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Channel: Novel Outer Bounds and Constant

Gap Result for the Symmetric Gaussian Noise

Channel in Weak Interference

Martina Cardone, Daniela Tuninetti and Raymond Knopp

Abstract

This paper studies the two-user Causal Cognitive Interference Channel (CCIC), where two trans-

mitters aim to communicate independent messages to two different receivers via a common channel.

One source, referred to as the cognitive, is capable of overhearing the other source, referred to as the

primary, through a noisy in-band link and thus can assist in sending the primary’s data. Two novel outer

bounds of the type 2Rp + Rc and Rp + 2Rc are derived for the class of injective semi-deterministic

CCICs where the noises at the different source-destination pairs are independent. An achievable rate

region is derived based on Gelfand-Pinsker binning, superposition coding and simultaneous decoding

at the receivers.

The lower and outer bounds are then specialized to the practically relevant Gaussian noise case.

The authors of this paper recently characterized to within a constant gap the capacity of the symmetric

Gaussian CCIC in (a) the strong interference regime, and (b) for a subset of the weak interference

regime when the cooperation link is larger than a given threshold. This work characterizes to within
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a constant gap the capacity for the symmetric Gaussian CCIC in the regime that was still open. In

particular, it is shown that the novel outer bounds are necessary to characterize the capacity to within a

constant gap when the cooperation link is weaker than the direct links, that is, in this regime unilateral

cooperation leaves some system resources underutilized.

Index Terms

Achievable rate region, causal cooperation, channel capacity, cognitive radio, constant gap, inter-

ference channel, outer bound region, unilateral source cooperation.

I. INTRODUCTION

This work considers the two-user Causal Cognitive Interference Channel (CCIC), a wireless

network where one primary source PTx and one cognitive / capable source CTx aim to reliably

communicate with two different receivers, namely the PRx and the CRx, via a common channel.

Differently from the classical non-cooperative IC, in the CCIC the CTx operates in full-duplex

mode and is able to overhear the PTx through a noisy in-band link; the CTx can thus exploit

this side information to boost the performance of the two (primary and cognitive) systems.

The major feature of the CCIC is the concept of causal cognition / source cooperation,

which represents both an interference management tool and a practical model for the cognitive

radio technology. Actually, unilateral source cooperation offers a way to smartly cope with

interference. In today’s wireless systems, the general approach to deal with interference is either

to avoid it, by trying to orthogonalize (in time / frequency / space) users’ transmission, or to

treat it as noise. However, these approaches may severely limit the system capacity since perfect

user orthogonalization is not possible in practice. In contrast, in the CCIC the CTx, which can

causally learn the primary’s data through a noisy link, may protect both its own (by precoding

against some known interference) and the primary’s (by allocating some of its transmission

resources to assist the PTx to convey data to the PRx) information from interference. Thus, the

transmission techniques designed for the CCIC aim to leverage the structure of the interference,

instead of just simply disregarding it and treating it as noise. The CCIC also represents a more

practically relevant model for the cognitive overlay paradigm, compared to the case where the

CTx is assumed to a priori (before the transmission begins) know the message of the PTx [3],

which may be granted only in limited scenarios. In contrast, in the CCIC the CTx causally learns

the PTx’s data through a noisy link. Thus, the transmission techniques designed for the CCIC
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account for the time the CTx needs for decoding and for the (possible) further rate losses that

may incur in decoding the PTx’s message through a noisy link of limited capacity.

A. Related past work

The CCIC studied in this work models an IC with unilateral source cooperation and represents

a practical scenario for cognitive radios, where one source has superior capabilities with respect

to the other source. Moreover, closely related to the IC with unilateral source cooperation is the

IC with perfect output feedback model, where the received signal is fed back through a perfect

channel from one receiver to the corresponding transmitter. Lately, these scenarios have received

significant attention, as summarized next.

1) IC with source cooperation: The CCIC is a particular case of the IC with bilateral source

cooperation, where one of the cooperation link (in our case the one from the CTx to the PTx) is

absent. For the IC with bilateral source cooperation several outer bounds on the capacity region

were derived in [4], [5], [6], [7] and a number of transmission strategies were designed in [8].

In [4], the author firstly derived inner and outer bounds on the capacity for the IC with bilateral

source cooperation and for the IC with bilateral destination cooperation. The outer bound region

was obtained from the max-flow-min-cut theorem, by further strengthening the sum-rate bound

Rp +Rc (where Rp, respectively Rc, is the transmission rate for the PRx, respectively the CRx)

as proposed in [9], while the lower bound region was derived by designing a scheme based on

Gelfand-Pinsker’s binning [10] (i.e., dirty-paper-coding in Gaussian noise [11]) and superposition

encoding, decode-and-forward relaying and simultaneous decoding.

In [5], the author derived a novel general outer bound for the IC with bilateral source

cooperation that applies to any channel, i.e., the noises can be arbitrarily correlated. The outer

bound rate region in [5, Theorem II.1] has constraints on the single rates Rp and Rc and on

the sum-rate Rp +Rc. In particular, the constraints on the sum-rate were obtained by extending

the idea of Kramer in [12, Theorem 1], beyond the Gaussian noise case. Moreover, the outer

bounds in [5, Theorem II.1] were recently shown to hold for the case of bilateral destination

cooperation as well [13]. When evaluated for the symmetric Gaussian noise case, the derived

region is achievable to within 2 bits in the strong cooperation regime [14].

In [6], the authors derived a novel sum-rate outer bound for a class of Injective Semi-

Deterministic (ISD) ICs with bilateral source cooperation and with independent noises at all

March 17, 2015 DRAFT



4

terminals; when evaluated for the Gaussian noise case with symmetric cooperation links, the

derived region is achievable to within 19 bits.

In [7], the authors derived a novel outer bound on the capacity region of the Gaussian IC

with bilateral source cooperation that are based on the idea of ‘dependence balance’ proposed

in [15]. In [7] it was proved that the novel bound region may be tighter than the cut-set bound.

In [8] two transmission strategies for the IC with bilateral source cooperation were designed.

The two schemes employ partial-decode-and-forward relaying, rate splitting and simultaneous

decoding. While the first strategy (see [8, Section IV]) uses only superposition coding, the second

scheme (see [8, Section V]) also employs Gelfand-Pinsker’s binning in the encoding phase.

The CCIC was specifically studied in [16], where novel outer and inner bounds were derived.

Although, to the best of our knowledge, the work in [16] gives the best known bounds for this

channel, their evaluation is not straightforward. For example, the outer bound involves several

auxiliary random variables that are jointly distributed with the inputs and for which no cardinality

bounds on the corresponding alphabets are known; the inner bound is characterized by many

constraints and auxiliary random variables whose optimization is not immediate.

In [17], the capacity of the Gaussian CCIC (GCCIC) was characterized to within a constant

gap for a set of channel parameters that, roughly speaking, excludes the case of weak interference

at both receivers. For the symmetric case (i.e., the two direct links and the two interfering links

are of the same strength) a constant gap result of 1 bit was proved in strong interference and

in weak interference when the cooperation link is ‘sufficiently strong’. Moreover, in [17], the

capacity of the GCCIC was characterized to within 2 bits for two special cases: the Z-channel,

where the CRx does not experience interference from the PTx, and the S-channel, where the

PRx does not experience interference from the CTx. These constant gap results were obtained

by using known outer bounds on the single rates Rp and Rc and on the sum-rate Rp +Rc.

In [17] we pointed out that in weak interference the capacity region of the GCCIC should also

have outer bounds of the type 2Rp +Rc and Rp +2Rc, similarly to the classical non-cooperative

IC [18]. To the best of our knowledge, these bounds are not available in the existing literature of

cooperative ICs and their derivation represents the main contribution of this work. These novel

bounds are proved to be active for the symmetric GCCIC in weak interference and when the

cooperation link is weaker than the direct link, thus closing a problem left open in [17].

2) IC with output feedback: In [19], the authors studied the Gaussian IC where each source

has a perfect output feedback from the intended destination and characterized the capacity to
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within 2 bits. In [19, Theorems 2-3], the capacity region has constraints on the single rates Rp

and Rc and on the sum-rate Rp +Rc, but not bounds of the type 2Rp +Rc and Rp + 2Rc, which

appear in the capacity region of the classical Gaussian IC in weak interference [18]. The authors

interpreted the bounds on 2Rp +Rc and Rp + 2Rc in the capacity region of the classical IC as

a measure of the amount of ‘resource holes’, or system under utilizations, due to the distributed

nature of the non-cooperative IC. The authors thus concluded that output feedback eliminates

these ‘resource holes’, i.e., the system resources are fully utilized.

In [20], the symmetric Gaussian IC with all 9 possible output feedback configurations was

analyzed. The authors proved that the bounds derived in [19] suffice to approximately characterize

the capacity of all the 9 configurations except for the case where only one source receives

feedback from the corresponding destination, i.e., the ‘single direct-link feedback model’, or the

feedback-model-(1000). For the feedback-model-(1000), it was shown that an outer bound of

the type 2Rp +Rc is needed to capture the fact that the second source (whose transmission rate

is Rc) does not receive feedback. In the language of [19] we thus have that a ‘single direct-link

feedback’ does not suffice to cover all the ‘resource holes’ whose presence is captured by the

bound on 2Rp +Rc. Such a bound was shown to be active for the feedback-model-(1000) in the

Gaussian noise case.

In [21], the authors characterized the capacity of the two-user symmetric linear deterministic

approximation of the Gaussian IC with bilateral noisy feedback, i.e., where only some of the

received bits are fed back to the corresponding transmitter. In [22], the same authors evaluated

the bounds for the symmetric Gaussian noise channel and proved that they are at most 11.7 bits

far from one another, universally over all channel parameters. The capacity characterization was

accomplished by proving novel outer bounds on 2Rp +Rc and Rp + 2Rc that rely on carefully

chosen side information random variables tailored to the symmetric Gaussian setting and whose

generalization to non-symmetric or non-Gaussian scenarios does not appear straightforward.

In this work we first provide a general framework to derive outer bounds of the type 2Rp +Rc

and Rp + 2Rc for the ISD CCIC, which recover as special cases those derived in [20], [21].

We then show that these novel outer bounds are active for the symmetric GCCIC in weak

interference when the cooperation link is weaker than the direct link, i.e., in this regime unilateral

cooperation does not enable sufficient coordination among the sources for full utilization of the

channel resources.
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3) Non-causal CIC: In the original cognitive radio overlay paradigm, first introduced in [3],

the superior capabilities of the CTx were modeled by assuming that the CTx a priori knows the

PTx’s message. The largest known achievable rate region for the general memoryless non-causal

CIC is [23, Theorem 7], which in [24] was evaluated for the Gaussian noise case and shown to be

at most 1 bit apart (see [24, Theorem VI.1]) from an outer bound region, which is characterized

by constraints on the single rates Rp and Rc and on the sum-rate Rp +Rc. In other words, the

capacity region of the non-causal CIC does not have bounds on 2Rp +Rc and Rp +2Rc, i.e., the

assumption of full a priori knowledge of the PTx’s message at the CTx allows to fully exploit

the available system resources.

In [17], we removed the ideal non-causal message knowledge assumption by considering the

CCIC and we identified the set of parameters where unilateral cooperation attains the ultimate

performance limits (i.e., generalized Degrees of Freedom (gDoF)) predicted by the non-causal

model. In this work we show that the capacity of the CCIC differs in general from that of the

ideal non-causal CIC since its capacity region has bounds of the type 2Rp +Rc and Rp + 2Rc,

i.e., in general removing the ideal full a priori message knowledge at the CTx leaves some

‘resource holes’ in the system.

B. Contributions

Our main contributions can be summarized as follows:

1) We develop a general framework to derive outer bounds of the type 2Rp +Rc and Rp +2Rc

on the capacity of the general ISD CCIC when the noises at the different source-destination

pairs are independent; this framework includes for example feedback from the intended

destination. As a special case, we recover and strengthen the bounds derived in [6], [20],

[21]. The key technical ingredient is the proof of two novel Markov chains.

2) We design a transmission strategy for the general memoryless CCIC and we derive its

achievable rate region. The proposed scheme uses superposition and binning encoding,

partial-decode-and-forward relaying and simultaneous decoding at the receivers. Since the

CCIC shares common features with the classical non-cooperative IC [25], both common

(decoded also at the non-intended receiver) and private (treated as noise at the non-intended

receiver) messages are used. Moreover, we use both cooperative (first partially decoded, then

re-encoded and finally forwarded by the CTx) and non-cooperative (sent without the help of

the CTx) messages for the PTx, while the messages of the CTx are only non-cooperative.
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3) We evaluate the outer bound and the achievable rate regions for the practically relevant

Gaussian noise channel. We prove that for the symmetric case, i.e., when the two direct

links and the two cross / interfering links are of the same strength, the achievable region is a

constant (uniformly over all channel gains) number of bits apart from the outer bound region

in the regimes that were left open in [17], i.e., weak interference and weak cooperation.

This result, jointly with [17, Theorem 1], fully characterizes the capacity of the symmetric

GCCIC to within a constant gap. Moreover, this result sheds light on the regimes where

unilateral cooperation is too weak and leaves some system resources underutilized.

