
EURECOM
Department of Network and Security

Campus SophiaTech
CS 50193

06904 Sophia Antipolis cedex
FRANCE

Research Report RR-15-303

Publicly Verifiable Conjunctive Keyword Search in Outsourced
Databases

April 3rd, 2015
Last update July 9th, 2015

Monir Azraoui, Kaoutar Elkhiyaoui, Melek̈Onen and Refik Molva

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {monir.azraoui, kaoutar.elkhiyaoui, melek.onen, refik.molva}@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group Research and Technology,
IABG, Monaco Telecom, Orange, Principaut de Monaco, SAP, SFR, ST Microelectronics, Symantec.

Publicly Verifiable Conjunctive Keyword Search in Outsourced
Databases

Monir Azraoui, Kaoutar Elkhiyaoui, Melek̈Onen and Refik Molva

Abstract

Recent technological developments in cloud computing and the ensuing commercial
appeal have encouraged companies and individuals to outsource their storage and com-
putations to powerful cloud servers. However, the challenge when outsourcing data and
computation is to ensure that the cloud servers comply with their advertised policies. In
this paper, we focus in particular on the scenario where a data owner wishes to (i) outsource
its public database to a cloud server; (ii) enable anyone to submit multi-keyword search
queries to the outsourced database; and (iii) ensure that anyone can verify the correctness of
the server’s responses. To meet these requirements, we propose a solution that builds upon
the well-established techniques of Cuckoo hashing, polynomial-based accumulators and
Merkle trees. The key idea is to (i) build an efficient index for the keywords in the database
using Cuckoo hashing; (ii) authenticate the resulting index using polynomial-based accu-
mulators and Merkle tree; (iii) and finally, use the root of the Merkle tree to verify the
correctness of the server’s responses. Thus, the proposed solution yields efficient search
and verification and incurs a constant storage at the data owner. Furthermore, we show that
it is sound under the strong bilinear Diffie-Hellman assumption and the security of Merkle
trees.

Index Terms

Cloud Storage, Verifiability, Keyword Search

Contents

1 Introduction 1

2 Problem Statement 2

3 Publicly Verifiable Conjunctive Keyword Search 3

4 Building Blocks 4
4.1 Symmetric Bilinear Pairings . 6
4.2 Polynomial-based Accumulators . 6

4.2.1 Verifiable Test of Membership . 6
4.2.2 Verifiable Set Intersection . 7

4.3 Cuckoo Hashing . 7
4.4 Binary Merkle Trees . 8

5 Protocol Description 9
5.1 Upload . 9
5.2 Verifiable Conjunctive Keyword Search .. 10
5.3 Supporting Dynamic Data . 12

6 Security Analysis 12
6.1 Correctness . 12
6.2 Soundness . 14

7 Performance Evaluation 19

8 Related Work 21

9 Conclusion 22

A Performance Analysis Table 23

v

List of Figures

1 Overview of our protocol for verifiable keyword search 5
2 Verifiable Test of Membership . 6
3 Verifiable Set Intersection . 7
4 Cuckoo Hashing . 8
5 Upload . 9
6 Verifiable Conjunctive Keyword Search .11

List of Tables

1 Computational complexity of our protocol, in the worst case where: allN key-
words are in alln files or where the not found keyword is the last in the query. 20

2 Computational complexity of building blocks 24

vi

1 Introduction

Cloud computing offers an opportunity for individuals and companies to offload to powerful
servers the burden of managing large amounts of data and performing computationally demand-
ing operations. In principle, cloud servers promise to ensure data availability and computation
integrity at the exchange of a reasonable fee, and so far they are assumed to always comply
with their advertised policies. However, such an assumption may be deemed unfounded: For
instance, by moving their computing tasks into the cloud, cloud customers inherently lend the
control to this (potentially malicious) third party, which (if left unchecked) mayreturn an incor-
rect result for an outsourced computation, so as to free-up some of its computational resources.
This lack of control on the part of cloud customers in this particular scenario, has given rise to
an important body of work onverifiablecomputation, which aims at providing cloud customers
with cryptographic tools to verify the compliance of cloud servers (i.e. to check whether the
cloud server returns the correct result for an outsourced computation). A major requirement of
verifiable computation is the efficiency of the verification at the cloud customer. Namely, veri-
fication should need less computational resources than the outsourced function, in order not to
cancel out the advantages of cloud computing.

Owing to its prevalence in cloud computing, data mining is at the heart of verifiable computa-
tion: Cloud servers are the best candidates to undertake big-data mining, inthat they have means
to store big-data and own the necessary computational resources to run various data processing
primitives and analyze huge data sets. In this paper, we focus on one of the most frequently
used primitives in data mining, that iskeyword search, and design a solution that assures the
correctness of the search result. More specifically, we consider a scenario wherein a data owner
wishes to outsource a public database to a cloud server and wants to empower third-party users
(i) to issue conjunctive keyword search queries to the database and (ii) toverify the correct-
ness of the results returned by the cloud efficiently. In other words, the data owner wants to
ensure the properties ofpublic delegatability andpublic verifiability as defined by Parno et
al. [15]. Roughly speaking, public delegatability enables any user to perform verifiable con-
junctive keyword search without having access to the data owner’s secret information; whereas
public verifiability guarantees that any third-party verifier (not necessarily the user originating
the search query) can check the server’s responses.

The core idea of our solution is to use polynomial-based accumulators to represent keywords
in the outsourced database. Thanks to their algebraic properties, polynomial-based accumulators
give way to two cryptographic mechanisms, that are verifiable test of membership (cf. [5]) and
verifiable set intersection (cf. [2]). These two mechanisms together can be tailored to allow any
third-party user to search a public database for multiple keywords and anythird-party verifier to
check the integrity of the result. Nonetheless, a straightforward applicationof polynomial-based
accumulators to keyword search is too computationally demanding for the server, especially
in the case of large databases. To this effect, we suggest to build an efficient index of the
keywords in the database by means of Cuckoo hashing, and to authenticatethe resulting index
by a combination of polynomial-based accumulators and Merkle trees. Thus,we (i) allow the
verifier to assess the correctness of the server’s response in a logarithmic time, and (ii) enable
the server to search the outsourced database efficiently. Furthermore,since our solution relies

1

on polynomial-based accumulators and Merkle trees to assure the integrity ofthe search results,
we show that it is provably secure under the strong bilinear Diffie-Hellman assumption and the
security of Merkle trees.

The rest of this paper is organized as follows: Section 2 defines the problem statement,
whereas Section 3 formalizes publicly verifiable conjunctive keyword search and the corre-
sponding adversary model. Section 4 and Section 5 describe the building blocks and the pro-
posed solution respectively. Section 6 presents and proves the securityproperties satisfied by
our solution whereas Section 7 evaluates its performance in terms of computational and storage
cost. Section 8 reviews existing work on verifiable keyword search, andfinally, Section 9 wraps
up the paper.

2 Problem Statement

To further illustrate the importance of public delegatability and public verifiability incloud
computing, we take the case where a pharmaceutical company would like (i) to outsource a set
F of sanitized records of its clinical trials (of already marketed products) to acloud server, and
(ii) to delegate the conjunctive search operations on these records to its employees, or to external
third parties such as the European Medicines Agency. Following the framework of publicly
verifiable computation [15], the pharmaceutical company in this scenario will run a one-time
computationally demandingpre-processing operation to produce a public keyPKF and a lookup
key LKF . Together, these keys will make possible the implementation of publicly verifiable
conjunctive keyword search. Namely, given public keyPKF , any user (be it an employee or a
representative of the European Medicines Agency) will be able to search the outsourced records
and verify the returned results. The server on the other hand is provided with lookup keyLKF

and thus, will be able to generate correct proofs for any well-formed search query. Furthermore,
from public keyPKF , any user desiring to search the outsourced records will be able to derive
a public verification keyVKQ, that lets any other third party (for instance, a judge in the case of
a legal dispute between the pharmaceutical company and a patient) fetch the search result and
assess its correctness quickly.

It is clear from the above example that our approach to handle verifiable conjunctive key-
word search falls into theamortized modelas defined by Gennaro et al. [8]. That is, the data
owner engages in a one-time expensive pre-processing operation which will be amortized over
anunlimited numberof fast verifications. This model has been exploited to devise solutions for
publicly verifiable computation, be it a generic computation as in [15] or a specific computa-
tion cf. [2, 7]. Arguably, one might customize one of these already proposed schemes to come
up with a solution for verifiable conjunctive keyword search. Nevertheless, a solution based
on the scheme in [15] will incur a large bandwidth overhead, whereas a solution that leverages
the verifiable functions in [7] will not support public delegatability. Therefore, we choose to
draw upon some of the techniques used in [2] (namelyverifiable set intersections) to design a
dedicated protocol that meets the requirements of public delegatability and public verifiability
without sacrificing efficiency.

