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LEARNED VS. HAND-CRAFTED FEATURES FOR
PEDESTRIAN GENDER RECOGNITION

Grigory Antipov, Sid-Ahmed Berrani, Natacha Ruchaud and Jean-Luc Dugelay

Abstract

This paper addresses the problem of image features selection for pedes-
trian gender recognition. Hand-crafted features (such as HOG) are compared
with learned features which are obtained by training convolutional neural
networks. The comparison is performed on the recently created collection
of versatile pedestrian datasets which allows us to evaluate the impact of
dataset properties on the performance of features. The study shows that
hand-crafted and learned features perform equally well on small-sized homo-
geneous datasets. However, learned features significantly outperform hand-
crafted ones in the case of heterogeneous and unfamiliar (unseen) datasets.
Our best model which is based on learned features obtains 79% average
recognition rate on completely unseen datasets.

Index Terms
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1 Introduction

An ability to profile people based on their gender is a very important issue
which has obvious applications in video surveillance and multimedia retrieval sys-
tems. However, quite often it is not possible to get a clear close-shot of a person’s
face and the gender should be estimated having only a general silhouette of a body.
In this work we address the problem of the gender recognition from still images of
pedestrians taken in adverse conditions.

The choice of features to describe an object is crucial in computer vision. Ex-
isting image features can be roughly divided into 2 categories: the hand-crafted
and the learned ones. By hand-crafted features we understand those which are ex-
tracted from separate images according to a certain manually predefined algorithm
based on the expert knowledge. LBP [1], SIFT [2] and HOG [3] features are com-
monly known examples of hand-crafted features. Contrary to hand-crafted image
features, the learned ones are derived from image dataset by a training procedure
in order to fulfill a certain task (gender recognition, for example). Convolutional
Neural Networks (CNN) [4] are examples of deep neural networks which can be
used to extract learned features.

We consider 4 types of features in this study: 2 examples per each considered
category. We choose person re-identification [5] features and HOG as examples of
hand-crafted features. In order to obtain learned features we train 2 different CNN
architectures.

The rest of the paper is organized as following: the bibliography overview and
motivations for the choice of features to compare are presented in Section 2; the
chosen features are introduced in details in Section 3; the collection of datasets
which we have used for experiments is described in Section 4; the performed ex-
periments and obtained results are presented in Section 5 and the main conclusions
are highlighted in Section 6.

2 Related work

To the best of our knowledge, PETA collection of datasets [6] is the largest
open-access collection of pedestrian images with gender annotation. Authors of
PETA propose a universal way to recognize a number of attributes in pedestrian
images. Gender is one of the attributes they have considered. In their algorithm,
authors of PETA employ re-identification features which were originally described
in [5] for the purpose of automatic re-identification of humans in CCTV videos.
We use PETA collection of datasets in our experiments. Following the authors of
PETA we also choose re-identification features for comparison in our work.1

In numerous works authors have found Histogram of Oriented Gradients (HOG)
features to be the most appropriate for pedestrian gender recognition. In particular,

1We use the re-identification features implementation which was kindly provided to us by authors
of PETA.

1



in [7] authors claim obtaining 76% recognition rate on MIT dataset, while in [8]
authors claim obtaining 80% recognition rate on VIPeR dataset.2 This is the rea-
son why we include HOG features in our comparison as the second example of
hand-crafted features.

Due to their exceptional success in recent years, deep CNN have become the
first-choice solution for supervised learning on huge datasets [9,10] and [11]. How-
ever, CNN are relevant not only in cases when a training dataset is composed of
more than a million images. There is a number of examples where CNN were
successfully applied to moderate-size training datasets. For example, the famous
LeNet5 [12] by LeCun et al. was trained to recognize hand-written digits on
60, 000 training examples while Garcia and Delakis trained a very efficient face
finder based only on 3, 702 highly variable face areas [13]. Moreover, in [14] au-
thors employ a CNN for gender recognition on a tiny MIT pedestrian dataset hav-
ing only 900 images. They claim obtaining 80% recognition rate. In this work, we
design our own CNN architecture and corresponding learned features contribute in
our comparison.

