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Abstract

We design and analyze the performance of a redundancy management mechanism for peer-to-peer backup
applications. Armed with the realization that a backup system has peculiar requirements – namely, data is
read over the network only during restore processes caused by data loss – redundancy management targets
data durability, i.e. guaranteeing that data is not lost, rather than attempting to make each piece of
information availabile at any time.

In our approach each peer determines, in an on-line manner, an amount of redundancy sufficient to
counter the effects of peer deaths, while preserving acceptable data restore times. Our experiments, based
on trace-driven simulations, indicate that our mechanism can reduce the redundancy by a factor between
two and three with respect to redundancy policies aiming for data availability. These results imply an
according increase in storage capacity and decrease in time to complete backups, at the expense of longer
times required to restore data. We believe this is a very reasonable price to pay, given the nature of the
application.

We complete our work with a discussion on practical issues, and their solutions, related to which encoding
technique is more suitable to support our scheme.
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1. Introduction

Online storage solutions are an extremely suc-
cessful way of sharing and syncronizing data be-
tween machines, taking advantage of the ubiquity
of Internet connectivity. Dropbox, Google Drive
and Microsoft SkyDrive are only a few widely used
examples within the plethora of applications that
give this kind of service.

The aforementioned applications adopt a central-
ized “cloud” architecture, with all data residing on
the data centers of a single vendor. Despite its suc-
cess, such an architecture has some intrinsic short-
comings. Some of them have already shown up in
news: data loss due to correlated failures [1], secu-
rity blunders due to configuration errors [2]. Oth-
ers, such as data theft from rogue employees, might
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happen eventually. Also, we argue that long-term
storage is a case where the weaknesses of central-
ized storage are most important: indeed, the costs
of storing large amounts of data over long periods
are high, and services might shut down in the future
as already happened to Drop.io [3], Nirvanix [4],
Dell DataSafe [5] , and Canonical’s Ubuntu One [6],
making data safety in the long run essentially im-
possible to evaluate.

Peer-to-peer (P2P) storage could solve these
problems, providing cheap storage leveraging on ex-
cess bandwidth and disk space at the edge of the
network. However, despite a considerable amount
of research (see Section 2), P2P storage solutions
failed to reach widespread usage. Indeed, imple-
menting a generic P2P storage application requires
dealing with a variety of challenging problems, such
as scalable handling of metadata, dealing efficiently
with maintenance due to disk crashes, low-latency
access and modification to individual files, and se-
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curity issues such as ensuring data confidentiality
even when usage permissions change dynamically.
In this setting, keeping data available at all times
in a situation of high churn is a daunting task [7].

We take a pragmatic approach: rather than try-
ing to solve all the aforementioned issues at once
and come up with a generic P2P file-system for the
Internet, we design a system exclusively for data
backup. Indeed, we argue that backup is a widely
needed application that better fits the characteris-
tics provided by P2P architectures. Costs and poor
usability are among the main reasons why many
existing backup solutions are not used: a P2P ap-
proach to data backup can be a viable technique to
overcome such issues.

For backup applications, as we discuss in Sec-
tion 3, the focus is on durability, which amounts
to guaranteeing that data is not lost. The require-
ments for a specialized backup application are less
stringent than those of generic storage in several
aspects. First, backups should only be readable
by their owner; this makes confidentiality require-
ments easy to satisfy with standard cryptographic
techniques. Second, data backup often involves the
bulk transfer of potentially large quantities of data,
both during regular backups and, in the event of
data loss, during restore operations. Therefore,
read and write latencies of hours have to be tol-
erated by users. Third, owners have access to the
original copy of their data, making it easy to inject
additional redundancy in case data stored remotely
is partially lost. Fourth, since data is read only
during restore operations, the application does not
need to guarantee that any piece of the original data
should be promptly accessible in any moment, as
long as the time needed to restore the whole backup
remains under control.

In this work, we design and evaluate a new redun-
dancy management mechanism tailored to backup
applications. Simply stated, the problem of redun-
dancy management amounts to computing the nec-
essary redundancy level to be applied to backup
data to achieve durability. The goal of this work is
to design a mechanism that achieves data durability
without requiring high redundancy levels nor fast
mechanisms to detect node failures. Our solution
to the problem stems from the particular data ac-
cess workload of backup applications: data is writ-
ten once and read rarely. The gist of our redun-
dancy management mechanism, which is described
in Section 4, is that the redundancy level applied
to backup data is computed in an on-line manner.

Given a time window that accounts for failure de-
tection and data repair delays, and a system-wide
statistic on peer deaths, a peer determines the re-
dundancy rate during the backup phase. A byprod-
uct of our approach is that, if the system state
changes, then peers can adapt to such dynamics
and modify the redundancy level on the fly.

The ability to compute the redundancy level in
an on-line manner requires solving several problems
related to coding efficiency and data management.
In Section 5, we show how our scheme can be ap-
plied in practice, exploiting the properties of Foun-
tain Coding.

Finally, we evaluate our redundancy management
scheme using trace-driven simulations. In Section 6,
we show that our approach drastically decreases
strain on resources, reducing the storage and band-
width requirements by a factor between two and
three, as compared to redundancy schemes that use
a fixed, system-wide redundancy factor. This result
yields augmented storage capacity for the system
and decreased backup times, at the expense of in-
creased restore times, which is a reasonable price to
pay if the specific requirements of backup applica-
tions are taken into account.

2. Related Work

A claim that data can be backed up safely on
a network of untrusted nodes may appear unintu-
itive and difficult to believe. Fortunately, several
problems – which are orthogonal to the topic of re-
dundancy – have been addressed in the literature.
First, we provide an overview of solutions that can
make safe backup feasible; we then conclude the
section with an overview of how redundancy has
been handled in related work.

2.1. P2P Backup

Between the corpus of publications that target
the broader topic of P2P storage, we are not the
first to tackle backup. Many works provide a full
system design, but focus on innovating on a few
system components. Not unlike them, we focus on
redundancy management; we note that in the large
majority of cases a dynamic redundancy manage-
ment mechanism such as ours can be implemented
in those systems.