C. Paper organization

The rest of the paper is organized as follows. Section II describes the general memoryless

CCIC, the ISD CCIC and the Gaussian CCIC, for which the concepts of capacity to within a

constant gap and gDoF are defined. Section III is dedicated to the outer bounds. In Section III-A

we first summarize known outer bounds and then generalize and tighten the sum-rate bound

in [6, bound u1] by proving two novel Markov chains for the involved random variables. Then,

Section III-B derives outer bounds of the type 2Rp +Rc and Rp + 2Rc for the ISD CCIC with

independent noises at the different source-destination pairs. Section IV focuses on the Gaussian

noise CCIC and shows that the two novel outer bounds suffice to prove a constant gap result

for the symmetric case in weak interference when the cooperation link is not ‘strong enough’,

i.e., the regime which was left open in [17]. In particular, in Section IV-A the outer bounds

are evaluated for the GCCIC, in Section IV-B a novel transmission strategy is designed and its

achievable rate region is derived and finally in Section IV-C the achievable rate region is shown

to be a constant number of bits apart from the outer bound region. Section V concludes the

paper. Some proofs may be found in Appendix.

Although this paper considers only the symmetric Gaussian noise CCIC, we believe that the

results can be extended to the general non-symmetric case albeit with more tedious and involved

computations, especially for the achievable region, than those reported here.

D. Notation

Throughout the paper we adopt the following notation convention. The subscript c (in sans

serif font) is used for quantities related to the cognitive pair, while the subscript p (in sans serif

font) for those related to the primary pair. The subscript f or F (in sans serif font) is used to refer
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Fig. 1. The general memoryless CCIC.

to generalized feedback information received at the CTx. The subscript c (in roman font) is used

to denote both common and cooperative messages, the subscript p (in roman font) to denote

private messages and the subscript n (in roman font) to denote non-cooperative messages. With

[n1 : n2] we denote the set of integers from n1 to n2 ≥ n1 and [x]+ := max{0, x} for x ∈ R;

Y j is a vector of length j with components (Y1, . . . , Yj) and E [·] indicates the expected value;

a∗ denotes the complex conjugate of a and |a| is the absolute value of a; ∅ is the empty set.

The notation eq(n) is used to indicate the rightmost side of the equation number n.

II. SYSTEM MODEL

A. The general memoryless channel

A general memoryless CCIC, shown in Fig. 1, consists of two input alphabets (Xp,Xc), three

output alphabets (YFc,Yp,Yc) and a memoryless transition probability PYFc,Yp,Yc|Xp,Xc . The PTx

has a message Wp ∈ [1 : 2NRp ] for the PRx and the CTx has a message Wc ∈ [1 : 2NRc ] for the

CRx, where N ∈ N denotes the codeword length and Rp ∈ R+ and Rc ∈ R+ the transmission

rates for the PTx and the CTx, respectively, in bits per channel use (logarithms are in base 2).

The messages Wp and Wc are independent and uniformly distributed on their respective domains.

At time i, i ∈ [1 : N ], the PTx maps its message Wp into a channel input symbol Xpi(Wp) and

the CTx maps its message Wc and its past channel observations into a channel input symbol

Xci(Wc, Y
i−1
Fc ). At time N , the PRx outputs an estimate of its intended message based on all its

channel observations as Ŵp(Yp
N), and similarly the CRx outputs Ŵc(Yc

N). The capacity region is
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Fig. 2. The ISD CCIC.

the convex closure of all non-negative rate pairs (Rp, Rc) such that maxu∈{c,p} P[Ŵu 6= Wu]→ 0

as N → +∞.

B. The ISD channel

The ISD model, shown in Fig. 2 and first introduced in [26] for the classical IC, assumes that

the input Xp, respectively Xc, before reaching the destinations, is passed through a memoryless

channel to obtain Tp, respectively Tc. The channel outputs are therefore given by

Yp = fp (Xp, Tc) , (1a)

Yc = fc (Xc, Tp) , (1b)

where fu, u ∈ {p, c}, is a deterministic function that is invertible given Xu, or in other words,

Tp, respectively Tc, is a deterministic function of (Yc, Xc), respectively (Yp, Xp).

In the CCIC, the generalized feedback signal at the CTx satisfies

YFc = ff (Xc, Tf) , (1c)

for some deterministic function ff that is invertible given Xc, i.e., Tf is a deterministic function

of (YFc, Xc), where Tf is obtained by passing Xp through a noisy channel [6].

In this work we assume that the noises seen by the different source-destination pairs are

independent, that is,

PYFc,Yp,Yc|Xp,Xc = PYp|Xp,XcPYFc,Yc|Xp,Xc . (2)
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Fig. 3. The GCCIC.

In other words, we assume that the noises at the PRx and at the CRx are independent, but we do

not impose any constraint on the noises at the CTx and CRx. For example, the case of output

feedback in [20, model-(1000)] is obtained by setting Tf = Tp, which would not have been

possible within the ‘all noises are independent’ setting studied in [6].

C. The Gaussian noise channel

A single-antenna GCCIC, shown in Fig. 3, is a special case of the ISD model described in

(1) and it is defined by the input / output relationship

Tp :=
√
Ipe

jθpXp + Zc, (3a)

Tc :=
√
Ice

jθcXc + Zp, (3b)

Tf =
√
CXp + Zf , (3c)

Yp =
√

SpXp + Tc, (3d)

Yc = Tp +
√

ScXc, (3e)

YFc = Tf , (3f)

where Tf = YFc in (3f) is without loss of generality since the CTx can remove the contribution

of its transmit signal Xc from its received signal YFc. The channel gains are assumed to be
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constant for the whole transmission duration, and hence known to all nodes. Without loss of

generality, certain channel gains can be taken to be real-valued and non-negative since a node

can compensate for the phase of one of its channel gains. The channel inputs are subject to a

unitary average power constraint, i.e., E [|Xi|2] ≤ 1, i ∈ {p, c}. This assumption is without loss

of generality, since non-unitary power constraints can be incorporated into the channel gains.

The noises are circularly symmetric Gaussian random variables with, without loss of generality,

zero mean and unitary variance. We assume that the noise Zp is independent of (Zc, Zf), while

(Zc, Zf) can be arbitrarily correlated.

For the Gaussian noise case, it is customary to approximate the channel capacity as follows.

Definition 1 (Capacity region to within a constant gap) The capacity region of the GCCIC

is said to be known to within GAP bits if one can show an inner bound region I and an outer

bound region O such that

(Rp, Rc) ∈ O =⇒ ([Rp − GAP]+, [Rc − GAP]+) ∈ I.

For the two particular cases of C = 0 (i.e., non-cooperative IC) and of C → +∞ (non-causal

CIC), the capacity is known to within 1 bit [18], [24].

The approximate (i.e., to within a constant gap) characterization of the capacity region implies

the exact knowledge of its gDoF region. The gDoF metric, first introduced in [18] for the non-

cooperative IC, captures the high-SNR behavior of the capacity as a function of the relative

strengths of the direct, cooperation and interfering links. The gDoF represents a more refined

characterization of the capacity in the high-SNR regime compared to the classical DoF since

it captures the fact that, in wireless networks, the channel gains can differ by several orders of

magnitude. In this work, we consider the symmetric case parameterized as

Sp = Sc := S1, S ≥ 0, direct links, (4a)

Ip = Ic := Sα, α ≥ 0, interfering links, (4b)

C := Sβ, β ≥ 0, cooperation link, (4c)

where α measures the strength of the interference links compared to the direct link, while β

the strength of the cooperation link compared to the direct link. Thus, the symmetric GCCIC is
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parameterized by the triplet (S, α, β), where S is referred to as the (direct link) SNR, α as the

interference exponent and β as the cooperation exponent.1

Definition 2 (gDoF) Given the parameterization in (4), the gDoF is defined as

d(α, β) := lim
S→+∞

max{Rp +Rc}
2 log(1 + S)

, (5)

where the maximization is intended over all possible achievable rate pairs (Rp, Rc).

The gDoF of the classical IC (C = 0) is the “W-curve” first characterized in [18] and given

by d(α, 0). The gDoF of the non-causal CIC (C→∞) is the “V-curve”, which can be evaluated

from the capacity characterization to within 1 bit of [24], and is given by d(α,∞). An interesting

question this work answers is whether there are values of β > 0 such that d(α, β) = d(α, 0)

— in which case unilateral causal cooperation is not helpful in terms of gDoF — or values of

β <∞ such that d(α, β) = d(α,∞) — in which case unilateral causal cooperation is equivalent

to non-causal message knowledge in terms of gDoF.

Following the naming convention of the non-cooperative IC [18], we say that the symmetric

GCCIC has strong interference if S ≤ I, that is 1 ≤ α, and weak interference otherwise. Similarly,

we say that the symmetric GCCIC has strong cooperation if S ≤ C, that is 1 ≤ β, and weak

cooperation otherwise.

III. OUTER BOUNDS ON THE CAPACITY REGION FOR THE CCIC

This section is dedicated to the study of outer bounds on the capacity region for the CCIC.

First, in Section III-A, some known outer bounds are summarized. Moreover, the outer bound

originally derived in [6] for the ISD CCIC with independent noises at all terminals, is generalized

to the case where only the noises at the different source-destination pairs are independent as

in (2). Then, in Section III-B, two novel outer bounds of the type Rp + 2Rc and 2Rp + Rc are

derived for the ISD CCIC with independent noises at the different source-destination pairs as

in (2). As we shall see in Section IV, these novel outer bounds allow to characterize the capacity

to within a constant gap for the symmetric GCCIC in the regimes that were left open in [17].

1In principle the system performance also depends on the phases of the interfering links (θc, θp). However, as far as gDoF and

capacity to within a constant gap are concerned, the phases (θc, θp) only matter if the IC channel matrix

 √
Sp

√
Ice

jθc

√
Ipe

jθp
√
Sc


is rank deficient [19], in which case one received signal is a noisier version of the other. In this work, we assume that the phases

are such that the IC channel matrix is full rank as in [19].
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A. Known outer bounds and some generalizations

In the literature, several outer bounds are known for the IC with bilateral source coopera-

tion [5], [6], which we specialize here to the CCIC. In particular, for a joint input distribution

PXp,Xc , we have:

1) For the general memoryless CCIC, described in Section II-A, the cut-set upper bound [27]

gives

Rp ≤ I (Xp;Yp, YFc|Xc) , (6a)

Rp ≤ I (Xp, Xc;Yp) , (6b)

Rc ≤ I (Xc;Yc|Xp) , (6c)

and from [5] we have

Rp +Rc ≤ I (Xp;Yp, YFc|Yc, Xc) + I (Xp, Xc;Yc) , (6d)

Rp +Rc ≤ I (Xc;Yc|Yp, Xp) + I (Xp, Xc;Yp) . (6e)

Notice that in the bounds in (6a)-(6e), YFc always appears conditioned on Xc. This implies

that, for the ISD channel described in Section II-B, YFc can be replaced with Tf without

loss of generality.

2) For the memoryless ISD CCIC, described in Section II-B, with independent noises at the

different source-destination pairs as in (2), we have

Rp +Rc ≤I (Yp;Xp, Xc|Tp, Tf) + I (Yc, Tf ;Xp, Xc|Tc) . (6f)

The details of the proof of the bound in (6f) can be found in Appendix B.

We note that a bound as the one in (6f) was originally derived in [6, Appendix IV pages

177-179] for the ISD IC with bilateral source cooperation when all noises are independent;

for the case of unilateral source cooperation, this follows from the following Markov chain

(Wp, Xp
i)− (Tf

i−1)− (Wc, Xc
i, Tc

i), ∀i ∈ [1 : N ], (7a)

(Wc, Xc
i)− (Tf

i−1)− (Wp, Xp
i, Tp

i), ∀i ∈ [1 : N ]. (7b)

A careful analysis of the bounding steps in [6, Appendix IV pages 177-179] shows that

the derivation of the bound in (6f) is valid even when PYFc,Yc,Yp|Xp,Xc factors as in (2), i.e.,

the independent noises assumption at all terminals captured by the product distribution

PYFc,Yc,Yp|Xp,Xc = PYFc|Xp,XcPYc|Xp,XcPYp|Xp,Xc is not necessary for the bound to hold by
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suitably modifying the Markov chains in (7) — see Lemma 1. Among the advantages

of the bound in (6f) is that the case of output feedback from the intended destination is a

special case of the more general framework and can be obtained by YFc = Yc.

We note that our bound in (6f) is not only more general but also tighter than the one in [6,

Appendix IV pages 177-179] since I (Tf ;Xp, Xc|Tc) ≤ I (Tf ;Xp) and H (Yp|Tp, Tf) ≤
H (Yp|Tp).

The key step of the proof for the bound in (6f) is the following Lemma:

Lemma 1 For the ISD CCIC with the noise structure in (2), the following Markov chains

hold for all i ∈ [1 : N ]:

(Wp, Tp
i−1, Xp

i)− (Tc
i−1, Tf

i−1)− (Tci), (8a)

(Wc, Tc
i−1, Xc

i)− (Tp
i−1, Tf

i−1)− (Tpi, Tf i). (8b)

Proof: The proof is based on the Functional Dependence Graph (FDG) [28] and can be

found in Appendix A.