There are more and more examples ( [15, 16]) where a CNN trained on a huge
general-purpose dataset is successfully fine-tuned for a very specific classification
task with little extra data. Some authors even claim that today fine-tuning of a
pre-trained CNN is a must-try method in all image classification tasks [16]. In our
work we fine-tune the model which was trained by Krizhevsky et al. [11] on the
ILSVRC dataset [17] containing about 1.3 million images.

Contrary to previous works, we do not focus on a single dataset, we rather com-
pare considered features on a versatile collection of pedestrian datasets. Moreover,
besides evaluating performance of features on separate datasets, we also compare
how well they generalize by applying them on unfamiliar (i.e. completely unseen)
datasets.

3 Feature representations

Below we detail the features which are compared in this study.

3.1 Person re-identification features

Person re-identification features of an image [5] is a 2784-dimensional vector
which contains low-level colour and texture information. The complete vector
is composed of six 464-dimensional vectors each of which is extracted from 6
equal sized horizontal strips from the image. Each strip uses 8 colour channels
(RGB, HSV and YCbCr) and 21 texture filters (Gabor, Schmid) derived from the
luminance channel. We use a bin size of 16 to describe each channel.

2Both MIT and VIPeR datasets are included in PETA collection.
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Figure 1: Architecture of our-CNN.

3.2 HOG features

In order to extract HOG features, we use 8-by-8 square cells which are orga-
nized in 2-by-2 blocks. The number of histogram bins is set to 9. When an image
of 50 pixels width and of 150 height is given as input (which is the case in our
experiments), the resulting HOG features vector with the described parameters has
the dimension 2448.

3.3 Features learned by our-CNN

In order to avoid ambiguity, in this section and below, we refer to the CNN
which is designed and trained by ourselves as our-CNN, whereas the term AlexNet-
CNN is employed to refer to the CNN which is designed and trained by Alex
Krizhevsky.

The architecture of our-CNN is presented in Figure 1. our-CNN has 2 convo-
lutional layers (C1 and C2) with 5x5 kernels, each of which is followed by max-
pooling with a stride of 2 pixels (P1 and P2) and Rectified Linear Unit (ReLU)
activations.3 our-CNN is ended by 2 fully connected layers (F1 and F2). The F2
layer has 2 neurons (corresponding to the number of classes). The loss is com-
puted by a softmax loss function. As it is depicted in Figure 1, our-CNN takes
3 (50, 150)-dimensional feature maps (red, green and blue channels of an image)
as an input.4 The first and second convolutional layers C1 and C2 have n1 and
n2 feature maps respectively. Values of n1 and n2 depend on the experiment: in
the first experiment in Section 5.1 we use n1 = n2 = 10, while in the second
experiment in Section 5.2 we use a slightly bigger architecture with n1 = n2 = 20
(because in the second experiment we have more training images). The number
of neurons n3 in the last but one fully connected layer F1 also varies depending
on the experiment: we have n3 = 25 and n3 = 100 for the first and for the sec-
ond experiments respectively. In order to augment the size of the training data we
use each training image alongside with its mirrored copy. Parameters of our-CNN

3We have also tried using sigmoid activations but ReLU activations proved to be much faster.
4Before being treated by our-CNN, all input images are rescaled to (50, 150) size.
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Figure 2: Examples of images from PETA.

have been chosen by trying several architectures and by choosing the most possibly
compact one so that performance is not sacrificed.

After training our-CNN, we use the obtained weights to calculate the values
of neurons in the F1 layer for all testing images. These neuron values serve as
our-CNN features for the testing images. Thus, in the case of our-CNN an image
is represented by either 25- or 100-dimensional vector (depending on the experi-
ment), which is more than 100 times smaller than sizes of corresponding person
re-identification or HOG vectors.

