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Publicly Verifiable Conjunctive Keyword Search in Outsourced
Databases

Monir Azraoui, Kaoutar Elkhiyaoui, Mele®nen and Refik Molva

Abstract

Recent technological developments in cloud computing &edensuing commercial
appeal have encouraged companies and individuals to outstheir storage and com-
putations to powerful cloud servers. However, the chakewipen outsourcing data and
computation is to ensure that the cloud servers comply kigir tadvertised policies. In
this paper, we focus in particular on the scenario whereaaaher wishes to (i) outsource
its public database to a cloud server; (ii) enable anyonailbong multi-keyword search
queries to the outsourced database; and (iii) ensure tiiaharcan verify the correctness of
the server’s responses. To meet these requirements, wesgragsolution that builds upon
the well-established techniques of Cuckoo hashing, pohjabbased accumulators and
Merkle trees. The key idea is to (i) build an efficient indextfte keywords in the database
using Cuckoo hashing; (i) authenticate the resulting xndging polynomial-based accu-
mulators and Merkle tree; (iii) and finally, use the root oé thlerkle tree to verify the
correctness of the server’s responses. Thus, the proposdis yields efficient search
and verification and incurs a constant storage at the datarowarthermore, we show that
it is sound under the strong bilinear Diffie-Hellman asstiompand the security of Merkle
trees.
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1 Introduction

Cloud computing offers an opportunity for individuals and companies toauffto powerful
servers the burden of managing large amounts of data and performingitadmopally demand-
ing operations. In principle, cloud servers promise to ensure data &lmjlabd computation
integrity at the exchange of a reasonable fee, and so far they ammesda always comply
with their advertised policies. However, such an assumption may be deerftethded: For
instance, by moving their computing tasks into the cloud, cloud customers imlydiend the
control to this (potentially malicious) third party, which (if left unchecked) metyrn an incor-
rect result for an outsourced computation, so as to free-up some ofrigsutational resources.
This lack of control on the part of cloud customers in this particular se@gnaas given rise to
an important body of work owerifiablecomputation, which aims at providing cloud customers
with cryptographic tools to verify the compliance of cloud servers (i.e. t@lkcheéhether the
cloud server returns the correct result for an outsourced computafiamajor requirement of
verifiable computation is the efficiency of the verification at the cloud custokmely, veri-
fication should need less computational resources than the outsounc#idriyin order not to
cancel out the advantages of cloud computing.

Owing toits prevalence in cloud computing, data mining is at the heart of véeiftamputa-
tion: Cloud servers are the best candidates to undertake big-data mintingt ihey have means
to store big-data and own the necessary computational resources tarioumsvdata processing
primitives and analyze huge data sets. In this paper, we focus on one ofdst frequently
used primitives in data mining, that keyword searchand design a solution that assures the
correctness of the search result. More specifically, we considenarscevherein a data owner
wishes to outsource a public database to a cloud server and wants to emtipicdvparty users
(i) to issue conjunctive keyword search queries to the database and \&Yifp the correct-
ness of the results returned by the cloud efficiently. In other words, dltee @vner wants to
ensure the properties plblic delegatability and public verifiability as defined by Parno et
al. [15]. Roughly speaking, public delegatability enables any user toperverifiable con-
junctive keyword search without having access to the data ownerstsaetormation; whereas
public verifiability guarantees that any third-party verifier (not neaélgsthe user originating
the search query) can check the server’s responses.

The core idea of our solution is to use polynomial-based accumulators &segppkeywords
in the outsourced database. Thanks to their algebraic properties, podifmsed accumulators
give way to two cryptographic mechanisms, that are verifiable test of mehipdcf. [5]) and
verifiable set intersection (cf. [2]). These two mechanisms togetherectailbred to allow any
third-party user to search a public database for multiple keywords antthiadyparty verifier to
check the integrity of the result. Nonetheless, a straightforward appliaaitjpolynomial-based
accumulators to keyword search is too computationally demanding for thersespecially
in the case of large databases. To this effect, we suggest to build aeraffitdex of the
keywords in the database by means of Cuckoo hashing, and to authetiteatsulting index
by a combination of polynomial-based accumulators and Merkle trees. WMeu§) allow the
verifier to assess the correctness of the server’s response in @Hogeatime, and (ii) enable
the server to search the outsourced database efficiently. Furthesimare our solution relies



on polynomial-based accumulators and Merkle trees to assure the integtigysgarch results,
we show that it is provably secure under the strong bilinear Diffie-Hellnsanraption and the
security of Merkle trees.

The rest of this paper is organized as follows: Section 2 defines théepradiatement,
whereas Section 3 formalizes publicly verifiable conjunctive keywordckeand the corre-
sponding adversary model. Section 4 and Section 5 describe the buildirig l@lnd the pro-
posed solution respectively. Section 6 presents and proves the sguopsrties satisfied by
our solution whereas Section 7 evaluates its performance in terms of compaltatiol storage
cost. Section 8 reviews existing work on verifiable keyword searchfiaally, Section 9 wraps
up the paper.

2 Problem Statement

To further illustrate the importance of public delegatability and public verifiabilitglaud
computing, we take the case where a pharmaceutical company would like (i}stouoce a set
F of sanitized records of its clinical trials (of already marketed products)towd server, and
(ii) to delegate the conjunctive search operations on these records to its/eew or to external
third parties such as the European Medicines Agency. Following the frarken? publicly
verifiable computation [15], the pharmaceutical company in this scenariownilarone-time
computationally demandirgre-processing operation to produce a publicR&yr and a lookup
key LK#. Together, these keys will make possible the implementation of publicly verifiable
conjunctive keyword search. Namely, given public iy, any user (be it an employee or a
representative of the European Medicines Agency) will be able tols¢faemutsourced records
and verify the returned results. The server on the other hand is pobwittle lookup keyLK
and thus, will be able to generate correct proofs for any well-formacchequery. Furthermore,
from public keyPK #, any user desiring to search the outsourced records will be able t@deri
a public verification ke K, that lets any other third party (for instance, a judge in the case of
a legal dispute between the pharmaceutical company and a patient) fet&atble sesult and
assess its correctness quickly.

It is clear from the above example that our approach to handle verifiabjerctive key-
word search falls into thamortized modeas defined by Gennaro et al. [8]. That is, the data
owner engages in a one-time expensive pre-processing operatiolm wilibe amortized over
anunlimited numbenof fast verifications. This model has been exploited to devise solutions for
publicly verifiable computation, be it a generic computation as in [15] or aifspeomputa-
tion cf. [2, 7]. Arguably, one might customize one of these already Eepschemes to come
up with a solution for verifiable conjunctive keyword search. Neverisla solution based
on the scheme in [15] will incur a large bandwidth overhead, wherealkiicgsothat leverages
the verifiable functions in [7] will not support public delegatability. Theref we choose to
draw upon some of the techniques used in [2] (namvelyfiable set intersectiofdo design a
dedicated protocol that meets the requirements of public delegatability afid petifiability
without sacrificing efficiency.



3 Publicly Verifiable Conjunctive Keyword Search

As discussed previously, publicly verifiable conjunctive keyworddeanables a data owner
O to outsource a set of fileg to a servers, while ensuring:

e Public delegatability: Any user (not necessarily data owné)) can issueconjunctive
searchqueries to serves for outsourced filegr . Namely, if we denot€KS the function which
on inputs of files7 and a collection of word$/ returns the subset of fileg,, C ¥ containing
all words in 7/, then public delegatability allows us&t to outsource the processing of this
function to servers.

e Public verifiability : Any verifier 7 (including data owne0 and userti) can assess the
correctness of the results returned by sesyghat is, verify whether the search result output by
S for a collection of wordsi actually corresponds t0KS( ¥, ‘W).

