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Abstract—We consider an extension of Erdős-Rényi graph
known in literature as Stochastic Block Model (SBM). We analyze
the limiting empirical distribution of the eigenvalues of the
adjacency matrix of SBM. We derive a fixed point equation
for the Stieltjes transform of the limiting eigenvalue empirical
distribution function (e.d.f.), concentration results on both the
support of the limiting e.s.f. and the extremal eigenvalues outside
the support of the limiting e.d.f. Additionally, we derive analogous
results for the normalized Laplacian matrix and discuss potential
applications of the general results in epidemics and random
walks.

I. INTRODUCTION

Systems consisting of a huge number of interacting entities
are often represented by complex networks to capture the
essence of their interactions. They are used to model systems
from the most disparate fields: interactions among atoms in
matter, biological molecules, nodes of the Internet networks,
documents in the web, social networks, connectivity of users in
a wireless network, etc. Due to the typical gigantic dimensions
of the systems targeted in this field, it is essential to gain
understanding and master the system via few fundamental
parameters which are able to characterize the macroscopic
features of the system.

One important approach to study complex networks is
based on the theory of random graphs. The first natural random
graph model of complex networks is Erdős-Rényi graph [9]
where edges between nodes appear with equal probabilities.
This model has many appealing analytical properties but
unfortunately does not model important properties of many
real complex networks. In particular, the Erdős-Rényi graph
fails in describing community structures in complex networks.
To mitigate this shortcoming the more refined Stochastic Block
Model (SBM) has been introduced, first studied in [6] to
the best of our knowledge. In SBM, the nodes are divided
into subsets (communities) such that nodes within a given
community have a link between them with a higher probability
than nodes from different communities.

Random graphs can generate a variety of random ma-
trices, e.g. adjacency matrix, standard Laplacian, normalized
Laplacian. The spectral properties of those random matrices
are fundamental tools to predict and analyze the complex
network behavior, the performance of random algorithms,
e.g. searching algorithms, on the network, but also to design
algorithms. For example, the convergence properties of a
random walk on a graph are dependent on the gap between
the first and the second largest eigenvalues of its normalized

Laplacian [5]. This is of particular significance in random
search algorithms deployed widely for information retrieval
in big data systems. The community detection problem relies
on the properties of several of the largest eigenvalues of the
adjacency matrix and their corresponding eigenvectors, e.g.
[16]. The cost of epidemic spread is characterized by the
spectral properties of the adjacency matrix [4].

Recently, there has been a stream of works on SBM in
community detection problems [7], [13], [14]. In [7], the
authors investigate detectability of communities in a SBM
graph by analyzing phase transition in the spectrum of the
adjacency matrix using methods from statistical physics. The
authors of [13] analyze a similar problem in the context of
labeled stochastic matrices with two communities and provide
theoretical evidence for detectability thresholds in [7]. There,
the nodes are randomly categorized into communities, with
symmetric probabilities and the goal is to detect the correct
community to which a node belongs. All these works focus on
the case of diluted graphs, i.e. when the expected degrees are
bounded irrespectively of the network size. In [14] the authors
also study the detectability problem in the two community
case. There, the scaling law of probabilities is not clearly
defined. The case of dense graphs has been studied in [10]
for M communities.

In this contribution, we analyze the limiting empirical
distribution of the eigenvalues of the adjacency matrix of
SBM. We find that the Stieltjes transform of the limiting
distribution satisfies a fixed point equation and provide an
explicit expression in the case of symmetric communities.
Furthermore, we obtain tight bound on the support of the
asymptotic spectrum, and concentration bounds on the ex-
tremal eigenvalues. Additionally, we derive the asymptotic
spectrum of the normalized Laplacian matrix in the dense
regime of edge probabilities and subsequently discuss potential
applications of the general results in epidemics and random
walks.

In comparison to the previous works on SBM [7], [10],
[13], [14] we consider the dense and sparse regimes when
the expected degrees scale not slower than logc(n), for some
c ≥ 4.

In contrast to the classical Erdős-Rényi graph, the limiting
eigenvalue e.d.f. of SBM adjacency matrix does not follow the
semicircular law anymore and there are M largest eigenvalues
outside the support of the e.d.f. The concentration results on
the extreme eigenvalues become more complex. Specifically,



the result in [17], if directly applied, leads to a weaker bound
on the edge of the e.d.f. support than the one we derive
here. The authors of [7], [13], [14] consider only the case
of two communities and their work does not include the study
the limiting e.d.f. In [10] a general M community SBM is
analyzed in the quite dense regime, i.e. when the average
degree is of the order n/log(n).

