tributed over a network environment. There are several ap-
proaches to consider for a domain, namely: groups of NEs,
segments, subnets, addressing space or any other approach
that reflects some type of organization within the global
network environment. In the same way the hosts for these
entities aren’t also determined currently. Dependently of
network configuration one can choose several possibilities
like for example: routers, switches, hubs, bridges, dedi-
cated hosts, network dedicated managers (field bus man-
agers), etc.

Figure 3 presents possible distributions of IAs (backbone
of our NMS), over a networked environment.

Agent
NE

Agent
NE

Agent
NE

Agent
NEManager

station

Router

Agent
NE

Agent
NE

Agent
NE

Hub

Agent
NE

Agent
NE

Agent
NE

Agent
NE

Agent
NE

Agent
NEAgent

Router

Agent

Agent
NE

Agent
NE

NE NE NEAgent
NE

Agent
NE

NE

Fieldbus
Manager

IA

IA

IAIA

Agent
NE

Figure 3:Intelligent Agents spread over a typical
management environment.

4 Intelligent Agents

Before starting to describe what should be the role of an
IA in the network environment the best is to clarify why
do we have chosen IA instead of other name for a manage-
ment process at an intermediate level, between managers
and agents. The term Agentfor the network management
community is associated with a server process that offer in-
strumentation over resources at one network element (NE),
to be consulted by a management process.

However, a more general view of the agent concept
would point us to a broader definition. Hence, the agent
concept enjoys the following properties [13]:

� autonomy - agents operate without the direct of hu-
mans or others, and have some kind of control over
their actions and internal state.

� social ability - agents interact with other agents (and
possibly humans);

� reactivity - agents perceive their environment (which
may be the network environment, network segment,

domain, etc) and respond in a timely fashion to
changes that occur in it;

� pro-activeness - agents do not simply act in response
to their environment, they are able to exhibit goal
directed behavior by taking the initiative.

This type of agent is conceptually different from NMS
passive agents and so we decide to differentiate them from
the later ones by calling them Intelligent.

As we claimed already, NMS in general suffer from the
inability of humans operators to process the huge quantity
of data available in current network environments. So the
delegation of some of their tasks to other entities seems to
be a natural step. It’s easy to understand that the entities
that are in charge to substitute human beings should have
the properties mentioned above.

The reason to demand to the network users to inform
the NMS of their real requirements, is in some way very
logical from the AI point of view. We should remember
that most of the work on AI has to do with the problem of
finding ways to attack search problems, such as these with
limited computational resources available in practice. So
instead of searching blindly, we should use some sort of
heuristics, or rules of thumb, to focus our efforts [6].

Application context

User requirements are delivered to an IA (NMS) through
application contexts in the same way as the ACSE [1] def-
inition for the creation of peer to peer associations. Here
the application can either negotiate its context or just in-
form the IA. The first approach is clearly the best since
it allows the network to have some kind of control over
shared resources, trying to maintain acceptable levels of
utilization. For instance, for Ethernet networks this will
constitute a starting point to implement policies to reduce
traffic on connections over-passing the "negotiated" traffic,
in order to avoid congestion situations.

Applications contexts are the means through which user
applications specify their requirements. Figure 4 gives an
idea of what these contexts may include.

� Application name

� Application priority

� List of services

– list of QoS parameters for the service

� Request rate

� Utilization (of global service capacity)

� Service time

� Error rate

� Throughput

� Response time

� ...

– Service fault severity

– Resources offering the service

– Redundant resources for the service

– ...

� List of global QoS parameters

� ...

Figure 4: Example of possible application context
attributes.

The application contexts can be either very detailed or
not, depending on the level of standardization of services
and resources mentioned in the context. So we admit that in
most cases an IA can find in the overall NMS the knowledge
to test or diagnose the service providers or resources. For
non standard cases the context should also include this
knowledge or point to where this knowledge can be found.
For instance we can suppose that a user application is built
on top of non standard services, especially designed for the
current application. In that case the IA will be pointed to
where it can find information upon service decomposition
and individualizedtest procedures for services or resources.
For example, to test network resources, like temperature
sensors on a field bus (non instrumented NE’s), the IA will
be pointed to the appropriate testing procedure.