3.4 Features learned by AlexNet-CNN

The architecture of AlexNet-CNN is described in details in [11]. AlexNet-CNN
is already a trained model. In our work we only fine-tune it to recognize gender
of pedestrians. After fine-tuning of AlexNet-CNN we use the weights from the last
but one fully connected layer (which contains 4096 neurons) as features for input
images. Thus, in the case of AlexNet-CNN a features vector has the dimension
4096.5

4 Datasets

Originally, the PETA collection consists of 10 datasets of different sizes with
a total amount of 19, 000 images. Appearances of images hugely vary between
different datasets of PETA in terms of image resolutions (from 17 x 39 to 169
x 365 pixels), camera angles (pictures are taken either by ground-based cameras
or by surveillance cameras which are set at a certain height) and environments
(indoors or outdoors). Examples of PETA images are presented in Figure 2.

Authors of PETA perform series of experiments on prediction of gender on
the whole collection of 19, 000 images [6] using re-identification features. They

5Training and fine-tuning of all CNNs in this work is performed using Caffe deep learning frame-
work [18].
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Dataset Train size (♂+ ♀) Test size (♂+ ♀)
CUHK 3432 = (2420 + 1012) 377 = (189 + 188)
PRID 942 = (449 + 493) 101 = (50 + 51)
GRID 928 = (531 + 397) 100 = (50 + 50)
MIT 792 = (532 + 260) 84 = (42 + 42)
VIPeR 1138 = (556 + 582) 120 = (60 + 60)
3DPeS 0 100 = (50 + 50)
CAVIAR 0 68 = (34 + 34)
i-LIDS 0 100 = (50 + 50)
SARC3D 0 41 = (21 + 20)
TownCentre 0 42 = (21 + 21)

Table 1: Split between training and testing parts per dataset.

randomly split the total collection of images into 9, 500 for training, 1, 900 for val-
idation and 7, 600 for testing. They report obtaining between 79.7% and 81.4%
of male gender prediction rate (the results vary depending on the used classifier).
We have successfully reproduced this result using several random splits of 19, 000
images in the same proportions as it has been done by authors of PETA. However,
the number of unique persons in the PETA collection is much smaller than 19, 000
because PETA contains many images of the same persons which are taken few sec-
onds away from each other by surveillance cameras. Images like that are almost
identical and they can considerably bias the resulting prediction rates. After re-
moval of all quasi-identical images from PETA the resulting prediction rates drop
down to 63-65%.

This drastic drop in performance proves the importance of the manual filtering
of PETA collection. Apart from filtering out images of the same people, we have
also removed images with a very low resolution (height is less than 120 pixels or
width is less than 40 pixels) and images where a person of interest is not clearly
distinguishable (i.e. images of babies in strollers or images of several persons).
Finally, we have been left with 8, 365 images (see Table 1) which is less than half
as many as the initial size of PETA.

5 Experiments

In order to objectively compare the usefulness of considered features for the
gender recognition problem and not to take into account a possible impact of a
classifier on resulting prediction rates, we always use the same classifier for all
considered features: the SVM classifier with a linear kernel.6

In order to evaluate performance of compared models, we use 2 metrics: Mean
Average Precision (MAP) and Area Under ROC Curve (AUC) [20].7

6In particular, we use the publicly available SVM-light implementation of SVM [19].
7AUC is an important measure for us because of its invariance to the chosen decision threshold

by an SVM-classifier.
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Features MAP AUC
µ σ µ σ

AlexNet-CNN 0.82 0.05 0.90 0.05
our-CNN 0.79 0.04 0.86 0.03
HOG 0.80 0.04 0.88 0.04
Re-identification 0.59 0.07 0.63 0.09

Table 2: Experiment 1: MAP and AUC statistics calculated over 5 datasets (CUHK,
PRID, GRID, MIT and VIPeR).