II. MATHEMATICAL NOTATION AND DEFINITIONS

Throughout this paper, 1C is a C-dimensional column
vector with unit entries and JC = 1C1TC is a square matrix
whose entries are all equal to 1. The notations fn = O(gn)

and fn = o(gn) mean that limn→∞
|fn|
|gn| ≤ c for some constant

c > 0 and limn→∞
fn
gn

= 0, respectively. We say that f(x)
dominates g(x) asymptotically and we write f(n) ∈ ω(g(n))
if asymptotically for n → +∞, |f(n)|> k|g(n)| for any
constant k > 0. By δy(x) we denote the Kronecker delta
function equal to one when x = y and zero everywhere else
and the ceiling function that maps a real number to the smallest
following integer is denoted by d·e. The indicator function of a
subset A of a set X is denoted by χA(x) and, for any x ∈ X ,
χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. The field of
complex numbers is represented by C, the operator =(·) maps
a complex number onto its imaginary part and C+ denotes
the open half space of complex numbers with nonnegative
imaginary part, i.e., z ∈ C+, iif =(z) > 0. Given a random
variable X and a distribution D, the notation X ∼ D indicates
that the random variable X follows the probability distribution
D and PX(x) denotes its cumulative distribution function.

Given an n × n Hermitian matrix H , we index its eigen-
values in nonincreasing order and denote by λi(H) the i-th
eigenvalue of H , i.e. λ1(H) ≥ λ2(H) ≥ λ3(H)... ≥ λn(H).
The operator ‖·‖2 denotes the Euclidian norm of a vector when
the argument is a vector and spectral norm1 when the argument
is a matrix, i.e.

‖H‖2= sup
‖x‖2≤1,‖y‖2≤1

xTHy. (1)

The empirical spectral distribution (e.s.d.) of a Hermitian
matrix H , is defined as:

FH(x, n) =
1

n

n∑
i=1

δλi(H)(x) (2)

An important tool that is used in Random Matrix Analysis is
the Stieltjes transform. It is extensively used to study various
properties of the limiting spectral distribution such as the
limiting shape and speed of convergence. Refer to [1] for
more details. The Stieltjes transform sF (z) of a probability
distribution F (x) is defined as the Riemann-Stieltjes integral

sF (z) =

∫
dF (x)

x− z
(3)

for z ∈ C+.

1The spectral norm coincides also with the induced 2-norm.

III. STOCHASTIC BLOCK MODEL AND ITS
REPRESENTATIONS

We consider a complex network with n nodes and M com-
munities Ωm, for m = 1, . . . ,M, of equal sizes K = n/M ,
which is assumed to be an integer. This complex network
is described by an undirected random graph referred to as
Stochastic Block Model (SBM) with M blocks, one for each
community. If two nodes belong to different communities, then
there is an edge between them with probability p0(n). Given
two nodes belonging to the same community Ωm, there exists
an edge between them with probability pm(n), 1 ≤ m ≤ M .
Throughout this paper, for the sake of conciseness, we adopt
the short notation pm for the probabilities pm(n), keeping in
mind that the dependence on n is implicit. For a random graph
as defined above, we can define a number of related random
matrices whose spectral characteristics are relevant to capture
related properties of the network. In this work we focus on
two classes of random matrices for the SBM: the adjacency
matrix and the normalized Laplacian matrix.

SBM adjacency matrix A

Without loss of generality, we assume that nodes belonging
to the same community are clustered together and ordered
from community 1 to community M, i.e. node i belongs

to community Ωm if
⌈
i

K

⌉
= m. The SBM adjacency

matrix A is a symmetric matrix and its element Aij is a
Bernoulli variable with parameter pm, m = 1, . . .M, if the
corresponding nodes i and j belong to the community Ωm,

i.e.
⌈
i

K

⌉
=

⌈
j

K

⌉
= m, and with parameter p0 otherwise.

Let us denote by B(pm) a Bernoulli probability distribution
with parameter pm, then

Aij = Aji ∼ B(pm), if i, j ∈ Ωm

Aij = Aji ∼ B(p0), if i ∈ Ω` and j ∈ Ωm, ` 6= m.
(4)

We implicitly assume that the diagonal elements of the matrix
A are randomly distributed according to a given Bernoulli
probability distribution. This corresponds to the assumption
that the random graph has cycles of unit length with a certain
probability. There are definitions of complex networks that do
not admit cycles of unit length, which corresponds to matrices
A with diagonal elements deterministically equal to zero. It is
worth noting that the results on the asymptotic spectrums of
adjacency matrices in this contribution hold for both these
definitions under the assumptions made.