Since application’s contexts can become very complex,
we opted to divide the global application context in several
sub contexts. With smaller contexts it will be easier for
applications to pass their requirements to the NMS, each
application accordingly to its needs can pass either simpler
or very detailed contexts. Figure 5 shows how the contexts
are organized.

Application
context
header

Service
context

Service
context

Service
context

Resource
or
NE
context

Resource
or
NE
context

Test
Proce-
dure

Test
Proce-
dure

Application name
* Hostname
* ASAP
* Priority
* List of services
* Global QoS parameters
*

Service name
* Service provider hostname
* Service QoS parameters
* Service fault severity

Figure 5:Application context organization in sub contexts.

The global context separation in several sub contexts
enables the application to update its context during run
time without need to do it for the overall context. This
also reduces the number of active goals in the IA. For
instance, one application can just update the context header
and in this way inactivate some of the service oriented sub
contexts.

Intelligent Agent goals

IA in spite of their "intelligence" must not disperse their
monitoring efforts, through all data available over the net-
work (in MIBs located on the NEs). This is the major
problem of a static approaches where without dynamic se-
lection criterion the data monitoring activity will have to
preview all possible interesting scenarios. In our approach
the "heuristics or rules of thumb" to select these scenarios
are in fact coming from the network users requirements.
Based on this information the IA must determine where to
focus the monitoring effort.

As mentioned above the agents exhibit goal directed be-
havior, and in our case, their goals are constructed dynam-
ically according to user needs. Each time an application
enters the network environment, the IA will have a new set
of goals. Dependently of network organization in domains
some of the created goals could entail the cooperation of

others IAs. Thus these goals must be forwarded to the ap-
propriate IA. Nevertheless, delegated goals responsibility
still belong to the goal creator. For instance, if the cooper-
ating IA isn’t able to guaranty the delegated goal, he must
notify the goal owner, which will notify the applications
concerned.

The idea of controlling agents behavior, based on goals
derived from contexts, is not only supported by agents the-
ory, but also has as advantage to create an independence
between goal semantics and operations that the IA will per-
form to verify goal achievement. The homogeneity of the
goals yields a separation of user requirements from dis-
tinct information models and heterogeneous management
definitions, for resources that have identical properties as
viewed by users. In fact, each IA on his domain of re-
sponsibility could have different operations sets to achieve
similar goals, dependently on available instrumentation at
the involved managed nodes. Otherwise, if a goal is to be
sent to another domain, is up to the local IA to decide by
which means he will verify the received goal. This option
will prove to be more efficient and open, since even IAs
based on distinct technologies can still cooperate.

Communication issues

The proposed architecture besides the introduction of
two additional elements to traditional management archi-
tectures, also creates two new axes of communication,
nonexistent until now, between:

� applications and IAs (middle level management pro-
cess)

� IAs themselves, to share goals, goals results and
knowledge

The former communication axe is clearly the simpler
one, and we can propose naturally that the applications will
use existent protocols available for network management,
such as CMIP [2] or SNMP [4]. This will simplify the de-
sign of IAs since they already need to use these protocols
to access either agents on NE or the manager station. The
approach sends the problem to the formalization of man-
agement objects that will be able to carry the contexts. The
challenge is to design these objects in a way that they could
host all possible contexts required by applications. From
figure 4 and figure 5, we can say that this doesn’t seem to
be the most complex task.

For the communication axe between the IAs, neither of
the communication paradigms commonly used in network
management currently seems appropriate. In fact the IAs
will need to share goals among them, demand management
procedures to verify goals and rules to fix problems from

identified faults. These information types aren’t adapted to
the structure of the management information (SMI) used
by management protocols such as CMIP and SNMP. In-
telligent Agents research community have been dealing
for long time now with these problems, and have enough
experience on Agents Communication Languages (ACL).
An example of an ACL is KQML (Knowledge Query and
Manipulation Language) [5] which uses KIF (Knowledge
Interchange Format) expressions appropriate to this type of
communication. We don’t want to compromise ourselves
with a choice right now, but KQML is a strong possibility
for this communication axe.