3) For the memoryless ISD IC with output feedback YFc = Yc in (2), from [20, model-(1000)]

we have

Rp + 2Rc ≤I (Yc;Xp, Xc) + I (Yc;Xc|Yp, Xp) + I (Yp;Xp, Xc|Tp) . (9)

To the best of our knowledge, the bound in (9) is the only upper bound of the type Rp+2Rc

available in the literature for the cooperative IC (which includes feedback models as a special

case), but it is only valid for the case of output feedback. Our goal in the next section is

to derive bounds of the type of (9) for the class of ISD CCICs described in Section II-B

with independent noises at the different source-destination pairs as in (2).

B. Novel outer bounds

In this section we derive two novel outer bounds of the type Rp + 2Rc and 2Rp + Rc on

the capacity region for the ISD CCIC described in Section II-B with independent noises at the

different source-destination pairs as in (2). These two outer bounds generalize to the CCIC those

of the same type in [26, Theorem 1], derived for the classical non-cooperative IC.

Our main result in this section is as follows.
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Theorem 1 For the ISD CCIC satisfying the condition in (2), the capacity region is outer

bounded by

2Rp +Rc ≤ I (Yp;Xp, Xc) + I (Yp;Xp|Tf , Yc, Xc) + I (Yc, Tf ;Xp, Xc|Tc) , (10)

Rp + 2Rc ≤ I (Yc;Xp, Xc) + I (Yc;Xc|Tf , Yp, Xp) + I (Yp, Tf ;Xp, Xc|Tp) . (11)

for some joint input distribution PXp,Xc .

Note that, when evaluated for the case of output feedback with independent noises, i.e., Tf =

Tp, the outer bound in (11) reduces to the one in (9).

Proof: By Fano’s inequality, by considering that the messages Wp and Wc are independent

and by giving side information similarly to [6], we have

N(2Rp +Rc − 3εN)

≤ 2I
(
Wp;Yp

N
)

+ I
(
Wc;Yc

N
)

≤ I
(
Wp;Yp

N
)

+ I
(
Wp;Yp

N , Tp
N , Tf

N |Wc

)
+ I

(
Wc;Yc

N , Tc
N , Tf

N
)

= H
(
Yp

N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp,Wc

)
(12a)

+H
(
Yp

N , Tp
N , Tf

N |Wc

)
−H

(
Yc
N , Tc

N , Tf
N |Wc

)
(12b)

+H
(
Yc
N , Tc

N , Tf
N
)
−H

(
Yp

N |Wp

)
. (12c)

We now analyze and bound each pair of terms.

Pair in (12a): We have

H
(
Yp

N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp,Wc

)

(a)
=
∑

i∈[1:N ]

H
(
Ypi|Ypi−1

)
−H

(
Ypi, Tpi, Tf i|Wp,Wc, Yp

i−1, Tp
i−1, Tf

i−1, Xp
i, Xc

i
)

(b)

≤
∑

i∈[1:N ]

H
(
Ypi
)
−H

(
Ypi, Tpi, Tf i|Wp,Wc, Yp

i−1, Tp
i−1, Tf

i−1, Xp
i, Xc

i
)

(c)
=
∑

i∈[1:N ]

H
(
Ypi
)
−H

(
Ypi, Tpi, Tf i|Xpi, Xci

)
,

where: the equality in (a) follows by applying the chain rule of the entropy and since, for the

ISD CCIC, the encoding function Xci(Wc, Y
i−1
Fc ) is equivalent to Xci(Wc, Tf

i−1) and since, given

Wp, Xp is uniquely determined; the inequality in (b) is due to the conditioning reduces entropy

principle; the equality in (c) follows because of the ISD property of the channel and since the

channel is memoryless.
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Pair in (12b): We have

H
(
Yp

N , Tp
N , Tf

N |Wc

)
−H

(
Yc
N , Tc

N , Tf
N |Wc

)

(d)
=
∑

i∈[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1,Wc, Xc

i
)
−H

(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1,Wc, Xc

i
)

(e)
=
∑

i∈[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1,Wc, Xc

i
)
−H

(
Tpi, Tci, Tf i|Tpi−1, Tci−1, Tf i−1,Wc, Xc

i
)

(f)

≤
∑

i∈[1:N ]

H
(
Tpi, Tf i|Tpi−1, Tf i−1,Wc, Xc

i
)
−H

(
Tpi, Tf i|Tpi−1, Tci−1, Tf i−1,Wc, Xc

i
)

︸ ︷︷ ︸
= 0 because of (8b)

+
∑

i∈[1:N ]

H
(
Ypi|Tpi, Tf i, Xci

)
−H

(
Tci|Tpi, Tci−1, Tf i,Wc, Xc

i, Xp
i
)

(g)
=
∑

i∈[1:N ]

H
(
Ypi|Tpi, Tf i, Xci

)
−H

(
Ypi|Tpi, Tf i, Xci, Xpi

)
,

where: the equality in (d) follows by applying the chain rule of the entropy and since, for the

ISD CCIC, the encoding function Xci(Wc, Y
i−1
Fc ) is equivalent to Xci(Wc, Tf

i−1); the equality in

(e) is due to the fact that Yc is a deterministic function of (Xc, Tp), which is invertible given

Xc; the inequality in (f) is due to the conditioning reduces entropy principle; the equality in (g)

follows because of the ISD property of the channel and since the channel is memoryless.

Pair in (12c): We have

H
(
Yp

N |Wp

)

(h)
=
∑

i∈[1:N ]

H
(
Ypi|Ypi−1,Wp, Xp

i
)

(i)
=
∑

i∈[1:N ]

H
(
Tci|Tci−1,Wp, Xp

i
)

(j)

≥
∑

i∈[1:N ]

H
(
Tci|Tci−1,Wp, Xp

i, Tf
i−1)

(k)
=
∑

i∈[1:N ]

H
(
Tci|Tci−1, Tf i−1

)
− I

(
Tci;Wp, Xp

i|Tci−1, Tf i−1
)

︸ ︷︷ ︸
= 0 because of (8a)

,

where: the equality in (h) follows by applying the chain rule of the entropy and since, given Wp,

Xp is uniquely determined; the equality in (i) is due to the fact that Yp is a deterministic function

of (Xp, Tc), which is invertible given Xp; the inequality in (j) follows since conditioning reduces

the entropy; the equality in (k) follows from the definition of mutual information. Therefore,

H
(
Yc
N , Tc

N , Tf
N
)
−H

(
Yp

N |Wp

)
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(l)

≤
∑

i∈[1:N ]

H
(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1

)
−H

(
Tci|Tci−1, Tf i−1

)

(m)

≤
∑

i∈[1:N ]

H
(
Tci|Tci−1, Tf i−1

)
−H

(
Tci|Tci−1, Tf i−1

)
+H

(
Yci, Tf i|Yci−1, Tci, Tf i−1

)

(n)

≤
∑

i∈[1:N ]

0 +H (Yci, Tf i, |Tci) ,

where the inequality in (l) is a consequence of the inequality in (k) above and the inequalities

in (m) and (n) are due to the conditioning reduces entropy principle.

Final step: By combining everything together, by introducing the time sharing random

variable uniformly distributed over [1 : N ] and independent of everything else, by dividing both

sides by N and taking the limit for N →∞ we get the bound in (10). We finally notice that by

dropping the time sharing we do not decrease the bound. Note also that, since for the ISD model

defined in (1) Tp, respectively Tc, is a deterministic function of (Yc, Xc), respectively (Yp, Xp),

we have H (Tp, Tf |Yp, Xp, Xc) = H (Yc, Tf |Tc, Xp, Xc).

By following similar steps as in the derivation of (10) and by using the Markov chains in (8a)

and (8b), one can derive the upper bound in (11). For completeness, we report the proof of (11)

in Appendix C.

In the next section we will evaluate the outer bounds in (6) and those in Theorem 1 for the

Gaussian noise channel described in Section II-C and show that they allow to characterize the

capacity to within a constant gap in the regimes which were left open in [17].

IV. THE CAPACITY REGION TO WITHIN A CONSTANT GAP FOR THE SYMMETRIC GCCIC

In this section we analyze the practically relevant Gaussian noise channel described in Section

II-C. In particular, we focus on the symmetric case defined in (4). For such a scenario, in [17,

Theorem 1], we proved a constant gap of 1 bit in the strong interference regime, i.e., I ≥ S

(equivalent to α ≥ 1), and in the weak interference regime, i.e., I < S (equivalent to α < 1)

when the cooperation link is ‘sufficiently strong’ as quantified by C ≥ ∆th with

∆th :=

(
S + I + 2

√
IS

I

1 + I

)
(1 + I), (equivalent to β ≥ α + 1). (13)

The regimes for which we proved the constant gap result of 1 bit in [17, Theorem 1] are depicted

in blue in Fig. 4, where the whole set of parameters has been partitioned into multiple sub-regions

depending upon different levels of cooperation (β) and interference (α) strengths.
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Fig. 4. Gap for different parameter regimes for the symmetric GCCIC.

Therefore, the case of weak interference (α < 1) and weak cooperation (β < α + 1) (i.e.,

yellow, red and green regions in Fig. 4) was left open in [17], where we speculated that for

this regime, novel outer bounds of the type 2Rp + Rc and Rp + 2Rc would be needed since,

when the cooperation link is not ‘sufficiently strong’, the performance of the GCCIC should

reduce to the classical non-cooperative IC, whose capacity has bounds of the type 2Rp +Rc and

Rp + 2Rc [18]. With the two novel outer bounds in Theorem 1 we can prove the main result of

this section:

Theorem 2 The capacity region outer bound for the symmetric GCCIC in weak interference,

i.e., I < S, is achievable to within a constant gap. In particular:

1) C ≤ S (i.e., β ≤ 1), which corresponds to the green and red regions in Fig. 4: GAP ≤ 5 bits.

2) S < C < ∆th (i.e., 1 < β < 1 + α) for ∆th in (13), which corresponds to the yellow region

in Fig. 4: GAP ≤ 2 bits.

3) For the remaining parameter regimes, which correspond to the blue region in Fig. 4: GAP ≤
1 bits [17].

Theorem 2 and [17, Theorem 1] characterize the whole capacity region for the symmetric
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GCCIC to within 5 bits. The rest of this section is dedicated to the proof of Theorem 2. In

particular, in Section IV-A we evaluate the outer bounds in (6) and those in Theorem 1 for

the symmetric GCCIC, in Section IV-B we derive a novel achievable rate region and finally in

Section IV-C we show that the achievable rate region is a constant number of bits apart from

the outer bound region.

A. Outer bound region

We evaluate the bounds in (6), (10) and (11) for the Gaussian noise channel in (3). We

define E [XpXc
∗] := ρ : |ρ| ∈ [0, 1]. We also assume that all the noises are independent, which

represents a particular case for which our outer bounds hold. By the ‘Gaussian maximizes

entropy’ principle, jointly Gaussian inputs exhaust the outer bounds in (6), (10) and (11). Thus,

we start by evaluating each mutual information term in (6), (10) and (11) by using jointly

Gaussian inputs. Then, we further upper bound each mutual information term over the input

correlation coefficient ρ : |ρ| ∈ [0, 1]. By doing so we obtain:

Lemma 2 The capacity region of the symmetric GCCIC is contained into

Rp ≤ log (1 + C + S) , (14a)

Rp ≤ log

(
1 +

(√
S +
√
I
)2)

, (14b)

Rc ≤ log (1 + S) , (14c)

Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log

(
1 +

(√
S +
√
I
)2)

, (14d)

Rp +Rc ≤ log

(
1 +

S + C

1 + I

)
+ log

(
1 +

(√
S +
√
I
)2)

︸ ︷︷ ︸
≥eq(14d)

, (14e)

Rp +Rc ≤ log

(
1 + C + I +

S

1 + I

)
+ log

(
1 + I + S

1 + C

1 + C + I

)

︸ ︷︷ ︸
for C≥I
≥ log(1+2I+ S

1+I)+log(1+I+ S
2)≥eq(14d)−2 log(2)

+2 log(2), (14f)

2Rp +Rc ≤ log

(
1 +

(√
S +
√
I
)2)

+ log

(
1 +

S

1 + I

)

︸ ︷︷ ︸
sum-rate bound in (14d)

+∆(14g) + log(2), (14g)

∆(14g) := log

(
1+

C

1 + I + S

)
+log

(
1 + I + S

1 + C

1 + I + C

)
for C≥I
≥ log

(
1 + I +

S

2

)
, (14h)
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Rp + 2Rc ≤ log

(
1 +

(√
S +
√
I
)2)

+ log

(
1 +

S

1 + I

)

︸ ︷︷ ︸
sum-rate bound in (14d)

+∆(14i) + log(2), (14i)

∆(14i) := log

(
1 + C + I +

S

1 + I

)
for C≥S
≥ log(1 + S). (14j)

Proof: The outer bound region for the general GCCIC is given in (25) in Appendix D that,

specialized to the symmetric case, gives the region in (14).

We note that the outer bound expressions in (14) are slightly different from those reported in

[1, eq.(1)] and [2, eq.(6)] because of different bounding steps over the input correlation factor

ρ, |ρ| ∈ [0, 1]; the form presented in (14), although not being the tightest, is in our opinion the

most amenable for easy closed-form gap computations.

