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Abstract—This paper extends the complexity analysis [1]–[3]
for MIMO point-to-point systems, to the case of the multiple
access channel (MAC). Specifically we derive upper bounds on
the complexity exponent required to achieve the optimal diversity
multiplexing-gain tradeoff (DMT) performance d∗mac(r) of the
symmetric MAC with K single antenna transmitters and a
receiver having nr antennas. Finally we show how utilizing a
few bits of feedback to allow for user selection, can in fact
result in substantial complexity reductions, while at the same
time improving the DMT performance.

I. INTRODUCTION

This work extends recent studies on the rate-reliability-
complexity limits of quasi-static point-to-point MIMO com-
munications [1]–[3] and focuses on the multiple access chan-
nel (MAC). Specifically we are interested in establishing
bounds on the computational costs required for the broad
families of maximal likelihood (ML)- and lattice-based sphere
decoders to achieve the optimal diversity-multiplexing tradeoff
(DMT) of the symmetric MAC. We here note that while
lattice reduction (LR) indeed allows for DMT optimal behavior
at very manageable complexity [4], there exist scenarios for
which these same LR methods cannot be readily applied. It is
for this exact reason that we focus on the complexity analysis
of non-LR-aided schemes which remain of strong interest for
many pertinent communication scenarios.

Consider a symmetric MAC with K single-antenna users,
each operating at the same multiplexing gain r, and a receiver
at base station having nr antennas. We assume that the receiver
employs a joint ML (or joint lattice) decoder. The emphasis on
joint decoders stems from their DMT optimality for symmetric
MAC [5], [6]. These joint ML or lattice decoders are imple-
mented as bounded search sphere decoding (SD) algorithms
with a search radius δ :=

√
z log2 SNR, for a properly chosen

z > 0, and where SNR denotes the signal to noise ratio. For
SD algorithm details, readers are referred to [1], [2] however
for clarity of exposition, wherever necessary, essential details
are provided during the complexity analysis. The derivations
focus on ML-based decoding, but given the performance-and-
complexity equivalence of ML and regularized lattice based
decoding [2], these same results extend automatically to the
latter. We note that the validity of the presented bounds
depends on the existence of actual coding schemes that meet
them. These schemes will be here provided, together with the
associated lattice designs, decoders and halting polices.

A. System Model

The received signal matrix Y at the base station for the
K-user MAC under consideration is

Y =
√

SNR
K∑
i=1

hi x
>
i +W =

√
SNRHeqX +W, (1)

where hi ∼ CN (0, Inr ) is the length-nr channel vector of
the ith user. It is modeled as a complex Gaussian random
vector with zero mean and covariance Inr . Heq = [h1 · · · hK ]
represents the equivalent (nr×K) channel fading matrix. The
length-T vector xi is the code vector sent by the ith user
satisfying an average power constraint E ‖xi‖

2 ≤ T for all
i = 1, . . . ,K, and X = [x1 · · ·xK ]>. W is the noise matrix
with i.i.d. CN (0, 1) entries at the receiver. After vectorization,
the real valued representation of (1) takes the form

y =
√

SNRHx+ w (2)

where x =
[
Re{x>1 } Im{x>1 } · · ·Re{x>K} Im{x>K}

]>
,

H = IT ⊗
[

Re {Heq} −Im {Heq}
Im {Heq} Re {Heq}

]
, (3)

and where y and w are defined similar to x.
For a rate R = r log2 SNR that scales with SNR as a

function of the multiplexing gain r, we consider the case when
the overall codeword x is taken from a (sequence of) full-rate
linear (lattice) code(s) Xr = Xr,1⊕· · ·⊕Xr,K , where for the ith
user, Xr,i = Λr,i ∩Rr,i ⊂ R2T is corresponding lattice code.
The ith component code Xr,i consists of elements in a rank
2T lattice Λr,i that lie inside the shaping region Rr,i, which
is properly chosen to meet the rate requirement |Xr,i| = 2RT

as well as the average power constraint. The region Rr,i is a
compact convex subset of R2T .