2

3 Publicly Verifiable Conjunctive Keyword Search

As discussed previously, publicly verifiable conjunctive keyword search enables a data owner
O to outsource a set of filesF to a serverS , while ensuring:
• Public delegatability: Any userU (not necessarily data ownerO) can issueconjunctive

searchqueries to serverS for outsourced filesF . Namely, if we denoteCKS the function which
on inputs of filesF and a collection of wordsW returns the subset of filesFW ⊂ F containing
all words in W , then public delegatability allows userU to outsource the processing of this
function to serverS .
• Public verifiability : Any verifier V (including data ownerO and userU) can assess the

correctness of the results returned by serverS , that is, verify whether the search result output by
S for a collection of wordsW actually corresponds toCKS(F ,W).

In more formal terms, we define publicly verifiable conjunctive keyword search by the fol-
lowing algorithms:
• Setup(1κ,F)→ (PKF , LKF): Data ownerO executes this randomized algorithm when-

ever it wishes to outsource a set of filesF = {f1, f2, ...}. On input of a security parameterκ
and filesF , algorithmSetup outputs the pair of public keyPKF and lookup key (i.e. search
key1) LKF .
• QueryGen(W ,PKF) → (EQ,VKQ): Given a collection of wordsW = {ω1, ω2, ...}

and public keyPKF , userU calls algorithmQueryGen which outputs an encoded conjunctive
keyword search queryEQ and the corresponding public verification keyVKQ.
• Search(LKF ,EQ) → ER: Provided with search keyLKF and the encoded search query

EQ, serverS executes this algorithm to generate an encodingER of the search resultFW =
CKS(F ,W).
• Verify(ER,VKQ) → out: Verifier V invokes this deterministic algorithm to check the

integrity of the server’s responseER. Notably, algorithmVerify first convertsER into a search
resultFW , then uses verification keyVKQ to decide whetherFW is equal toCKS(F ,W). Ac-
cordingly, algorithmVerify outputsout = FW if it believes thatFW = CKS(F ,W), and in this
case we say that verifierV accepts the server’s response. Otherwise, algorithmVerify outputs
out =⊥, and we say that verifierV rejects the server’s result.

In addition to public delegatability and public verifiability, a conjunctive keywordsearch
should also fulfill the basic security properties ofcorrectnessand soundness. Briefly, cor-
rectness means that a response generated by anhonestserver will be always accepted by the
verifier; soundness implies that a verifier accepts a response of a (potentially malicious) server
if and only if that response is the outcome of acorrectexecution of theSearch algorithm.

Correctness.A verifiable conjunctive keyword search scheme is said to be correct, if when-
ever serverS operates algorithmSearch correctly on the input of some encoded search query
EQ, it always obtains an encodingER that will be accepted by verifierV .

Definition 1. A verifiable conjunctive keyword search is correct,iff for any set of filesF and
collection of wordsW :

1In the remainder of this paper, we use the terms lookup key and search key interchangeably.

3

Algorithm 1 The soundness experiment of publicly verifiable conjunctive keyword search
for i := 1 to t do

A → Fi

(PKFi , LKFi)← OSetup(1
κ,Fi)

end for
A → (W ∗,PK∗

F)
QueryGen(W ∗,PK∗

F)→ (E∗
Q,VK

∗
Q)

A → E∗
R

Verify(E∗
R,VK

∗
Q)→ out∗

If Setup(1κ,F)→ (PKF , LKF), QueryGen(W ,PKF)→ (EQ,VKQ) and
Search(LKF ,EQ)→ ER, then:

Pr(Verify(ER,VKQ)→ CKS(F ,W)) = 1

Soundness. We say that a scheme for publicly verifiable conjunctive keyword searchis
sound, if for any set of filesF and for any collection of wordsW , serverS cannot convince a
verifierV to accept an incorrect search result. In other words, a scheme for verifiable conjunctive
keyword search is sound if and only if, the only way serverS can make algorithmVerify accept
an encodingER as the response of a search queryEQ for a set of filesF , is by correctly executing
the algorithmSearch (i.e. ER ← Search(LKF ,EQ)).

To formalize the soundness of verifiable conjunctive keyword search,we define an exper-
iment in Algorithm 1 which depicts the capabilities of an adversaryA (i.e. malicious server
S). On account of public delegatability and public verifiability, adversaryA does not only run
algorithmSearch but is also allowed to run algorithmsQueryGen andVerify. This leaves out
algorithmSetup whose output is accessed by adversaryA through calls to the oracleOSetup.

More precisely, adversaryA enters the soundness experiment byadaptivelyinvoking oracle
OSetup with t sets of filesFi. This allows adversaryA to obtain for each set of filesFi a pair of
public keyPKFi

and search keyLKFi
. Later, adversaryA picks a collection of wordsW ∗ and

a public keyPK∗F from the set of public keys{PKFi
}1≤i≤t it received earlier. AdversaryA is

then challenged on the pair(W ∗,PK∗F) as follows: (i) It first executes algorithmQueryGen with
public keyPK∗F and the collectionW ∗ and accordingly gets an encoded search queryE∗Q and the
matching verification keyVK∗Q; (ii) afterwards, it generates a responseE∗R for encoded search
queryE∗Q, and concludes the experiment by calling algorithmVerify with the pair(E∗R,VK

∗
Q).

Let out∗ denote the output of algorithmVerify on input(E∗R,VK
∗
Q). AdversaryA succeeds

in the soundness experiment if: (i)out∗ 6=⊥ and (ii)out∗ 6= CKS(F ∗,W ∗), whereF ∗ is the set
of files associated with public keyPK∗F .

Definition 2. LetAdvA denote the advantage of adversaryA in succeeding the soundness game,
i.e.,AdvA = Pr(out∗ 6=⊥ ∧ out∗ 6= CKS(F ∗,W ∗)).

A publicly verifiable conjunctive keyword search is sound,iff for any adversaryA , AdvA ≤ ǫ
andǫ is a negligible function in the security parameterκ.

4 Building Blocks

Our solution relies onpolynomial-based accumulators(i.e. bilinear pairing accumulators)
defined in [5, 11] to represent the keywords present in filesF = {f1, f2, ..., fn}. By definition,

4

Generate

Proof

 found

not found

Cuckoo

lookup

on index

Word

Accumulator

 ?

Generate

Proof

File

Accumulator

File IDs

User

TF

TW

Figure 1: Overview of our protocol for verifiable keyword search

a polynomial-based accumulator maps a set to a unique polynomial such that each root of the
polynomial corresponds to an element in the set. Hence, polynomial-based accumulators allow
efficientverifiable test of membershipwhich can be tailored for verifiable keyword search.

A naive approach to accommodate polynomial-based accumulators to verifiable keyword
search would be to represent the words in each filefj ∈ F with a single accumulator. To
check whether a wordω is in file fj , userU first sends a search query to serverS , upon
which the latter generates a proof of membership if wordω is present infj ; and a proof of
non-membership otherwise. This solution however is not efficient: (i) Given the mathematical
properties of polynomial-based accumulators, the resulting complexity of keyword search in a
file fj becomes linear in the number of keywords in that file; (ii) additionally, to identifywhich
filesfj contain a word, the user must search all files inF one by one.

To avoid these pitfalls, we combine polynomial-based accumulators withMerkle trees [10]
to build an authenticated index of the keywords in files inF such that the keyword search at the
server runs inlogarithmic time. More specifically, data ownerO first organizes the keywords in
all files inF into an indexI (i.e. hash table) where each entry corresponds to a bucketB storing
at mostd keywords. To construct an efficient indexI, data ownerO employs theCuckoo hash-
ing algorithm introduced in [6] which guarantees a constant lookup time and minimalstorage
requirements. Later, data ownerO authenticates indexI as follows: (i) For each bucketB, it
computes an accumulator of the keywords assigned toB; (ii) and it builds a binary Merkle tree
TW that authenticates the resulting accumulators. Files inF are then outsourced together with
Merkle treeTW to serverS . Hence, when serverS receives a search query for a wordω, it finds
the buckets corresponding toω in indexI, retrieves the corresponding accumulator, generates
a proof of membership (or non-membership), and authenticates the retrieved accumulator using
the Merkle treeTW. Therefore, anyone holding the root ofTW can verify the server’s response.

The solution sketched above still does not identify which files exactly containa wordω nor
supports verifiable conjunctive keyword search. Thus, data ownerO constructs another Merkle
treeTF whereby each leaf is mapped to a single keyword and associated with the polynomial-
based accumulator of the subset of files containing that keyword. Data owner O then uploads

5

Figure 2: Verifiable Test of Membership

• (PS(h),ΩS,h)← GenerateWitness(h, S)
Computes the proof of (non-) membership ofh with respect to setS.