Early works [8–10] are based on distributed hash
tables, and they focus on creating efficient de-
duplication mechanisms; they however to not con-
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sider erasure coding techniques, which can dras-
tically lower the required redundancy levels. Lil-
libridge et al. [11] adopt erasure coding and intro-
duce a “symmetric storage” concept, where node A
stores a data block for B only if B stores data for A;
while restricting freedom in data placement, such
mechanism provides incentives to cooperation. In
Section 2.3, we discuss other ways of ensuring that
peers behave correctly. Skowron and Rzadca [12]
focus on the data placement problem: how to place
data in order to optimize a given objective, such
as time to backup or geographical data dispersion;
such work considers the redundancy level to reach
as an input to the system; it can be produced by a
mechanism such as ours.

2.2. Data Handling and Security

In this work we assume the system saves opaque
and immutable backup objects: these pieces of data
should be encrypted so that only their owner can
read them, and encode incremental differences be-
tween archive versions. Various techniques have
been proposed to optimize computational time and
size of incremental differences [13].

When more than one user back up the same piece
of data, deduplication techniques can be used to
avoid storing it more than once [14]. To protect
user confidentiality, convergent encryption [9, 10]
can be used to guarantee that a user who does not
own the files will not be able to guess their contents.

We consider a scenario where data maintenance
is simple, being performed by a data owner with
a local copy. When maintenance is delegated to
nodes that do not have a local copy of the backup
objects, various coding schemes can be used [15, 16]
to limit the amount of required data transit.

Using cryptography for the backed up data begs
the question of where to backup the encryption key.
This problem can be solved by generating the key
as a function of an easy to remember secret: a
password. Somehow contradicting common knowl-
edge on the theme, recent research shows that a
large portion of user-chosen passwords are resilient
to guessing attacks [17–19], if appropriate standard
techniques such as salting and strengthening [20]
are used.

Efficient scheduling of data transfers is important
to complete backups as soon as possible. Toka et
al. [21] show that simple scheduling strategies such
as least-available first are sufficient to obtain close-
to-optimal transfer times.

2.3. Peer Behavior and Trust

It is reasonable to doubt on the fact that user be-
havior will be stable and trusted enough to guaran-
tee that the backup will always be retrievable. Per-
haps against intuition, however, it has been shown
that user connectivity patterns are stable enough
in the long run to allow predicting with good preci-
sion the probability that a given user will be using
an application in a given moment, even months in
advance [22].

Even if behaving in a stable way, it is concievable
that untrusted users may cheat, by erasing the data
they are supposed to store: to avoid this problem,
provable data possession protocols exist [23, 24]:
these protocols allow to verify whether a given
peer is actually holding the data it is claiming to
store. In addition, game-theoretic incentive mod-
els [25, 26] have been devised to encourage peers to
participate to the network according to the proto-
col: users who do not behave fairly will lose their
backup. Another solution that provides incentives
to behave well is segregating nodes in sub-networks
with roughly homogeneous characteristics such as
uptime and storage space [27, 28]. Virtual cur-
rency [29–31] is yet another option to reward well-
behaving peers.

An alternative approach is to store data on peers
that are trusted to begin with. Besides easy use
cases (e.g., deploying the P2P backup application
within a trusted organization), another possibility
is to perform “friend-to-friend” storage [32, 33], an
approach where each user independently decides
which users are trusted to store their data. More in
general, trust needs not be limited to the nodes that
a node directly knows: reputation systems can be
used to build trust in networks of untrusted nodes:
for more information, we point to the survey by
Marti and Garcia-Molina [34].

2.4. Hybrid Semi-Decentralized Systems

The episodes of cloud services shutting down we
referred to in the Introduction [3–6] lead to be-
lieve that centralized cloud storage solutions cannot
be considered safe on the long term. Conversely,
P2P applications may be problematic on the short
term, since the requirement of redundancy and lim-
itations in availability and bandwidth increase the
time needed to complete backups, and therefore to
make data safe. A “best of both worlds” solution
can be obtained by employing a hybrid architecture,
where data is stored temporarily on data centers to
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complete backups as soon as possible, and then up-
loaded to peers when the backup is safe. Besides
being safe both on the short term and on the long
term, this solutions requires a fraction of the costs
of centralized systems [35].

2.5. Redundancy

Redundancy rates and data repair techniques in
P2P storage systems have been investigated from
various angles. Earlier works [8–10] adopt simple
replication strategies, resulting in higher storage
and bandwidth costs for backing up and maintain-
ing data in the system. In other proposals, erasure
coding is used in order to obtain high durability
while minimizing storage costs on nodes, but redun-
dancy values are fixed parameters that are chosen
by the designer independently of the system charac-
teristics [11, 36]. The Wuala online storage service
encodes data on peers with a fixed redundancy level
and avoids the need for maintenance by storing a
full replica of the data in central servers [37]. More
elaborate policies belong to two different categories:
in some cases [38, 39], redundancy is determined as
a function of node failure rate in order to guarantee
data durability at the expense of data availability.
Many other approaches (e.g., [40, 41]) guarantee
low latency through prompt data availability, but
require high redundancy rates in typical settings. In
contrast with these approaches, our proposal strives
to provide both durability and performance at a
low redundancy cost, relaxing prompt data avail-
ability by requiring that data becomes recoverable
within a given time window. Finally, Pamies-Juarez
et al. [42] investigate the relationship between re-
dundancy and data retrieval times, but they center
their investigations on cases where the online ses-
sion length duration is orders of magnitude shorter
than the length of a data transfer process; this sce-
nario is clearly not applicable to our case of long
restore processes.

3. Application Scenario

Similarly to many online backup applications, we
assume users (referred to as data owners) to spec-
ify one local folder containing important data to
backup. Note that backup data remains available
locally to data owners. This is an important trait
that distinguishes backup from many online storage
applications, in which data is only stored remotely.

We consider here the problem of long-term stor-
age of large, immutable, and opaque pieces of data

that we term backup objects. They consist of en-
crypted archives of changes to sets of files, such that
recovering them allows reconstructing the history of
data in the backup folder. We do not take into ac-
count the short-term storage of small modifications
to the backup folder, which can be handled using
known centralized or decentralized online storage
solutions.