Specifically, we set Λr,i := SNR−
r
2 Λi, a scaled lattice of

another lattice Λi, whose generator matrix is denoted by Gi.
Set G = diag(G1, . . . , GK); then the overall codeword is
given by x = SNR−

r
2Gs for some s ∈ Z2KT . Substituting

this into (2) yields the following equivalent channel input-
output relatio,n which will be used for sphere decoding of
s

y = Ms+ w (4)

where M := SNR
1−r
2 HG.



B. Rate-reliability-complexity measures in outage-limited
communications

In the high SNR regime, a given encoder Xr and decoder
Dr are said to achieve a multiplexing gain r and diversity gain
dD(r) [7] if

− lim
SNR→∞

log2 Pe(r)

log2 SNR
= dD(r), (5)

where Pe(r) denotes the probability of codeword error with
an SD-based ML decoder Dr employing time-out policies.

The complexity characterization follows from [1], [2]. Given
multiplexing gain r, let Nmax(r) denote the amount of com-
putational reserves, in floating point operations (flops) per T
channel uses, that the decoder Dr is endowed with, in the sense
that after Nmax(r) flops, the decoder must simply terminate,
potentially prematurely and before completion of its task. The
complexity exponent then takes the form [2]

cmac(r) := lim
SNR→∞

log2Nmax(r)

log2 SNR
. (6)

C. Notation

Following [7], we use .
= to denote the exponential equality,

i.e., a function f(SNR) is said to be f(SNR)
.
= SNRb if and

only if limSNR→∞
log2 f(SNR)
log2 SNR = b. Exponential inequalities

such as ≤̇, ≥̇ are similarly defined. By s = dxe we mean the
smallest integer s ≥ x, and by t = bxc we mean the largest
integer t ≤ x. A† is the Hermitian transpose of matrix A, and
(x)+ := max{x, 0}.

II. COMPLEXITY ANALYSIS FOR MULTIPLE-ACCESS
CHANNEL

In order to establish complexity requirements for the sym-
metric MAC, we briefly recall that the optimal DMT perfor-
mance of the K-user MAC under consideration is given by
[5]

d∗mac(r) =

{
nr(1− r) if 0 < r ≤ nr

K+1 ,

d∗K,nr (Kr) if nr
K+1 < r ≤ nr

K ,
(7)

where d∗m,n(r) denotes the optimal DMT of an (n×m) MIMO
channel, see [7] for its exact characterization. The regime 0 <
r ≤ nr

K+1 is termed the the lightly-loaded regime, where single
user DMT performance d∗1,nr (r) = nr(1−r) can be achieved,
as if there was no multiuser interference. The regime nr

K+1 <
r ≤ nr

K is termed the heavily-loaded regime, also known as
the antenna-pooling regime [5]. Depending on the values of K
and nr, constructions of lattice coding schemes that achieve
the optimal DMT performance d∗mac(r) can be found in [6],
[8], [9].

We focus on establishing upper bounds on the complexity
exponent that guarantees DMT optimal ML-based (or lattice-
based) decoding. This will be achieved by considering specific
codes, decoders and halting policies, as will be seen in the
following theorem.

Theorem 1: For the K-suer MAC subject to i.i.d. Rayleigh
fading statistics, the minimum, over all lattice designs and

halting and decoding order policies, complexity exponent
c∗mac(r) required to achieve the optimal DMT d∗mac(r), is upper
bounded by

c̄mac(r) =



sup
µ∈B(r)

(K − nr)r +
∑ν
i=1 (r − (1− µi)+)

+
,

if K ≥ nr
sup

µ∈B(r)

∑ν
i=1 [min {r, r + µi − 1}]+ ,

if K < nr,
(8)

where ν := min{K,nr} and

B(r) :=

{
µ :

µ1 ≥ · · · ≥ µν , 0 ≤ µi ∈ R∑ν
i=1 (|K − nr|+ 2i− 1)µi ≤ d∗mac(r)

}
.