1. Compute the valuePS(h) =
∏

hi∈S (h− hi);

2. Determine polynomialQS,h such thatPS(X) = (X − h) ·QS,h(X) + PS(h);

3. Compute the witnessΩS,h = gQS,h(α);

4. Return (PS(h),ΩS,h);

• {h ∈ S, h /∈ S,Reject} ← VerifyMembership(h,Acc(S), PS(h),ΩS,h)
Verifies the proof and outputs the result of the test of membership.

1. Verify e(ΩS,h, g
α · g−h)e(gPS(h), g)

?
= e(Acc(S), g).

If it fails then return Reject;

2. If PS(h) = 0 then return h ∈ S else returnh /∈ S;

files F and Merkle treesTW andTF to serverS . Given the root ofTF, userU will be able to
identify which subset of files contain a wordω. In addition, since polynomial-based accumu-
lators allow efficientverifiable set intersection, userU will also be able to perform verifiable
conjunctive keyword search. Figure 1 depicts the steps of the protocol.

4.1 Symmetric Bilinear Pairings

Let G andGT be two cyclic groups of prime orderp. A bilinear pairing is a mape :
G × G → GT that satisfies the following properties: (Bilinear) ∀ α, β ∈ Fp and∀ g ∈ G,
e(gα, gβ) = e(g, g)αβ ; (Non-degenerate) If g generatesG then e(g, g) 6= 1; (Computable)
There is an efficient algorithm to computee(g, g), for anyg ∈ G.

4.2 Polynomial-based Accumulators

Let S = {h1, ..., hn} be a set of elements inFp, encoded by its characteristic polynomial
PS(X) =

∏
hi∈S

(X − hi), andg a random generator of a bilinear groupG of prime order

p. Given the public tuple(g, gα, gα
2
, ..., gα

D
), whereα is randomly chosen inF∗p andD ≥ n,

Nguyen [11] defines the public accumulator of the elements inS:

Acc(S) = gPS(α) ∈ G

4.2.1 Verifiable Test of Membership

Damg̊ard et al. [5] observe that (i)h is in S iff PS(h) = 0, and (ii)∀ h ∈ Fp, there exists
a unique polynomialQS,h such thatPS(X) = (X − h) · QS,h(X) + PS(h). In particular,
∀ h, the accumulator can be written asAcc(S) = gPS(α) = g(α−h)·QS,h(α)+PS(h). The value
ΩS,h = gQS,h(α) defines the witness ofh with respect toAcc(S). Following these observations,
the authors in [5] define a verifiable test of membership depicted in Figure 2.This test is secure
under theD-Strong Diffie-Hellman (D-SDH) assumption.

6

Figure 3: Verifiable Set Intersection

• (I,ΠI)← ProveIntersection(S1, ..., Sk)
Generates the proof for the intersection of thek setsS1, ..., Sk.

1. ComputeI = S1 ∩ ... ∩ Sk and its characteristic polynomialP ;

2. Compute the polynomialsUi =
Pi
P

and the values∆i = gUi(α);

3. Compute the polynomialsVi such that
∑

i UiVi = 1;

4. Compute the valuesΓi = gVi(α);

5. DefineΠI = {(∆1,Γ1), ..., (∆k,Γk)};

6. Return (I,ΠI).

• {Accept,Reject} ← VerifyIntersection(I,ΠI ,Acc(I), {Acc(Si)}1≤i≤k)
Verifies the proofs forI, the intersection of the setsS1, ..., Sk.

1. ParseΠI = {{∆i,Γi}1≤i≤k};

2. Verify the following equalities:

− e(Acc(I),∆i)
?
= e(Acc(Si), g) # CheckI ⊆ Si for 1 ≤ i ≤ k

−
∏

i e(∆i,Γi)
?
= e(g, g) # Check

⋂
i(Si \ I) = ∅

If any of the checks failsthen return Reject else returnAccept;

Definition 3 (D-Strong Diffie-Hellman Assumption). Let G be a cyclic group of prime order
p generated byg. We say that theD-SDH holds inG if, given the tuple(g, gα, gα

2
, ..., gα

D
) ∈

G
D+1, for some randomly chosenα ∈ F

∗
p, no PPT algorithmA can find a pair(x, g

1
α+x) ∈

F
∗
p ×G with a non-negligible advantage.

4.2.2 Verifiable Set Intersection

We considerk setsSi and their respective characteristic polynomialsPi. If we denoteI =⋂
i Si andP the characteristic polynomial ofI thenP = gcd(P1, P2, .., Pk). It follows that the

k polynomialsUi =
Pi

P identify the setsSi \ I. Since
⋂

i(Si \ I) = ∅, gcd(U1, U2, ..., Uk) = 1.
Therefore, according to B́ezout’s identity, there exist polynomialsVi such that

∑
i UiVi = 1.

Based on these observations, Canetti et al. [2] define a protocol for verifiable set intersection
described in Figure 3. The intersection verification is secure if theD-Strong Bilinear Diffie-
Hellman (D-SBDH) assumption holds.

Definition 4 (Strong Bilinear Diffie-Hellman Assumption). LetG,GT be cyclic groups of prime
order p, g a generator ofG, ande a bilinear pairing. We say that theD-SBDH holds if, given
(g, gα, gα

2
, ..., gα

D
) ∈ G

D+1, for some randomly chosenα ∈ F
∗
p, no PPT algorithmA can find

a pair (x, e(g, g)
1

α+x) ∈ F
∗
p ×GT with a non-negligible advantage.

4.3 Cuckoo Hashing

Cuckoo hashing belongs to the multiple choice hashing techniques. In the seminal work
[12], an object can be stored in one of the two possible buckets of an index. If both buckets
are full, an object is “kicked out” from one of these two buckets, the current item is placed in
the freed bucket and the removed item is moved to the other bucket of its two choices. This
move may require another element to be kicked out from its location. This insertion procedure

7

Figure 4: Cuckoo Hashing

• CuckooInsert(I,H1,H2, x)
Insertsx in indexI using hash functionsH1,H2 : {0, 1}∗ → [1,m].

1. Computei1 = H1(x) andi2 = H2(x);
2. If bucketBi1 is not full then

Insertx in Bi1 ;
Return;

End
3. If bucketBi2 is not full then

Insertx in Bi2 ;
Return;

End
4. If bucketsBi1 andBi2 both full then

Randomly choosey from the2d elements inBi1 ∪Bi2 ;
Removey;
CuckooInsert(I,H1,H2, x);
CuckooInsert(I,H1,H2, y);
Return;

End

• {true, false} ← CuckooLookup(I,H1,H2, x)
Searches forx in indexI.

1. Computei1 = H1(x) andi2 = H2(x);
2. Return (x ∈ Bi1) ∨ (x ∈ Bi2);

is repeated until all objects find a free spot, or the number of insertion attemptsreaches a pre-
defined threshold to declare an insertion failure. In this paper, we leverage a variant proposed
by Dietzfelbinger and Weidling [6]: Their solution insertsN elements using two independent
and fully random hash functionsH1,H2 : {0, 1}

∗ → [1,m] into an indexI with m bucketsBi,
such that:m = 1+ε

d N , for ε > 0, and each bucketBi stores at mostd elements. As depicted in
Figure 4, a lookup operation for a particular elementx requires the evaluation of the two hash
functionsH1(x) andH2(x), whereas the insertion of a new element requires a random walk in
the index.

4.4 Binary Merkle Trees

Merkle trees allow any third party to verify whether an elementh is in setS = {h1, ..., hn}.
In the following, we introduce the algorithms that build a binary Merkle tree fora setS and
authenticate the elements in that set.
• T ← BuildMT(S,H) builds a binary Merkle treeT as follows. Each leafLi of the tree

maps an elementhi in setS and each internal node stores the hash of the concatenation of the
children of that node. We denoteσ the root ofT.
• path ← GenerateMTProof(T, h) outputs theauthentication pathfor leafL correspond-

ing to elementh, that is, the set of the siblings of the nodes on the path fromL to rootσ. We
denotepath the authentication path output byGenerateMTProof.
• {Accept,Reject} ← VerifyMTProof(h, path, σ) verifies that the value of the root com-

puted fromh andpath equals the expected valueσ.

8

Figure 5: Upload

• (PKF , LKF)← Setup(1κ,F)
F = {f1, ..., fn}: set of files
#W = {ω1, .., ωN}: list of distinct words inF sorted in lexicographic order.
1. Parameter generation
PickD, g,G,GT , e,H : {0, 1}∗ → Fp as function of security parameterκ;

Pick randomα ∈ F∗
p and compute public values{g, gα, ..., gα

D
};

2. Construction of the Index
Creates an indexI with m buckets of sized whered < D
IdentifyW from F ;
Pick random hash functionsH1,H2 : {0, 1}∗ → [1,m];
For ωi ∈W do

Computehi = H(ωi);
RunCuckooInsert(I,H1,H2, hi);

End
3. Authentication of Index
For Bi ∈ I do

ComputePBi
(α) =

∏
hj∈Bi

(α− hj);

ComputeAWi = Acc(Bi) = gPBi
(α);

ComputeHWi = H(AWi||i), wherei is the position ofBi in I;
End
TW = BuildMT({HWi}1≤i≤m, H);

4. Encoding of files
Identifies which files contain the keywords
For fj ∈ F do

Generatefidj;
End
For ωi ∈W do

Identify Fωi , the subset of files that containωi;
ComputePi(α) =

∏
fidj∈Fωi

(α− fidj);

ComputeAFi = Acc(Fωi) = gPi(α);
ComputeHFi = H(AFi||ωi);

End
TF = BuildMT({HFi}1≤i≤N , H).