For further studies, it is convenient to normalize the matrix
A by a scaling factor2 γ(n) in general depending on n such
that the support of the limiting eigenvalue distribution function
stay finite and positive. Then, we consider the normalized
SBM adjacency matrix Â = γ(n)A and we express it as the
sum of a deterministic matrix A equal to its expectation and
a random matrix with zero mean random entries Ã, i.e.

Â = A+ Ã. (5)

2We use the short notation γ when it is not necessary to emphasize the
dependency on n.



Consistently with the definitions in (4) and (5), A, the expec-
tation of matrix A, is a finite rank matrix of the following
form:

A = P ⊗ JK (6)

being P the M ×M

P = γ(n)


p1 p0 . . . p0

p0 p2
. . . p0

. . .
. . . . . .

p0 . . . . . . pM

 . (7)

In general, for pm 6= p0 and m = 1, . . . ,M, the matrix P has
rank M and thus, also A has rank M.

The random centered SBM adjacency matrix is also a
symmetric matrix whose elements follow the distributions

C(pm, γ) =

{
γ(1− pm), w.p. pm;
−γpm, w.p. 1− pm;

m = 0, 1, . . . ,M, (8)

having zero mean and variance σ2
m = γ2(1− pm)pm. Consis-

tently, with the definitions in (4) and (5)


Ãij = Ãji ∼ C(pm, γ) if i, j ∈ Ωm

Ãij = Ãji ∼ C(p0, γ) if i ∈ Ω` and m ∈ Ωm
with ` 6= m.

(9)

It is worth noting that the entries of this random matrix depend
of the matrix size.

Random SBM normalized Laplacian matrix L
Let us define the random variable

Di =

n∑
j=1

Aij (10)

corresponding to the degree of node i. Then, the symmetric
SBM normalized Laplacian matrix L is defined as

Lij = Lji =


1− Aii

Di
, if i = j;

− Aij√
DiDj

, otherwise.
(11)

IV. USEFUL EXISTING RESULTS

A. Erdős Rényi Graphs and Wigner matrices

A random graph where all the pairs of nodes have equal
probability p(n) of having an edge, independently of the
presence of other edges is well-known as Erdős-Rényi (ER)
graph. It is straightforward to verify that an SBM graph
with M = 1, corresponding to a complex network with a
single community, reduces to an ER graph. As for random
SBM graphs, we can consider representations of random ER
graphs by classes of random matrices. In this paper, we focus
on random ER adjacency matrices AER. The upper diagonal
elements of the Hermitian matrix AER are independent and
identically distributed (iid) according to B(p(n)), a Bernoulli

distribution with parameter p(n), i.e. AER
ij = AER

ji ∼ B(p(n)).
As for random SBM adjacency matrices, we consider a matrix
ÂER normalized by the scalar γ(n) = (

√
np(n)(1− p(n)))−1,

i.e. ÂER = γ(n)AER, and decompose it as

ÂER = A
ER

+ ÃER

where A
ER

= γ(n)p(n)Jn and the centered ER adjacency
matrix is given by

ÃER
ij = ÃER

ji ∼ C(p(n), (
√
np(n)(1− p(n)))−1)

∀i ≥ j, i = 1, . . . n. (12)

The parameter p(n) depends on the network size n and, thus,
also the average degree of a node i

di,av = E

∑
j

Ai,j

 = np(n). (13)

Based on the average node degree di,av, the ER graphs are
classified as dense, if di,av = O(n), sparse if di,av = o(n) and
di,av →∞, and diluted if di,av = O(1) [3] .

Closely related to the centered ER adjacency matrix is the
Wigner matrix defined as a Hermitian matrix W whose upper
diagonal entries are zero mean independent random variables
with variance equal to σ2.

It is worth noting that the centered ER adjacency matrix
is a special case of Wigner matrices with a well defined
distribution C(p(n), (

√
np(n)(1− p(n)))−1)) equal for all the

entries.

The properties of the eigenvalue spectrum of both Wigner
matrices and ER adjacency matrices have been intensively
studied. In this section, we recall the results on the limiting
spectral distributions and the spectral norms of these random
matrices. Defined the empirical spectral distribution (e.s.d.) of
a Hermitian matrix H of size n as in (2), the limiting spectral
distribution FH(x) is the deterministic limiting distribution,
if it exists, of the random e.d.f. as the size of the matrix H
tends to infinity. The spectral norm of a matrix is defined in
(1).