Moreover, the uncoded QAM signaling achieves the com-
plexity upper bound c̄mac(r) and delivers the optimal DMT
d∗mac(r), using a sphere decoder with a search radius δ >√
d∗mac(r) log2 SNR, a decoding halting policy that halts de-

coding if Nmax(r)
.
= SNRc

∗
mac(r), and any decoding order

policy.
Proof: See Appendix A.

We remark that for an underdetermined MAC, i.e., nr < K,
there is an intuitive explanation for the term (K−nr)r appear-
ing in (8). Note that with nr < K, the QR decomposition of
matrix M defined in (4) results in an upper trapezoid matrix
R, whose bottom row contains 2T (K − nr) + 1 nonzero
entries. Therefore, prior to processing the root node of a
sphere-decoding tree, the sphere decoder must first search
exhaustively among N2T (K−nr) combinations of N -ary PAM
constellation points as entries of s are in Z in (4). In particular,
for an uncoded QAM signaling we have N = SNR

r
2 and

T = 1, thereby yielding the first term (K − nr)r in (8).
To provide more meaningful insights regarding the upper

bound presented in Theorem 1, we present examples for two
specific cases with nr = 1 and nr = K.

Example 1: For the specific case of nr = 1, the bound
c̄mac(r) in (8) simplifies to

c̄mac(r) = (K − 1)r, for 0 ≤ r ≤ 1

K
. (9)

It is clear that the complexity exponent upper bound grows
almost linearly in K, somehow unfavorable in practice. Fig. 1
plots the upper bounds for the K = 4 and K = 5-user cases
with a single-antenna receiver, i.e. nr = 1.

Example 2: For the specific case of nr = K, the optimal
DMT of (7) can be achieved by V-BLAST [5], [8]. The
complexity exponent upper bound for this case simplifies after
some work to

c̄mac(r) = r
⌊√

K(1− r)
⌋

+

r − 1 +
K(1− r)− (

⌊√
K(1− r)

⌋
)2

2
⌊√

K(1− r)
⌋

+ 1

+

. (10)

Fig. 2 shows the complexity exponent upper bounds for K =
3, 4, 5 users and nr = K.
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Fig. 1. Complexity exponent bounds for K-user MAC with nr = 1.
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Fig. 2. Complexity exponent for K-user MAC with nr = K.

We shall mention that the proof of Theorem 1 in Appendix
A shows the uncoded QAM is indeed DMT optimal for the
present MAC, for all possible values of K and nr, as long as
the equivalent channel matrix Heq has an isotropic probability
distribution, i.e., invariant under any unitary transformation.
It improves the result reported by Tse and Viswanath [10,
p. 3246] who showed that plain uncoded QAM using in V-
BLAST is DMT optimal when the multiplexing gain r lies
in the lightly-loaded regime, or equivalently when nr ≥ K.
The proof in Appendix A shows further that for nr < K the
resulting DMT becomes dominated by d∗K,nr (Kr), as if the
system operates in the antenna-pooling regime. Similarly, the
proof in Appendix A improves one of our previous results [8].
We summarize the above discussion in the theorem below.

Theorem 2: Consider a K-user symmetric MAC with single
antenna at each user and nr antennas at base station. The un-
coded QAM for each user is approximately universal in terms
of DMT for all isotropic channel probability distributions.

III. USER SELECTION FOR THE MULTIPLE-ACCESS
CHANNEL

In this section we present a user selection scheme for the
present MAC system that can achieve a substantial improve-

ment over d∗mac(r) for many values of multiplexing gain r,
together with an exponential reduction in the complexity costs
compared to ML/lattice based sphere decoding complexity
costs c∗mac(r), as these were presented in Theorem 1. The user
selection scheme is based on the antenna selection algorithm
of [11] by Jiang and Varanasi to select L out of K users for
transmission throughout a block fading channel of length Tc
channel uses. Hence such selection scheme requires a channel
feedback at rate 1

Tc
log2

(
K
L

)
in bits per channel use. As Tc is

very large in practice, the required feedback rate is extremely
low. Assuming L out of K users are chosen for transmission,
as each user is selected with probability L

K , it means each
selected user has to transmit at multiplexing gain K

L r.
It should be noted that there is a potential limitation of the

Jiang-Varanasi antenna selection algorithm when it is used for
user selection. More precisely, the Jiang-Varanasi algorithm is
based on a specific kind of QR decomposition of the overall
channel matrix Heq and then makes a selection according to
the order of the diagonal entries of the R matrix, which can
be either a tall or a flat matrix, depending on the values of K
and nr. This means that the algorithm can make a selection
of L users if and only if L ≤ ν = min{K,nr}.