5. Return PKF = (g,G, e,H, {gα
i
}0≤i≤D,H1,H2, σW , σF);

Return LKF = (I,TW,TF,F ,W, {Fωi}1≤i≤N).

5 Protocol Description

In our verifiable conjunctive keyword search protocol, data ownerO outsources the storage
of a set of filesF = {f1, f2, ..., fn} to a serverS . Once the data is uploaded, any third-party user
U can search for some keywords in the set of filesF and verify the correctness of the search
results returned byS . The proposed protocol comprises two phases:Upload andVerifiable
Conjunctive Keyword Search.

5.1 Upload

In this phase, data ownerO invokes algorithmSetup, which on input of security parameter
κ and set of filesF , outputs a public keyPKF and a search keyLKF . As shown in Figure 5,
Setup operates in four steps.

1. It first generates the public parameters needed for the protocol.

9

2. It builds indexI for the setW = {ω1, ω2, ..., ωN} using Cuckoo hashing. Without loss
of generality, we assume thatW is composed of the list of distinct words inF sorted in a
lexicographic order.

3. Setup authenticates indexI with Merkle treeTW where each leaf is mapped to a bucket
in I.

4. Setup builds Merkle treeTF to identify which files exactly contain the keywords.

When serverS receivesLKF , it creates a hash tableHT where each entry is mapped to a
keywordωi and stores the pair(i, pointer) such that:i is the position of keywordωi in setW
and in treeTF; whereaspointer points to a linked list storing the identifiers of filesFωi

that
contain keywordωi. As such, hash tableHT enables serverS to find the position ofωi in TF

and to identify the files containingωi easily.
In the remainder of this paper, we assume that serverS does not store lookup keyLKF as

(I,TW,TF,F ,W, {Fωi
}1≤i≤N), but rather asLKF = (I,TW,TF,F ,HT).

5.2 Verifiable Conjunctive Keyword Search

In this phase, we use the algorithms of verifiable test of membership and verifiable set in-
tersection presented in Section 4 to enable verifiable conjunctive keywordsearch. We assume
in what follows that a userU wants to identify the set of filesFW ⊂ F that contain all words
in W = {ω1, ω2, ..., ωk}. To that effect, userU first runs algorithmQueryGen (cf. Figure 6)
which returns the queryEQ = W and the public verification keyVKQ = (PKF ,W). UserU
then sends queryEQ to serverS .

On receipt of queryEQ serverS invokes algorithmSearch (cf. Figure 6) which searches the
indexI for every individual keywordωi ∈ W . If all the keywordsωi ∈ W are found in the
index, thenSearch identifies the subset of filesFωi

that containsωi and outputs the intersection
of all these subsetsFW = Fω1 ∩ ... ∩ Fωk

. Moreover, to prove the correctness of the response
(i.e. to prove thatFW was computed correctly),Search (i) authenticates the accumulators of
each setFωi

using Merkle treeTF; (ii) and generates a proof of intersection forFW using the
verification algorithm described in Figure 3.

If at least one keywordωi is not found, thenSearch returnsωi and an empty set, and
proves the correctness of its response by (i) authenticating the accumulators of bucketsBi1

andBi2 associated withωi in index I using Merkle treeTW; (ii) and generating a proof of
non-membership of keywordωi for bucketsBi1 andBi2 (cf. Figure 2).

On reception of the search result, verifierV checks the correctness of the server’s response
by calling algorithmVerify as shown in Figure 6. More precisely, if serverS advertises that it has
found all the keywordsW in indexI, then algorithmVerify checks that the returned intersection
FW is correct using the verification algorithm of Merkle tree and verifiable setintersection.
Otherwise,V verifies that the returned keyword is actually not inF using again the verification
algorithm of Merkle tree and verifiable test of membership.

10

Figure 6: Verifiable Conjunctive Keyword Search

• {EQ,VKQ} ← QueryGen(W ,PKF)
1. AssignEQ = W andVKQ = (PKF ,W);
2. Return {EQ,VKQ};

• ER ← Search(EQ, LKF)
1. ParseEQ = W andLKF = (I,TW,TF,F ,HT);
2. For ωi ∈ W do

Computehi = H(ωi);
If CuckooLookup(I,H1,H2, hi) = false then

Keywordωi is not inF

Computei1 = H1(hi) andi2 = H2(hi);
ComputeΠ1 = GenerateWitness(hi, Bi1);
ComputeΠ2 = GenerateWitness(hi, Bi2);
ComputeAWi1 = Acc(Bi1) andHWi1 = H(AWi1 ||i1);
ComputeAWi2 = Acc(Bi2) andHWi2 = H(AWi2 ||i2);
Computepath1 = GenerateMTProof(TW,HWi1);
Computepath2 = GenerateMTProof(TW,HWi2);
Return ER = (∅, ω,AWi1 ,AWi2 ,Π1,Π2, path1, path2);

End
End
3. # All the keywords have been found
For ωi ∈ W do

DetermineFωi usingHT; # the set of files that containwi

ComputeAFi = Acc(Fωi) andHFi = H(AFi||ωi);
Determine positionl of wi in TF usingHT;
HFi is in thelth leaf ofTF
Computepathi = GenerateMTProof(TF,HFi);

End
FW = Fω1

∩ ... ∩ Fωk
is the set of files that contain all the words inW

Compute(FW ,ΠW) = ProveIntersection(Fω1
, ...,Fωk

);
Return ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k);

• out← Verify(ER,VKQ)
1. ParseVKQ = (PKF ,W);
2. If W found inF then

ParseER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k);
For ωi ∈ W do

If VerifyMTProof(H(AFi||ωi), pathi, σF) = Reject

Then return out =⊥;

End
ComputeAcc(FW);
If VerifyIntersection(FW ,ΠW ,Acc(FW), {AFi}1≤i≤k) = Accept;
Then return out = FW else returnout =⊥;

End
3. If at least one keywordωi is not found inF then

ParseER = (∅, ωi,AWi1 ,AWi2 ,Π1,Π2, path1, path2);
Computehi = H(ωi), i1 = H1(hi) andi2 = H2(hi);
If VerifyMTProof(H(AWi1 ||i1), path1, σW) = Reject

Then return out =⊥;
If VerifyMTProof(H(AWi2 ||i2), path2, σW) = Reject

Then return out =⊥;
If VerifyMembership(hi,AWi1 ,Π1) = Reject

Then return out =⊥;
If VerifyMembership(hi,AWi2 ,Π2) = Reject

Then return out =⊥;
Return out = ∅;

End

11

5.3 Supporting Dynamic Data

Although we can use digital signatures instead of Merkle trees to authenticatethe accumula-
tors, they are not practical to support dynamic data. Thanks to Merkle trees, our solution enables
the data owner to update its outsourced files and the set of searchable keywords efficiently. More
precisely, there are three possible update scenarios:

• File update without updating the set of searchable keywords:In this case, serverS
updates Merkle treeTF and sends a proof of correct update to the data owner.

• Keyword deletion: This update is executed in two steps. First, serverS removes the
keyword from indexI, updates Merkle treeTW and generates a proof that shows that it has
updated the index correctly, using namely Merkle treeTW and the accumulators (old and new)
of the updated bucket. Then, it removes the leaf corresponding to the deleted keyword from tree
TF and produces a proof of correct deletion forTF.

• Keyword insertion: This is the most expensive operation, as the insertion of new keyword
can affect multiple buckets in indexI. Similarly to keyword deletion, this operation runs in two
steps. Firstly, serverS first inserts the new keyword into indexI, re-computes the accumulators
of the buckets affected by the change, updates Merkle treeTW and generates a proof affirming
that it has performed the update correctly. Secondly, serverS adds a leaf for the new keyword to
Merkle treeTF and proves the correct insertion of the new keyword toTF. In principle, keyword
insertion is possible only if indexI did not reach its maximum capacity.

6 Security Analysis

In this section, we prove the correctness and the soundness propertiesof our proposal for
verifiable conjunctive keyword search.

6.1 Correctness

Theorem 1(Correctness). Our scheme is a correct verifiable conjunctive keyword search solu-
tion.