Features Familiar Unfamiliar
MAP AUC MAP AUC

AlexNet-CNN 0.85 0.91 0.79 0.85
our-CNN 0.80 0.88 0.75 0.80
HOG 0.72 0.84 0.56 0.64
Re-identification 0.58 0.60 0.61 0.69

Table 3: Experiment 2: MAPs and AUCs calculated on the set of testing images
from “familiar” and “unfamiliar” datasets.

5.1 Experiment 1: evaluation on separate datasets

In the first experiment, we compare the performance of considered features
on 5 separate datasets: CUHK, PRID, GRID, MIT and VIPeR. Sizes of training
(which is used to train an SVM model) and testing parts for each of these datasets
are given in Table 1. In the cases of our-CNN and AlexNet-CNN the features (i.e.
CNN) are learned on the training images as well.

Results of the first experiment are summarized in Table 2. Mean values and
standard deviations for 2 considered metrics are calculated over 5 datasets. Based
on this experiment, we can conclude that re-identification features are hardly ap-
plicable for our problem. Successful results obtained by re-identification features
in [6] might be explained by a significant number of quasi-identical images be-
tween training and testing datasets (as it is explained in Section 4). The other 3
features show very close performance and none of them can be favoured based
only on the first experiment.

5.2 Experiment 2: evaluation of generalization

In the second experiment, we compare the capability of compared features to
generalize on heterogeneous and even completely unseen datasets.

Firstly, we train SVM classifiers with different features on the dataset which
is composed of training parts of CUHK, PRID, GRID, MIT and VIPeR taken to-
gether. Then we test the learned models on the testing parts of the same datasets
which are also taken together. Thus, we compare our models on a single big dataset
which is composed of non-homogeneous images (different camera angles, environ-
ments, etc.)
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Results of this experiment are presented in Table 3 (in its “familiar” part). On
one hand, we see that for learned features (i.e. AlexNet-CNN and our-CNN) both
MAP and AUC metrics practically coincide with corresponding results in Table 2
(with respect to standard deviations). On the other, hand there is a significant drop
of performance for HOG features. These results perfectly make sense because
learned features have a possibility to adapt to the heterogeneity of the input data
during the training phase, whereas HOG features are not trained and, therefore, less
flexible. We do not consider re-identification features in the second experiment due
to their poor performance in the first one.

In the second part of the second experiment, we use the same SVM models
which have been trained on the collection of training images from CUHK, PRID,
GRID, MIT and VIPeR but this time we apply them on the collection of images
from completely unseen datasets: 3DPeS, CAVIAR, i-LIDS, SARC3D and Town-
Centre (see Table 1). In other words, we compare our models on images from
“unfamiliar” datasets and, thus, evaluate if they generalize well.

Results of this experiment are presented in Table 3 (in its “unfamiliar” part).
AlexNet-CNN performs almost equally well as in Table 2 (with respect to standard
deviations). our-CNN experiences a subtle drop in performance with respect to
the first experiment. However, it still shows quite satisfactory recognition rate of
75% despite having only 100 features. The SVM-model learned on HOG features
performs poorly on “unfamiliar” datasets showing results which are not so far away
from random guessing.

6 Conclusions

In this work we have compared 2 hand-crafted features (HOG and re-identification)
and 2 learned features (obtained by our-CNN and by AlexNet-CNN) in the frame
of pedestrian gender recognition problem. Our findings are the following:

1. On small-sized homogeneous datasets HOG features and learned features
perform equally well. It complies with previous works ( [7,8,14]) on pedes-
trian gender recognition.

2. Learned features significantly outperform HOG features in the case of het-
erogeneous training data.

3. Contrary to hand-crafted features, both learned features generalize well to
completely unseen datasets: MAPs of 79% and 75% respectively.

4. CNN can be used to produce compact feature representations which gener-
alize well (like the one by our-CNN).

In our future work, different learned features will be tried in order to recognize
other important attributes of soft biometrics (like age, clothing details etc.) We
would also like to verify if our findings about learned and hand-crafted features
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hold in other domains of computer vision. The main requirement is the availability
of a versatile collection of datasets like the one that we use in this study.
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