Backup objects are stored on remote peers, which
are inherently unreliable. Peers may join and leave
the system at any time, as part of their short-term
online behavior: in the literature, this is referred
to as churn. Moreover, peers may crash and possi-
bly abandon the P2P application: this behavior is
generally referred to as peer death. As such, the on-
line behavior of peers must be continuously tracked,
since it cannot be determined a priori [41].

While the literature provides a vast array of so-
lutions to guarantee data availability when using
failure-prone machines to store data [41, 43], we
claim that online data backup applications should
instead target data durability. Moreover, backup
applications often involve the bulk transfer of a
large quantity of data. Therefore, such applications
should cater throughput rather than aiming at low-
latency read operations, in addition to be resilient
against peer churn and deaths.

Similarly to data availability, data durability can
be achieved by injecting a sufficient level of redun-
dancy in the system. One key issue to address is
to determine the redundancy level required to make
sure data is not lost, despite peer churn. This prob-
lem is called redundancy management. A closely
related problem is to deal with peer deaths, which
cause the data redundancy level to drop. Hence,
the focus of our work is to design a redundancy
management mechanism that is tailored to the pe-
culiar data access patterns of backup applications
and that strives for data durability.

For the sake of clarity, we now explain the op-
eration of a baseline P2P backup application. We
gloss over the details of how data redundancy is
achieved and discuss the salient phases of the life-
time of backup data.

Using erasure coding, a backup object of size o
is encoded in n fragments of a fixed size f which
are ready to be placed on remote peers. Any k
out of n fragments are sufficient to recover the
original data;1 when using optimal erasure coding

1For non-optimal erasure-coding techniques such as Foun-
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techniques, k = do/fe. The redundancy manage-
ment mechanism determines the redundancy level
r = nf/o.

During the backup phase, data owners upload
fragments to some selected remote peers. We as-
sume that any peer can collect a list of remote peers
with available storage space: this can be achieved
with known techniques, e.g. a central coordina-
tor or a decentralized data structure such as a dis-
tributed hash table. The backup phase completes
when all n fragments are placed on remote peers.

Once the backup phase is completed, the main-
tenance phase begins. The purpose of this phase
is to reestablish the desired redundancy level in the
system, that may decrease due to peer deaths: new
fragments must be re-injected in the system. The
crux of data maintenance is to determine when the
redundancy of the backup object is too low to al-
low data recovery and to generate other fragments
to rebalance it. In the event of a peer death, the
system may trigger the maintenance phase imme-
diately (eager repairs) or may wait for a number
of fragments to be tagged as lost before proceed-
ing with the repairs (lazy repairs) [15, 16, 41]. As
such, it is important to discern unambiguously per-
manent deaths from the normal online behavior
of peers: this is generally achieved by setting a
time-out value, Θ, for long-term peer unavailability.
Since user connectivity patterns have strong daily
and weekly periodic behavior [22], typical practical
choices for Θ are one or two weeks.

Note that, as peers hold a local copy of their
data, maintenance can be executed solely by the
data owner, or (as often done in storage systems)
it can be delegated. In both cases, it is important
to consider the timeframe in which data cannot be
maintained. First, fragments may be lost before a
host failure is detected using the time-out mecha-
nism outlined above. This problem is exacerbated
by the availability pattern of the entity (data owner
or other peers) in charge of the maintenance opera-
tion: indeed, host failures cannot be detected dur-
ing the offline periods. Second, data loss can occur
during the restore process. For this reason, in Sec-
tion 4, we consider a redundancy management pol-
icy that ensures data is not lost in the time-window
w = Θ + aoff , where aoff is the (largest) transient
off-line period of the entity in charge of data main-
tenance. For example, if the data owner executes

tain Coding, as described in Section 5, this guarantee is given
probabilistically.

data maintenance: first, it needs to be on-line to
generate new fragments and upload them, and sec-
ond, the timeout Θ has to be expired. Additionally,
our mechanism selects a redundancy level such that
data loss does not occur before the restore process
is completed.

Discerning dead peers through time-outs may
lead to false positives, i.e. peers that are alive but
considered as dead. This may trigger unnecessary
maintenance, bringing redundancy levels to values
that are higher than needed. False positives often
have the result of triggering earlier maintenance op-
erations that should anyway be carried out subse-
quently, and as long as this phenomenon is not ex-
tremely common, it only increases moderately the
amount of resources used by the backup applica-
tion.

In the unfortunate case of a disk or host crash,
the restore phase takes place. Data owners con-
tact the remote machines holding their fragments,
download at least k of them, and reconstruct the
original backup data.

Before proceeding, we now define the perfor-
mance metrics we are interested in for this work.
Overall, we compute the performance of a P2P
backup application in terms of the amount of time
required to complete the backup and the restore
phases, labelled time to backup (TTB) and time to
restore (TTR). Moreover, in the following sections,
we use baseline values for backup and restore oper-
ations which bound both TTB and TTR. We com-
pute such bounds as follows: let us assume an ideal
storage system with unlimited capacity and unin-
terrupted online time that backs up user data. In
this case, TTB and TTR only depend on the size
of a backup object and on uplink bandwidth and
availability of the data owner. We label these ideal
values minTTB and minTTR. Formally, we have
that a peer i with upload and download bandwidth
ui and di, starting the backup of an object of size o
at time t, completes its backup at time t′, after hav-
ing spent o

ui
time online. Analogously, i restores a

backup object with the same size at t′′ after having
spent o

di
time online. Hence, we have that

minTTB(i, t) = t′ − t

and
minTTR(i, t) = t′′ − t.

We use these reference values throughout the paper
to compare the relative performance of our P2P ap-
plication versus that of such an ideal system.
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4. Redundancy Management

We now discuss the key idea of our work: a re-
dundancy management mechanism to achieve data
durability. In practice, data can be considered as
durable if the probability to lose it, due to the per-
manent failure of hosts in the system, is negligible.
The problem of designing a system that guarantees
data durability can be approached under different
angles.

As noted in previous works [39, 44], data avail-
ability implies data durability: a system that injects
sufficient redundancy for data to be available at any
time, coupled with maintenance mechanisms, auto-
matically achieves data durability. These solutions
are, however, too expensive in our scenario: the
amount of redundancy needed to guarantee avail-
ability is much higher than what needed to obtain
durability.