Proof. Suppose that a userU sends to serverS the queryEQ = W = {ω1, ..., ωk}. S correctly
executes algorithmSearch and returns the search responseER. According to Figure 6, the
content of responseER varies depending on whether:

All words in W are found in F :
ThenER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k) where:

• FW = Fω1 ∩ ... ∩ Fωk
such thatFωi

is the subset of files that contain keywordωi;

• ΠW = {(∆1,Γ1), ..., (∆k,Γk)} is the proof of this intersection;

• for all 1 ≤ i ≤ k, AFi = Acc(Fωi
); if we denotePi the characteristic polynomial of

subsetFωi
, then we can writeAFi = gPi(α);

12

• for all 1 ≤ i ≤ k, pathi is the authentication path ofH(AFi||ωi) in TF.

Firstly, if we assume that the Merkle tree authentication is correct, then verifier V will accept
the accumulatorsAFi computed by serverS .
Secondly, sinceS computes the proofΠW using algorithmProveIntersection, we have the fol-
lowing:

• for all 1 ≤ i ≤ k, ∆i = gUi(α), whereUi = Pi

P andP = gcd(P1, P2, ..., Pk) is the
characteristic polynomial ofFW ;

• for all 1 ≤ i ≤ k, Γi = gVi(α), such that
∑

i UiVi = 1.

It follows that for all1 ≤ i ≤ k:

e(Acc(FW),∆i) = e(gP (α)
, g

Ui(α)) = e(g, g)P (α)·Ui(α) = e(g, g)Pi(α)

= e(AFi, g)

This means that the first equality in algorithmVerifyIntersection holds. Furthermore, the second
equality is also verified, indeed:

∏

ωi∈W

e(∆i,Γi) =
∏

ωi∈W

e(gUi(α)
, g

Vi(α)) =
∏

ωi∈W

e(g, g)Ui(α)·Vi(α)

= e(g, g)
∑

ωi∈W Ui(α)·Vi(α)
= e(g, g)

These computations thus prove the correctness of our solution in the case where the targeted
keywords are all found.

There existsωi ∈W not found in F :
In this case,ER = (∅, ωi,AWi1 ,AWi2 ,Π1,Π2, path1, path2) such that:

• AWi1 = Acc(Bi1) andAWi2 = Acc(Bi2) are the accumulators of bucketsBi1 andBi2

respectively, wherei1 andi2 are the positions assigned to keywordωi in indexI;

• Π1 andΠ2 are the proofs thatωi is not a member of bucketBi1 nor of bucketBi2 respec-
tively;

• path1 andpath2 are the authentication paths of these two buckets in treeTW.

If we consider the Merkle tree to be correct, then verifierV will acceptAcc(Bi1) andAcc(Bi2).
Moreover, if we denotePBi1

the characteristic polynomial of bucketBi1 , then by definition

PBi1
(X) =

∏
hj∈Bi1

(X − hj) andAcc(Bi1) = g
PBi1

(α)
.

Recall now that the proof of non-membershipΠ1 of keywordωi to bucketBi1 is computed

as: {PBi1
(hi),ΩBi1

,hi
}, such thathi = H(ωi), ΩBi1

,hi
= g

QBi1
,hi

(α)
andQBi1

,hi
(X) =

PBi1
(X)−PBi1

(hi)

X−hi
.

It follows that:

e(ΩBi1
, g

α · g−hi)e(g
PBi1

(hi)
, g) = e(g, g)

QBi1
,hi

(α)·(α−hi)
e(g, g)

PBi1
(hi)

= e(g, g)
QBi1

,hi
(α)·(α−hi)+PBi1

(hi)

= e(g, g)
PBi1

(α)

= e(Acc(Bi1), g).

13

This means that the first equality of algorithmGenerateWitness (cf. Figure 2) holds. Finally,
sinceωi /∈ Bi1 , PBi1

(hi) 6= 0. This implies that verifierV will accept the proof of non-
membership for bucketBi1 and conclude thatωi is not inF .

Similar computations can be performed forBi2 , which proves the correctness of our solution
in the case where a keywordωi /∈ F .

6.2 Soundness

Theorem 2 (Soundness). Our solution for conjunctive keyword search is sound under theD-
SDH andD-SBDH assumptions, provided that the hash functionH used to build the Merkle
trees is collision-resistant.

Proof. We observe that an adversary can break the soundness of our scheme through two types
of forgery:

Type 1 forgery: On input of W = {ω1, ..., ωk} and search keyLFF , adversaryA1 returns
a search result that consists of a proof of non-membership of some keyword ωi ∈ W

(meaning thatωi is not in the set of filesF), althoughωi is in F ;

Type 2 forgery: On input ofW = {ω1, ..., ωk} and search keyLFF , adversaryA2 returns an
incorrectF̂W and the corresponding proof. This means that adversaryA2 claims that all
keywords inW have been found inF and thatF̂W is the subset of files that contain them,
althoughF̂W 6= CKS(F ,W).

In the following, we demonstrate that ifA1 andA2 runs Type 1 and Type 2 forgery respec-
tively, then there exists another adversaryB1 that breaksD-SDH and an adversaryB2 that breaks
D-SBDH).

Lemma 1 (Type 1 forgery). If A1 breaks the soundness of our protocol, then there exists adver-
saryB1 that breaks theD-SDH assumption inG.

Let OD−SDH be a random oracle which, when invoked, returns theD-SDH tupleT (α) =

(g, gα, gα
2
, ..., gα

D
) ∈ G

D+1, for some randomly selectedα ∈ F
∗
p.

Here we define an adversaryB1 that breaks theD-SDH assumption:

1. B1 first callsOD−SDH which selects a randomα ∈ F
∗
p and returnsT (α).

2. B1 simulates the soundness game for adversaryA1 (cf. Algorithm 1). Specifically, when
A1 invokesOSetup with the sets of filesFi (for 1 ≤ i ≤ t), B1 simulatesOSetup and generates
(PKFi

, LKFi
), as follows:

(a) B1 selects the parametersg,G,GT , e andH;

(b) B1 computes the tupleTi(α) = (g, gαi , gαi
2
, ..., gαi

D
) whereαi = α ·δi+βi for some ran-

domδi, βi ∈ F
∗
p. Note that this tuple can be easily computed byB1, without having access

to α, thanks to tupleT (α) and the Binomial Theorem:∀ k ≤ D, gαi
k
= g(α·δi+βi)

k
=

∏k
j=0(g

αj
)(

k
j)(δi)

j ·βk−j
i ;

14

(c) The rest of the simulation is operated as in Figure 5.

3. In the challenge phase of the soundness game,A1 first selects a public keyPK∗F from the
keys he has received earlier, and a collection of keywordsW ∗ to search for in a set of filesF ∗

associatedPK∗F thenA1 runsQueryGen(W ∗,PK∗F) which outputs the encoded queryE∗Q =
W ∗ and the verification keyVK∗Q = (PKF ∗ ,W ∗).

4. Then,A1 returnsE∗R = (∅, ω∗, ÂF
∗

1, ÂF
∗

2, Π̂
∗
1, Π̂

∗
2, p̂ath

∗

1, p̂ath
∗

2), with:

• the empty set, being the result of the search, meaning that the keywordω∗ ∈ W ∗ was not
found inF ∗, althoughω∗ is indeed inF ∗,

• the accumulatorŝAF
∗

1, ÂF
∗

2 of the buckets at the positions associated toω∗ in indexI∗ of
files F ∗,

• Π̂∗1, Π̂
∗
2, the proofs of non-membership ofω∗ with respect to bucketsB∗i1 , B

∗
i2

, wherei1
andi2 are the positions assigned to keywordω∗ in indexI∗

• p̂ath
∗

1, p̂ath
∗

2, the authentication paths in Merkle treeTW for the accumulators of buckets

ÂF
∗

1, ÂF
∗

2.

5. Since we assumeH is a collision-resistant hash function, the Merkle tree authentication
proves that̂AF

∗

1 andÂF
∗

2 are actually associated with leaves at positionsi1 andi2 in TW. More

precisely, it proves that̂path
∗

1 andp̂ath
∗

2 authenticate the valuesH(ÂF
∗

1||i1) andH(ÂF
∗

2||i2) and

that ÂF
∗

1 andÂF
∗

2 correspond toAcc(B∗i1) andAcc(B∗i2) that were computed in the setup phase

by B1. Namely,ÂF
∗

1 = g
PB∗

i1
(α∗)

andÂF
∗

2 = g
PB∗

i2
(α∗)

.

6. We now show howB1 breaks theD-SDH assumption. Let us consider thath∗ = H(ω∗) is
indeed stored in the first bucketB∗i1 (similar consideration can be applied toB∗i2). As returned

by A1, the forged proof of non-membership forω∗ consists of̂Π∗1 = {P̂Bi1
(h∗), Ω̂B∗

i1
,h∗} (cf.