In more formal terms, we define publicly verifiable conjunctive keywomrde by the fol-
lowing algorithms:

e Setup(1”, F) — (PK#,LKg): Data ownerO executes this randomized algorithm when-
ever it wishes to outsource a set of filgs= { f1, f2,...}. On input of a security parameter
and files#, algorithmSetup outputs the pair of public kef?K4+ and lookup key (i.e. search
keyl) LK:;

e QueryGen(W,PKs) — (Eq,VKg): Given a collection of wordsi = {wq,wy, ...}
and public keyPK ¢, user calls algorithmQueryGen which outputs an encoded conjunctive
keyword search quergg and the corresponding public verification Reéi,.

e Search(LK¢,Eg) — ‘Eg: Provided with search keyK ;s and the encoded search query
Eq, serverS executes this algorithm to generate an encodipgof the search resulf,, =
CKS(F,W).

e Verify(Er,VKg) — out: Verifier 9 invokes this deterministic algorithm to check the
integrity of the server’s respon%y. Notably, algorithmVerify first convertsEg into a search
result 7, then uses verification keyK to decide whethef,, is equal toCKS(F, W). Ac-
cordingly, algorithmVerify outputsout = 7, if it believes thatf,,, = CKS(F, W), and in this
case we say that verifie¥’ accepts the server’s response. Otherwise, algorithrify outputs
out =, and we say that verifiet’ rejects the server’s result.

In addition to public delegatability and public verifiability, a conjunctive keywse@rch
should also fulfill the basic security properties adrrectnessand soundness Briefly, cor-
rectness means that a response generated byprestserver will be always accepted by the
verifier; soundness implies that a verifier accepts a response of atfpdyemalicious) server
if and only if that response is the outcome of@rectexecution of th&earch algorithm.

Correctness.A verifiable conjunctive keyword search scheme is said to be corredhgifivw
ever serve(s operates algorithmSearch correctly on the input of some encoded search query
g, it always obtains an encodirgy, that will be accepted by verifiep'.

Definition 1. A verifiable conjunctive keyword search is corrdfft,for any set of filesf and
collection of wordsw/:

1In the remainder of this paper, we use the terms lookup key and seaydhterchangeably.



Algorithm 1 The soundness experiment of publicly verifiable conjunctive keyweadch

fori:=1tot¢do

a4— %

(PK%, LKZ‘) A OSEtUP(lmv ,7'—1)
end for
a4 — (W*,PK%)
QueryGen(W™, PK}) — (£, VKE)
a4 — Ep
Verify(Ef, VKG) — out”

If Setup(1”, F) — (PK#,LKy), QueryGen(W,PKs) — (£g,VKg) and
Search(LK ¢, Eg) — Eg, then:

Pr(Verify(Er, VKg) — CKS(F, W)) =1

Soundness. We say that a scheme for publicly verifiable conjunctive keyword se@rch
sound, if for any set of fileg and for any collection of word$//, serverS cannot convince a
verifier 7/ to accept an incorrect search result. In other words, a schemetfiielvie conjunctive
keyword search is sound if and only if, the only way sety&an make algorithriverify accept
an encodingEr, as the response of a search quEgyfor a set of filesF , is by correctly executing
the algorithmSearch (i.e. Er < Search(LK g, £q)).

To formalize the soundness of verifiable conjunctive keyword seavehjefine an exper-
iment in Algorithm 1 which depicts the capabilities of an adversdr{i.e. malicious server
S). On account of public delegatability and public verifiability, adversargioes not only run
algorithm Search but is also allowed to run algorithm@ueryGen and Verify. This leaves out
algorithmSetup whose output is accessed by adversamrough calls to the orack@setyp.

More precisely, adversarg enters the soundness experimenglgptivelyinvoking oracle
Osetup With ¢ sets of files¥;. This allows adversaryl to obtain for each set of fileg; a pair of
public keyPK, and search keyK .. Later, adversaryd picks a collection of wordg/* and
a public keyPK? from the set of public key§$PK ¢, }1<i<; it received earlier. Adversaryl is
then challenged on the pditt*, PK’; ) as follows: (i) It first executes algorithQueryGen with
public keyPK7 and the collectior#’* and accordingly gets an encoded search q@grand the
matching verification keyWKg); (i) afterwards, it generates a respor&g for encoded search
queryZE},, and concludes the experiment by calling algorittenify with the pair(Eg, VKG).

Letout™ denote the output of algorithMerify on input(Z3, VK, ). Adversary4 succeeds
in the soundness experiment if: é)t* # L and (ii)out™ # CKS(F*, W*), wheref * is the set
of files associated with public keyK7 .

Definition 2. Let.4dv 4 denote the advantage of adversatyn succeeding the soundness game,
i.e., Advg = Pr(out* #.L A out* # CKS(F*, W¥)).

A publicly verifiable conjunctive keyword search is soufidor any adversaryd, Adv, < e
ande is a negligible function in the security parameter

4 Building Blocks

Our solution relies opolynomial-based accumulatorgi.e. bilinear pairing accumulators)
defined in [5, 11] to represent the keywords present in files { f1, fo, ..., f» }. By definition,

4
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Figure 1: Overview of our protocol for verifiable keyword search

a polynomial-based accumulator maps a set to a unique polynomial such ¢habeaof the
polynomial corresponds to an element in the set. Hence, polynomial-besachalators allow
efficientverifiable test of membershighich can be tailored for verifiable keyword search.

A naive approach to accommodate polynomial-based accumulators to VerKaword
search would be to represent the words in eachffile= # with a single accumulator. To
check whether a word is in file f;, user first sends a search query to serygrupon
which the latter generates a proof of membership if worgs present inf;; and a proof of
non-membership otherwise. This solution however is not efficient: (i) iGikie mathematical
properties of polynomial-based accumulators, the resulting complexity efdeeysearch in a
file f; becomes linear in the number of keywords in that file; (ii) additionally, to idemttich
files f; contain a word, the user must search all filegimne by one.

To avoid these pitfalls, we combine polynomial-based accumulatoraviétkle trees [10]
to build an authenticated index of the keywords in filegisuch that the keyword search at the
server runs idogarithmic time More specifically, data owne? first organizes the keywords in
all files in ¥ into an indeXZ (i.e. hash table) where each entry corresponds to a buitk&iring
at mostd keywords. To construct an efficient indéxdata owneiO employs theCuckoo hash-
ing algorithm introduced in [6] which guarantees a constant lookup time and mistm@ge
requirements. Later, data own@rauthenticates indeX as follows: (i) For each buckes, it
computes an accumulator of the keywords assigndsl; @) and it builds a binary Merkle tree
TW that authenticates the resulting accumulators. Files are then outsourced together with
Merkle treeTW to serverS. Hence, when servet receives a search query for a wavdit finds
the buckets corresponding &oin indexZ, retrieves the corresponding accumulator, generates
a proof of membership (or non-membership), and authenticates the rétaesemulator using
the Merkle treeTW. Therefore, anyone holding the root ¥V can verify the server’s response.

The solution sketched above still does not identify which files exactly coataiordw nor
supports verifiable conjunctive keyword search. Thus, data o@rm@nstructs another Merkle
tree TF whereby each leaf is mapped to a single keyword and associated with thne pdy-
based accumulator of the subset of files containing that keyword. Datar@wthen uploads



Figure 2: Verifiable Test of Membership

o (Ps(h),Qgs 1) < GenerateWitness(h, S)
# Computes the proof of (non-) membership efith respect to ses.