Instead of using high redundancy, data durabil-
ity can also be achieved with efficient maintenance
techniques. For example, in a datacenter, each host
is continuously monitored: based on statistics such
as the mean time to failure of machines and their
components, it is possible to store data with very
little redundancy and rely on system monitoring
to detect and react immediately to host failures.
Failed machines are replaced and data is rapidly re-
paired due to the dedicated and over-dimensioned
nature of datacenter networks. Unfortunately, this
approach is not feasible in a P2P setting. First, the
interplay of transient and permanent failures makes
failure detection a difficult task. Since it is difficult
to discern deaths from the ordinary online behav-
ior of peers, the detection of permanent failures re-
quires a delay during which data may be lost. Fur-
thermore, data maintenance is not immediate: in
a P2P application deployed on the Internet, band-
width scarceness and peer churn make the repair
operation slow.

In summary: on the one hand durability could be
achieved with high data redundancy, but the cost
in terms of resources required by peers would be
overwhelming. On the other hand, with little re-
dundancy, durability could be achieved with timely
detection of host failures and fast repairs, which are
not realistic in a P2P setting.

The goal of this work is to design a redundancy
management mechanism that achieves data dura-
bility without requiring high redundancy levels nor
fast failure detection and repair mechanisms. Our
solution to the problem stems from the particular

data access workload of backup applications: data
is written once, during backup, and read (hopefully)
rarely, during restores. Hence, we design a mech-
anism that injects only the data redundancy level
required to compensate failure detection and data
repair delays.

When any lost piece of data is immediately re-
paired, data is never lost. In real systems, though,
there are delays between data losses and repairs:
we therefore define durability in function of a delay
t accounting for such delays.

Definition 1. Data durability d is the probability
to be able to access data after a time window t, dur-
ing which no maintenance operations are executed.

Definition 2. The time window t is defined as
t = w+TTR, where w accounts for failure detection
delays and TTR is the time required to download a
number of fragments sufficient to recover the origi-
nal data.

As discussed in Section 3, w depends on whether
the maintenance is executed by the data owner or
is delegated, and can be thought of a parameter of
our scheme.

The goal of our redundancy management mech-
anism is to determine the data redundancy that
achieves a target data durability: we proceed as
follows. A peer with n fragments placed on remote
peers could lose its data if more than n−k of them
would get lost as well within the time window t.
The data redundancy required to avoid this event
is r = n/k.

Peer deaths can be determined by disks and host
crashes, or by human events such as users unin-
stalling the application and leaving the network.
Disk drives in practical settings have a lifetime of
several years on average [45]; in the evaluation sec-
tion, we will evaluate our strategies in challenging
sitiations where peer lifetime ranges between a few
months and a few years. Let us consider the proba-
bility of a node to be alive after a time t to be A(t).
Assuming death events are independent, data dura-
bility writes as:

d =

n∑
i=k

(
n

i

)
(A(t))

i
(1−A(t))

n−i
. (1)

Equation 1 depends on t which, in turn, is a func-
tion of TTR. However, peers cannot readily com-
pute their TTR, as this quantity depends on the
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characteristics of remote peers hosting their frag-
ments. We thus propose to use the following heuris-
tic as a method to estimate the TTR. Suppose peer
p0 is computing an estimate of its TTR. In the event
of a crash, we assume p0 to remain online during the
whole restore process. In such a case, assuming no
network bottlenecks, its TTR can be bounded for
two reasons:

1. the download bandwidth D0 of peer p0 is the
bottleneck;

2. the upload rate of remote peers holding p0’s
data is the bottleneck.

Let us focus on the second case: we define the ex-
pected upload rate µi of a generic remote peer pi
holding a backup fragment of p0 as the product of
the availability of peer pi and its upload bandwidth,
that is µi = uiai.

Peer p0 needs to download at least k fragments
to fully recover a backup object. Let us assume
these k fragments are served by the k remote peers
with the highest expected upload rate µi. In this
case, the “bottleneck” is the k-th peer with the low-
est expected upload rate µk. Then, an estimation
of TTR, that we label eTTR, can be obtained as
follows:

eTTR = max

(
o

D0
,
o

kµk

)
. (2)

While TTR is the real time to restore that can
only be measured a posteriori, eTTR is an estima-
tion for TTR, and it it computed a priori according
to Equation 2. The availability of the downloading
peer is assumed equal to 1, since we consider that a
node performing a restore will remain online until
the restore is completed, to obtain a working sys-
tem as soon as possible, and to minimize the risk
of data loss due to other peer deaths during the
restore period.

We now set off to describe how our redundancy
management scheme works in practice: the redun-
dancy level applied to backup data is computed by
the combination of Equation 1 and Equation 2. Let
us assume, for the sake of simplicity, the presence
of a central coordinator that performs membership
management of the P2P network: the coordinator
keeps track of users subscribed to the application,
along with short-term measurements of their avail-
ability, their (application-level) uplink capacity and
the average death rate T in the system. While a de-
centralized approach to membership management
and system monitoring is an appealing research

subject, it is common practice (e.g., Wuala [37] to
rely on a centralized infrastructure and a simple
heartbeat mechanism.

During a backup operation, peers query the co-
ordinator to obtain remote hosts that can be used
to store fragments, along with their availability. A
peer constructs a backup object, and subsequently
uploads k fragments to distinct, randomly selected
available remote hosts. Then the peer continues
to inject redundancy in the system, by sending ad-
ditional fragments to randomly selected available
peers, until a stop condition is met. Every time
one (or more) new fragment is uploaded, the peer
computes d and eTTR: the stop condition is met if
d ≥ σ1 and eTTR ≤ σ2. σ1 and σ2 are configura-
tion parameters that tune the system according to
the performance metrics that we target in this work:
durability and time to restore. Selecting an appro-
priate durability target σ1 should be easy, according
to the guarantees required by the user; in the fol-
lowing we define σ2 as σ2 = α ·minTTR, where α is
a parameter that specifies the degradation of TTR
with respect to an ideal system, tolerated by users.