Figure 2). Notice that̂PB∗
i1
(h∗) 6= 0, as adversaryA1 claims thatω∗ is not in F ∗. If Verify

accepts the proof of non-membership, then according to Figure 2, the following equality holds:

e(Ω̂B∗
1 ,h

∗ , gα
∗−h∗

)e(gP̂B1
(h∗), g) = e(ÂF

∗

1, g) = e(g
P̂B∗

i1
(α∗)

, g)

e(Ω̂B∗
1 ,h

∗ , gα
∗−h∗

) = e(g
PB∗

1
(α∗)−P̂B∗

1
(h∗)

, g) (1)

On the other hand, by construction we have:

e(ΩB∗
i1
,h∗ , gα

∗−h∗

) = e(g
PB∗

i1
(α∗)

, g), (2)

whereΩB∗
i1
,h∗ = g

QB∗
i1

,h∗ (α
∗)

such thatQB∗
i1
,h∗(X) =

PB∗
i1
(X)

X−h∗ .
By dividing equation 1 with equation 2, we obtain:

e

(
Ω̂B∗

i1
,h∗

ΩB∗
i1

,h∗
, gα

∗−h∗

)
= e



(

Ω̂B∗
i1

,h∗

ΩB∗
i1

,h∗

)α∗−h∗

, g


 = e(g

−P̂B∗
i1
(h∗)

, g).

15

Therefore,

(
Ω̂B∗

i1
,h∗

ΩB∗
i1

,h∗

)α∗−h∗

= g
−P̂B∗

i1
(h∗)

(
Ω̂B∗

i1
,h∗

ΩB∗
i1

,h∗

) 1

−P̂B∗
i1
(h∗)

=

(
ΩB∗

i1
,h∗

Ω̂B∗
i1

,h∗

) 1

P̂B∗
i1
(h∗)

= g
1

α∗−h∗ .

We haveα∗ = α·δ∗+β∗, where(δ∗, β∗) are randomly selected from set{δi, βi}1≤i≤t generated
earlier. Accordingly,

(
ΩB∗

i1
,h∗

Ω̂B∗
i1

,h∗

) 1

P̂B∗
i1
(h∗)

= g
1

α·δ∗+β∗−h∗ = g

1

δ∗(α+
β∗−h∗

δ∗)

(
ΩB∗

i1
,h∗

Ω̂B∗
i1

,h∗

) δ∗

P̂B∗
i1
(h∗)

= g

1

α+
β∗−h∗

δ∗

Sinceβ∗ 6= h∗ with an overwhelming probability(Pr(β∗ = h∗) = 1
p), then adversaryB1 breaks

D-SDH by outputting the pair


β∗−h∗

δ∗ ,

(
ΩB∗

i1
,h∗

Ω̂B∗
i1

,h∗

) δ∗

P̂B∗
i1
(h∗)


 with a non-negligible advantage

εB ≥ εA · (1−
1
p) whereεA is the advantage of adversaryA1 in breaking the soundness of our

scheme.

Lemma 2 (Type 2 forgery). We now prove that ifA2 breaks the soundness of our protocol, then
there exists an adversaryB2 that breaks theD-SBDH assumption inG.

Let OD−SBDH be a random oracle that returns for any randomα ∈ F
∗
p, the tupleT (α) =

(g, gα, gα
2
, ..., gα

D
) ∈ G

D+1. In the following lines, we describe an adversaryB2 that breaks
theD-SBDH assumption:

1. To breakD-SBDH, B2 callsOD−SBDH: this oracle picks a randomα and returns the corre-
sponding tupleT (α).

2. A2 enters the soundness game as described in Algorithm 1 and whenA2 invokesOSetup with
the sets of filesFi (for 1 ≤ i ≤ t), B2 simulatesOSetup and generates(PKFi

, LKFi
), as follows:

(a) B2 selects the parametersg,G,GT , e andH;

(b) B2 computes the tupleTi(α) = (g, gαi , gαi
2
, ..., gαi

D
) whereαi = α · δi + βi for some

randomδi, βi ∈ F
∗
p. Similar to Type 1 forgery,Ti(α) can be computed byB2.

(c) The rest of the simulation is operated as in Figure 5.

16

3. On input of search keyLKF ∗ and a query on a collection of keywordsW ∗ = {ω∗1, .., ω
∗
k}

to be searched for in the set of filesF ∗ associated with a public keyPK∗F obtained earlier,A2

outputsE∗R = (F̂W ∗ , Π̂W ∗ , {ÂFi}1≤i≤k, {p̂ath
∗

i }1≤i≤k), where:

• F̂W ∗ is the returned search response, that is the set of files containingW ∗;

• Π̂W ∗ = {(∆̂1, Γ̂1), ..., (∆̂k, Γ̂k)}, the proof of this intersection;

• {ÂFi}1≤i≤k, the accumulation values of setsFω∗
i

containing keywordsω∗i ;

• {p̂ath
∗

i }1≤i≤k, the authentication paths in Merkle treeTF for the accumulators{ÂFi}.

Here, the returned responseF̂W ∗ is different from the expected search resultFW ∗ = CKS(F ∗,W ∗).
Therefore, either (a) F̂W ∗ contains a file with file identifierfid∗ that is not inFW ∗ , or (b) there
is a file with file identifierfid∗ that is inFW ∗ but missing fromF̂W ∗ .

4. SinceH is a collision-resistant hash function, the Merkle tree authentication provesthat
{ÂFi}1≤i≤k are actually associated with leaves at positioni in treeTF. More precisely, it

proves that each path in{p̂ath
∗

i }1≤i≤k authenticates the respective valuesH(ÂF
∗

i ||ω
∗
i) and that

for 1 ≤ i ≤ k, ÂF
∗

i corresponds toAcc(Fω∗
i
) that was computed in the setup phase byB2.

Specifically,ÂF
∗

i = gP
∗
i (α

∗) with P ∗i (X) =
∏

fidj∈Fω∗
i

(X − fidj).

5. Given accumulatorŝAFi, we show howB2 breaks theD-SBDH assumption in the two cases
(a) and(b). Note that these cases can occur at the same time, but for the sake of simplicity, we
treat them independently:

Case (a). In this case, there exists a keywordω∗ ∈ W ∗ such thatfid∗ /∈ Fω∗ . Therefore, if
we denoteP ∗ the characteristic polynomial ofFω∗ , (X − fid∗) does not divideP ∗(X).
However, sincefid∗ ∈ F̂W ∗ , then(X − fid∗) dividesP̂ (X) whereP̂ is the characteristic
polynomial ofF̂W ∗ . Using polynomial division, we find that there exist polynomialZ1, Z2

andR ∈ Fp such thatP ∗(X) = (X−fid∗) ·Z1(X)+R andP̂ (X) = (X−fid∗) ·Z2(X).
Hence, whenB2 verifies the first equality ofVerifyIntersection (cf. Figure 3), he gets for
1 ≤ i ≤ k:

e(Acc(F̂W ∗), ∆̂i) = e(Acc(Fω∗), g)

e(g,∆i)
P̂ (α∗) = e(g, g)P

∗(α∗)

e(g, ∆̂i)
(α∗−fid∗)·Z2(α∗) = e(g, g)(α

∗−fid∗)·Z1(α∗)+R

e(g, ∆̂i)
Z2(α∗) = e(g, g)Z1(α∗) · e(g, g)

R
α∗−fid∗

(e(g, ∆̂i)
Z2(α∗) · e(g, g)−Z1(α∗))

1
R = e(g, g)

1
α∗−fid∗ .

Assuming that we haveα∗ = α · δ∗ + β∗, where(δ∗, β∗) are randomly selected from set
{δi, βi}1≤i≤t generated earlier, we can write:

(
e(gZ2(α∗), ∆̂i) · e(g

−Z1(α∗), g)
) 1

R
= e(g, g)

1

δ∗(α+
β∗−fid∗

δ∗
)

17

(
e(gZ2(α∗), ∆̂i) · e(g

−Z1(α∗), g)
) δ∗

R
= e(g, g)

1

α+
β∗−fid∗

δ∗

In other words, we construct an adversaryB2 that breaks theD-SBDH assumption by

outputting the pair

(
β∗−fid∗

δ∗ ,
(
e(gZ2(α∗), ∆̂i) · e(g

−Z1(α∗), g)
) δ∗

R

)
. Notice thatβ∗ is ran-

domly generated inF∗p, and thereforePr(β∗ = fid∗) = 1
p . this means that ifA2 has a

non-negligible advantageεA to break the soundness of our scheme, then there is an adver-
saryB2 that breaksD-SBDH with a non-negligible advantageεB ≥ εA · (1−

1
p).

Case (b). In this case,fid∗ is in FW ∗ but not inF̂W ∗ . Since, we exclude Case(a) here, it means
that F̂W ∗ ⊂ FW ∗ . Besides,fid∗ can be found in all sets(Fω∗

i
\ F̂W ∗), for all 1 ≤ i ≤ k.

We denoteRi the characteristic polynomials of(Fω∗
i
\ F̂W ∗).