1. Compute the valu€s(h) = [T, c5 (h — hi);

2. Determine polynomial) 5 ;, such thatPs(X) = (X — h) - Qg,,(X) + Ps(h);
3. Compute the witnes@g ;, = g@s.1(®);

4. Return (Ps(h),Qs.4);

e {h €S, h ¢ S,Reject} < VerifyMembership(h, Acc(S), Ps(h),Qs.n)
# Verifies the proof and outputs the result of the test of meshipe

1. Verify e(Qs 4, 9% - g~ M)e(g"s M), g) £ e(Ace(S), g).
If it fails then return Reject;

2. If Pg(h) = Othenreturn h € S elsereturnh ¢ S;

files 7 and Merkle tree3'W andTF to serverS. Given the root ofTF, user will be able to
identify which subset of files contain a wotd In addition, since polynomial-based accumu-
lators allow efficientverifiable set intersectigruser  will also be able to perform verifiable
conjunctive keyword search. Figure 1 depicts the steps of the protocol.

4.1 Symmetric Bilinear Pairings

Let G and Gy be two cyclic groups of prime order. A bilinear pairing is a mag :
G x G — Gr that satisfies the following propertiesBi(inear) V o, 5 € F, andV g € G,
e(9*,¢°%) = e(g,9)*?; (Non-degeneralelf g generatess thene(g,g) # 1, (Computabl
There is an efficient algorithm to computgy, g), for anyg € G.

4.2 Polynomial-based Accumulators

LetS = {hi,...,h,} be a set of elements ifi,, encoded by its characteristic polynomial
Ps(X) = [Ij,es (X — ki), andg a random generator of a bilinear groGpof prime order
p. Given the public tupldg, g*, ¢°", ..., g*"), wherea is randomly chosen ifi’; and D > n,
Nguyen [11] defines the public accumulator of the elements in

Ace(S) = g™ e G

4.2.1 \Verifiable Test of Membership

Damgard et al. [5] observe that (f) is in S iff Ps(h) = 0, and (ii)V h € F,, there exists
a unique polynomiat)s ; such thatPs(X) = (X — h) - Qsx(X) + Ps(h). In particular,
Y h, the accumulator can be written &¢(S) = ¢7s(®) = gle=M)-Q@sn(@)+Ps(h)  The value
Qg p = g9s.1() defines the witness df with respect ta4cc(.S). Following these observations,
the authors in [5] define a verifiable test of membership depicted in Figurki2 test is secure
under theD-Strong Diffie-Hellman D-SDH) assumption.



Figure 3: Verifiable Set Intersection

e (I,1I7) < Provelntersection(St, ..., Sk)
# Generates the proof for the intersection of theetsS1, ..., S.

1. Computel = S1N...N Sy and its characteristic polynomiét;

2. Compute the polynomials; = % and the values\; = gVi(*);

3. Compute the polynomials; such thafy ", U;V; = 1;

4. Compute the valueg; = ¢Vi(®);

5. Definell; = {(A1,T1), ..., (A, Ti) };

6. Return (I,11y).
o {Accept, Reject} < VerifyIntersection(I, Iy, Acc(T), { Acc(Si) }r<i<k)
# Verifies the proofs fof, the intersection of the sefs , ..., Sk.

1. Parsdl; = {{A;, T hi<i<k s

2. \Verify the following equalities:

— e(Ace(I), A;) = e(Ace(S;),g) #Checkl C S; for1 <i <k

—TT; e(Ai,T3) £ e(g, 9) # Check),(S; \ 1) = 0
If any of the checks failhen return Reject else return Accept;

Definition 3 (D-Strong Diffie-Hellman Assumption)Let G be a cyclic group of prime order
p generated by;. We say that thé)-SDH holds inG if, given the tuple(g,ga,gaz, ...,gO‘D) €

GP+1, for some randomly chosen € F*, no PPT algorithm4 can find a pair(m,gﬁ) €
IF;, x G with a non-negligible advantage.

4.2.2 \Verifiable Set Intersection

We considelk setsS; and their respective characteristic polynomigjs If we denotel =
(), S; and P the characteristic polynomial dfthenP = gcd (P, P, .., Py). It follows that the
k polynomialslU; = % identify the setsS; \ 1. Since(,(S; \ I) = 0, gcd(U1, Uy, ..., Uy) = 1.
Therefore, according to &out’s identity, there exist polynomials such thaty", U;V; = 1.
Based on these observations, Canetti et al. [2] define a protocokfifiable set intersection
described in Figure 3. The intersection verification is secure iff#hStrong Bilinear Diffie-
Hellman (D-SBDH) assumption holds.

Definition 4 (Strong Bilinear Diffie-Hellman Assumption)etG, G be cyclic groups of prime
order p, g a generator of, ande a bilinear pairing. We say that th®-SBDH holds if, given
(9, go‘,ga2, ey gO‘D) e GP*1, for some randomly chosene F*, no PPT algorithm4 can find

a pair (z, e(g, g)ﬁ) € I, x Gz with a non-negligible advantage.

4.3 Cuckoo Hashing

Cuckoo hashing belongs to the multiple choice hashing techniques. In theasevoirk
[12], an object can be stored in one of the two possible buckets of an.irtleoth buckets
are full, an object is “kicked out” from one of these two buckets, theenuritem is placed in
the freed bucket and the removed item is moved to the other bucket of its wiwesh This
move may require another element to be kicked out from its location. Thidims@rocedure

7



Figure 4: Cuckoo Hashing

e Cuckoolnsert(Z, H1, Hz, )

# Insertsz in indexZ using hash function®(,, Hs : {0,1}* — [1,m].
1. Computel; = Hi(z) andiz = Ha(x);
2. If bucketB;, is not full then

Insertz in By, ;

Return;

End

f bucketB;, is not full then

Insertz in B, ;

Return;

w

End

f bucketsB;, andB;, both full then

Randomly choosg from the2d elements inB;, U B;,;
Removey;

Cuckoolnsert(Z, H1, Ha, z);
Cuckoolnsert(Z, H1, H2,v);

Return;

&

End

o {true, false} +— CuckoolLookup(Z,H1, Hz, )
# Searches fog in indexZ.
1. Computel; = Hi(z) andiz = Ha(x);
2. Return (z € B;,) V (z € By,);

is repeated until all objects find a free spot, or the number of insertion atteeguises a pre-
defined threshold to declare an insertion failure. In this paper, we ggeraariant proposed

by Dietzfelbinger and Weidling [6]: Their solution inse®§ elements using two independent
and fully random hash functiorg;, # : {0,1}* — [1,m] into an indexZ with m bucketsB;,

such thatm = %N, fore > 0, and each buckéeB; stores at mosi elements. As depicted in
Figure 4, a lookup operation for a particular elememequires the evaluation of the two hash
functions#; () andH2(z), whereas the insertion of a new element requires a random walk in
the index.

4.4 Binary Merkle Trees

Merkle trees allow any third party to verify whether an elemieigtin setS = {hq, ..., hy, }.