B. Limiting e.s.d. of Centered ER Adjacency Matrices

A key role in the convergence of the e.s.d. of large random
Hermitian matrices is played by the following assumption.

ASSUMPTION 1 [11], [12, Chapter 1] The Hermitian matrix
H with zero mean independent upper diagonal entries Hij of
variance σ2

ij such that limn→+∞ supi,j=1,...n σ
2
ij = 0 satisfies

the Lindeberg’s condition, i.e. for any δ > 0

lim
n→∞

max
i=1,...n

n∑
j=1

∫
|x|>δ

x2dPHij
(x) = 0. (14)

This assumption essentially implies that the tails of the distri-
butions characterizing the random variables Hij diminish as
n→∞. Under such an assumption, the sequence of the e.s.d.
converges weakly to a limiting eigenvalue distribution in the
almost sure sense as stated by the following proposition.



PROPOSITION 1 [11], [12, Chapter 1] The Wigner matrix
W with zero mean independent random entries Wij satisfies
Assumption (1) and additionally, all the equal variances satisfy
σ2
i,j = σ2/n with 0 < σ2 < +∞. Then, the sequence of the

e.s.d. converges weakly to a the Wigner semicircle law in the
almost sure sense, i.e. for any bounded continuous function f∫

f(x)FWn(x)dx
a.s.−−→

∫
f(x)µsc(x, σ

2)dx

where FWn(x) denotes an e.d.f. of the Wigner matrix of size
n and µsc(x, σ2) is the Wigner semicircular distribution with
parameter σ2 given by

µsc(x, σ
2) =

1

2πσ2

√
(4σ2 − x2)+. (15)

This result can be immediately specialized to normalized
centered ER adjacency matrices ÂER. Since for the matrix
ÃER it holds σ2

ij = n−1, for i, j = 1, . . . n, the conditions of
Proposition (1) are satisfied if the limit (14) holds, i.e. if for
any τ > 0

lim
n→+∞

(1− p)χ
(

1− p ≥ τ
√
np(1− p)

)
+ pχ

(
p ≥ τ

√
np(1− p)

)
= 0. (16)

It is straightforward to verify that this condition is equivalent
to the condition p ≥ (τ2n + 1)−1 for any τ > 0. Then, we
can state the following corollary.

COROLLARY 1 Let us consider a normalized centered ER
adjacency matrices ÃER with p(n) ∈ ω(n−1) as n → ∞.
Then, the sequence of the e.s.d. converges weakly to a the
Wigner semicircle law in the almost sure sense, i.e. for any
bounded continuous function f∫

f(x)F Ã
ER

(x)dx
a.s.−−→

∫
f(x)µsc(x, 1)dx.

Then, whether the e.s.d. of a centered ER adjacency
matrix converges to a semi-circle distribution depends the
convergence rate of p(n) to zero as n → +∞. It is difficult
to state any results on the limiting eigenvalue e.d.f. when
p(n) = c

n because for this probability, Assumption (1) does
not hold. It is known that for diluted graphs, there is no
explicit expression for the limiting eigenvalue e.d.f. but it
displays atoms [3]. For this reason in the following we limit
our attention to probabilities p(n) such that p(n) ∈ ω(n−1),
i.e. for the dense and sparse regime. This is tantamount to
stating that

√
npn(1− pn)→∞ [8].

C. Spectral Norm of the Centered ER Adjacency Matrix

Let us observe that, if the multiplicity of an eigenvalue
does not scale with n, the definition of the e.d.f. implies that,
in the limit for n → +∞, the eigenvalue e.s.d. is not able
to capture the existence of this eigenvalue in the spectrum
matrix. Then, Corollary (1) can only provide a lower bound
of the spectral norm of the normalized centered ER adjacency
matrix ÃER. Hence, it is important to find an upper bound
on the spectral norm of ÃER to better understand its spectral
properties. The following result comes in handy.

LEMMA 1 [17] Let W be a Wigner matrix with independent
random elements Wij , i, j = 1, . . . n having zero mean
and variance at most σ2(n). If the entries are bounded
by K(n) and there exist a constant C ′ such that
σ(n) ≥ C ′n−1/2K(n) log2(n), then there exists a constant
C such that almost surely

‖W‖2≤ 2σ(n)
√
n+ C(K(n)σ(n))1/2n1/4log(n). (17)

By applying Lemma (1) to the normalized centered adja-
cency matrix ÃER we obtain the following concentration result.