We now discuss in details the influence of the two
stop conditions on the behavior of our mechanism.
A(t) is the survival function (or complementary cu-
mulative distribution function) of peer mortality,
therefore the average peer lifetime can be computed
as T =

∫
−xA′(x)dx. Given Equation 1, we study

the impact of the ratio w+eTTR
T :

• T � w + eTTR: this case is representative
of a “mature” P2P application in which the
dominant factor that characterizes peer deaths
are permanent host failures, rather than users
abandoning the system. Hence, A(t) in Equa-
tion 1 is close to 1 since t is estimated as
w+eTTR, which implies that the target dura-
bility σ1 can be achieved with a small n.

As such, the condition on eTTR ≤ σ2 prevails
on d ≥ σ1 in determining the redundancy level
to apply to backup data. This means that the
accuracy of the estimate eTTR plays an im-
portant role in guaranteeing acceptable restore
times; instead, errors on eTTR have no impact
on data durability.

• T ∼ w + eTTR: this case (including also the
case when T < w + eTTR, i.e., the average
offline time of the data owner plus the esti-
mated time it takes to fetch back its data can
be greater then the average lifetime of peers)
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is representative of a P2P application in the
early stages of its deployment, where the aban-
don rate of users is crucial in determining the
death rate. In this case, the exponential in
Equation 1 can be arbitrarily small, which im-
plies that n � k, i.e., the target durability d
requires higher data redundancy.

In this case, the condition d ≥ σ1 prevails
on eTTR ≤ σ2. Hence, estimation errors on
the restore times may have an impact on data
durability: e.g., underestimating the TTR may
cause n to be too small to guarantee the target
σ1. In Section 6, we study this scenario.

In summary, the key idea of our redundancy man-
agement mechanism is that the redundancy level
applied to backup data is computed in an on-line
manner, during the backup phase. This comes in
sharp contrast to computing the redundancy level
in an off-line manner, solely based on system-wide
statistics, that characterize previous approaches to
redundancy management.

A by-product of our approach is that our mech-
anism can adapt the redundancy rate r each peer
applies to its data based on system dynamics. Now,
we must prove that the system reaches a stable
state: system dynamics must not bring the redun-
dancy mechanism to oscillate around r. Based on
Equation 1 and Equation 2, we face a retroactive
system in which a feedback loop exists on the dura-
bility d. Given a target durability d, a system-
wide average death rate T and a time window
t = w + eTTR, we can derive r. The problem is
that eTTR depends on the short-term behavior of
peers as well as the redundancy rate r.

First, we study how eTTR and d vary as a func-
tion of the redundancy rate r.

Proposition 1. eTTR is a non-increasing func-
tion in r.

Sketch of the proof: Recall that r = nf
o . Let us

assume a peer p0 has the following ranked list of
remote peers:

{µ1, µ2, µ3, ..., µk},

where, without loss of generality, µi < µj ∀i < j. If
r increases, then n increases: new fragments must
be stored on new remote peers. For simplicity, as-
sume a single fragment is to be placed on peer pq.

Two cases can happen:

1. µq < µk; in this case, eTTR remains unvaried,
since pq is “slower” than the k-th peer used to
compute eTTR;

2. µq > µk; in this case, pq “ejects” the current
k-th peer from the ranked list defined above.

As such, eTTR can only decrease. Note that
eTTR may not reach the stop condition σ2 if the
parameter α is not appropriately chosen: simply
stated, a plateau value of eTTR exists when plac-
ing fragments on all peers in the network.

Proposition 2. d is an increasing function in r.

Sketch of the proof: Equation 1 is a composite func-
tion of eTTR. Hence, by increasing r, new frag-
ments have to be placed on remote peers and it
is not guaranteed, in general, that this contributes
to decrease d. However, thanks to Proposition 1,
eTTR is non-decreasing in r, hence t = w + eTTR
is non decreasing in r. As a consequence, d is an
increasing function in r.

We can now state the following Proposition:

Proposition 3. The redundancy management
mechanism presented in this section is stable.

Sketch of the proof: By design, our redundancy
mechanism shall only increase r. Now, Proposi-
tion 1 states that increasing r yields lower values of
eTTR, hence, eventually, the system either arrives
at the stop condition eTTR ≤ σ2, when α is chosen
appropriately, or it reaches the plateau defined
above. Similarly, by Proposition 2, increasing the
redundancy in the system implies that d grows
asymptotically to 1, hence the system eventually
reaches the stop condition d ≥ σ1.

It is natural to ask why in Proposition 3 we omit
the possibility of removing fragments from remote
peers if r is too high. Let us consider such an op-
eration: one possibility would be to drop a remote
fragment at random. This operation would be un-
stable: indeed, for example, deleting a fragment
from the “fastest” peer in the ranked list defined
above would increase eTTR, decrease d, which as a
consequence might require to re-inject a fragment.
Instead, we could delete fragments starting from
the “slowest” peer: in this case, the drop operation
would be stable, but the storage load in the system
may eventually become concentrated on fast peers
only. Moreover, avoiding deletions can spare main-
tenance operations in the future should one or more
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of the remaining fragments on remote peers be lost.
Due to these reasons, in this work we do not allow
fragments to be dropped.

5. Coding and Data Management

With the redundancy management mechanism
described in Section 4, the redundancy level applied
to backup data is computed in an on-line manner.
Instead, the redundancy rate used in most related
work is usually computed off-line, given sufficiently
representative statistics on the system, including
transient and non-transient failures. These system-
wide statistics are used to compute a unique re-
dundancy rate that every peer will use. Instead,
our approach requires each peer to compute an in-
dividual redundancy level: the time window t is a
function of eTTR, which is different for every peer.

Erasure coding [46] introduces data redundancy
by transforming an original file composed of frag-
ments into a longer file such that the original file
can be recovered from a subset of the encoded frag-
ments. More formally, assuming the backup object
to be segmented in blocks of k fragments each, each
portion of the original data will be recovered if a
sufficient number of the n encoded fragments will
be successfully received. An erasure code is optimal
if any k out of the n encoded fragments are suffi-
cient to recover the original block. The code rate2

is defined as r = n/k and represents the number
of “redundant” fragments per “useful” fragments
generated by the encoder. Note that optimal codes
are often costly when n is large: practical solutions
usually have quadratic encoding and decoding com-
plexity.