In the following, we introduce the algorithms that build a binary Merkle treeafeetS and
authenticate the elements in that set.

e T « BuildMT(S, H) builds a binary Merkle tred as follows. Each leal,; of the tree
maps an elemerit; in setS and each internal node stores the hash of the concatenation of the
children of that node. We denotethe root ofT.

e path < GenerateMTProof (T, h) outputs theauthentication patfior leaf L correspond-
ing to elementh, that is, the set of the siblings of the nodes on the path ffoto rooto. We
denotepath the authentication path output BgnerateMTProof.

o {Accept, Reject} < VerifyMTProof(h, path, o) verifies that the value of the root com-
puted fromh andpath equals the expected valae



Figure 5: Upload

° (PK;;, LKy) — Setup(l", ,7:)
#F ={f1,..., fn}: setoffiles
#W = {w1,..,wn }: list of distinct words in¥ sorted in lexicographic order.
1. Parameter generation
Pick D, g,G,Gr, e, H : {0,1}* — F;, as function of security parameter

Pick randomn € Iy and compute public valugy, g°, ..., gC“D }
2. Construction of the Index
# Creates an indeX with m buckets of sizd whered < D
Identify W from F;
Pick random hash functiog, 2 : {0,1}* — [1,m];
For w; € W do
Computeh; = H(w;);
RunCuckoolnsert(Z, H1, H2, hi);
End
3. Authentication of Index
For B; € Z do
ComputePp, (a) = theB,;(O‘ — hj);
ComputeAW; = Acc(B;) = gPBi(a);
ComputeHW,; = H (AW, ||i), wheres is the position ofB; in Z;
End
TW = BuildMT({HW,; }1 <i<m, H);
4. Encoding of files o
# ldentifies which files contain the keywords
For f; € # do
| Generatédid;;
End
For w; € Wdo
Identify 7., , the subset of files that contain;;
ComputeP; (o) = Hﬁdjgwi (o — fid;);
ComputeAF; = Ace(F,) = gFi(e);
ComputeHF; = H(AF;||w;);
End
TF = BuildMT({HF; }1<i<n, H).

5. Retun PKy = (g,G, e, H, {gai}OSiSDlevH%UWvUF);
Return LK:; = (I, TW,TF,_‘]",W,{Twl}lSZSN)

5 Protocol Description

In our verifiable conjunctive keyword search protocol, data owmeutsources the storage
of asetof filesf = { fi, fo, ..., fn} tO @ servers. Once the data is uploaded, any third-party user
U can search for some keywords in the set of fflesnd verify the correctness of the search
results returned by. The proposed protocol comprises two phaddpload and Verifiable

Conjunctive Keyword Search

5.1 Upload

In this phase, data ownéer invokes algorithmbetup, which on input of security parameter
x and set of files7, outputs a public kePK » and a search kelyK+. As shown in Figure 5,

Setup operates in four steps.

1. Itfirst generates the public parameters needed for the protocol.



2. It builds indexZ for the setW = {w;,ws,...,wx} using Cuckoo hashing. Without loss
of generality, we assume thif is composed of the list of distinct words {h sorted in a
lexicographic order.

3. Setup authenticates index with Merkle treeTW where each leaf is mapped to a bucket
inZ.

4. Setup builds Merkle treel F to identify which files exactly contain the keywords.

When servelS receivesLK, it creates a hash tableT where each entry is mapped to a
keywordw; and stores the paifi, pointer) such that: is the position of keyword; in setW
and in treeTF; whereaspointer points to a linked list storing the identifiers of filgg,, that
contain keywordv;. As such, hash tabldT enables serves to find the position ofuv; in TF
and to identify the files containing; easily.

In the remainder of this paper, we assume that sefwéoes not store lookup keyK s as
(I, TW, TF, ¥, W, {.Twi}lgz‘SN)s but rather a$.Kgr = (I, TW,TF, 7, HT)

5.2 \Verifiable Conjunctive Keyword Search

In this phase, we use the algorithms of verifiable test of membership andbkrifet in-
tersection presented in Section 4 to enable verifiable conjunctive keyseardh. We assume
in what follows that a uset! wants to identify the set of fileg,, C 7 that contain all words
in W = {wy,ws,...,w;}. To that effect, usef! first runs algorithmQueryGen (cf. Figure 6)
which returns the quergg = 7 and the public verification keyKg = (PKg¢, W). Useru
then sends querg to servers.

On receipt of queng servers invokes algorithnbearch (cf. Figure 6) which searches the
indexZ for every individual keywordv; € W . If all the keywordsw; € W are found in the
index, therSearch identifies the subset of fileg,,, that containsy; and outputs the intersection
of all these subset$,, = %, N...N %, . Moreover, to prove the correctness of the response
(i.e. to prove that7;, was computed correctlyfearch (i) authenticates the accumulators of
each setf,,, using Merkle tre€rl’F; (ii) and generates a proof of intersection fay, using the
verification algorithm described in Figure 3.

If at least one keywordy; is not found, therSearch returnsw; and an empty set, and
proves the correctness of its response by (i) authenticating the accurawétoucketsB;,
and B;, associated withw; in indexZ using Merkle treeTW; (ii) and generating a proof of
non-membership of keyword; for bucketsB;, andB;, (cf. Figure 2).

On reception of the search result, verifigrchecks the correctness of the server’s response
by calling algorithmVerify as shown in Figure 6. More precisely, if sergeadvertises that it has
found all the keywordg/ in indexZ, then algorithnVerify checks that the returned intersection
Fqy is correct using the verification algorithm of Merkle tree and verifiableirgetrsection.
Otherwise,V verifies that the returned keyword is actually notfirusing again the verification
algorithm of Merkle tree and verifiable test of membership.

10



Figure 6: Verifiable Conjunctive Keyword Search

o {£5,VKg} «+ QueryGen(W,PKy)
1. AssignEg = W andVKqg = (PK4, W);
2. Retun {Z£g,VKg};

e Ep Search(EQ, LK)

1. ParseEg = W andLKy = (Z, TW, TF, 7, HT);

2. For w; € Wdo

Computeh; = H(w;);

If CuckooLookup(Z,H1,Hz, h;) = false then

# Keywordw; is notin F

Computei; = H1(hi) andiz = Ha(h;);

Computell; = GenerateWitness(h;, By, );

Computell; = GenerateWitness(h;, B, );
ComputeAW;, = Acc(B;, ) andHW;, = H(AW,, ||i1);
ComputeAWi2 = JqCC(BiQ) {:\I’ldHWi2 = I‘[(AW,'2 ||i2);
Computepath,; = GenerateMTProof (TW, HW;, );
Computepath, = GenerateMTProof (TW, HW,, );
Return £ = ((Z), w, AWi1 s AWZ‘2 I, 1o, pathl, path2);

End
End
3. # All the keywords have been found
For w; € W do
Determine¥.,, usingHT; # the set of files that contain;

ComputeAF; = Acc(F.,,) andHF; = H(AF;||w;);
Determine positiord of w; in TF usingHT;
#HF; is in thelt™ leaf of TF
Computepath; = GenerateMTProof (TF, HF;);
End
# Fop = Fuy N ... N o, is the set of files that contain all the wordsio
Compute( Fyy, I14y) = Provelntersection(Fw, , ..., Fuy, );
Return Er = (Fqp, gy, {AF;: }1<i<k, {Path; b1<i<k);

o out «+ Verify(Zr, VKQ)
1. ParseVKg = (PKy#, W),
2. If W foundin ¥ then
ParseLr = (Fqp, Iyy, {AFi}1<i<k, {Path; }1<i<k);
For w; € W do
If VerifyMTProof (H (AF,;||w;), path,,cr) = Reject
Then return out =1

End

Computedce(Fqp);

If Verifylntersection(Fqy, Iy, Acc(Fyy), {AF; }1<i<r) = Accept;
Then return out = 7, else returnout =1 ; T
End