5 The Intelligent Agent architecture

Research around the IA architecture is still being devel-
oped. Right now it’s clear that an IA as an autonomous
entity able to perform their tasks alone will lead, of course,
to a complex architecture. We identify several major func-
tional blocks for IA architecture that actually seems us to
be of major importance to achieve ours targets.

Figure 6 gives an overview of the IA architecture which
is divided in three main areas.

Contexts manager

Contexts manager (CM) is responsible for maintaining
a real-time DB of application’s contexts. This DB aims
at storing instances of the different contexts types, as well
as their relationships either among themselves or with the
running applications on IA domain. CM is also in charge of
goals creation from the received application’s contexts, and
the forwarding of events to applications and management
stations when goals (associated with application’scontexts)
hadn’t been successfully guaranteed (probably expressed
with distinct syntaxes).

Goals manager

The goals manager (GM) is the heart of an IA, since
its name will be mainly justified by this function. He has
to process the received goals either from CM or remote
IAs, and to survey their status so that the concerned entities
(applications and remote IAs) could be notified. If the
goals cannot be monitored locally they are forwarded to
other IAs better positioned to survey them. GM and CM
must share a real-time DB where are stored the relationships
between goals and contexts entries, so when notified of an
unsuccessful goal the CM could determine which context
parameter is affected.

Knowledge
Base

Observations

Diagnosis

Corrections

Context repository

Observer Analyst Corrector

Figure 6:Intelligent Agent internal architecture.

Engine

The engine is organized in three functional blocks:

� Observer The observer is the process in charge of
monitoring the network resources in order to verify
goals accomplishment. Several types of observations
are possible: monitoring MIB values, monitoring val-
ues on probe MIBs (configured remotely by the ob-
server), launching tests on network resources or ser-
vice providers, and reading systems logs in NEs. Since
observations are made according to goals, when one
of them isn’t anymore achieved the observer informs
the analyst of which goal is unsuccessful. Afterwards
it is up to the analyst to start a diagnosis process.

� Analyst is the process in charge to perform fault di-
agnosis and performance analysis upon observer re-
quests. The analyst at least knows exactly from where
starts the diagnosis, because it knows the failed goal
and its relation with services, subsystems or resources.

In case of success the analyst will provide the correc-
tor with the identified fault, so that the later could try
to fix it.

� Corrector is the process in charge to recover from
faults. Typically having a precise identification of
the faulty subsystem or resource, the corrector will
try to bring it to the normal state. The procedures
to fix the problems must be available internally on
some repository or KB. We should notice that several
services in LANs are dependent on remote processes
for which a simple reboot action, in most of the cases,
is enough to bring the service to normal state.

Both processes (corrector and analyst) in case of insuc-
cess are required to update goal status, which will give
place to the forwarding of event notifications to concerned
applications and as well as to the manager station. We have
to refer that the IA is a management process, and conse-
quently all alarms (traps in SNMP terminology) generated
by agents should be sent to the IA instead of to a manager
station. So the analyst besides observation results he also
has as processing input triggers the alarms generated by
agents.

The IA architecture intends also to solve some of the
problems a manager station is usually faced up, and which
constitutes an information bottleneck. Alarms handling
is one of these problems, first because the manager will
receive alarms coming from several domains, concerning
faults either on NEs or services. It’s in fact to much to a
human being to process manually all these alarms, but also
for an automatic centralized process it isn’t an easy task
accordingly to the multiple sources of alarms and their non
evident relationships and side effects between them.

In our approach a manager station instead of receiving
raw alarms or event notifications carrying dedicated at-
tributes (CMIP) or variables bindings (SNMP), will prefer-
ably receive notifications about failed goals. This con-
stitutes a clear enhancement for the message semantic re-
ceived by a network manager.