COROLLARY 2 Let us consider the normalized centered ad-
jacency matrix ÃER. If the probability p(n) satisfies the
inequality p(n) ≥ C ′ log4(n)n−1 for some constant C ′ > 0,
then there exists a constant C > 0 such that almost surely

‖ÃER‖2≤ 2 + C 4

√
1− p(n)

np(n)
log n. (18)

Let us observe that for spectral norm of matrix ÃER is lower
bounded by the extreme of the support of the limiting e.s.d.
F Ã

ER
(x). Additionally, if for any δ > 0, p > δn−1 log4 n,

then the spectral norm is concentrated around the extreme of
the support of F Ã

ER
(x).

D. Spectrum of the Normalized ER Adjacency Matrix

In the previous Section (IV-B) and (IV-C) we focused
on the spectral properties of the normalized centered ER
adjacency matrix ÃER while in this section we analyze the
spectral properties of the normalized ER adjacency matrix
ÂER and the effect of the mean component A

ER
on it. The

following lemma plays a key role to establish a fundamental
relation between the eigenvalue e.d.f. F Ã

ER
(x) studied in the

previous sections and F Â
ER

(x).

LEMMA 2 [2] If FA(x), FB(x) are the eigenvalue e.d.f. of
A , B, Hermitian matrices of size n, then

|FA(x)− FB(x)|≤ rank(A−B)

n
.

We recall that A
ER

= ÂER − ÃER has unit rank for any n.
Then, asymptotically for n → ∞, the limiting eigenvalue
distribution of the matrix ÂER converges to the semicircular
law as the limiting eigenvalue distribution of the matrix ÃER.
As for ÃER, the limiting eigenvalue distribution of the matrix
ÂER provides only a lower bound for the spectral norm that
requires independent study.

The spectral norm of the two matrices ÂER and ÃER are
different, because the largest eigenvalue changes when a unit
rank matrix is added to a Hermitian matrix. From Bauer-Fike
theorem for Hermitian matrices [15], we have

|λi(ÂER)− λi(A
ER

)|≤ ||ÃER||2 (19)

for 1 ≤ i ≤ n.

Let us note that λ1(A
ER

) = nγ(n)pn and λi(A
ER

) = 0
for i ≥ 2. Then, from (19), asymptotically as n → +∞,



‖ÃER‖2
a.s.→ 2. Thus, we get the following concentration result

for the largest eigenvalue of the perturbed matrix ÂER

∣∣∣∣∣λ1(ÂER)−

√
np(n)

1− p(n)

∣∣∣∣∣ ≤ 2. (20)

We notice that, for dense and sparse networks,

√
np(n)

1− p(n)
�

2. Hence the above result implies that λ1(ÂER) → nγ(n)pn.
Thus, the following lemma holds.

LEMMA 3 [8] Let ÂER satisfies the conditions of Corollary
2. Then,

λn1 (ÂER)
n→∞,a.s.−−−−−−→

√
np(n)

1− p(n)
,

i.e., the largest eigenvalue of ÂER tends to the largest eigen-
value of the mean matrix A

ER
as n→∞.

E. Limiting Spectral Distribution of Centered Hermitian Ma-
trices

In this section we present a useful existing result on cen-
tered symmetric matrices H with independent upper diagonal
entries whose distributions have in general different variances.
This result provides the Stieltjes transform of the limiting
eigenvalue distribution as n→ +∞ as solution of a nonlinear
system of n equation.

PROPOSITION 2 [11], [12, Chapter 1] Let the symmetric
matrix H satisfy Assumption 1. Additionally, the variances
σ2
ij of its entries satisfy the conditions

sup
n

max
i=1,2,..n

∑
j

σ2
ij <∞

and infi,j nσ
2
ij = c > 0. Then, as n → +∞, almost surely

FH(x, n), the random e.s.d. of the n×n matrix H converges
for any x to a deterministic distribution function SHn (x) whose
Stieltjes transform s(z) is given by

sn(z) =

∫
dSHn (x)

x− z
=

1

n

n∑
i=1

ci(z, n)

where ci(z, n) is the unique solution to the system of equations

ci(z, n) =


−zI −(δpl n∑

s=1

cs(z, n)σ2
sl

)n
p,l=1

−1

ii

,

i = 1, 2, ..n

in the class of analytic functions

A = {=(z)=(ci(z, n)) > 0,=(z) 6= 0}.