3. If atleast one keywora; is not found in¥ then

ParseEg = (0, wi, AW, , AW,,, T11, Il2, pathy, path,);
Computeh; = H(w;), i1 = Hi(h;) andiz = Ha(hi);
If VerifyMTProof (H(AW;, ||i1), pathy, ow ) = Reject
Then return out =_1;

If VerifyMTProof (H(AW,, ||i2), pathy, o) = Reject
Then return out =_1;

If VerifyMembership(h;, AW;, ,I11) = Reject

Then return out =_1;

If VerifyMembership(h;, AW;,,II2) = Reject

Then return out =_1;

Return out = §;

End
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5.3 Supporting Dynamic Data

Although we can use digital signatures instead of Merkle trees to autheritiesiecumula-
tors, they are not practical to support dynamic data. Thanks to Merlklg, toer solution enables
the data owner to update its outsourced files and the set of searchabta @tsefficiently. More
precisely, there are three possible update scenarios:

e File update without updating the set of searchable keywordsin this case, servef
updates Merkle tre&F and sends a proof of correct update to the data owner.

e Keyword deletion: This update is executed in two steps. First, sefvegemoves the
keyword from indexZ, updates Merkle tredW and generates a proof that shows that it has
updated the index correctly, using namely Merkle {fé® and the accumulators (old and new)
of the updated bucket. Then, it removes the leaf corresponding to thedi&tyword from tree
TF and produces a proof of correct deletion Td¥.

e Keyword insertion: This is the most expensive operation, as the insertion of new keyword
can affect multiple buckets in indé&x Similarly to keyword deletion, this operation runs in two
steps. Firstly, serves first inserts the new keyword into ind&x re-computes the accumulators
of the buckets affected by the change, updates MerkleTtv¥#eand generates a proof affirming
that it has performed the update correctly. Secondly, seeelds a leaf for the new keyword to
Merkle treeTF and proves the correct insertion of the new keywordifo In principle, keyword
insertion is possible only if indeX did not reach its maximum capacity.

6 Security Analysis

In this section, we prove the correctness and the soundness propémigsproposal for
verifiable conjunctive keyword search.

6.1 Correctness

Theorem 1(Correctness)Our scheme is a correct verifiable conjunctive keyword search solu-
tion.

Proof. Suppose that a us€f sends to serve$ the queryEg = W = {w1, ..., wi }. S correctly
executes algorithnsearch and returns the search resporigg. According to Figure 6, the
content of responsg&y, varies depending on whether:

All words in W are found in F:
ThenfR = (f]:w, Hrw, {AFi}lgiSka {pathi}lgigk) where:

o Fy = Fo N...N %, such thatf,, is the subset of files that contain keywasgd
o 11,y = {(A1,T),..., (Ag,T'x) } is the proof of this intersection;

o forall1 < i < k, AF; = Acc(%y,); if we denoteP; the characteristic polynomial of
subsetf,,., then we can writé\F; = ¢©();

12



e forall 1 <i <k, path, is the authentication path &f (AF;||w;) in TF.

Firstly, if we assume that the Merkle tree authentication is correct, then veFifigill accept
the accumulatordF; computed by serves.
Secondly, since& computes the prodfl,, using algorithmProvelntersection, we have the fol-
lowing:
o forall <i <k A; = g¥, whereU; = & andP = ged(Py, P, ..., P;) is the
characteristic polynomial of;,;

o foralll <i <k, T;=g"® suchthal, UV; = 1.
It follows that for alll < ¢ < k:
e(Ace(Fw), Ai) = (g, g ()) = e(g, 9) VN = (g, 9)" )
= e(AF’Hg)

This means that the first equality in algorithfarifylntersection holds. Furthermore, the second
equality is also verified, indeed:

[T eair) = I e(@” @, = [] elg, )"V

w; €W w; €W w; EW

S e Ui(@) Vi (@)

=e(9,9) =e(g,9)

These computations thus prove the correctness of our solution in the base the targeted
keywords are all found.

There existsw; € W not found in F:
In this caseZr = (@, wi, AW, AW;, 114, I, pathy, path2) such that:

o AW, = Acc(B;,) andAW,, = Acc(B;,) are the accumulators of buckeBs, and B,
respectively, wherg, andi, are the positions assigned to keywardn indexZ;

e II; andIl; are the proofs that; is not a member of bucke?;, nor of bucketB;, respec-
tively;

e path; andpath, are the authentication paths of these two buckets inTtiwe

If we consider the Merkle tree to be correct, then verifiéwill acceptAcc(B;, ) andAcc(B;,).
Moreover, if we denote’s, the characteristic polynomial of bucké;,, then by definition
Pp. («
P, (X) = [Iyep, (X —hy) andAce(B;,) = g7,
Recall now that the proof of non-membershlp of keywordw; to bucketB;, is computed
as: {PB%.1 (hi)7QBi17hi}’ such thath; = H(OJZ‘), Op hi = gQBil’hi(a) and @B hz(X) =
Pp; (X)=Pp; (hi)

i1 i1

X—h; '
It follows that:

iy Pr (R @, (@) -(a—hy) Py, (h)
e, ,9% g " )e(g P g) = e(g,9)" P " T e(g, 9) P
=e(g g)QB”,h7 (@) (a=hi)+Pp,; (hi)
Pp. (@)
=e(g,9) "
(Ace(



This means that the first equality of algoritieenerateWitness (cf. Figure 2) holds. Finally,
sincew; ¢ B, Pp, (h;) # 0. This implies that verifier’ will accept the proof of non-
membership for buckeB;, and conclude that; is notin 7.

Similar computations can be performed y,, which proves the correctness of our solution
in the case where a keywoed ¢ 7. O]

6.2 Soundness

Theorem 2 (Soundness)Our solution for conjunctive keyword search is sound under/ihe
SDH andD-SBDH assumptions, provided that the hash funcfibsed to build the Merkle
trees is collision-resistant.

Proof. We observe that an adversary can break the soundness of omestimeugh two types
of forgery:

Type 1 forgery: On input of W = {wi,...,w;} and search keyF+, adversary4,; returns
a search result that consists of a proof of non-membership of someokgyw € W
(meaning that; is not in the set of filegr), althoughw; isin F;

Type 2 forgery: On input of W = {w1, ..., w;} and search kel F z, adversaryd, returns an
incorrect?w and the corresponding proof. This means that advergamiaims that all
keywords in7/ have been found iff and thatﬁw is the subset of files that contain them,
although,, # CKS(F, ).

In the following, we demonstrate thatdf; and 4, runs Type 1 and Type 2 forgery respec-
tively, then there exists another advers&ithat breakd)-SDH and an adversar, that breaks
D-SBDH).

Lemma 1(Type 1 forgery) If 4; breaks the soundness of our protocol, then there exists adver-
sary B, that breaks theD-SDH assumption if.

Let Op_spn be a random oracle which, when invoked, returns tR&DH tupleT'(«) =
(9,9% g%, ....g*") € GPT! for some randomly selectede F.
Here we define an adversa®y that breaks thé-SDH assumption:

1. B first callsOp_spy Which selects a random & IF; and returng’(«).

2. B, simulates the soundness game for advergarycf. Algorithm 1). Specifically, when
A1 invokesOsetyp With the sets of filesF; (for 1 < ¢ < t), B; simulatesOs,, and generates
(PKg, LKy,), as follows:

(&) B, selects the parameteysG, G, e andH;

(b) B, computes the tupl@;(«) = (g,gai,go‘iz, ...,gaiD) whereq; = «-d; + 3; for some ran-
domé;, B; € IF,,. Note that this tuple can be easily computedAjy without having access
to o, thanks to tuplél'(a) and the Binomial Theoremy k < D, g = gledith)* —

Hk‘ (gaj ) (?)(&)j'ﬁf_j .

j=0
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(c) The rest of the simulation is operated as in Figure 5.