A. DMT and Complexity of User Selection

The performance of extent of system reduction is naturally
limited by the rate-reliability requirements. The theorem below
provides an upper bound on the DMT performance achieved
by the user selection scheme.

Theorem 3: Given L with 1 ≤ L ≤ ν = min{K,nr}, the
DMT achieved by selecting L users based on Jiang-Varanasi
algorithm and transmitting over the present MAC is upper
bounded by

d∗us,L(r) ≤ min
k≥0,,`≥1
k+`≤L

dk,`

(
`Kr

L

)
:= d̄us,L(r), (11)

where

dk,`(r) := inf
A`(r)

Dk,`(α),

A`(r) :=

{
0 ≤ α1 ≤ · · · ≤ α` :

∑̀
i=1

(1− αi)+ ≤ r

}
,

and

Dk,`(α) :=
∑̀
i=1

(nr + `− 2i+ 1)αi +

`−1∑
i=1

(K − k − `)αi

+ α`(K − k − `)(nr − k − `+ 1) (12)

Proof: See Appendix B.
Having obtained an upper bound on the DMT performance

achieved by the L-user selection algorithm, we next explore
the complexity ramifications of user selection. The following
result is a direct consequence of Theorem 1.

Theorem 4: For the K-suer MAC subject to i.i.d. Rayleigh
fading statistics, the minimum, over all lattice designs and
halting and decoding order policies, complexity exponent
c∗us,L(r) based on the proposed L-user selection algorithm,



1 ≤ L ≤ ν = min{K,nr}, required to achieve the optimal
DMT d∗us,L(r), is upper bounded by

c̄us,L(r) = sup
α∈F(r)

L∑
i=1

[
min

{
K

L
r,
K

L
r + αi − 1

}]+
, (13)

where

F(r) :=

{
α :

α1 ≤ · · · ≤ αL, 0 ≤ αi ∈ R
D0,L(α) ≤ d̄us,L(r)

}
.

where Dk,`(α) is defined in (12). Moreover, the uncoded
QAM signaling achieves the complexity upper bound c∗us,L(r)
and delivers the optimal DMT d∗us,L(r), given given a sphere

decoder with a search radius δ >
√
d∗us,L(r) log2 SNR, a

decoding halting policy that halts decoding if Nmax(r)
.
=

SNRc
∗
us,L(r), and any decoding order policy.

Proof: The claim on the upper bound c̄us,L(r) follows
from Theorem 1 and the fact that d̄us,L(r) ≥ d∗us,L(r), which
shows to achieve the smaller diversity value d∗us,L(r), only
less computational complexity is needed. The claim on the
optimality of uncoded QAM follows from Theorem 2 of being
approximately universal.

In Fig. 3 we consider the underdetermined MAC for K = 4
and nr = 3 and plot the DMT upper bounds d̄us,L(r) giving in
Theorem 3 for L = 1, 2, 3. We also compare these DMT upper
bounds to the optimal MAC DMT d∗mac(r) without selection.
It can be seen that the user selection algorithm can provide
a significant increase in diversity whenever multiplexing gain
r ≤ 0.42.
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Fig. 3. The DMT upper bounds d̄us,L(r) for user selection and the optimal
MAC DMT d∗mac(r) without selection for K = 4, nr = 3, and L = 1, 2, 3.