V. RESULTS FOR ADJACENCY MATRIX OF M
COMMUNITY MODEL

A. Finding the Spectrum of Centered Adjacency Matrix

In this section we consider the normalized centered SBM
adjacency matrix Ã with γ(n) = (np∗(1 − p∗))−1 where
p∗ = maxm=1,...M pm. Additionally, we assume that all the
probabilities pm scales at the same rate, i.e. limn→+∞

pi
pj

=

cij for some cij > 0, and pm(n) ∈ ω(n−1) as n → +∞.
Then, it is straightforward to verify that the conditions of
Proposition 2 are satisfied and the following corollary holds.

COROLLARY 3 Let Ã be the normalized centered SBM adja-
cency matrix defined in (8) with γ(n) = (np∗(1− p∗))−1 and
p∗ = maxm=1,...M pm. If pm(n) ∈ ω(n−1) and pm(n) =
O(p0(n)) for all m = 1, . . .M, then, almost surely, the
eigenvalue e.d.f. converge weakly to a distribution function
whose Stieltjes transform is given by

s(z) =

M∑
m=1

cm(z) (21)

being cm(z) the unique solution to the system of equation

cm(z) =
−1/M

z + ςmcm(z) + ς0
∑
6̀=m c`(z)

, (22)

with ς` = lim
n→+∞

p`(1− p`)
p∗(1− p∗)

, that satisfies the conditions

=(c`(z))=(z) > 0 for =z > 0. (23)

The above result implies that in general the asymptotic eigen-
value e.d.f. of an SBM is not a semicircular law any longer.

B. Spectrum of the Full Adjacency Matrix

The result above gives the spectrum of the matrix Ã. Let
us recall the definition of matrix Â as given in (5)

Â = Ã+A.

Using Lemma 2 on the finite rank perturbation, we deduce
that the asymptotic eigenvalue e.d.f. of Â and Ã are the same.
However, their spectra differ in the extreme eigenvalues.

C. Extreme Eigenvalue of Adjacency Matrix

Using the Bauer-Fike Theorem on perturbation of eigen-
values of Hermitian matrices, for matrices Â, A, and Ã, we
have

|λi(Â)− λi(A)|≤ ‖Ã‖2
This is useful in getting asymptotic characterization of the M
largest eigenvalues of Â. Since A has M non-zero eigenvalues,
this result says that the first M largest eigenvalues of Â are
concentrated around these eigenvalues, within an error of the
order of the spectral norm of Ã. The other eigenvalues of Â are
below the spectral norm of Ã, and hence they fall inside the
continous part of the limiting e.d.f. To use this result, we need
a bound on the spectral norm of the centered SBM adjacency
matrix Ã. We strengthen the result in Theorem 1.4 in [17] to
derive a tighter bound on the spectral norm of Ã.



THEOREM 1 Let Ã be a normalized centered SBM adjacency
matrix defined in (9) and satisfying the same conditions as
in Corollary 3. Additionally, p0(n) satisfies the inequality
p0(n) ≥ C ′n−1 log4 n for some constant C ′ > 0 and
sup p0(n)(1−p0(n))

p∗(n)(1−p∗(n)) is bounded. Then, there exists a constant
C > 0 such that almost surely

‖Ã‖2≤ 2
√
M−1 (1 + (M − 1)ς0) + C 4

√
1− p0(n)

np0(n)
log(n)

with ς0 defined as in Corollary 3.

D. Eigenvalues of the Mean Matrix

By the result above on the spectral norm of the zero mean
matrix, we know that the largest eigenvalue of the matrix is
somewhere close to the edge of the spectrum. But when the
mean matrix is added to this matrix, the largest eigenvalue
escapes the bounded spectrum. Namely, since the mean matrix
has rank M , by interlacing inequalities on the sum of two
Hermitian matrices, we can see that there are exactly M
eigenvalues outside the bounded spectrum.

Â = Ã+A

By the Bauer-Fike Theorem we have

|λi(Â)− λi(A)|≤ ‖Ã‖ (24)

From Theorem 1 we have that asymptotically almost surely
‖Ã‖≤ 2ς + δ with ς =

√
M−1 (1 + (M − 1)ς0) and δ → 0.

For i > M , λi(A) = 0. Therefore, we see that λi(Â) for
i > M lies below the spectral norm of Ã.

1) Eigenvalues of A: Let the eigenvalues of P in (6)
be µi, 1 ≤ i ≤ M . They depend on the probabilities
pi, 0 ≤ i ≤ M and the following relationship holds between
the eigenvalues of Â and µi.

LEMMA 4 Under the conditions in Proposition 1 the M
eigenvalues of Â, outside the continuous spectrum of Â are
given as:

|λi(Â)− µi|≤ 2ς + δ (25)

for 1 ≤ i ≤M .