We also havePi(X) = Ri(X) · P̂ (X) wherePi denote the characteristic polynomial
of Fω∗

i
. If algorithm Verify acceptsA2’s proof then it means thate(Acc(F̂W ∗), ∆̂i) =

e(Acc(Fω∗
i
), g), which can be written ase(g, ∆̂i)

P̂ (α∗) = e(g, g)Pi(α
∗). It follows that

∆i = gRi(α). In addition,(X − fid∗) dividesRi(X) and we can writeRi(X) = (X −
fid∗) · Zi(X).

WhenB2 verifies the second equality ofVerifyIntersection, he gets:

k∏

i=1

e(∆̂i, Γ̂i) =
k∏

i=1

e(g, Γ̂i)
Ri(α

∗) = e(g, g)

k∏

i=1

e(g, Γ̂i)
(α∗−fid∗)·Zi(α

∗) = e(g, g)

(
k∏

i=1

e(g, Γ̂i)
Zi(α

∗))(α
∗−fid∗) = e(g, g)

k∏

i=1

e(g, Γ̂i)
Zi(α

∗) = e(g, g)
1

α∗−fid∗

Since we haveα∗ = αδ∗ + β∗, with (δ∗, β∗) randomly selected from set{δi, βi}1≤i≤t
generated earlier, it follows that:

k∏

i=1

e(gZi(α
∗), Γ̂i) = e(g, g)

1

δ∗(α+
β∗−fid∗

δ∗
)

(
k∏

i=1

e(gZi(α
∗), Γ̂i))

δ∗ = e(g, g)

1

α+
β∗−fid∗

δ∗

Therefore, ifβ∗ 6= fid∗, then adversaryB2 breaks theD-SBDH assumption with the pair(
β∗−fid∗

δ∗ , (
k∏

i=1
e(gZi(α

∗), Γ̂i))
δ∗
)

. Sinceβ∗ 6= fid∗ with probability 1
p , we can safely conclude

18

that if there is an adversaryA2 that breaks the soundness of our scheme with a non-negligible ad-
vantageεA, then there is an adversaryB2 that breaksD-SBDH with a non-negligible advantage
εB ≥ εA · (1−

1
p).

7 Performance Evaluation

In light of the performances of the several building blocks (Cuckoo hashing, polynomial-
based accumulators and Merkle trees), we analyze in the following the computational costs of
our solution. A summary of this analysis is provided in Table 1, together with all notations. A
more detailed table can be found in the appendix.

1. Setup: As mentioned in Section 2, the setup phase of our protocol is a one-time pre-
processing operation that is amortized over an unlimited number of fast verifications. The com-
putational cost of this phase is dominated by:
• The public parameter generation which amounts toD exponentiations inG;
• N calls toCuckooInsert where, as shown in [6], each insertion is expected to terminate in
(1/ε)O(log d) time (ε > 0);
• The computation ofm accumulatorsAW which requiresm exponentiations inG andmd

multiplications inFp;
• The computation ofN accumulatorsAF which involvesN exponentiations inG andNn

multiplications inFp;
• The generation of Merkle treeTW (respectivelyTF) which consists of2m hashes (resp.
2N).

2. QueryGen: This algorithm does not require any computation. It only constructs the
query for thek keywords together with the correspondingVKQ.

3. Search: Although this algorithm seems expensive, we highlight the fact that it is exe-
cuted by the cloud server.Search runsk CuckooLookup which consist in2k hashes and2kd
comparisons to search for all thek queried keywords (in the worst case). Following this opera-
tion, the complexity of this phase depends on whether all the keywords havebeen found:
• out = FW : The complexity ofSearch is imposed by:

– The computation ofk file accumulatorsAF. Without the knowledge of trapdoorα,
and using FFT interpolation as specified in [2], this operation performskn logn mul-
tiplications inFp andk exponentiations inG;

– The generation of the authentication paths in treeTF for these accumulators, which
amounts tok logN hashes;

– The generation of the proof of intersection that takesO((kn) log2(kn) log log(kn))
multiplications2 in Fp to compute the gcd of the characteristic polynomials of the sets
involved in the query result.

• out = ∅: The computational costs of this phase consist in:

2More details on this complexity computation can be found in [2, 14].

19

Table 1: Computational complexity of our protocol, in the worst case where: allN keywords are in alln files or
where the not found keyword is the last in the query.

D: parameter of our system,n ≤ D: number of files,N : number of keywords
m: the number of buckets in the index,d: size of a bucket
k: number of keywords in a query.
EG: time to exponentiate elements inG; Mp: time to multiply elements inFp;
H∗: time to hash elements in{0, 1}∗; CI: time to runCuckooInsert;
LC: light computation;PI : time to runProveIntersection;
BPG: time to compute bilinear pairings inG; MT : time to to multiply inGT

Algorithms Approximate computational complexity

Setup (D +m+N) EG + (md+Nn)Mp + 2(m+N) H∗ +N CI

QueryGen k LC

Search

out = FW kn EG + (kn log n) Mp + (k logN) H∗ + 1 PI

out = ∅ 4d EG + (2d+ 4d log d) Mp + (2 logm) H∗

Verify

out = FW 3k BPG + k MT + (k logN) H∗

out = ∅ 6 BPG + (2 logm) H∗

– The generation of the proof of membership for the missing keyword by callingtwice
GenerateWitness. This operation requires2(d+ d log d) multiplications inFp and2d
exponentiations inG;

– The computation of2 bucket accumulatorsAW, which amounts to2d log d multipli-
cations inFp and2d exponentiations inG;

– The generation of2 authentication paths for these2 buckets by runningGenerateMTProof

on treeTW, which performs2 logm hashes.
4. Verify: We also analyze the complexity of this algorithm according to whether all the

keywords have been found:
• out = FW : Verify runsk instances ofVerifyMTProof on treeTF, which requiresk logN

hashes. Then, it executesVerifyIntersection which computes3k pairings andk multiplica-
tions inMT.
• out = ∅: Verify runs twiceVerifyMTProof on treeTW that computes2 logm hashes and

it invokes twiceVerifyMembership that evaluates6 pairings.
In summary, to verify the search results, a verifierV performs very light computations com-
pared to the computations undertaken by the server when answering keyword search queries and
generating the corresponding proofs. Besides, the verification cost depends onk only in the case
where all the keywords have been found and is independent otherwise. Furthermore, we believe
that for large values ofk, the probability that the search returns a set of files containing all thek
keywords is low. Hence, the verification cost will be constant and small (6 pairings and2 logm
hashes). On the other hand, for smaller values ofk, the verification cost remains efficient.

Impact of D on the performance.This performance analysis assumesn ≤ D, wheren is
the number of files. The value ofD solely depends on security parameterκ, and as such, defines
an upper-bound to the size of sets for which we can compute a polynomial-based accumulator.
It follows that in our protocol, the number of files that a data owner can outsource at once is
bounded byD. However, it is still possible to accommodate files’ sets that exceed the bound
D. The idea is to divide the set of sizen into n′ = ⌈ nD⌉ smaller sets of sizeD. By using
the same public parameters,Setup accordingly creates for each set ofD files an index and

20

the corresponding Merkle trees. This increases the complexity of theSetup by a factor ofn′.
Namely, the data owner is required to buildn′ Cuckoo indexes and2n′ Merkle trees.

8 Related Work

Verifiable polynomial evaluation and keyword search. In [1, 7], the authors tackle the
problem of verifiable delegation of polynomial evaluation. Their solutions allow a verifier to
check whether a server evaluates the polynomial on the requested input correctly. As proposed in
[1] and briefly mentioned in [7], such a solution is suitable to the problem of verifiable keyword
search where the file is encoded by its characteristic polynomial. Nevertheless, the application of
[1, 7] to verifiable keyword search is not straightforward. Besides to accommodate the properties
of public delegatability and conjunctive queries, as achieved by our scheme, their proposals [1, 7]
may require elaborate adjustments.