The following discussion applies ‘up to a constant gap’, that is, by excluding terms that are

not a function of the channel gains. In weak interference the bound in (14a) can be dropped

since the condition I ≤ S in (14b) implies Rp ≤ log (1 + S) + 2 log(2). The bound in (14e) can

also be dropped because it is looser than the one in (14d). These observations imply that in the

weak interference regime only the ‘ISD bounds’ in (14f)-(14i) depend on the strength of the

cooperation link C. The channel conditions for which the whole outer bound in (14) does not

depend on C can be characterized as follows:

1) C ≥ max{S, I}: when the outer bound in (14) is an outer bound for the non-causal Gaussian

CIC. The bounds in (14g) and (14i) are redundant when C ≥ max{S, I}. Moreover, for

C ≥ I the sum-rate in (14f) is looser than the one in (14d). We therefore conclude that for

C ≥ max{S, I} the outer bound in (14) does not depend on C and reduces to the region

Rp ≤ log

(
1 +

(√
S +
√
I
)2)

, (15a)

Rc ≤ log (1 + S) , (15b)

Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log

(
1 +

(√
S +
√
I
)2)

, (15c)

which is an outer bound on the capacity region of the non-causal Gaussian CIC (see [24,

Theorem III.1]). Thus, our outer bound predicts that, when C ≥ max{S, I} (yellow and part

of the blue regions in Fig. 4), the symmetric GCCIC should behave, up to constant gap, as

the symmetric non-causal Gaussian CIC; in Section IV-C3, we will formally prove this for

March 17, 2015 DRAFT



21

the yellow regime in Fig. 4, i.e., for I ≤ S ≤ C < ∆th with ∆th defined in (13) (the blue

regimes in Fig. 4, i.e., S ≤ I and S > I with C ≥ ∆th, were proved in [17]).

2) C ≤ min
{
S, I(1+I)

1+S

}
: when the outer bound in (14) is an outer bound for the classical

Gaussian IC. In [17], we proved this behavior in strong interference (i.e., S ≤ I), in

which case we have min
{
S, I(1+I)

1+S

}
= S. On the other hand, in weak interference we

have min
{
S, I(1+I)

1+S

}
= I(1+I)

1+S
, in which case the condition C ≤ I(1+I)

1+S
implies C ≤ I and

S 1+C
1+C+I

≤ S
1+I

+ I; thus, the outer bound in (14) reduces to the region

Rp ≤ log (1 + S) + 2 log(2), (16a)

Rc ≤ log (1 + S) , (16b)

Rp +Rc ≤ log (1 + S) + log

(
1 +

S

1 + I

)
+ 2 log(2), (16c)

Rp +Rc ≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
+ 4 log(2), (16d)

2Rp +Rc ≤ log (1 + S + I) + log

(
1 + S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
+ 5 log(2), (16e)

Rp + 2Rc ≤ log (1 + S + I) + log

(
1 + S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
+ 4 log(2), (16f)

which is an outer bound on the capacity region of the classical Gaussian IC (see [18,

Theorem 3]). Thus, our outer bound predicts that, when C ≤ min
{
S, I(1+I)

1+S

}
, the symmetric

GCCIC should behave, up to constant gap, as the non-cooperative Gaussian IC; we will

formally prove this for the weak interference regime C ≤ I(1+I)
1+S

, I ≤ S in Section IV-C1 (the

strong interference regime C ≤ S ≤ I was proved in [17]).

B. Transmission strategy and achievable rate region

We next design a transmission strategy for the CCIC. In particular, since we aim to derive

a scheme that is approximately optimal in weak interference, we consider both private and

common messages for the PTx and the CTx, in the spirit of [18] for the classical IC. Moreover,

depending on the strength of the cooperation link, the PTx might take advantage of the help

of the CTx in transmitting its message, i.e., the messages of the PTx are both cooperative and

non-cooperative.

In order to enable cooperation, a block Markov coding scheme is used as follows. Transmission

is over a frame of B � 1 slots. In slot t ∈ [1 : B], the PTx sends its old (cooperative common and
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private) messages (Wpcc,t−1,Wppc,t−1) and superposes to them the new (cooperative common and

private) messages (Wpcc,t,Wppc,t) and the new non-cooperative common and private messages

(Wpcn,t,Wppn,t). At the end of slot t, the CTx jointly decodes the new cooperative messages

(Wpcc,t,Wppc,t) after subtracting the contribution of the old messages (Wpcc,t−1,Wppc,t−1). At

the beginning of slot t ∈ [1 : B], the CTx knows the PTx’s old private cooperative message

Wppc,t−1 and, depending on the strength of the cooperation link compared to the interference link,

the CTx might precode both its private and common non-cooperative messages (Wccn,t,Wcpn,t)

against the known interference, in such a way that the CRx does not experience interference

from the codewords conveying these messages. The destinations wait until the whole frame has

been received and then proceed to simultaneous backward decode all messages.

The detailed derivation of the achievable rate region can be found in Appendix E. The achiev-

able rate region in compact form can be obtained by applying the Fourier-Motzkin Elimination

(FME) procedure on the rate constraints in (27). Since the rate region in (27) is specified by 8

auxiliary random variables and by 20 rate constraints, the FME turns out to be quite involved.

However, depending on the strength of the cooperation link compared to the direct and interfering

links, the PTx might not use some of the messages, i.e., the corresponding auxiliary random

variables are set to a deterministic constant. In particular:

1) When β ≤ max {α, 1− α} (green region in Fig. 4), the cooperation link is quite weak;

we therefore expect the CCIC to ‘behave’ as the classical non-cooperative IC [18] for

which both private and common non-cooperative messages are approximately optimal.

Differently from the classical IC, the PTx also conveys part of its message through the

CTx. This cooperative message is common, and thus also decoded at the CRx. Actually,

since the cooperation link is weak, the amount of information that can be decoded, and

hence delivered, by the CTx is limited. Thus, there is no need to employ binning, i.e.,

the scheme is based on superposition only. In other words, for this regime, the PTx does

not make use of the private cooperative message, i.e., with reference to the transmission

strategy in Appendix E, we set S1 = Z1 = ∅.
2) When max {α, 1− α} < β ≤ 1 (red region in Fig. 4), the cooperation link is stronger than

the interfering link, but weaker than the direct link. Thus, on the one hand the PTx takes

advantage of these channel conditions by using cooperative messages; on the other hand,

the cooperation link is not strong enough (i.e., weaker than the direct link) to allow the

CTx to fully decode the PTx’s message, and hence the PTx also uses a non-cooperative
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message. In particular, the non-cooperative message of the PTx is private; this is because

the interference is too weak and forcing the CRx to fully decode the PTx’s message would

constrain the rate too much. At the same time, the CTx can also benefit from the strength

of the cooperation link and boost its rate performance by precoding its message against

the private cooperative message of the PTx, i.e., the scheme is based both on superposition

and binning. In other words, for this regime, the PTx does not make use of the common

non-cooperative message, i.e., with reference to the transmission strategy in Appendix E,

we set U1 = ∅.
3) When 1 < β < α+1 (yellow region in Fig. 4), the cooperation link is stronger than both the

interfering and the direct links. Thus, the PTx takes advantage of the strong cooperation link

and sends its message to the PRx with the help of the CTx, i.e., the messages of the PTx are

only cooperative. Moreover, since the interference is weak, the messages of the CTx and of

the PTx are both common and private. Also for this regime we use binning at the CTx. In

other words, for this regime, the PTx does not make use of the non-cooperative messages,

i.e., with reference to the transmission strategy in Appendix E, we set U1 = T1 = ∅.
As per our discussion above, depending on the strength of the cooperation link compared to the

direct and interfering links, some types of messages are not needed to achieve the outer bound

to within a constant gap. Thus, instead of performing the FME directly on the rate constraints

in (27), we apply the FME for two special cases: when S1 = Z1 = ∅ (to obtain a scheme for the

green region in Fig. 4) and when U1 = ∅ (to obtain a scheme for the red and yellow regions in

Fig. 4; for the yellow region we then further set T1 = ∅). The details can be found in Appendix

E-A and Appendix E-B, respectively. In the next section, we will show that the two achievable

rate regions achieve the outer bound in (14) to within a constant gap.

Remark 1 Although in this work we focus on the symmetric GCCIC, i.e., the two direct and

the two interfering links are of the same strength, the derived outer bound and the designed

transmission strategy are valid for a general GCCIC, which is described by 5 different channel

gains. Extensions to the general case are part of future work.

Remark 2 The novelty of the transmission strategy designed in Section IV-B compared to those

proposed in [17] lies in the fact that the PTx uses cooperative and non-cooperative messages

together. In particular: (i) the scheme based on superposition coding in [17, Appendix B] used

U1 = ∅, i.e., the PTx does not use a non-cooperative common message, while the superposition
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based scheme here proposed has U1 6= ∅; (ii) the scheme based on binning and superposition

coding in [17, Appendix C] used U1 = T1 = ∅, i.e., the PTx does not use non-cooperative

common and private messages, while the scheme here proposed has U1 6= ∅ and T1 6= ∅.

C. Constant gap characterization

In the following we analyze the green, red and yellow regions in Fig. 4 separately.

1) Regime C ≤ max
{
I, S

1+I

}
, I ≤ S (green region in Fig. 4): As remarked in item 1 in

Section IV-B, for this region we set S1 = Z1 = ∅ in the transmission strategy in Appendix E,

i.e., the PTx does not use private cooperative messages. With this choice and after performing

the FME, we obtain the rate region in (28) in Appendix E-A, which evaluated for the Gaussian

noise case gives the region in (29). In (29), we set Ip = Ic = I, Sp = Sc = S (i.e., we consider

the symmetric case) and |b2|2 = 1− |a2|2 = 1
1+I

so that the private message of CTx (conveyed

by T2) is received below the noise level at the PRx in the spirit of [18]. Regarding the choice

of the power splits for the PTx, we further split the green region into two subregions: subregion

(i) for which C ≤ I(1+I)
1+S

(i.e., β ≤ [2α − 1]+) and subregion (ii) for which C > I(1+I)
1+S

(i.e.,

β > [2α− 1]+). We now analyze these two subregions separately.

Subregion (i): when β ≤ [2α− 1]+, the cooperation link is very weak and thus we expect the

GCCIC to behave as the non-cooperative Gaussian IC [18]. Therefore, we set the power of the

cooperative common message (carried by V1) to |b1|2 = 0 in (29) and |c1|2 = 1− |a1|2 = 1
1+I

so

that the private message of PTx (conveyed by T1) is received below the noise level at the CRx

in the spirit of [18]. With these choices and by removing the redundant constraints in (29) (i.e.,

eq(29a), eq(29e), eq(29f), eq(29g), eq(29j) and eq(29k)), we get that the achievable rate region

in (29) is contained into

Igreen-(i) : Rp ≤ log (1 + S)− log(2), (17a)

Rc ≤ log (1 + S)− log(2), (17b)

Rp +Rc ≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
− 2 log(2), (17c)

Rp +Rc ≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
− 2 log(2), (17d)

2Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log (1 + S + I) + log

(
1 + I +

S

1 + I

)
− 3 log(2), (17e)

Rp + 2Rc ≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 +

S

1 + I

)
+ log (1 + S + I)− 3 log(2). (17f)
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Notice that the rate region in (17) is the achievable region for the classical symmetric non-

cooperative IC in weak interference, which is optimal up to a gap of 1 bit/user [18].

For this regime, the outer bound in (14) can be further upper bounded (by removing the

constraints in (14b) and (14e)) as

Ogreen-(i) : Rp ≤ log (1 + S) + log(2), (18a)

Rc ≤ log (1 + S) , (18b)

Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log (1 + S + I) + log(2), (18c)

Rp +Rc

0≤C≤I
≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 + I + S

1 + C

1 + I

)
+ 3 log(2)

C≤ I(1+I)
1+S

≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
+ 4 log(2), (18d)

2Rp +Rc

0≤C≤I
≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
+ log

(
1 + I + S

1 + C

1 + I

)
+ 3 log(2)

C≤ I(1+I)
1+S

≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
+ 4 log(2),

(18e)

Rp + 2Rc

0≤C≤I
≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
+ log

(
1 + I +

S

1 + I

)
+ 3 log(2).

(18f)

It is easy to see that the outer bound region in (18) and the achievable rate region in (17) are

to within 3 bits/user of one another. Notice that in order to prove a constant gap we compared:

eq(17a) with eq(18a), eq(17b) with eq(18b), eq(17c) with eq(18c), eq(17d) with eq(18d), eq(17e)

with eq(18e), and eq(17f) with eq(18f).

Subregion (ii): when β > [2α− 1]+, the GCCIC starts to benefit from cooperation and indeed

the outer bound region depends on C. Therefore the cooperative common message carried by

V1 can boost the rate performance of the system. In (29), we set the power of the common

non-cooperative message (carried by U1) to |a1|2 = 1
2(1+min{C,I}) . This choice is motivated by

the fact that, in order to approximately match the outer bound, the single rate constraint on Rp

in (29b) must approximately behave as an interference-free point-to-point channel. Therefore,

the fact that the CTx can now decode part of the message of the PTx (carried by V1) must not

limit (up to a constant gap) the performance of the PTx. In other words, since C is ‘quite large’
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but not ‘huge’, the rate of V1 cannot be too large. Moreover, we set |c1|2 = 1
2(1+I)

so that the

private message of PTx (conveyed by T1) is received below the noise level at the CRx in the

spirit of [18]. Thus, if I ≤ C we have |b1|2 = I
1+I

, while if I > C we have |b1|2 = C+I+2CI
2(1+C)(1+I)

.