Thus, we conclude that asymptotically, the M largest eigen-
values of the adjacency matrix converge to those of the mean
matrix almost surely.

To complete this argument, we need the approximate
locations of µi’s. By Gershgorin disc theorem [15], the µi’s
should satisfy: ∣∣∣∣ µiMγ(n)n

− pi
∣∣∣∣ ≤ p0(M − 1) (26)

Note on special case of Symmetric SBM:

When the probabilities p1 = p2 = p3.. . . . = pM = p∗, we
can significantly simplify the equations (22) and achieve useful
insight into the shape of the spectrum. In this case we have

Fig. 1. Plot showing approximate asymptotic eigenvalue locations of the
adjacency Matrix

that ςm = 1 for m = 1, 2, ..M and the fixed point equation
(22) becomes:

Mcm(z) =
−1

z + cm(z) + ς0
∑
6̀=m c`(z)

We see that the equations are symmetric, hence, by uniqueness
property of Corollary 3, we must have that c1(z) = c2(z) =
c3(z) = . . . = cM (z) = c(z), and s(z) = Mc(z), which leads
to

s(z) =
−1

z + (1+(M−1)ς0)
M s(z)

This is the same as the equation for the Stieltjes transform
of the semicircular law given in equation (15), with σ2 ≡
(1+(M−1)ς0)

M . Thus, we see that in the symmetric scenario, the
spectrum of the adjacency matrix becomes a semicircle law,
and the upper bound in Theorem 1 becomes exact. Similarly,
the eigenvalues of the mean matrix become:

µ1 =

√
n

M
√
p1(1− p1)

(p1 + (M − 1)p0) (27)

and
µi =

√
n

M
√
p1(1− p1)

(p1 − p0) (28)

for i = 2, 3, . . . ,M . Thus, from Lemma 4, the largest
eigenvalue of the Â converges to (27) above, and the next
M − 1 largest eigenvalues converge to (28), i.e., the second
largest eigenvalue of the adjacency matrix has multiplicity
M − 1.

In Figure 1 we show diagramatically the general form of
the asymptotic histogram of the scaled adjacency matrix of an
SBM, with approximate locations of its various components all
probabilities scale as logc(n) for some c > 4. We observe that
under these conditions, there is sufficient separation between
the continuous part of the spectrum and the discrete extremal
eigenvalues.

VI. SPECTRAL DISTRIBUTION OF NORMALIZED
LAPLACIAN MATRIX

We recall that the normalized Laplacian Matrix is given
by

L = I −D−1/2AD−1/2. (29)

For the sake of simplicity, we consider the case of two blocks,
i.e., M = 2, and probabilities pi, 0 ≤ i ≤ 2 that are not
dependent on the size of the matrix n.



Fig. 2. Comparison plot between empirically obtained spectrum (bar graph),
and explicit solution(line) of 2-community SBM adjacency matrix

Let P
′

= D−1/2AD−1/2. We show that asymptotically,
the e.s.d. of the matrix 1

2

√
nP

′
converges to the e.s.d. of the

matrix 1√
n
A
′′

, defined as

A
′′

ij =


Aij/(p1 + p0), if i, j ∈ Ω1

Aij/(p2 + p0), if i, j ∈ Ω2

Aij/
√

(p1 + p0)(p2 + p0) otherwise

Consequently, the following holds.

LEMMA 5 The distribution of matrix 1
2

√
nP

′
is given by:

ci =
−1/2

z + σ
′
ici + σ

′
0cj

, (30)

for i, j = 1, 2 and i, j = 2, 1 respectively. where σ
′

1 =
σ2
1

(p1+p0)2
, σ
′

2 =
σ2
2

(p2+p0)2
, σ
′

0 =
σ2
0

(p0+p1)(p0+p2)
and the limiting

distribution has a spectrum whose Stieltjes transform is given
by c(z) = c1(z) + c2(z).

Since
√
n
2 L =

√
n
2 −

√
n
2 P

′
, its distribution has a bulk

component that lies around
√
n/2, with an approximate width

of 2
√

max(σ
′
1, σ

′
2) + σ

′
0. This matrix also has an eigenvalue

at 0, by the property of Laplacian.

In the two-community case, it can be seen from simulations
that there exists one more eigenvalue outside the bulk, which
remains to be properly characterized.