Verifiable keyword search on encrypted data.Some recent research work [3, 4, 9, 16]
adopt a different scenario from the one we follow for verifiable keyword search: While our set-
ting focuses on verifiable keyword search on outsourced (sanitized) data and cares about the two
properties of public delegatability and public verifiability, the solutions proposed in [3, 4, 9, 16]
support verifiable keyword search on encrypted data and satisfy the data and query privacy prop-
erties. In particular, the work of Chai and Gong [3], extended in [9], exploits a searchable sym-
metric encryption scheme to develop a verifiable keyword search solution that preserves data
confidentiality while enabling the verification of search results returned by asemi-honest-but-
curious cloud. However, due to the use of a symmetric searchable encryption solution, these
proposals do not offer public delegatability nor public verifiability. In the same line of work,
Cheng et al. [4] propose a protocol for verifiable conjunctive keyword search that leverages a
combination of a searchable symmetric encryption scheme with anindistinguishability obfusca-
tion circuit (iO circuit) realizing the search operation. While public verifiability is achieved by
means of another (public)iO circuit representing the verification function, public delegatability
is not addressed in this work. Nevertheless, it is worth considering generating an additionaliO
circuit to realize the publicly delegatable property. Still, the generation and obfuscation of such
circuits induce substantial costs that the authors in [4] barely mention. Furthermore, Zheng et
al. [16] propose a solution called Verifiable Attribute-Based Keyword Search (VABKS) which
allows a data owner to grant a user satisfying an access control policy theright to query a
keyword over the owner’s outsourced encrypted files and to verify thesearch result returned
by the server. This solution does not support conjunctive keyword search. Besides, the prob-
lem of public delegatability and public verifiability is not in the scope of this work.Instead, a
fine-grained access control enables authorized users to issue search queries and verify search re-
sults. In summary, this review of existing work for verifiable keyword search on encrypted data
[3, 4, 9, 16] identifies the gap that should be addressed as a future work: verifiable private search
is opposed to publicly delegatable and verifiable search. While our scheme does not support
search on encrypted data (as we consider this problem as orthogonal toour scenario), it offers
public delegatability and verifiability, which most of the existing work on verifiable keyword
search on encrypted data do not achieve. We can easily customize our protocol to allow search
on encrypted data at the price of sacrificing public delegatability and verifiability. Neverthe-

21

less, various methods can be used to delegate search capabilities to a third-party user such as
attribute-based encryption (such as in VABKS [16]).

Authentication trees. In our protocol, we rely on Merkle trees to authenticate the accumula-
tors of the buckets in the index and the accumulators of the sets of files that contain a partic-
ular keyword. Alternatively, we could have used the bilinear accumulation trees proposed by
[13]. Accumulation trees differ from Merkle trees in three aspects: (i) their security is based
on bilinear group assumptions (whereas Merkle tree security is based on collision-resistant hash
functions); (ii) each internal node in the accumulation tree is the accumulator of its children;
(iii) the depth of the tree is constant. The last two points yield fixed-sized proofs independent of
the number of elements in the tree. Yet on the downside, accumulation trees require the server
to either double its storage to speed-up its computations, or to compute for eachlevel of the tree
an accumulator. Depending on the size of the data, this can be computationally expensive. Fur-
thermore, we note that in the case of huge data-sets, the depth of the accumulation tree becomes
logarithmic in the size of data. This is why in this paper, we opt for Merkle trees: The server
needs to only read a logarithmic number of memory locations to authenticate the accumulators,
whereas the verifier is only required to compute a logarithmic number of hash functions to verify
the authenticity of the accumulators transmitted by the server.

9 Conclusion

In this paper, we presented a protocol that enables a data owner to outsource its database
to a cloud server, in such a way that any third-party user can perform search on the outsourced
database and verify the correctness of the server’s responses. The proposed solution is efficient:
The storage overhead at the data owner and third-party users is kept toa minimum, whereas the
verification complexity is logarithmic in the size of the database. Moreover, it is provably sound
under well-understood assumptions, namely, the security of Merkle trees and the strong bilinear
Diffie-Hellman assumption.

Future work will also include an implementation of our protocol to demonstrate its feasibility
with real data.

References
[1] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable Delegation of Computation over Large

Datasets. InAdvances in Cryptology – CRYPTO 2011, pages 111–131. Springer, 2011.

[2] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Verifiable Set Operations over
Outsourced Databases. InPublic-Key Cryptography–PKC 2014, pages 113–130. Springer, 2014.

[3] Qi Chai and Guang Gong. Verifiable Symmetric Searchable Encryption for semi-Honest-but-Curious Cloud
Servers. InIEEE International Conference on Communications (ICC), 2012, pages 917–922. IEEE, 2012.

[4] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and Kui Ren. Verifiable Searchable Symmetric
Encryption from Indistinguishability Obfuscation. InProceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, pages 621–626, New York, NY, USA, 2015. ACM.

22

ISBN 978-1-4503-3245-3. doi: 10.1145/2714576.2714623. URLhttp://doi.acm.org/10.1145/
2714576.2714623.

[5] Ivan Damg̊ard and Nikos Triandopoulos. Supporting Non-Membership Proofs withBilinear-Map Accumula-
tors. IACR Cryptology ePrint Archive, 2008:538, 2008.

[6] Martin Dietzfelbinger and Christoph Weidling. Balanced Allocation and Dictionaries with Tightly Packed
Constant Size Bins.Theoretical Computer Science, 380(1):47–68, 2007.

[7] Dario Fiore and Rosario Gennaro. Publicly Verifiable Delegation of Large Polynomials and Matrix Compu-
tations, with Applications. InProceedings of the 2012 ACM Conference on Computer and Communications
Security, pages 501–512. ACM, 2012.

[8] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-Interactive Verifiable Computation: Outsourcing Com-
putation To Untrusted Workers. InAdvances in Cryptology–CRYPTO 2010, pages 465–482. Springer, 2010.

[9] Zachary A Kissel and Jie Wang. Verifiable Phrase Search over Encrypted Data Secure against a Semi-Honest-
but-Curious Adversary. InIEEE 33rd International Conference on Distributed Computing Systems Workshops
(ICDCSW), 2013, pages 126–131. IEEE, 2013.

[10] Ralph C Merkle. A Digital Signature Based on a Conventional Encryption Function. InAdvances in
Cryptology–CRYPTO’87, pages 369–378. Springer, 1988.

[11] Lan Nguyen. Accumulators From Bilinear Pairings and Applications.In Topics in Cryptology–CT-RSA 2005,
pages 275–292. Springer, 2005.

[12] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing.Journal of Algorithms, 51(2):122–144, 2004.

[13] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authenticated Hash Tables. In
Proceedings of the 15th ACM Conference on Computer and Communications Security, pages 437–448. ACM,
2008.

[14] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal Verification of Operations
on Dynamic Sets. InAdvances in Cryptology–CRYPTO 2011, pages 91–110. Springer, 2011.

[15] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. Howto Delegate and Verify in Public: Verifiable
Computation from Attribute-Based Encryption. InProceedings of the 9th Theory of Cryptography Conference,
TCC 12, pages 422–439, 2012.

[16] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. VABKS: Verifiable Attribute-Based Keyword Search over
Outsourced Encrypted Data. InINFOCOM, 2014 Proceedings IEEE, pages 522–530. IEEE, 2014.

A Performance Analysis Table

Based on the performance analysis conducted in Section 7, we draw Table2 that details each
operation and the corresponding cost for each of the algorithms of our protocol for conjunctive
keyword search.

23

Table 2: Computational complexity of building blocks

Notations
D: parameter of our system,n ≤ D: number of files,N : number of keywords
m: the number of buckets in the index,d: size of a bucket
k: number of keywords in a query.

EG: time to exponentiate elements inG; Mp: time to multiply elements inFp;
C∗: time to compare elements in{0, 1}∗; CT : time to compare elements inGT

Cp: time to compare elements inFp;
H∗: time to hash elements in{0, 1}∗; CI: time to runCuckooInsert;
LC: light computation;PI : time to runProveIntersection;
BPG: time to compute bilinear pairings inG; MT : time to to multiply inGT

Algorithms Complexity

Setup

Parameter Generation D EG

Index Construction
N CuckooInsert N (1/ε)O(log d)

Index Authentication
m Buckets AccumulatorsAW m(d Mp + 1 EG)

BuildMT(TreeTW) 2mH∗

File Encoding
N File AccumulatorsAF (w/ α) N(n Mp + 1 EG)

BuildMT(TreeTF) 2NH∗

TOTAL (D +m+N) EG + (md+Nn)Mp + 2(m+N) H∗ +N CI

QueryGen k LC

Search

k hashesk H∗

k CuckooLookup k (2H∗ + (2d)C∗)
If all keywords found

k File AccumulatorsAF (w/oα) k(n logn Mp + n EG)
k hashesHF k H∗

k GenerateMTProof (TreeTF) k logN H∗

ProveIntersection(w/oα) O((kn) log2(kn) log log(kn))Mp

TOTAL kn EG + (kn logn)Mp + (k logN) H∗ + 1 PI

If one keyword is not found
2 GenerateWitness (w/oα) 2(d Mp + d log d Mp + dEG))

2 Buckets AccumulatorsAW (w/oα) 2(d log d Mp + d EG)
2 GenerateMTProof (TreeTW) 2 logm H∗

TOTAL 4d EG + (2d+ 4d log d)Mp + (2 logm) H∗

Verify

If all keywords found
k VerifyMTProof (TreeTF) k logN H∗

VerifyIntersection 3k BPG + kMT

TOTAL 3k BPG + k MT + (k logN) H∗

If one keyword is not found
2 VerifyMTProof (TreeTW) 2 logm H∗

2 VerifyMembership 6BPG

TOTAL 6 BPG + (2 logm) H∗

24