Among the optimal erasure coding techniques,
Reed-Solomon (RS) codes are the most widely used
in a number of applications [47]. Nevertheless,
these codes lack of flexibility as the encoding is
determined by the couple of parameters k and n,
which are fixed a priori.

Another family which has been vastly studied
in the literature are the Fountain Codes. These
codes have found applications to digital communi-
cations [48], content delivery [49], storage [50] and
P2P [51]. Because of their unique characteristics,
they are particularly suitable to our goals too. In
fact, the generation of an encoded fragment is inde-
pendent from the others (on-the-fly property) and

2In this work, code rate and redundancy rate are used as
synonyms.

the number of encoded fragments that can be gen-
erated from the original data is potentially infinite
(rateless property).

Fountain Codes are not optimal, in the sense that
the number of encoded fragments necessary to re-
cover the original data is slightly larger than the
original number of fragments. This inefficiency de-
pends on the parameters of the coding technique
and on the block size3 and is negligible for large
data blocks. In practice, the loss of efficiency is
acceptable, if one considers the increased compu-
tational efficiency (even linear with the block size)
of this family of codes with respect to RS codes
(typically quadratic).

In the context of this work, Fountain Codes are
very simple to use in practice. Indeed, the infor-
mation about the fragment generation should be
shared between the encoder and the decoder.4 In-
stead, in our application, the encoder and the de-
coder coexist in the same entity: the data owner.
Hence, such information needs not a complex in-
frastructure to be set up between separate com-
municating parties, but can be simply treated as
“metadata” information to be stored locally (and
eventually backed up).

Fountain Codes make the mechanism described
in Section 4 trivial to achieve: as long as the con-
ditions on the eTTR and d are not met, the en-
coder continues to generate new unique encoded
fragments on the fly. When the stop condition is
reached, the encoding process terminates. In case
system dynamics trigger the generation of new en-
coded fragments (e.g. because host availability de-
creases), these can be simply generated as needed,
with the same procedure described above.

Fountain encoded fragments are statistically “in-
terchangeable”: any encoded fragment can be used
to reconstruct the original data and any encoded
fragment can be replaced by any newly generated
encoded fragments. As a consequence, also main-
tenance operations are simplified as peers need not
track of the exact encoded fragment to replace.

Another appealing characteristic of Fountain
Codes is that, unlike RS codes, the block size is not
mathematically constrained. Nevertheless, a solu-
tion based on Fountain Codes is not exempt from

3In the context of Fountain Codes, the encoding block
is defined exclusively by the number of fragments k, n not
being defined a priori.

4This information can be transmitted together with the
encoded fragment, or the choice of the degree distribution
and the random generator can be shared.
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data management problems. While these codes al-
low maximum flexibility, the definition of the block
size is a tradeoff between the coding inefficiency
(which suggests to use large blocks) and the num-
ber of operations required for either encoding or
decoding (even if linear-time implementations ex-
ist, memory and delay considerations suggest to use
shorter blocks). This means that given a potentially
large backup object, what is the best strategy, en-
coding the whole data thus minimizing the coding
inefficiency, or segmenting into smaller blocks de-
creasing the complexity?

We argue that the data object should be parti-
tioned in several blocks whose size should depend
not only on coding complexity and inefficiency, but
also on the user data generation rate. One of the
coding strategies that can increase the performance
of the code whilst maintaining shorter block size
is the sliding-windowing approach [52, 53]. This
approach virtually increases the encoding block by
allowing the overlap of two or more subsequent cod-
ing blocks (referred as “windows”). The block over-
lap is a design parameter that impacts the perfor-
mance of the code and its value can be decided
a priori or according to customized coding strate-
gies. The typical drawback of using the sliding-
windowing approach is an increase in the decod-
ing delay and memory consumption, as shown by
Bogino et al [52]. However, for the considered appli-
cation, if the block size is moderate, their impacts
are acceptable.

The optimal design of the codes for this appli-
cation goes beyond the scope of this paper as the
coding parameters depend on the system and its
characteristics. To give an example, for unreliable
IP networks, such as mobile networks, it is advis-
able to fit one encoded fragment (and its associated
metadata, if required) per IP packet; in this way,
the loss of a packet corresponds to the erasure of
a single fragment, which is preferable than having
several fragments per packet. This choice impacts
the design of the code and its performance: given a
fixed size of the data, one fragment per IP packet
means that either the data will be segmented in
a larger number of blocks, or that the blocks will
contain a higher number of fragments.

Nevertheless, in our context where we can as-
sume the TCP protocol to work well, there is no
need to constraint the size of the fragment to the
IP packet size. In fact, the fragment size can be
significantly larger, thus having blocks composed
by fewer fragments and therefore decreasing the en-
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Figure 1: Ratio of connected nodes in a representative week
of the availability trace. More users are connected during
days than during night; in weekends, the total number of
connected users drops.

coding/decoding computation time. As we will see
in Section 6.2, this is the encoding strategy that we
used in our system evaluation.

6. Performance Evaluation

In the following, we proceed with a trace-driven
system simulation, and focus on the performance
metrics outlined in Section 3. That is, we are inter-
ested in studying the time required to backup and
restore user data: we perform a comparative study
of the results achieved by a system using our redun-
dancy management scheme and the traditional ap-
proach used for storage applications. For the latter
case, we implement a technique in which the coding
rate is set once and for all based on a system-wide
average of host availability.

Note that, for the purpose of our study, it is not
necessary to implement in detail the coding mech-
anisms described in Section 5. All we need to know
for the evaluation of transfer times is the number
of fragments each peer has to upload during the
backup operation.

We use traces as input to our simulator that cover
both the online behavior of peers and their uplink
and downlink capacities. Instead, long-term fail-
ures and the events of peers abandoning the ap-
plications, which constitute the peer deaths, are
generated synthetically as described in Section 6.2.
Due to the lack of traces that represent the real-
istic “data production rate” of Internet users, in
this simulation study we confine our attention to a
homogeneous setting: each user has an individual
backup object of the same size.
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Figure 2: CDF of the host availability from our traces. Note
that users spending less than 4 hours per day online are
filtered from our data.