VII. EXAMPLE APPLICATION: EPIDEMIC SPREADING

In this section, we discuss an important potential applica-
tion of the result we derived above for adjacency matrices,
namely, in the topic of epidemic spreading. We refer to the
recent paper [4]. In this work, the authors study an epidemic
process over a random network of nodes. The spread of the
epidemic from one node to another is governed by the Random
network, i.e., a node can only infect another if there exists an
edge between the two nodes. They present a concise result
delineating the relationship between the expected cost of the
epidemic per node denoted by CD(n)(disease cost) [4], and the
largest eigenvalue of the modified adjacency matrix; namely,

CD(n) ≤ αcd
1− λ1(M)

, (31)

where M = (1 − δ)I + βA is the matrix which governs the
dynamics of the system [4], with β being the probability of
infection, δ is the probability of recovery of any node, and
cd is the cost parameter. We direct the reader to the original
paper for more details. A is as usual the adjacency matrix of
the random graph.
We examine the epidemic spread on a graph which follows
SBM with M communities. We know that in this case
λ1(A) → n/Mµ1 as n → ∞ a.s. under certain conditions.
Also by (26) we have that µ1 ≤ p1 + (M − 1)p0, therefore
we have:

λ1(M) = (1− δ) + βλ1(A) ≤ 1− δ + β(n/Mµ1)

Thus, we have

CD(n) ≤ αcd
δ − βn/M(p1 + (M − 1)p0)

(32)

If p1 � pi, for i ≥ 2, then we can venture to say that this
bound is tight, and that the community with the largest edge
probability governs the disease cost.

VIII. NUMERICAL RESULTS

In this section we provide simulation results to demonstrate
the results obtained above. More specifically, we corroborate
our results on the spectrum of adjacency matrix by com-
paring the spectrum obtained by simulating a 2-community
SBM with the distribution obtained by inverting the Stieltjes
transform, which is an explicit solution of the simultaneous
equations (22). In the simulations, we use a matrix of size
n = 104. For a 2-community system, the solution amounts to
solving explicitly the resulting quartic equation and choosing
the solution branch that satisfies the conditions (23). The
inverse relationship between the limiting e.s.d. and the Stieltjes
transform thus obtained, is given by the well known Stieltjes
inversion formula:

f(x) = lim
y→0
=sF (x+

√
−1y)/π (33)

where f(x) is the p.d.f. corresponding to the c.d.f. F (x),
whenever the limit exists.
Figure 2 shows the histogram of normalized adjacency matrix
1√
n
A and compares it to the theoretical spectrum obtained as

above for n = 104, and several values of edge probabilities.

In the second part of this section we turn our attention
to the extremal eigenvalues of the adjacency matrix for a 3-
community SBM of size n = 999. Over several independent
runs, we get values of the top 4 eigenvalues of the matrix A,
for 0.3 ≤ p1 ≤ 0.48, 0.15 ≤ p2 ≤ 0.33, 0.08 ≤ p3 ≤ 0.26
and 0.03 ≤ p0 ≤ 0.031, randomly picked. We note that as
expected in (Figure 3), there are three eigenvalues outside the
bulk, which agree very well with the expected values, i.e., the
non-zero eigenvalues of A. In addition, it can also be seen
that the upper bound in Theorem 1 is remarkably tight for the
simulated probabilities.

Next, we consider the spectrum of the normalized Lapla-
cian matrix. In fact we consider the spectrum of the following



Fig. 3. Extremal eigenvalues of 3-community SBM normalized matrix
compared to expected values.

Fig. 4. Histogram of 2-community L̃ for various edge probabilities compared
to theoretical spectrum

matrix which we denote L̃, which is given by:L̃ =
√
n/2 −√

n/2L. By assertion its spectrum is given by the solution of
the equation (30). We explicitly solve this equation for a two-
community model, and compare it to numerically obtained
results for a matrix whose size is n = 999 for various values
of the probabilities p1, p2 and p0 (Fig.4).

IX. CONCLUSION

In this work we studied in detail the spectra of adjacency
and normalized Laplacian matrices of an SBM with M com-
munities. In particular, we analyzed the limiting empirical
distribution of the eigenvalues of the adjacency matrix of
SBM. We find that the Stieltjes transform of the limiting
distribution satisfies a fixed point equation and provide an
explicit expression in the case of symmetric communities.
Furthermore, we obtained a tight bound on the support of
the asymptotic spectrum, and concentration bounds on the
extremal eigenvalues.

As future work we plan to analyze the structure of the
eigenvectors and develop more detailed applications to graph
clustering and network sampling. It will be also interesting
to consider SBM models where sizes of communities are not
uniform.
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