With these choices and by removing the redundant constraints in (29) (i.e., eq(29a), eq(29d),

eq(29f), eq(29g), and eq(29l)), we get that the achievable rate region in (29) is contained into

Igreen-(ii) : Rp ≤ log (1 + S)− 4 log(2), (19a)

Rc ≤ log (1 + S)− log(2), (19b)

Rp +Rc ≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
− 3 log(2), (19c)

Rp +Rc ≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 +

S

1 + I

)

+ log (1 + min {I,C})− 5 log(2), (19d)

2Rp +Rc ≤ 2 log

(
1 +

S

1 + I

)
+ log (1 + S + I)

+ log (1 + min{I,C})− 6 log(2), (19e)

2Rp +Rc ≤ 2 log

(
1 +

S

1 + I

)
+ log

(
1 + I +

S

1 + min{I,C}

)

+ 2 log (1 + min{I,C})− 9 log(2), (19f)

Rp + 2Rc ≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 +

S

1 + I

)

+ log (1 + S + I)− 4 log(2). (19g)

For this regime, the outer bound in (14) can be further upper bounded (by removing the

constraints in (14b) and (14e)) as

Ogreen-(ii) : Rp ≤ log (1 + S) + log(2), (20a)

Rc ≤ log (1 + S) , (20b)

Rp +Rc ≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
+ log(2), (20c)

Rp +Rc

0≤C≤max{I, S
1+I}

≤ log

(
1 + I +

S

1 + I

)

+ log

(
1 + I +

S (1 + C)

1 + I + C

)
+ 3 log(2), (20d)

2Rp +Rc

0≤C≤S
≤ log

(
1 +

S

1 + I

)
+ log (1 + S + I)

March 17, 2015 DRAFT



27

+ log

(
1 + I +

S (1 + C)

1 + C + I

)
+ 3 log(2), (20e)

Rp + 2Rc

0≤C≤max{I, S
1+I}

≤ log

(
1 + I +

S

1 + I

)
+ log

(
1 +

S

1 + I

)

+ log (1 + S + I) + 3 log(2). (20f)

It is easy to see that the outer bound region in (20) and the achievable rate region in (19) are

to within 5 bits/user of one another. Notice that in order to prove a constant gap we compared:

eq(19a) with eq(20a), eq(19b) with eq(20b), eq(19c) with eq(20c), eq(19d) with eq(20d), eq(19e)

with eq(20e), eq(19f) with eq(20e), and eq(19g) with eq(20f).

2) Regime max
{
I, S

1+I

}
< C ≤ S (red region in Fig. 4): As remarked in item 2 in Section

IV-B, for this region we set U1 = ∅ in the transmission strategy in Appendix E, i.e., the PTx

does not use a common non-cooperative message. With this choice and after performing the

FME, we obtain the rate region in (30) in Appendix E-B, which evaluated for the Gaussian

noise case gives the region in (31). For Ip = Ic = I and Sp = Sc = S, we set |a2| = 0, and

|c2|2 = 1 − |b2|2 = 1
1+I

in the region in (31). With this choice the private message of the CTx

(conveyed by T2) is received below the noise level at the PRx in the spirit of [18]. Note also that

the CTx does not cooperate with the PTx in conveying information to the PRx, but it just exploits

the information it learns through the cooperation link to smartly pre-encode its messages. For

the PTx we let |a1|2 = |b1|2 = I+C+2IC
4(1+I)(1+C)

, |c1|2 = 1
2(1+I)

and |d1|2 = 1
2(1+C)

; with this choice

of the power splits and since we are in the regime C > I, the two private messages of the PTx

(i.e., the cooperative one carried by Z1 and the non-cooperative one carried by T1) are received

at most at the level of the noise at the CRx. Moreover, the non-cooperative private message

(carried by T1) is received at the level of the noise at the CTx.

With these choices we get that the achievable rate region in (31) is contained into (by

considering min {k1, k2} ≥ 0 in (31))

I red : Rp ≤ log (1 + C + S)− 5 log(2), (21a)

Rp ≤ log (1 + S + I)− log(2), (21b)

Rc ≤ log (1 + S)− log(3), (21c)

Rp +Rc ≤ log (1 + C) + log

(
1 +

S

1 + C
+ I

)
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+ log

(
1 +

S

1 + I

)
− 5 log(2)− log(3), (21d)

Rp +Rc ≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
− log(2)− log(3), (21e)

Rp +Rc ≤ log

(
1 +

C

1 + I

)
+ log

(
1 +

S

1 + C

)
+ log (1 + S)− 4 log(2)− log(3), (21f)

Rp +Rc ≤ log (1 + S) + log

(
1 +

S

1 + I
+

S

1 + C

)
− 2 log(2)− log(3), (21g)

Rp + 2Rc ≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
+ log (1 + S)− 3 log(2)− 2 log(3), (21h)

Rp + 2Rc ≤ log (1 + S) + log

(
1 +

S

1 + I

)
+ log

(
1 + I +

S

1 + C

)

+ log

(
1 +

C

1 + I

)
− 4 log(2)− 2 log(3), (21i)

Rp + 3Rc ≤ log (1 + S + I) + 2 log

(
1 +

S

1 + I

)
+ log

(
1 + I +

S

1 + C

)

log (1 + S)− 5 log(2)− 3 log(3). (21j)

For this regime, the outer bound in (14) can be further upper bounded (by considering the

constraints in (14a), (14b), (14c), (14d) and (14i))

Ored : Rp ≤ log (1 + C + S) , (22a)

Rp ≤ log (1 + S + I) + log(2), (22b)

Rc ≤ log (1 + S) , (22c)

Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log (1 + S + I) + log(2), (22d)

Rp + 2Rc ≤ log (1 + S + I) + log

(
1 +

S

1 + I

)
+ log (1 + C) + 2 log(2) + log(3), (22e)

where the inequality in (22e) follows since I + S
1+I
≤ 2 max

{
I, S

1+I

}
≤ 2C.

It is easy to see that the outer bound region in (22) and the achievable rate region in (21) are

to within 5 bits/user of one another. Notice that in order to prove a constant gap we compared:

eq(21a) with eq(22a), eq(21b) with eq(22b), eq(21c) with eq(22c), eq(21d) with eq(22d), eq(21e)

with eq(22d), eq(21f) with eq(22d), eq(21g) with eq(22d), eq(21h) with eq(22c)+eq(22d), eq(21i)

with eq(22e), and eq(21j) with eq(22c)+eq(22e).

3) Regime I ≤ S < C < ∆th with ∆th defined in (13) (yellow region in Fig. 4): As remarked

in item 3 in Section IV-B, for this region we set U1 = T1 = ∅ in the transmission strategy in
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Appendix E, i.e., the PTx uses only cooperative messages. With this choice and after performing

the FME, we obtain the rate region in (30) in Appendix E-B, which evaluated for the Gaussian

noise case gives the region in (31). In (31), for Ip = Ic = I and Sp = Sc = S, we set |a1|2 =

|b1|2 = I
2(1+I)

, |b2|2 = I
1+I

and |c1|2 = |c2|2 = 1
1+I

. Notice that with this choice of the power

splits, we have |d1| = 0, i.e., the power allocated for T1 is zero. With these choices, we get that

the achievable rate region in (31) can be further lower bounded (by considering min {k1, k2} ≥ 0

and that the constraint in (31e) is redundant in (31)) as

Iyellow : Rp ≤ log (1 + C)− log(2), (23a)

Rp ≤ log (1 + S + I)− log(2), (23b)

Rc ≤ log (1 + S)− log(2), (23c)

Rp +Rc ≤ log (1 + C) + log (1 + S + I)− 3 log(2), (23d)

Rp +Rc ≤ log

(
1 +

C

1 + I

)
+ log (1 + S)− log(2), (23e)

Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log (1 + S)− 2 log(2), (23f)

Rp + 2Rc ≤ log (1 + S) + log

(
1 +

S

1 + I

)
+ log (1 + S + I)− 4 log(2), (23g)

Rp + 2Rc ≤ log

(
1 +

C

1 + I

)
+ log (1 + S + I) + log (1 + S)− 3 log(2), (23h)

Rp + 3Rc ≤ 2 log (1 + S + I) + log (1 + S) + log

(
1 +

S

1 + I

)
− 6 log(2). (23i)

For this regime, the outer bound in (14) can be further upper bounded (by considering the

constraints in (14a), (14b), (14c), and (14d))

Oyellow : Rp ≤ log (1 + C) + log(2), (24a)

Rp ≤ log (1 + S + I) + log(2), (24b)

Rc ≤ log (1 + S) , (24c)

Rp +Rc ≤ log

(
1 +

S

1 + I

)
+ log (1 + S + I) + log(2). (24d)

It is easy to see that the outer bound region in (24) and the achievable rate region in (23)

are to within 2 bits/user of one another. Notice that in order to prove a constant gap we

compared: eq(23a) with eq(24a), eq(23b) with eq(24b), eq(23c) with eq(24c), eq(23d) with
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eq(24a)+eq(24c), eq(23e) with eq(24d), eq(23f) with eq(24d), eq(23g) with eq(24c)+eq(24d),

eq(23h) with eq(24c)+eq(24d), and eq(23i) with 2eq(24c)+eq(24d).

D. Discussion

The two novel outer bounds 2Rp + Rc in (14g) and Rp + 2Rc in (14i) are active when

S ≥ max {C, I} (weak interference and weak cooperation, which corresponds to the red and

green regions in Fig. 4). In [19], the authors interpreted the need of this type of bounds as a

measure of the amount of the ‘resource holes’, or inefficiency, due to the distributed nature of

the non-cooperative classical IC [18]. Thus, in line with the work in [19], we conclude that when

S ≥ max {C, I} unilateral cooperation is too weak to allow for a full utilization of the channel

resources, i.e., it leaves some system resources underutilized. In particular:

• Strong interference (i.e., I > S): in this regime neither the capacity region of the non-

cooperative Gaussian IC [18] nor the capacity region of the non-causal Gaussian CIC [24],

have bounds of the type 2Rp + Rc and Rp + 2Rc. It turns out that these types of bounds

are not necessary for the GCCIC either.

• Weak interference and strong cooperation (i.e., I ≤ S < C): for this regime the outer

bound in (14) equals (to within a constant gap) the outer bound on the capacity region for

the non-causal Gaussian CIC [24, Theorem III.1], which does not have bounds of the type

2Rp +Rc and Rp + 2Rc (see discussion in item 1 in Section IV-A). In other words, in this

regime the ideal non-causal cognition assumption at the CTx just provides a bounded rate

increase compared to the more practical case of causal learning for the CTx through a noisy

link. It hence follows that for this regime unilateral cooperation allows to fully utilize the

channel resources [19], i.e., the bounds of the type 2Rp +Rc and Rp + 2Rc are not active.

• Weak interference and weak cooperation (i.e., S ≥ max {C, I}): for this regime the

capacity region of the non-cooperative Gaussian IC has bounds of the type 2Rp + Rc and

Rp + 2Rc [18], while the one of the non-causal Gaussian CIC does not [24]. From our

constant gap result in this region, it follows that 2Rp + Rc in (14g) and Rp + 2Rc in

(14i) are both active. In other words, in this regime unilateral cooperation does not allow

enough coordination among the sources which results in some ‘resource holes’ as in the

non-cooperative Gaussian IC.
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V. CONCLUSIONS

In this work we studied the two-user CCIC, an interference channel where one capable

full-duplex source, i.e., the cognitive CTx, cooperates with / assists the other source, i.e., the

primary PTx, to convey information. In contrast to the original overlay cognitive paradigm,

where the CTx a priori knows the message of the PTx, in the CCIC the CTx causally learns the

primary’s data through a noisy in-band link. We first derived two novel outer bounds of the type

2Rp +Rc and Rp + 2Rc on the capacity region of the injective semi-deterministic channel with

independent noises at the two pairs. We then designed a transmission strategy based on binning

and superposition encoding, partial-decode-and-forward relaying and simultaneous decoding and

we derived its achievable rate region. We finally evaluated the outer and lower bounds on the

capacity for the practically relevant Gaussian noise case and we proved that our bounds are a

constant number of bits apart from one another for the symmetric case (i.e., the two direct links

and the two interfering links are of the same strength) in weak interference when the cooperation

link is weaker than a given threshold. We showed that the two novel outer bounds of the type

2Rp + Rc and Rp + 2Rc are active in weak interference when the cooperation link is weaker

than the direct link, i.e., in this regime unilateral cooperation is too weak to allow for a full

utilization of the channel resources.

APPENDIX A

PROOF OF THE MARKOV CHAINS IN (8a) AND (8b)

We start by proving the two Markov chains in (8a)-(8b) by using the FDG [28]. Fig. 5 proves

the Markov chain in (8a), while Fig. 6 the one in (8b). The two proofs, without loss of generality,

consider the time instant i = 3. According to [28], we proceed through the following steps.