6.1. Datasets

Availability trace. The online behavior of users,
i.e., their patterns of connection and disconnection
over time, is difficult to capture analytically. In
this work we simulate a backup application using
a real application trace that exhibits both hetero-
geneity and correlated user behavior. Our traces
capture user availability, in terms of login/logoff
events, from an instant messaging (IM) server for a
duration of roughly 3 months [22]. We argue that
the behavior of regular IM users constitutes a rep-
resentative case study. Indeed, for both an IM and
an online backup application, users are generally
signed in for as long as their machine is connected
to the Internet; as it can be gleaned from Figure 1
on the preceding page, in this dataset it is possi-
ble to observe strong diurnal and weekly patterns.
Moreover, users have heterogeneous behavior – for
example, some users often stay connected during
workdays while others have a less predictable up-
time.

In this work we only consider users that are online
for an average of at least four hours per day, as done
in Wuala [37]. Once this filter is applied, we obtain
the trace of 376 users. Since in P2P storage sys-
tems the number of neighbors each node interacts
with is very often limited by design and scalability
issues [21], we believe this trace size is acceptable.
As shown in Figure 2, most users are online for less
than 40% of the trace length, while some of them
are almost always connected.

Bandwidth distribution. Uplink capacities of
peers are obtained by sampling a real bandwidth

distribution measured at more than 300,000 unique
Internet hosts for a 48 hour period from roughly
3,500 distinct ASes across 160 countries [54]. These
values have a highly skewed distribution, with a me-
dian of 77 KBps and a mean of 428 KBps. To rep-
resent typical asymmetric residential Internet lines,
we assign to each peer a downlink speed equal to
four times its uplink.

6.2. Simulation Settings

The trace-driven online behavior of a peer is over-
ridden only during the restore phase: in this work
we make the assumption that in such case, a peer
remains online for the whole duration of the restore
process.

In our study, each peer has o = 10 GB of data
to backup (as soon as the simulation begins), and
dedicates 50 GB of storage space to the applica-
tion. The high ratio between these two values lets
us disregard issues due to insufficient storage capac-
ity and focus on the subjects of our investigation.
The fragment size is set to 160 MB, implying a min-
imum of k = 64 fragments needed for restores. In
this simulation we do not consider the (negligible)
inefficiency of fountain coding and we assume that
64 fragments will always be sufficient to recover the
original data; in practical settings, a solution based
on fountain coding will pay for added flexibility and
efficiency with a slightly higher redundancy [55].

We define peers’ lifetimes to be exponentially dis-
tributed random variables with an expected value
T = {90 days, 1 year, 4 years}, resulting in A(t) =
e−t/T . These conservative values are noticeably
lower than the disk failure rates measured in real-
world scenarios [45] (see Section 4). Besides peer
deaths, we study the impact of the w parame-
ter, which contributes to the duration of the time-
window for which our redundancy management
policy guarantees data durability, without main-
tenance (see Section 4). As a reminder (see Sec-
tion 3), w accounts for failure detection delays. In
our experiments w takes values from 0 to 4 weeks.

Our adaptive redundancy policy uses the fol-
lowing parameters: we set the thresholds σ1 =
0.9999, so that the durability d ≥ σ1 and σ2 ≤
max (1 day, 2 ·minTTR) so that eTTR ≤ σ2. In
this work, we compare against a baseline redun-
dancy policy that aims to guarantee data availabil-
ity [41], labeled here as “availability-based”: in this
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case data availability is computed as

a =

n∑
i=k

ak(1− a)n−k,

where a is the average availability of nodes in the
system. The value chosen for n is the lowest that
satisfies a ≥ â, where â is a target value set by the
user. Here we set a target data availability of â =
0.99, and use the system-wide average availability
a = 0.36 as computed from our availability traces.
Hence, we obtain a value n = 228 and a redundancy
rate n/k = 3.56.

For each set of parameters, the simulation results
are obtained by combining those of ten simulation
runs.

6.3. Results

We begin our discussion by showing the bounds
on TTB and TTR, as defined in Section 3. Figure 3
shows the cumulative distribution functions (CDF)
of minTTB and minTTR obtained using the input
traces discussed above. Our working assumption is
that peers stay online during restore operations: as
such, only the (ordinary) backup phase suffers from
peer unavailability, and the distribution of minTTR
depends only on the bandwidth distribution, while
minTTB also depends on the availability traces.
We notice that, for a large majority of users, even
these ideal values for time to backup and to restore
are of the order of hours; this result is in line with
what is reported in other works [12, 33, 56].

While backup operations generally take days to
complete, for a file size of 10 GB, restore opera-
tions are several times faster. This can be simply
explained by the asymmetric bandwidth setup we
use in our simulations, and – as discussed above –
by unavailability of peers when data needs to be
backed up. Since node bandwidth distribution is
skewed, a few nodes with very large bandwidth ex-
perience a much lower value for both minTTR and
minTTB; the tails with a very long minTTB value
are instead due to peers that remained disconnected
for very long time spans in our traces.

We now proceed to a detailed comparative study
of our scheme to the traditional fixed-redundancy
scheme. First, we focus on the data redundancy
level (that is, the code rate r) imposed by each ap-
proach.

In Figure 4, we show the average redundancy fac-
tor for our mechanism and the one computed for the
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availability-based scheme (which is fixed), as a func-
tion of the parameter w and for different values of
T . We omit error bars from the plot as the variance
around the mean is negligible. Clearly, for increas-
ing values of w the redundancy rate increases, as
it is possible to evince from Equation 1. Note that
our simulations account for a realistic bandwidth
distribution and for some real on-line user behavior,
which influence the eTTR computation. Figure 4
also illustrates the impact of T : when the dominant
effect of non-transient failures is the reliability of
Internet hosts, that is T is large, our mechanism
achieves data durability (and a controlled TTR)
with a small redundancy factor. Instead, when peer
deaths are dominated by peers abandoning the sys-
tem, that is T is small, our mechanism compen-
sates with a larger redundancy rate. In summary,
our redundancy management scheme obtains a re-
dundancy factor ranging roughly between half and
a third of the availability-based scheme, increasing
the storage capacity of the system by a correspond-
ing factor between two and three. Since the amount
of data to upload in case of a disk crash is propor-
tional to the redundancy level, the impact of main-
tenance of system bandwidth decreases accordingly.