3. In the challenge phase of the soundness gamdirst selects a public kepK’: from the
keys he has received earlier, and a collection of keyw@ttisto search for in a set of fileg™*
associatedK? then 4, runs QueryGen(7*, PKY;) which outputs the encoded quesy, =
W+ and the verification keY K¢, = (PKg«, W*).

4. Then, 4, returnszy, = (@,w*,ﬂl\:;ﬂl\:;,ﬁ{,ﬁg, @1:, @1;), with:

e the empty set, being the result of the search, meaning that the keywardi’* was not
found in ¥*, althoughw* is indeed inF*,

e the accumulatorAAFi, AAF; of the buckets at the positions associatedtan indexZ* of
files 7+,

° ﬁ’{, ﬁ;, the proofs of non-membership of with respect to bucket®? , B; , whered;
andis are the positions assigned to keywardin indexZ*

° @1:, p/aﬁz the authentication paths in Merkle tré&&V for the accumulators of buckets

—~%

AF,, AF,.
5. Since we assumé/ is a collision-resistant hash function, the Merkle tree authentication
proves thalAF, andAF, are actually associated with leaves at positigrsndis in TW. More
precisely, it proves thatath, andpath; authenticate the valuéﬁ(AFTHil) andH(AF;| li) and
thatAFT andAF; correspond todcc( B}, ) and Acc(B;,) that were computed in the setup phase

o~ Prsx (a* —~ % Ppx (a*
by B,. Namely,AF, = ¢ 57, (") andAF, = ¢ By, (7).

6. We now show howB,; breaks theD-SDH assumption. Let us consider thet = H (w*) is
indeed stored in the first bucké;, (similar consideration can be applied&},). As returned
by 4,, the forged proof of non-membership fof consists ofilt = {13}32.1 (h*), (A)Ba he ) (cf.
Figure 2). Notice thaﬁBi*l(h*) # 0, as adversary?; claims thatw* is not in F*. If Verify
accepts the proof of non-membership, then according to Figure 2, thevifogj@quality holds:

-~ *_ ok 2} * —= % ﬁ * (a*)
e(Qpsp, g M )e(g" M) g) = e(AF ,g) =e(g "1 . g)
Qs e g ) = e(g" P g) (1)
On the other hand, by construction we have:
G(QBz‘l,h*’ga h ) = €(g B” 79)5 (2)
v o x (a0t Pgx (X)
WhereQBz‘l,h* = gQBil’h (a ) Such thaQB;‘l’h* (X) _ ;;Zih*

By dividing equation 1 with equation 2, we obtain:
~ ~ a*—h* =
. QB;.“l,h* o —h*\ QB;&,h* _ ( —Ple (h*) )
Qpx ,h*’g =€ Qp* g | = elg ,9)-
1 1
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Therefore,

~ a*—h* .
Opr —Pp= (h*)
1 — i1
Qpr n* g
i1’

1 _ 1
QBgl ot —stl (h*) 93;1 ¥ PBz‘l (h*) %h*
_ oo
o] =13 =49 :
BY Opp e

We haven* = «-0* + 5%, where(6*, 3*) are randomly selected from s, 3; }1<i<: generated
earlier. Accordingly,

1 1
Qpx v \ Ppr (B 1 ¥
< o ) i = gad TR :g‘s*(”ﬂa* )

Sinces* # h* with an overwhelming probabilityPr(5* = h*) = %), then adversarg, breaks

*

QB;‘I h* > PB;.*l (h*)

Qpx p*
1

D-SDH by outputting the paif 2=, ( with a non-negligible advantage

ep>eq-(1— 119) wheree 4 is the advantage of adversafly in breaking the soundness of our
scheme.

Lemma 2 (Type 2 forgery) We now prove that ifl, breaks the soundness of our protocol, then
there exists an adversa, that breaks the)-SBDH assumption ife.

Let Op_sgpy be a random oracle that returns for any randens Fy, the tupleT(a) =

(g,ga,gC“Q, ...,gaD) e GP*L. In the following lines, we describe an adversaythat breaks
the D-SBDH assumption:

1. To breakD-SBDH, B, calls Op_sgpn: this oracle picks a random and returns the corre-

sponding tuplé’(«).

2. 4 enters the soundness game as described in Algorithm 1 andhiemokesOset,, With

the sets of filegf; (for 1 < i <t), B, simulates.,, and generateP Ky, , LK, ), as follows:
(&) B, selects the parameteysG, G, e andH;

(b) B, computes the tupl@,(a) = (g, g%, g, ...,g*" ) wherea; = « - &; + f3; for some
randomd;, 8; € . Similar to Type 1 forgery’(«) can be computed b$,.

(c) The rest of the simulation is operated as in Figure 5.
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3. On input of search keyKs- and a query on a collection of keyword$™ = {wj,..,w;}
to be searched for in the set of filgs* associated with a public kK7 obtained earlier;

OUtpUtsEyf, = (ﬁw* , ﬁw*, {ﬂl\:i}lgigk, {p/aﬁ;k}lgigk), where:
° ?W* is the returned search response, that is the set of files contaitiing
o I,y = {(AL,T}), ..., (A, T}, the proof of this intersection;
° {AAFi}lgiSk, the accumulation values of sefs- containing keywords);;

. {p/aﬁ‘lj}lgigk, the authentication paths in Merkle tr&€ for the accumulator@&l\:,-}.

Here, the returned reAsponia,* is different from the expected search regtyf. = CKS(F*, W*).
Therefore, eitherd) #,,- contains a file with file identifiefid” that is not inf,., or (b) there
is a file with file identifierfid* that is in #,. but missing from#,..

4./\SinceH is a collision-resistant hash function, the Merkle tree authentication prtbets
{AF;}1<i<i are actually associated with leaves at position tree TF. More precisely, it

proves that each path l{rpath H<i<k authenticates the respective vaILIé(sAF |lw?) and that
forl < i < k, AF corresponds tdce(7,,:) that was computed in the setup phaseZy
Specifically,AF; = g (@) with P*(X) = [Tha,eq. (X —fid;).

5. Given accumulatorﬁ:i, we show howB; breaks theD-SBDH assumption in the two cases
(a) and(b). Note that these cases can occur at the same time, but for the sake of sinpécity
treat them independently:

Case (a). In this case, there exists a keyward € W* such thatfid* ¢ #,-. Therefore, if
we denotel’* the characteristic polynomial of,, (X — fid*) does not divideP” (.X).
However, sincdid* € 7,,., then(X — fid*) divides P(X) whereP is the characteristic
polynomial ofﬁw*. Using polynomial division, we find that there exist polynon#al Z,
andR € F, such thatP*(X) = (X —fid*) - Z1(X) + RandP(X) = (X —fid*) - Zo(X).
Hence, whenB, verifies the first equality o¥/erifylntersection (cf. Figure 3), he gets for

1< <k
e(Ace(Fop-), Ai) = e(Acc(Fr ), 9)
e(g. AP = e(g, )" ()
e(g, Bp) (@~ Za(a") _ oy o)(@" ) Za(@) 4R
e(g,8)71) = e(g,9)71 ) - e(g, g) 7
(e(g, 8)727) - e(g, )4 = (g, g) 7

Assuming that we have* = « - 0* + *, where(d*, *) are randomly selected from set
{6i, Bi}1<i<+ generated earlier, we can write:

==

JE S
B* —fid*
5F )

(e(gZz(a*)7 Ay e(g—Zl(a*)’g)) = ¢(g,g)° "
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* 1
a3 B* —fid*

(6(9Z2(a*)7£i) : 6(9‘21(6“*),9)) =e(g,9)" 7
In other words, we construct an adversa®y that breaks the)-SBDH assumption by

5*
outputting the pa|r< —fid” (e(gZZ(O‘*),&) : e(g—Zl(a*),g)> " ) Notice that3* is ran-

domly generated ifi*, and therefordr(5* = fid*) = %. this means that if3, has a

non-negligible advantage, to break the soundness of our scheme, then there is an adver-
saryB, that breakg)-SBDH with a non-negligible advantagg > ¢4 - (1 — 1).