1) Draw the directed graph G1, which takes into consideration the dependence between the

different random variables involved in the ISD CCIC considered. In particular, we define

Z?
fi =


Zf i

Zci




to consider the fact that the noises at the CTx and at the CRx can be arbitrarily correlated

and we have

Xpi = f(Wp), Ypi = f(Xpi, Tci), Tci = f(Xci, Zpi), Tf i = f(Xpi, Z
?
fi),

Xci = f(Wc, Tf
i−1), Yci = f(Xci, Tpi), Tpi = f(Xpi, Z

?
fi),
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Wp

Wc

Xp1

Yp1

Tc1
Zp1

Tf1Z?
f1

Xc1

Yc1

Tp1

i = 1 i = 2 i = 3

Xp2 Xp3

Yp2 Yp3

Tc2 Tc3
Zp2 Zp3

Tf2 Tf3Z?
f2 Z?

f3

Xc2 Xc3

Yc2 Yc3

Tp2 Tp3

X
X X X

X X X

X X X X X X X X X X X X

X X X X X X X X X

Fig. 5. Proof of the Markov chain in (8a) using the FDG.

where with f we indicate that the left-hand side of the equality is a function of the random

variables into the bracket.

2) In G1, highlight all the different nodes / random variables involved in the two Markov chains

in (8a)-(8b) we aim to prove. In particular, the random variables circled in magenta, given

those circled in green, should be proved to be independent of those circled in grey.

3) From the graph G1, consider the subgraph G2 which contains those edges and vertices

encountered when moving backwards one or more edges starting from the colored (magenta,

green and grey) random variables. The edges of the subgraph G2 are depicted with dashed

black lines in Fig. 5 and Fig. 6 and the vertices in G2 are all those touched by a dashed

black line.

4) From the graph G2, remove all the edges coming out from the random variables in green

(those which are supposed to d-separate the random variables colored in magenta and grey).

In Fig. 5 and Fig. 6, this step is highlighted with red crosses on the edges which are removed.

We let G3 be the subgraph obtained from G2 by removing all the edges with red crosses.
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Wp

Wc

Xp1

Yp1

Tc1
Zp1

Tf1Z?
f1

Xc1

Yc1

Tp1

i = 1 i = 2 i = 3

Xp2 Xp3

Yp2 Yp3

Tc2 Tc3
Zp2 Zp3

Tf2 Tf3Z?
f2 Z?

f3

Xc2 Xc3

Yc2 Yc3

Tp2 Tp3

X X X X X X X X X X X X X X

X
X

X
X X

X

X X X X
X X

X X

Fig. 6. Proof of the Markov chain in (8b) using the FDG.

5) From G3, remove all the arrows on the edges, and obtain the undirected subgraph G4. In

G4 it is easy to see that, by starting from any grey node, it is not possible to reach any

magenta node. This concludes the proof of the two Markov chains in (8a)-(8b).

APPENDIX B

PROOF OF THE SUM-RATE OUTER BOUND IN (6f)

By using the two Markov chains in (8a)-(8b) we can now derive the sum-rate outer bound

in (6f). This bound was originally derived in [6] for the case of independent noises; here we

extend it to the case when only the noises at the different source-destination pairs are independent,

i.e., PYFc,Yc|Xp,Xc in (2) is not a product distribution. By using Fano’s inequality and by providing

the same genie side information as in [6], we have

N(Rp +Rc − 2εN)

≤ I
(
Wp;Yp

N
)

+ I
(
Wc;Yc

N
)
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≤ I
(
Wp;Yp

N , Tp
N , Tf

N
)

+ I
(
Wc;Yc

N , Tc
N , Tf

N
)

=H
(
Yp

N , Tp
N , Tf

N
)
−H

(
Yc
N , Tc

N , Tf
N |Wc

)

+H
(
Yc
N , Tc

N , Tf
N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp

)
.

We now analyze and bound the two pairs of terms. First pair:

H
(
Yp

N , Tp
N , Tf

N
)
−H

(
Yc
N , Tc

N , Tf
N |Wc

)

(a)
=
∑

i∈[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1

)
−H

(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1,Wc, Xc

i
)

(b)
=
∑

i∈[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1

)
−H

(
Tpi, Tci, Tf i|Tpi−1, Tci−1, Tf i−1,Wc, Xc

i
)

(c)

≤
∑

i∈[1:N ]

H
(
Tpi, Tf i|Tpi−1, Tf i−1

)
−H

(
Tpi, Tf i|Tpi−1, Tf i−1,Wc, Tc

i−1, Xc
i
)

︸ ︷︷ ︸
= 0 because of (8b)

+
∑

i∈[1:N ]

H
(
Ypi|Tpi, Tf i

)
−H

(
Tci|Tpi, Tf i,Wc, Tc

i−1, Xc
i, Xp

i
)

(d)
=
∑

i∈[1:N ]

H
(
Ypi|Tpi, Tf i

)
−H

(
Ypi|Tpi, Tf i, Xpi, Xci

)
,

where: the equality in (a) follows by applying the chain rule of the entropy and since, for the

ISD CCIC, the encoding function Xci(Wc, Y
i−1
Fc ) is equivalent to Xci(Wc, Tf

i−1); the equality in

(b) is due to the fact that Yc is a deterministic function of (Xc, Tp), which is invertible given

Xc; the inequality in (c) is due to the conditioning reduces entropy principle; the equality in

(d) follows because of the ISD property of the channel and since the channel is memoryless.

Second pair:

H
(
Yc
N , Tc

N , Tf
N
)
−H

(
Yp

N , Tp
N , Tf

N |Wp

)

(e)
=
∑

i∈[1:N ]

H
(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1

)
−H

(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1,Wp, Xp

i
)

(f)
=
∑

i∈[1:N ]

H
(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1

)
−H

(
Tci, Tpi, Tf i|Tci−1, Tpi−1, Tf i−1,Wp, Xp

i
)

(g)

≤
∑

i∈[1:N ]

H
(
Tci|Tci−1, Tf i−1

)
−H

(
Tci|Tci−1, Tf i−1,Wp, Tp

i−1, Xp
i
)

︸ ︷︷ ︸
= 0 because of (8a)

+
∑

i∈[1:N ]

H (Tf i|Tci)−H
(
Tf i|Tci, Tf i−1,Wp, Tp

i−1, Xp
i, Xc

i
)

+
∑

i∈[1:N ]

H (Yci|Tci, Tf i)−H
(
Tpi|Tci, Tf i,Wp, Tp

i−1, Xp
i, Xc

i
)
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(h)
=
∑

i∈[1:N ]

H (Tf i|Tci)−H
(
Tf i|Tci, Xpi, Xci

)

+
∑

i∈[1:N ]

H (Yci|Tci, Tf i)−H
(
Yci|Tci, Tf i, Xpi, Xci

)
,

where: the equality in (e) follows by applying the chain rule of the entropy and since, given

Wp, Xp is uniquely determined; the equality in (f) is due to the fact that Yp is a deterministic

function of (Xp, Tc), which is invertible given Xp; the inequality in (g) is due to the conditioning

reduces entropy principle; the equality in (h) follows because of the ISD property of the channel

and since the channel is memoryless.

By combining all the terms together, by introducing the time sharing random variable uni-

formly distributed over [1 : N ] and independent of everything else, by dividing both sides by N

and taking the limit for N → ∞ we get the bound in (6f). We finally notice that by dropping

the time sharing we do not decrease the bound.

APPENDIX C

PROOF OF THE OUTER BOUND IN (11)

By Fano’s inequality, by considering that the messages Wp and Wc are independent and by

giving side information similarly to [6], we have

N(Rp + 2Rc − 3εN)

≤ I
(
Wp;Yp

N
)

+ 2I
(
Wc;Yc

N
)

≤ I
(
Wp;Yp

N , Tp
N , Tf

N
)

+ I
(
Wc;Yc

N
)

+ I
(
Wc;Yc

N , Tc
N , Tf

N |Wp

)

≤ H
(
Yc
N
)
−H

(
Yc
N , Tc

N , Tf
N |Wp,Wc

)

+H
(
Yc
N , Tc

N , Tf
N |Wp

)
−H

(
Yp

N , Tp
N , Tf

N |Wp

)

+H
(
Yp

N , Tp
N , Tf

N
)
−H

(
Yc
N |Wc

)
.

We now analyze each pair of terms. In particular, we proceed similarly as we did to prove

the outer bound 2Rp +Rc in (10).

First pair:

H
(
Yc
N
)
−H

(
Yc
N , Tc

N , Tf
N |Wp,Wc

)

=
∑

i∈[1:N ]

H
(
Yci|Yci−1

)
−H

(
Yci, Tci, Tf i|Wp,Wc, Yc

i−1, Tc
i−1, Tf

i−1, Xp
i, Xc

i
)
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≤
∑

i∈[1:N ]

H (Yci)−H
(
Yci, Tci, Tf i|Wp,Wc, Yc

i−1, Tc
i−1, Tf

i−1, Xp
i, Xc

i
)

=
∑

i∈[1:N ]

H (Yci)−H
(
Yci, Tci, Tf i|Xpi, Xci

)
.

Second pair:

H
(
Yc
N , Tc

N , Tf
N |Wp

)
−H

(
Yp

N , Tp
N , Tf

N |Wp

)

=
∑

i∈[1:N ]

H
(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1,Wp, Xp

i
)
−H

(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1,Wp, Xp

i
)

=
∑

i∈[1:N ]

H
(
Yci, Tci, Tf i|Yci−1, Tci−1, Tf i−1,Wp, Xp

i
)
−H

(
Tci, Tpi, Tf i|Tci−1, Tpi−1, Tf i−1,Wp, Xp

i
)

≤
∑

i∈[1:N ]

H
(
Tci|Tci−1, Tf i−1

)
−H

(
Tci|Tci−1, Tpi−1, Tf i−1,Wp, Xp

i
)

︸ ︷︷ ︸
= 0 because of (8a)

+
∑

i∈[1:N ]

H
(
Tf i|Tci, Xpi

)
−H

(
Tf i|Tci, Tpi−1, Tf i−1,Wp, Xp

i
)

+
∑

i∈[1:N ]

H
(
Yci|Tci, Tf i, Xpi

)
−H

(
Tpi|Tci, Tpi−1, Tf i,Wp, Xp

i, Xc
i
)

=
∑

i∈[1:N ]

H
(
Tf i|Tci, Xpi

)
−H

(
Tf i|Tci, Xpi

)

+
∑

i∈[1:N ]

H
(
Yci|Tci, Tf i, Xpi

)
−H

(
Yci|Tci, Tf i, Xci, Xpi

)

=
∑

i∈[1:N ]

H
(
Yci|Tci, Tf i, Xpi

)
−H

(
Yci|Tci, Tf i, Xci, Xpi

)
.

Third pair: since

H
(
Yc
N |Wc

)

=
∑

i∈[1:N ]

H
(
Yci|Yci−1,Wc

)

≥
∑

i∈[1:N ]

H
(
Yci|Yci−1,Wc, Tf

i−1, Xc
i
)

=
∑

i∈[1:N ]

H
(
Tpi|Tpi−1,Wc, Tf

i−1, Xc
i
)

=
∑

i∈[1:N ]

H
(
Tpi|Tpi−1, Tf i−1

)
,

where the last equality follows because of (8b), then

H
(
Yp

N , Tp
N , Tf

N
)
−H

(
Yc
N |Wc

)
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≤
∑

i∈[1:N ]

H
(
Ypi, Tpi, Tf i|Ypi−1, Tpi−1, Tf i−1

)
−H

(
Tpi|Tpi−1, Tf i−1

)

≤
∑

i∈[1:N ]

H
(
Ypi, Tf i|Tpi

)
.

By combining everything together, by introducing the time sharing random variable uniformly

distributed over [1 : N ] and independent of everything else, by dividing both sides by N and

taking the limit for N → ∞ we get the bound in (11). We finally notice that by dropping the

time sharing we do not decrease the bound.