In addition to improving the aggregate storage
capacity of the system, our redundancy manage-
ment scheme impacts both backup and restore op-
erations. Figures 5 and 6 report the CDF of the
ratio of TTB and TTR over their respective ideal
counterparts, minTTB and minTTR. These plots
are obtained with different values of w, for a fixed
T = 3 months,5 and illustrate the results of our
mechanism and that achieved by the availability-
based scheme. Figure 5 indicates that, due to a
lower redundancy factor, the median of the distri-
bution of TTB is roughly reduced by a factor of
four. Moreover, increasing values of w have essen-
tially little impact on TTB. Fast backups are coun-
terbalanced by longer restores: as shown in Fig-
ure 6, restore operations take more time to complete
w.r.t. a traditional approach to redundancy man-
agement. Here the parameter w plays an important
role: for small w values, little redundancy is applied
to backup data. As such, the opportunity to re-
trieve enough encoded fragments to restore data is
largely affected by peer availability. Instead, when

5We present results for T = 3 months because the effects
of w are more marked. We obtain similar qualitative results
for larger values of T . Also, for clarity of presentation, we
omit the CDF for w = 4 weeks.
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w is large, restore operations are more efficient and
less sensitive to peer availability.

In summary, our results support the rationale un-
derlying the design of our redundancy management
scheme: TTB is generally several times larger than
TTR, even in an ideal case (as shown in Figure 3).
Because of this unbalance, we argue that it is rea-
sonable to use a redundancy management scheme
that trades longer TTR (which affects only users
that suffer a crash) for shorter TTB (which affects
all users).

Now, we dive into the details of our scheme and
study its sensitivity to errors due to the heuristic
we use to estimate TTR. The main reason for er-
rors on eTTR are due to the fact that the heuris-
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tic defined in Equation 2 assumes k encoded frag-
ments to be downloaded from the k fastest peers
that hold backup data. In practice, however, the k
encoded fragments are downloaded from the peers
that are available when a restore operation is exe-
cuted. Depending on the bandwidth distribution of
the peers in the system, such difference can cause
the estimated TTR value to be different from what
achieved in practice.

Now, if eTTR is larger than TTR, more redun-
dant data is injected in the system, which has no
negative impact on data durability. What is the im-
pact on durability if peers underestimate the TTR?
Using Equation 1, we compute the redundancy fac-
tor r, as a function of eTTR, that meets the traget
durability σ1. Then, using TTR and r, we compute
the data durability d. Figure 7 shows the impact of
the relative estimation error on the relative durabil-
ity error using the procedure described above, for
different values of T and for w = 2 weeks.

When T is large, we have that w+eTTR� T : as
such, even large estimation errors have little impact
on the durability d. Instead, when T is small, we
have that w + eTTR ' T : in this case, data dura-
bility is more sensitive to estimation errors. As a
consequence, data redundancy may not be sufficient
and data loss events may occur.

In Table 1, we illustrate the effects discussed by
quantifying data loss events for w = 2 weeks. Here
we count the percentage of peers that have not been
able to restore their data after a local disk crash,
averaged over ten simulation runs. We break down

Avg. lifetime Total Incompl. backup Failed
(T ) events Total Unav. restore

3 months 13% 10.4% 8.4% 2.6%

1 year 2.6% 2.6% 2.3% None

4 years 0.5% 0.5% 0.25% None

Table 1: Categorization of data loss events

the data loss cases between incomplete backup and
failed restore: the latter case encompasses all cases
where peers lose data after completing their backup.
Furthermore, we also specify the percentage of un-
avoidable cases in which peers fail before minTTB:
in this case, not even an ideal system could have
guaranteed a safe backup.

A lesson we can draw from Table 1 is that most
data loss episodes are simply due to node failure
before the backup is completed ; this result confirms
that it is sensible to optimize time to backup by
reducing redundancy and hence also network load.
We remark that a further possibility is to use a
hybrid architecture, as we discussed in Section 2.4,
to store data temporarily on a centralized “cloud”
service to decrease time to backup [35]. In addition,
it can be noted that a large majority of data loss
episodes are unavoidable with any online storage
solution: nodes with low bandwidth risk crashing
before completing uploads even if saving data to
a reliable server with 100% uptime and unlimited
bandwidth.

“Failed restore” events can be seen as valida-
tions for the durability computed in Equation 1 on
page 6: since backup is considered complete, the
system has reached the condition where d ≥ σ1 =
0.9999: this should imply that failed restores are
less than 0.01%. This happens for T ≥ 1 year; the
problematic case of T = 3 months is imputable to
the impact of estimation error on durability as dis-
cussed above. However, we remark that the impact
of this effect even in such a situation is outnum-
bered by the unavoidable data loss episodes; this
leads us to conclude that nodes with very low life-
time are intrinsically unsuited to any kind of online
storage solution, and not only to P2P backup.

7. Conclusion

In this work we focused on P2P backup systems,
and designed a redundancy management mecha-
nism tailored to the specific data access patterns
that characterize data backup. The goal of our
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mechanism was to achieve data durability without
requiring large redundancy factors (typical of stor-
age applications) nor fast failure detection mecha-
nisms.

Our experiments showed that, in a realistic set-
ting, a redundancy that caters to data durability
can be less than half of what is needed to guarantee
availability. This results in a system with a storage
capacity that is more than doubled, and backup
operations that are much faster (up to a factor of
4) than on a backup system based on traditional
redundancy management. This latter property is
particularly desirable since, in most of the cases,
peers suffering data loss were those that could not
complete the backup before crashing.

We also showed that the price to pay for efficient
backup operations was a decreased (but controlled)
performance of restore operations. We argued that
this was a reasonable penalty, considering that all
peers in the system would benefit from backup effi-
ciency, while only those peers suffering from a fail-
ure would have to bear longer restore times.

Finally, we studied data loss events: our results
indicated that such events are practically negligible
for a mature P2P application in which permanent
host failures dominate peer deaths. We also showed
the limitations of our technique for a system char-
acterized by a high application-level churn, which is
typical of new P2P applications that must conquer
user trust.
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