Case (b). In this casefid”® is in %, but not mjﬁw*. Since, we exclude Caga) here, it means
that 7. C yy.. Besidesfid* can be found in all sets7,» \ Fope), forall 1 < i < k.
We denoteR?; the characteristic polynomials 6f.,: \ ?W*)
We also haveP;(X) = R;(X) - P(X) where P; denote the characteristic polynomial
of #,:. If algorithm Verify acceptsf,’s proof then it means thad(ﬂlcc(fw*) i) =
e(Ace( %), g), which can be written as(g, A)P@) = ¢(g,g)Pi@"). It follows that
A; = g™, In addition, (X — fid*) divides R;(X) and we can writeR;(X) = (X —
fid*) - Z;(X).
When B, verifies the second equality ¥krifylntersection, he gets:

k k
[TeaiTi) =]]e(g. 1)) =e(g.9)
i=1 =1

—

[T elo T —#0%@) — (g, )
i=1
k

([T etg, Ty %) =4 = e(g, g)

k
A i(a* * 1- *
[[eto. )7 = e(g, g) o

i=1

Since we havey* = ad* + 5%, with (6%, 5*) randomly selected from s€b;, 5; }1<i<:
generated earlier, it follows that:

(af) B W
He(gZz(a ).Ty) = e(g,g)% )

1
NN L B fa
([T eto%@). 1)) = e(g.g)=+"

Therefore, if 3* # fid*, then adversaryB, breaks theD-SBDH assumption with the pair

(6 ST (11 e(g?@),Ty))° ) Sinces* # fid* with probability 7, we can safely conclude
i=1
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that if there is an adversai, that breaks the soundness of our scheme with a non-negligible ad-
vantage: 4, then there is an adversa®y that breakd)-SBDH with a non-negligible advantage
ep>ea-(1-3).

O

7 Performance Evaluation

In light of the performances of the several building blocks (Cuckodings polynomial-
based accumulators and Merkle trees), we analyze in the following the tatiopal costs of
our solution. A summary of this analysis is provided in Table 1, together witho#ditions. A
more detailed table can be found in the appendix.

1. Setup: As mentioned in Section 2, the setup phase of our protocol is a one-time pre-
processing operation that is amortized over an unlimited number of fastagiofis. The com-
putational cost of this phase is dominated by:

e The public parameter generation which amount®texponentiations iffz;

e N calls toCuckoolnsert where, as shown in [6], each insertion is expected to terminate in
(1/e)0Ugd) time ( > 0);

e The computation ofn accumulator®dW which requiresn exponentiations itz andmd
multiplications inlF,,;

e The computation ofV accumulatorg\F which involvesN exponentiations ift: and Nn
multiplications inlF,,;

e The generation of Merkle treEW (respectivelyTF) which consists oRm hashes (resp.
2N).

2. QueryGen: This algorithm does not require any computation. It only constructs the
query for thek keywords together with the correspondivilf(,.

3. Search: Although this algorithm seems expensive, we highlight the fact that it is exe-
cuted by the cloud servefearch runsk CuckoolLookup which consist in2k hashes an@kd
comparisons to search for all thequeried keywords (in the worst case). Following this opera-
tion, the complexity of this phase depends on whether all the keywordsdeavefound:

e out = F,,: The complexity ofSearch is imposed by:

— The computation of: file accumulatordAF. Without the knowledge of trapdoat,
and using FFT interpolation as specified in [2], this operation perfanmisg n mul-
tiplications inlF,, andk exponentiations if;

— The generation of the authentication paths in {féefor these accumulators, which
amounts td: log N hashes;

— The generation of the proof of intersection that tak&gkn) log?(kn) log log(kn))
multiplications in IF,, to compute the gcd of the characteristic polynomials of the sets
involved in the query result.

e out = (): The computational costs of this phase consist in:

2More details on this complexity computation can be found in [2, 14].
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Table 1: Computational complexity of our protocol, in the worst case aitedk N keywords are in alh files or
where the not found keyword is the last in the query.

D: parameter of our system, < D: number of filesN: number of keywords
m: the number of buckets in the index, size of a bucket

k: number of keywords in a query.

Ec: time to exponentiate elements@ M, time to multiply elements if¥,;
H.: time to hash elements 0, 1}*; Cl: time to runCuckoolnsert;

LC: light computationfl : time to runProvelntersection;

BP¢: time to compute bilinear pairings i&; M : time to to multiply inGr
Algorithms Approximate computational complexity

Setup (D+m+ N)Eg + (md+ Nn) Mp +2(m+ N)H, + N CI
QueryGen k LC
Search

out = Fyy kn Eg + (knlogn) Mp + (klog N) Hi + 1 PI

out=0 4dEg + (2d + 4dlog d) My + (2logm) H.
Verify

out = ¥y 3k BPg + k Mz + (klog N) H.

out=0 6BPg+ (2logm) H.

— The generation of the proof of membership for the missing keyword by cdihig
GenerateWitness. This operation require¥(d + d log d) multiplications inF, and2d
exponentiations ify;

— The computation o2 bucket accumulator8W, which amounts t@d log d multipli-
cations inF, and2d exponentiations i,

— The generation df authentication paths for thegéuckets by runningenerateMTProof
on treeTW, which performs log m hashes.

4. Verify: We also analyze the complexity of this algorithm according to whether all the
keywords have been found:

e out = ¥y Verify runsk instances oVerifyMTProof on treeTF, which requires: log N
hashes. Then, it execut@srifylntersection which computesk pairings and: multiplica-
tions inM-.

e out = (): Verify runs twiceVerifyMTProof on treeTW that computeg log m hashes and
it invokes twiceVerifyMembership that evaluate§ pairings.

In summary, to verify the search results, a verifiérperforms very light computations com-
pared to the computations undertaken by the server when answeringrkkes@arch queries and
generating the corresponding proofs. Besides, the verification epstids otk only in the case
where all the keywords have been found and is independent othefuigbermore, we believe
that for large values of, the probability that the search returns a set of files containing all the
keywords is low. Hence, the verification cost will be constant and smhakirings and log m
hashes). On the other hand, for smaller valueis, die verification cost remains efficient.
Impact of D on the performance. This performance analysis assumes. D, wheren is
the number of files. The value @ solely depends on security parameteand as such, defines
an upper-bound to the size of sets for which we can compute a polynonsiada@cumulator.
It follows that in our protocol, the number of files that a data owner canoautge at once is
bounded byD. However, it is still possible to accommodate files’ sets that exceed the bound
D. The idea is to divide the set of sizeinto n’ = [}] smaller sets of sizé). By using
the same public parameteiSstup accordingly creates for each set bf files an index and

20



the corresponding Merkle trees. This increases the complexity Bedhe by a factor ofn’.
Namely, the data owner is required to buildCuckoo indexes angin’ Merkle trees.