APPENDIX D

EVALUATION OF THE OUTER BOUNDS IN (6), (10) AND (11) FOR THE GCCIC

By defining E [XpXc
∗] := ρ : |ρ| ∈ [0, 1] we obtain: from the cut-set bounds in (6a)-(6c)

Rp ≤ log
(
1 + (C + Sp)

(
1− |ρ|2

))

|ρ|=0

≤ log (1 + C + Sp) , (25a)

Rp ≤ log
(

1 + Sp + Ic + 2
√
SpIcR

{
ρe−jθc

})

ρ=ejθc

≤ log

(
1 +

(√
Sp +

√
Ic
)2)

, (25b)

Rc ≤ log
(
1 +

(
1− |ρ|2

)
Sc

)

|ρ|=0

≤ log (1 + Sc) . (25c)

From the bounds in (6d)-(6e) we get

Rp +Rc ≤ log

(
1 +

(Sp + C) (1− |ρ|2)
1 + Ip (1− |ρ|2)

)
+ log

(
1 + Sc + Ip + 2

√
ScIpR

{
ρejθp

})

(a)

≤ log

(
1 +

Sp + C

1 + Ip

)
+ log

(
1 +

(√
Sc +

√
Ip
)2)

(25d)

= log

(
1 +

Sp

1 + Ip

)
+ log

(
1 +

(√
Sc +

√
Ip
)2)

︸ ︷︷ ︸
as no cooperation / C = 0

+ log

(
1 +

C

1 + Ip + Sp

)

︸ ︷︷ ︸
increasing in C

,

and

Rp +Rc ≤ log

(
1 +

Sc (1− |ρ|2)
1 + Ic (1− |ρ|2)

)
+ log

(
1 + Sp + Ic + 2

√
SpIcR

{
ρe−jθc

})
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(b)

≤ log

(
1 +

Sc

1 + Ic

)
+ log

(
1 +

(√
Sp +

√
Ic
)2)

︸ ︷︷ ︸
as no cooperation / C = 0

, (25e)

where the inequality in (a) follows by evaluating the first logarithm in |ρ| = 0 and the second

logarithm in ρ = e−jθp and the inequality in (b) follows by evaluating the first logarithm in

|ρ| = 0 and the second logarithm in ρ = ejθc . Finally, from the bound in (6f) we obtain

Rp +Rc ≤ log

(
1 +

Sp + Ic + 2
√

SpIcR
{
ρe−jθc

}
+ (1− |ρ|2) (IpIc + CIc)

1 + C + Ip

)

+ log

(
1 +

Sc + Ip + 2
√

ScIpR
{
ρejθp

}
+ (1− |ρ|2) (IpIc + CSc)

1 + C + Ic + IcC (1− |ρ|2)

)

+ log

(
1 +

C + CIc (1− |ρ|2)
1 + Ic

)

= log

(
1 +

Sp + Ic + 2
√

SpIcR
{
ρe−jθc

}
+ (1− |ρ|2) (IpIc + CIc)

1 + C + Ip

)

+ log

(
1 +

C + Sc + Ip + 2
√

ScIpR
{
ρejθp

}
+ (1− |ρ|2) (IpIc + CSc + IcC)

1 + Ic

)

(c)

≤ log

(
1 + Ic +

Sp

1 + C + Ip

)
+ log

(
1 + C + Ip +

Sc (1 + C)

1 + Ic

)
+ 2 log(2), (25f)

= log

(
1 + C + Ip +

Sp

1 + Ic

)
+ log

(
1 + Ic + Sc

1 + C

1 + C + Ip

)

︸ ︷︷ ︸
increasing in C

+2 log(2),

where the inequality in (c) follows by: (i) evaluating the first term of the first logarithm in

ρ = ejθc and the second term of the first logarithm in |ρ| = 0; (ii) evaluating the first term of

the second logarithm in ρ = e−jθp and the second term of the second logarithm in |ρ| = 0; (iii)

since log

(
1 +

(√
|a|2 +

√
|b|2
)2)

≤ log (1 + |a|2 + |b|2) + log(2).

We now evaluate the new outer bounds in Theorem 1 and we get

2Rp +Rc ≤ log
(

1 + Sp + Ic + 2
√
SpIcR

{
ρe−jθc

})
+ log

(
1 +

Sp (1− |ρ|2)
1 + (C + Ip) (1− |ρ|2)

)

+ log

(
1 +

C + Sc + Ip + 2
√

ScIpR
{
ρejθp

}
+ (1− |ρ|2) (IpIc + CSc + IcC)

1 + Ic

)

(d)

≤ log

(
1 +

(√
Sp +

√
Ic
)2)

+ log

(
1 +

Sp

1 + Ip + C

)

+ log

(
1 + C + Ip +

Sc (1 + C)

1 + Ic

)
+ log(2), (25g)
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= log

(
1 +

Sc

1 + Ic

)
+ log

(
1 +

(√
Sp +

√
Ic
)2)

︸ ︷︷ ︸
as no cooperation / C = 0

+ log

(
1 + Ip + Sp

1 + Ic + Sc

)
+ log

(
1 +

C

1 + Ip + Sp

)
+ log

(
1 + Ic + Sc

1 + C

1 + Ip + C

)

︸ ︷︷ ︸
increasing in C

+ log(2),

where the inequality in (d) follows by (i) evaluating the first logarithm in ρ = ejθc , (ii) evaluating

the second logarithm in |ρ| = 0, (iii) evaluating the first term of the third logarithm in ρ = e−jθp

and the second term of the third logarithm in |ρ| = 0 and (iv) since log

(
1 +

(√
|a|2 +

√
|b|2
)2)

≤
log (1 + |a|2 + |b|2) + log(2). Similarly,

Rp + 2Rc ≤ log
(

1 + Sc + Ip + 2
√

ScIpR
{
ρejθp

})
+ log

(
1 +

Sc (1− |ρ|2)
1 + Ic (1− |ρ|2)

)

+ log

(
1 +

Sp + Ic + 2
√

SpIcR
{
ρe−jθc

}
+ (1− |ρ|2) (IpIc + CIc)

1 + C + Ip

)

+ log

(
1 +

C

1 + Ip

)

(e)

≤ log

(
1 +

(√
Sc +

√
Ip
)2)

+ log

(
1 +

Sc

1 + Ic

)

+ log

(
1 + Ic +

Sp

1 + C + Ip

)
+ log

(
1 +

C

1 + Ip

)
+ log(2), (25h)

= log

(
1 +

Sp

1 + Ip

)
+ log

(
1 +

(√
Sc +

√
Ip
)2)

︸ ︷︷ ︸
as no cooperation / C = 0

+ log

(
1 + Ic + Sc

1 + Ip + Sp

)
+ log

(
1 + C + Ip +

Sp

1 + Ic

)

︸ ︷︷ ︸
increasing in C

+ log(2),

where the inequality in (e) follows by: (i) evaluating the first logarithm in ρ = e−jθp , (ii)

evaluating the second logarithm in |ρ| = 0 and (iii) evaluating the first term of the third

logarithm in ρ = ejθc and the second term of the third logarithm in |ρ| = 0 and again (iv)

since log

(
1 +

(√
|a|2 +

√
|b|2
)2)

≤ log (1 + |a|2 + |b|2) + log(2).

APPENDIX E

ACHIEVABLE SCHEME BASED ON SUPERPOSITION CODING AND BINNING

We specialize the ‘binning+superposition’ achievable scheme in [8, Section V]. In [8, Thereom

V.1] the network comprises four nodes numbered from 1 to 4; nodes 1 and 2 are sources and
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Q(W1cc,t�1) Z1(W1cc,t�1, W1cc,t, W1pc,t�1, W1pc,t)

U2(W1cc,t�1, W2cn,t, b1c) T2(W1cc,t�1, W2cn,t, b2c, W2pn,t, b2p)

S1(W1cc,t�1, W1pc,t�1)

V1(W1cc,t�1, W1cc,t) U1(W1cc,t�1, W1cc,t, W1cn,t) T1(W1cc,t�1, W1cc,t, W1cn,t, W1pn,t)

Fig. 7. Achievable scheme based on binning and superposition coding.

nodes 3 and 4 are destinations; source node j ∈ [1 : 2], with input to the channel Xj and output

from the channel Yj , has a message Wj for node j + 2; destination node j ∈ [3 : 4] has channel

output Yj from which it decodes the message Wj−2. Both users use rate splitting, where the

messages of user 1 / primary are both non-cooperative and cooperative, while the messages of

user 2 / cognitive are non-cooperative. In [8, Section V], we set Y1 = S2 = V2 = Z2 = ∅, i.e.,

then R1 = R11c +R10c +R10n +R11n, R2 = R22n +R20n, to obtain a scheme that comprises: a

cooperative common message (carried by the pair (Q, V1) at rate R10c) for user 1, a cooperative

private message (carried by the pair (S1, Z1) at rate R11c) for user 1, a non-cooperative common

message (carried by U1 at rate R10n) for user 1, a non-cooperative private message (carried

by T1 at rate R11n) for user 1, a non-cooperative common message (carried by U2 at rate

R20n) for user 2 and a non-cooperative private message (carried by T2 at rate R22n) for user

2. Here the pair (Q,S1) carries the ‘past cooperative messages’, and the pair (V1, Z1) the ‘new

cooperative messages’ in a block Markov encoding scheme. The channel inputs are functions

of the auxiliary random variables, where X1 is a function of (Q,S1, Z1, V1, U1, T1) and X2 is a

function of (Q,S1, U2, T2).

a) Input distributions: The set of possible input distributions is

PQ,S1,V1,Z1,U1,T1,X1,U2,T2,X2

= PQPV1|QPU1,T1|Q,V1PS1|QPZ1|Q,S1,V1PU2,T2|S1,QPX1|Q,S1,Z1,V1,U1,T1PX2|Q,S1,U2,T2 . (26)

A schematic representation of the achievable scheme is given in Fig. 7, where a black arrow

indicates superposition coding and a red arrow indicates binning. Note that the difference between

Fig. 7 and [17, Fig. 10] is that in the achievable scheme in [17, Fig. 10] we set X1 = T1, X2 = T2

and U1 = S1 = Z1 = ∅, i.e., user 1 / primary only used a common cooperative message and a

private non-cooperative message, while here also private cooperative as well as common non-

cooperative messages are used. Similarly, the difference between Fig. 7 and [17, Fig. 11] is that

in the achievable scheme in [17, Fig. 11] we set U1 = T1 = ∅, i.e., the messages of user 1 /
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primary were only cooperative, while here we consider also non-cooperative (both private and

common) messages for user 1 / primary.

b) Encoding: The codebooks are generated as follows: first the codebook Q is generated;

then the codebook V1 is superposed to Q, after the codebook U1 is superposed to (Q, V1) and

finally the codebook T1 is superposed to (Q, V1, U1); independently of (V1, U1, T1), the codebook

S1 is superposed to Q and then the codebook Z1 is superposed to (Q,S1, V1); independently of

(S1, Z1, V1, U1, T1), the codebook U2 is superposed to Q and then the codebook T2 is superposed

to (Q,U2). With this random coding codebook generation, the pair (U2, T2) is independent of

S1 conditioned on Q. [8, Theorem V.1] involves several binning steps to allow for a large set

of input distributions. Here the only binning steps are for (U2, T2) against S1.

We use a block Markov coding scheme to convey the message of user 1 to user 2. In

particular, at the end of any given time slot in a block Markov coding scheme, encoder 2 knows

(Q,S1, U2, T2) and decodes (V1, Z1) from its channel output; the decoded pair (V1, Z1) becomes

the pair (Q,S1) of the next time slot; then, at the beginning of each time slot, encoder 2, by

binning, finds the new pair (U2, T2) that is jointly typical with (Q,S1); for this to be possible, we

must generate several (U2, T2) sequences for each message of user 2 so as to be able to find one

pair to send with the correct joint distribution with (Q,S1); this entails the rate penalties in [8,

eq(20)] for user 1 and then again [8, eq(20)] for user 2 by swapping the role of the subscripts 1

and 2, with S2 = Z2 = V2 = ∅, i.e.,

R
′

20n +R
′

22n ≥ I(U2, T2;S1|Q), (27a)

R
′

20n ≥ I(U2;S1|Q). (27b)

c) Decoding: The cooperative source uses the partial-decode-and-forward strategy and the

destinations backward decoding. There are three decoding nodes in the network and therefore

three groups of rate constraints. These are:

• Node2 / CTx jointly decodes (V1, Z1) from its channel output with knowledge of the indices

in (Q,S1, U2, T2, X2). Successful decoding is possible if (use [8, eq(21)] by swapping the

role of the subscripts 1 and 2, with S2 = Z2 = V2 = ∅ and with V1 independent of S1)

R10c +R11c ≤ I(Y2;Z1, V1|U2, T2, X2, S1, Q), (27c)

R11c ≤ I(Y2;Z1|U2, T2, X2, S1, Q, V1). (27d)
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• Node3 / PRx jointly decodes (Q,S1, U2, U1, T1) from its channel output, with knowledge of

some message indices in (V1, Z1), by treating T2 as noise. Successful decoding is possible

if (see [8, eq(22)] with S2 = Z2 = V2 = ∅)

R10c +R10n +R11n +R20n +R11c ≤ I(Y3;Q, V1, U1, T1, S1, Z1, U2)

− (R
′

20n − I(U2;S1|Q)), (27e)

R10n +R11n +R20n +R11c ≤ I(Y3;U1, T1, S1, Z1, U2|Q, V1)

− (R
′

20n − I(U2;S1|Q)), (27f)

R10n +R11n +R11c ≤ I(Y3;U1, T1, S1, Z1|Q, V1, U2), (27g)

R11n +R20n +R11c ≤ I(Y3;T1, S1, Z1, U2|Q, V1, U1)− (R
′

20n − I(U2;S1|Q)), (27h)

R10n +R11n +R20n ≤ I(Y3;U1, T1, U2|Q,S1, Z1, V1)− (R
′

20n − I(U2;S1|Q)), (27i)

R11n +R11c ≤ I(Y3;T1, S1, Z1|Q, V1, U1, U2), (27j)

R20n +R11c ≤ I(Y3;S1, Z1, U2|Q, V1, U1, T1)− (R
′

20n − I(U2;S1|Q)), (27k)

R10n +R11n ≤ I(Y3;U1, T1|Q,S1, Z1, V1, U2), (27l)

R11n +R20n ≤ I(Y3;T1, U2|Q,S1, Z1, V1, U1)− (R
′

20n − I(U2;S1|Q)), (27m)

R11c ≤ I(Y3;S1, Z1|Q, V1, U1, T1, U2), (27n)

R11n ≤ I(Y3;T1|Q,S1, Z1, V1, U1, U2). (27o)

• Node4 / CRx jointly decodes (Q,U1, U2, T2) from its channel output, with knowledge of

some message index in V1, by treating Z1 and T1 as noise (recall that the pair (U2, T2)

has been precoded/binned against S1). Successful decoding is possible if (see [8, eq(22)],

with the role of the users swapped, where only the bounds in [8, eq(22a)], [8, eq(22h)],

[8, eq(22i)], [8, eq(22j)], and [8, eq(22k)] remain after setting several auxiliary random

variables to zero and removing the redundant constraints)

R10c +R20n +R22n +R10n ≤ I(Y4;Q,U2, T2, V1, U1)− (R
′

20n +R
′

22n), (27p)

R20n +R22n +R10n ≤ I(Y4;U2, T2, U1|Q, V1)− (R
′

20n +R
′

22n), (27q)

R20n +R22n ≤ I(Y4;U2, T2|Q, V1, U1)− (R
′

20n +R
′

22n), (27r)

R22n +R10n ≤ I(Y4;T2, U1|Q,U2, V1)−R
′

22n, (27s)

R22n ≤ I(Y4;T2|Q,U2, V1, U1)−R
′

22n. (27t)
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d) Compact region: Instead of applying the Fourier-Motzkin Elimination (FME) directly

on the general achievable rate region, in the following we apply the FME on two particular

cases, namely the case when S1 = Z1 = ∅, i.e., no private cooperative messages for the PTx

and the case U1 = ∅, i.e., no common non-cooperative message for the PTx. The first case is

analyzed in Section E-A, while the second case is analyzed in Section E-B. For both cases we

take the constraints in (27a) and (27b) to hold with equality (i.e., R′20n = I(U2;S1|Q), R
′
22n =

I(S1;T2|Q,U2)).