Knowledge sources

The IA must be endowed with enough knowledge to
translate goals in management operations over managed
objects available on MIBs. Since the goals are indepen-
dent from any particular design of managed objects, there
might exist several mappings for the same goal. The en-
gine must have also mappings for information not included
in standardized managed objects but obtainable from other
sources.

It’s clear from what we already saw for the IA architec-
ture, that it will be necessary to have some kind of knowl-

edge bases (KB’s) to store information such as goals map-
pings on observation procedures, services modeling and
their dependencies to fault diagnosis, and faults to correc-
tive actions relationships.

6 Conclusion

The proposed framework could be seen as very com-
plex from the eyes of inadvertent readers. In fact what
we presented in this article was mostly directed to critical
applications environments such as the industrial one. But
we have to remark that the same framework can be used
for traditional management environments. In this case a
manager station can provide management contexts, instead
of applications contexts, which have to be handled by IAs
based on the same principles that these we had exposed in
this article.

The gap between applications and the network operation
is in fact big. For some people this seems to be a reason to
delay the introduction of networks in their environments,
for others this is an headache when they have to develop
reliable applications for critical industrial processes. This
article has presented a novel approach for network and sys-
tems management, in which user requirements for critical
applications can be taken in account. Furthermore, the
NMS can notify the applications of its insuccess to achieve
their needs. We have proposed an enhanced management
architecture that accepts user requirements through appli-
cation’s contexts sent to Intelligent Agents running in their
domain of operation. The approach entailed news axes
of communication for the management architecture, whose
characteristics and solutionswere analyzed. The article fin-
ishes with an overview of the IA architecture and its main
building blocks.

References

[1] ”Association Control Service Element for Open Systems In-
terconnection for CCITT Applications," Recommendation
X.217, CCITT, 1988.

[2] ”Management Information Protocol Specification - Common
Management Information Protocol, ISO/IEC 9596-1, ITU
X.711.

[3] ”Structure of Management Information - Part 1: Management
Information Model,” IS 10165-1, ISO/IEC, May 1992.

[4] J. Case, M. Fedor, M. Schoffstall, and J. Davin ”A Simple
Network Management Protocol (SNMP),” RFC 1157, May
1990.

[5] T. Finin, G. Wiederhold ”An overview of KQML: A Knowl-
edge query and manipulation language,” Available through
the Standford University Computer Science Dept., 1991.

[6] Matt Ginsberg, ” Essentials of artificial Intelligence,” Morgan
Kaufman Publishers, 1993.

[7] G. Goldszmidt, “Distributed systems management via elas-
tic servers,” Third International Symposium on Integrated
Network Management, pp. 95-107, 1993.

[8] Shri K. Goyal, ”Network and Distributed Systems Manage-
ment,” Addison-Wesley PublishingCompany,Ch 21, pp. 539-
577, 1994.

[9] Denise W. Gürer, Irfan Khan, Richard Ogier, ” An artificial
Intelligence Approach to Network Fault Management,” SRI
International Technical Report, 1994.

[10] David Hutchison, Geoff Coulson, Andrew Campbell, and
Gordon S. Blair, ”Network and Distributed Systems Man-
agement,” Addison-Wesley Publishing Company, Ch 11, pp.
273-302, 1994.

[11] K. McCloghrie, M. Rose ”Management Information Base
for Network Management TCP/IP-based Internets,” RFC
1213, IAB, 1991.

[12] S. Waldbusser ”Remote Network Monitoring MI Base,”
RFC 1271, 1991.

[13] Michael Wooldridge, Nicholas R. Jennings ” Intelligent
Agents: Theory and Practice,” To appear in Knowledge En-
gineering Review 10(2), 1995

[14] Y. Yemini, G. Goldszmidt, and S. Yemini, “Network man-
agement by delegation,” Second International Symposiumon
Integrated Network Management, pp. 95-107, 1991.