8 Related Work

Verifiable polynomial evaluation and keyword search. In [1, 7], the authors tackle the
problem of verifiable delegation of polynomial evaluation. Their solutionsrafloverifier to
check whether a server evaluates the polynomial on the requestedanpatly. As proposed in
[1] and briefly mentioned in [7], such a solution is suitable to the problem ifialele keyword
search where the file is encoded by its characteristic polynomial. Nevesshtie application of
[1, 7] to verifiable keyword search is not straightforward. Besidestommodate the properties
of public delegatability and conjunctive queries, as achieved by ounsghbeir proposals [1, 7]
may require elaborate adjustments.

Verifiable keyword search on encrypted data. Some recent research work [3, 4, 9, 16]
adopt a different scenario from the one we follow for verifiable keyhsearch: While our set-
ting focuses on verifiable keyword search on outsourced (sanitiz¢apdd cares about the two
properties of public delegatability and public verifiability, the solutions predas [3, 4, 9, 16]
support verifiable keyword search on encrypted data and satisfiathedd query privacy prop-
erties. In particular, the work of Chai and Gong [3], extended in [@)l@ts a searchable sym-
metric encryption scheme to develop a verifiable keyword search solutibprisserves data
confidentiality while enabling the verification of search results returned $Bna-honest-but-
curious cloud. However, due to the use of a symmetric searchable @pargplution, these
proposals do not offer public delegatability nor public verifiability. In thensdine of work,
Cheng et al. [4] propose a protocol for verifiable conjunctive keginsearch that leverages a
combination of a searchable symmetric encryption scheme withdgstinguishability obfusca-
tion circuit (1O circuit) realizing the search operation. While public verifiability is achieved by
means of another (publi@ circuit representing the verification function, public delegatability
is not addressed in this work. Nevertheless, it is worth consideringgmg an additionalO
circuit to realize the publicly delegatable property. Still, the generation ahgsodtion of such
circuits induce substantial costs that the authors in [4] barely mention. éfontine, Zheng et
al. [16] propose a solution called Verifiable Attribute-Based Keyword@e@/ABKS) which
allows a data owner to grant a user satisfying an access control poliaygtiteto query a
keyword over the owner’'s outsourced encrypted files and to verifysélagch result returned
by the server. This solution does not support conjunctive keywaaccke Besides, the prob-
lem of public delegatability and public verifiability is not in the scope of this wdnistead, a
fine-grained access control enables authorized users to issule gaaries and verify search re-
sults. In summary, this review of existing work for verifiable keyword skamn encrypted data
[3, 4,9, 16] identifies the gap that should be addressed as a futuke veoifiable private search
is opposed to publicly delegatable and verifiable search. While our scheesendt support
search on encrypted data (as we consider this problem as orthoganal goenario), it offers
public delegatability and verifiability, which most of the existing work on verlgakeyword
search on encrypted data do not achieve. We can easily customizeotaogbtto allow search
on encrypted data at the price of sacrificing public delegatability and \glifyja Neverthe-
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less, various methods can be used to delegate search capabilities to attyrdger such as
attribute-based encryption (such as in VABKS [16]).

Authentication trees. In our protocol, we rely on Merkle trees to authenticate the accumula-
tors of the buckets in the index and the accumulators of the sets of files thtairca partic-
ular keyword. Alternatively, we could have used the bilinear accumulateestproposed by
[13]. Accumulation trees differ from Merkle trees in three aspects: (iiy security is based
on bilinear group assumptions (whereas Merkle tree security is baseaillision-resistant hash
functions); (ii) each internal node in the accumulation tree is the accumuliaity children;
(i) the depth of the tree is constant. The last two points yield fixed-sizedpmdependent of
the number of elements in the tree. Yet on the downside, accumulation treg® riég server
to either double its storage to speed-up its computations, or to compute fdeeakbf the tree
an accumulator. Depending on the size of the data, this can be computatiomahsee. Fur-
thermore, we note that in the case of huge data-sets, the depth of the tatcamitee becomes
logarithmic in the size of data. This is why in this paper, we opt for Merkle iréegs server
needs to only read a logarithmic number of memory locations to authenticate thraldators,
whereas the verifier is only required to compute a logarithmic number of hastidns to verify
the authenticity of the accumulators transmitted by the server.

9 Conclusion

In this paper, we presented a protocol that enables a data owner tai@etsts database
to a cloud server, in such a way that any third-party user can perfeancis on the outsourced
database and verify the correctness of the server’s responseprdposed solution is efficient:
The storage overhead at the data owner and third-party users is keptitimum, whereas the
verification complexity is logarithmic in the size of the database. Moreover, ibigaply sound
under well-understood assumptions, namely, the security of Merkle tneebi@ strong bilinear
Diffie-Hellman assumption.

Future work will also include an implementation of our protocol to demonstratedstility
with real data.
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Performance Analysis Table

Based on the performance analysis conducted in Section 7, we drawZTitilaliedetails each

operation and the corresponding cost for each of the algorithms ofrotagol for conjunctive
keyword search.
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Table 2: Computational complexity of building blocks

Notations

D: parameter of our system, < D: number of files,N: number of keywords
m: the number of buckets in the index, size of a bucket

k: number of keywords in a query.

Ec: time to exponentiate elements@ My, time to multiply elements i, ;
C.: time to compare elements {), 1}*; C: time to compare elements
Cp: time to compare elements ify,;

H..: time to hash elements if0, 1}*; CI: time to runCuckoolnsert;

LC: light computationPl : time to runProvelntersection;

BP: time to compute bilinear pairings if; M1: time to to multiply inGp

Algorithms Complexity
Setup
Parameter Generation D Eg

Index Construction
N Cuckoolnsert N (1/e)©(logd)
Index Authentication
m Buckets AccumulatordW m(d My, + 1 Eg)
BuildMT(TreeTW) 2mH.,,
File Encoding
N File AccumulatorsAF (w/ o) N(n Mp + 1 Eg)
BuildMT(Tree TF) 2NH.

TOTAL (D+m+ N)Eg + (md+ Nn) Mp +2(m + N) He + N CI
QueryGen kLC

Search
k hashesk H.
k CuckoolLookup k (2H« + (2d)Cy)
If all keywords found
k File AccumulatorsAF (w/o ) k(nlogn Mp +n Eg)
k hashedHF k H.
k GenerateMTProof (TreeTF) k log N H.
Provelntersection(w/o a) O((kn)log?(kn)loglog(kn))My

TOTAL kn Eg + (knlogn) Mp + (klog N) H, + 1 Pl
If one keyword is not found
2 GenerateWitness (W/0 ) 2(d Mp + dlogd My, + dEg))
2 Buckets AccumulatordW (w/o o) 2(dlogd My + d Eg)
2 GenerateMTProof (TreeTW) 2 logm H.

TOTAL 4dEg + (2d + 4dlog d) Mp, + (2log m) Hx

Verify
If all keywords found
k VerifyMTProof (TreeTF) k log N H.
Verifylntersection 3k BPg + kMt

TOTAL 3k BPg + kMt + (klog N) Ha
If one keyword is not found
2 VerifyMTProof (TreeTW) 2 logm H.
2 VerifyMembership 6BP &

TOTAL 6 BPg 1 (2logm) Hx
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