A. FME on the achievable rate region when S1 = Z1 = ∅

We set S1 = Z1 = ∅ in the achievable rate region. After FME of the achievable region in (27)

with S1 = Z1 = ∅ (see also [8, eq(8)]), we get

R1 ≤ eq(27e), (28a)

R1 ≤ eq(27c) + eq(27g), (28b)

R2 ≤ eq(27r), (28c)

R1 +R2 ≤ eq(27e) + eq(27t), (28d)

R1 +R2 ≤ eq(27j) + eq(27p), (28e)

R1 +R2 ≤ eq(27c) + eq(27i) + eq(27t), (28f)

R1 +R2 ≤ eq(27c) + eq(27j) + eq(27q), (28g)

R1 +R2 ≤ eq(27c) + eq(27m) + eq(27s), (28h)

2R1 +R2 ≤ eq(27c) + eq(27j) + eq(27e) + eq(27s), (28i)

2R1 +R2 ≤ 2 · eq(27c) + eq(27j) + eq(27i) + eq(27s), (28j)

R1 + 2R2 ≤ eq(27m) + eq(27s) + eq(27p), (28k)

R1 + 2R2 ≤ eq(27c) + eq(27m) + eq(27t) + eq(27q), (28l)

for all distributions that factor as (26) and by setting S1 = Z1 = ∅ in all the mutual information

terms.

We identify Node1 with the PTx (i.e., Xp = X1), Node2 with the CTx (i.e., Xc = X2, Tf = Y2),

Node3 with the PRx (i.e., Yp = Y3) and Node4 with the CRx (i.e., Yc = Y4). For the Gaussian
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noise channel, in the achievable region in (28), we choose Q = ∅, we let V1, U1, T1, U2, T2 be

i.i.d. N (0, 1), and

Xp = a1U1 + b1V1 + c1T1 : |a1|2 + |b1|2 + |c1|2 = 1,

Xc = a2U2 + b2T2 : |a2|2 + |b2|2 = 1.

With these choices, the channel outputs are

Tf =
√
C (a1U1 + b1V1 + c1T1) + Zf ,

Yp =
√

Sp (a1U1 + b1V1 + c1T1) +
√
Ice

jθc (a2U2 + b2T2) + Zp,

Yc =
√

Ipe
jθp (a1U1 + b1V1 + c1T1) +

√
Sc (a2U2 + b2T2) + Zc,

and the achievable region in (28) becomes

Rp ≤ log

(
1 + Sp + Ic
1 + Ic|b2|2

)
, (29a)

Rp ≤ log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 +

Sp (|a1|2 + |c1|2)
1 + Ic|b2|2

)
, (29b)

Rc ≤ log

(
1 +

Sc

1 + Ip|c1|2
)
, (29c)

Rp +Rc ≤ log

(
1 + Sp + Ic
1 + Ic|b2|2

)
+ log

(
1 +

Sc|b2|2
1 + Ip|c1|2

)
, (29d)

Rp +Rc ≤ log

(
1 +

Sp|c1|2
1 + Ic|b2|2

)
+ log

(
1 + Sc + Ip
1 + Ip|c1|2

)
, (29e)

Rp +Rc ≤ log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 + Sp (|a1|2 + |c1|2) + Ic

1 + Ic|b2|2
)

+ log

(
1 +

Sc|b2|2
1 + Ip|c1|2

)
, (29f)

Rp +Rc ≤ log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 +

Sp|c1|2
1 + Ic|b2|2

)
+ log

(
1 +

Sc + Ip|a1|2
1 + Ip|c1|2

)
,

(29g)

Rp +Rc ≤ log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 + Sp|c1|2 + Ic

1 + Ic|b2|2
)

+ log

(
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

)
, (29h)

2Rp +Rc ≤ log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 +

Sp|c1|2
1 + Ic|b2|2

)
+ log

(
1 + Sp + Ic
1 + Ic|b2|2

)

+ log

(
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

)
, (29i)
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2Rp +Rc ≤ 2 · log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 +

Sp|c1|2
1 + Ic|b2|2

)

+ log

(
1 + Sp (|a1|2 + |c1|2) + Ic

1 + Ic|b2|2
)

+ log

(
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

)
, (29j)

Rp + 2Rc ≤ log

(
1 + Sp|c1|2 + Ic

1 + Ic|b2|2
)

+ log

(
1 +

Ip|a1|2 + Sc|b2|2
1 + Ip|c1|2

)
+ log

(
1 + Sc + Ip
1 + Ip|c1|2

)
,

(29k)

Rp + 2Rc ≤ log

(
1 + C

1 + C (|a1|2 + |c1|2)

)
+ log

(
1 + Sp|c1|2 + Ic

1 + Ic|b2|2
)

+ log

(
1 +

Sc|b2|2
1 + Ip|c1|2

)

+ log

(
1 +

Sc + Ip|a1|2
1 + Ip|c1|2

)
. (29l)

B. FME on the achievable rate region when U1 = ∅

We set U1 = ∅ in the achievable rate region. After FME of the achievable region in (27) with

U1 = ∅, we get

R1 ≤ eq(27c) + eq(27o), (30a)

R1 ≤ eq(27e), (30b)

R2 ≤ eq(27r), (30c)

R1 +R2 ≤ eq(27c) + eq(27i) + eq(27t), (30d)

R1 +R2 ≤ eq(27e) + eq(27t), (30e)

R1 +R2 ≤ eq(27d) + eq(27o) + eq(27p), (30f)

R1 +R2 ≤ eq(27g) + eq(27p), (30g)

R1 + 2R2 ≤ eq(27f) + eq(27p) + eq(27t), (30h)

R1 + 2R2 ≤ eq(27d) + eq(27i) + eq(27p) + eq(27t), (30i)

R1 + 3R2 ≤ eq(27k) + eq(27i) + eq(27p) + 2 · eq(27t), (30j)

for all distributions that factor as (26) and by setting U1 = ∅ in all the mutual information

terms.

Remark 3 After FME, the following rate constraints (with U1 = ∅) also appear

R2 ≤ eq(27m) + eq(27t),
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R2 ≤ eq(27k) + eq(27t).

By following similar steps as in [29, Lemma 2] and [8, Appendix A], it is possible to show

that these constraints are redundant. In other words, if these constraints are active a larger rate

region is attained by not sending any common message, i.e., by setting U2 = ∅.

We identify Node1 with the PTx (i.e., Xp = X1), Node2 with the CTx (i.e., Xc = X2, Tf = Y2),

Node3 with the PRx (i.e., Yp = Y3) and Node4 with the CRx (i.e., Yc = Y4). For the Gaussian

noise channel, in the achievable region in (30), we choose Q = ∅, we let S1, V1, T1, Z1, U
′
2, T

′
2

be i.i.d. N (0, 1), and

Xp = |a1|ejθcS1 + b1V1 + c1Z1 + d1T1 : |a1|2 + |b1|2 + |c1|2 + |d1|2 = 1,

Xc = |a2|S1 + b2U
′
2 + c2T

′
2 : |a2|2 + |b2|2 + |c2|2 = 1,

U2 = U ′2 + λUS1 : λU =
Sc|b2|2

Sc|b2|2 + Sc|c2|2 + 1 + Ip(|c1|2 + |d1|2)

√
Ipe

jθpejθc |a1|+
√
Sc|a2|√

Scb2
,

T2 = T ′2 + λTS1 : λT =
Sc|c2|2

Sc|c2|2 + 1 + Ip(|c1|2 + |d1|2)

√
Ipe

jθpejθc |a1|+
√
Sc|a2| −

√
Scb2λU√

Scc2
,

where the choice of λU is so as to “pre-cancel” S1 from Yc in decoding U2, i.e., so as to

have I(Yc;U2|V1, Q)− I(S1;U2|Q) = I(Yc;U2|V1, Q, S1) and the choice of λT is so as to “pre-

cancel” S1 from Yc in decoding T2, i.e., so as to have I(Yc;T2|V1, Q, U2) − I(S1;T2|Q,U2) =

I(Yc;T2|V1, Q, U2, S1). With these choices, the channel outputs are

Tf =
√
C
(
|a1|ejθcS1 + b1V1 + c1Z1 + d1T1

)
+ Zf ,

Yp = (
√

Sp|a1|+
√

Ic|a2|)ejθcS1 +
√

Sp (b1V1 + c1Z1 + d1T1) +
√

Ice
jθc (b2U

′
2 + c2T

′
2) + Zp,

Yc = (
√

Ipe
jθpejθc |a1|+

√
Sc|a2|)S1 +

√
Ipe

jθp (b1V1 + c1Z1 + d1T1) +
√

Sc (b2U
′
2 + c2T

′
2) + Zc,

and the achievable region in (30) becomes

Rp ≤ log

(
1 +

C(|b1|2 + |c1|2)
1 + C|d1|2

)
+ log

(
1 +

Sp|d1|2
1 + Ic|c2|2

)
, (31a)

Rp ≤ log

(
1 + Sp + Ic + 2

√
SpIc|a1|2|a2|2

1 + Ic|c2|2

)
, (31b)

Rc ≤ log

(
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

)
, (31c)

Rp +Rc ≤ log

(
1 +

C(|b1|2 + |c1|2)
1 + C|d1|2

)
+ log

(
1 +

Sp|d1|2 + Ic|b2|2
1 + Ic|c2|2

)
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+ log

(
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

)
, (31d)

Rp +Rc ≤ log

(
1 + Sp + Ic + 2

√
SpIc|a1|2|a2|2

1 + Ic|c2|2

)
+ log

(
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

)
, (31e)

Rp +Rc ≤ log

(
1 +

C|c1|2
1 + C|d1|2

)
+ log

(
1 +

Sp|d1|2
1 + Ic|c2|2

)

+ log

(
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

)
+ k1, (31f)

Rp +Rc ≤ log

(
1 +

Sp(|c1|2 + |d1|2)
1 + Ic|c2|2

)
+ log

(
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

)
+ k1 + k2, (31g)

Rp + 2Rc ≤ log

(
1 +

Sp(|c1|2 + |d1|2) +
(√

Sp|a1|+
√
Ic|a2|

)2
+ Ic|b2|2

1 + Ic|c2|2

)

+ log

(
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

)
+ log

(
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

)
+ k1, (31h)

Rp + 2Rc ≤ log

(
1 +

C|c1|2
1 + C|d1|2

)
+ log

(
1 +

Sp|d1|2 + Ic|b2|2
1 + Ic|c2|2

)

+ log

(
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

)
+ log

(
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

)
+ k1, (31i)

Rp + 3Rc ≤ log

(
1 +

Sp|c1|2 +
(√

Sp|a1|+
√
Ic|a2|

)2
+ Ic|b2|2

1 + Ic|c2|2

)
+ log

(
1 +

Sp|d1|2 + Ic|b2|2
1 + Ic|c2|2

)

+ log

(
1 +

Sc(|b2|2 + |c2|2)
1 + Ip(|c1|2 + |d1|2)

)
+ 2 log

(
1 +

Sc|c2|2
1 + Ip(|c1|2 + |d1|2)

)
+ k1, (31j)

where we defined k1 := I (Yc;V1) and k2 := I (Yp;S1|V1, U2) without evaluating them for the

Gaussian noise case. Actually, further lower bounding k1 and k2 by zero suffices to prove a

constant gap for the yellow and red regions in Fig. 4.
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