Another example is given in Fig. 4 for the case of K = 3,
nr = 4, and L = 1, 2, 3, which represents the overdetermined
MAC case. Besides a significant improvement on the diversity
gain by using the user selection scheme, it is seen that
d̄us,3(r) = d∗mac(r) for L = 3, i.e. all users are selected for
transmission. This is an indication that the DMT upper bounds
given in Theorem 3 might be very tight.

Moreover, we shall remark that for the case of L < ν in the
user selection, the maximal multiplexing gain for a nonzero
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Fig. 4. The DMT upper bounds d̄us,L(r) for user selection and the optimal
MAC DMT d∗mac(r) without selection for K = 3, nr = 4, and L = 1, 2, 3.

diversity gain is L
K . This means that for instance, if the desired

multiplexing gain equals r = 0.3 in the case of K = 3 and
nr = 4, then one shall not consider the user selection with
L = 1.

B. Complexity Ramification of User Selection

In the previous section we have seen that by allowing a very
low-rate feedback to the users, the resulting DMT performance
can be significantly improved in the regime of low and
moderate multiplexing gain values. Thus, a natural way for
designing a communication scheme for MAC would be to
take advantage of user selection scheme and the conventional
MAC. Specifically, let d∗(r) be the maximal diversity gain that
can be provided by using either user selection or conventional
MAC, i.e.

d∗mac-us(r) = max

{
max

1≤L≤ν
d∗us,L(r), d∗mac(r)

}
. (14)

Clearly, d∗mac-us(r) is upper bounded by

d̄mac-us(r) = max

{
max

1≤L≤ν
d̄us,L(r), d∗mac(r)

}
. (15)

Also given the desired multiplexing gain, let L∗mac-us(r) denote
the optimal number of users selected for transmission such that
the upper bound DMT d̄(r) can be achieved, i.e.,

L∗mac-us(r) :=


arg max1≤L≤ν d̄us,L(r),
if user selection is used for d̄mac-us(r),

K,
if conventional MAC is used for d̄mac-us(r).

(16)
For instance, the optimal number of selected users L∗mac-us(r)
for the underdetermined MAC case of K = 4 and nr = 3 is
given in Fig. 5.

Results in Theorems 1 and 4 then provides us with an
explicit characterization of the computational complexity re-
quired by the joint consideration of conventional MAC and
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user selection schemes. More precisely, the upper bound on
the computational complexity exponent of the corresponding
SD algorithm is upper bounded by

c̄mac-us(r) =

{
c̄us,L(r), if L∗mac-us(r) = L < ν,
c̄mac(r), if L∗mac-us(r) = K. (17)

In Figs. 6 and 7 we plot the DMT upper bound d̄mac-us(r)
as well as the complexity exponent upper bound c̄mac-us(r)
for K = 4-user MAC with nr = 3, respectively. The results
are also compared to those of conventional MAC without
selection. It can be seen that the user selection scheme provides
a significant improvement on the diversity gain and at the same
time offers an exponentially large reduction on SD complexity.
When only user selection is considered, we also provide in
Figs. 6 and 7 the optimal DMT

d̄us(r) := max
1≤L≤ν

d̄us,L(r)

and the corresponding complexity exponent c̄us(r). It can be
seen that if a very small cutback of diversity gain is allowed at
high multiplexing gain regime, then the user selection scheme
can provide a substantial and exponentially large reduction on
complexity cost.

IV. CONCLUSIONS

In this paper we computed bounds on the complexity
costs that are sufficient to achieve the optimal DMT of the
symmetric MAC, as well as provided analysis for the DMT
and complexity resulting from user selection.

APPENDIX A
PROOF OF THEOREM 1

In the following we establish an upper bound on the
minimum complexity exponent c∗mac(r) required by ML-based
decoding to achieve the optimal DMT d∗mac(r) of the MAC.
The joint ML decoder sees a K×nr equivalent MIMO-MAC
and a sum of multiplexing gain of Kr. Yet, as the users do not
cooperator with each other, for any distinct pair of codeword
matrices X and X ′ (cf. (1)), the different matrix X−X ′ might
not be nonsingular as in the point-to-point case.
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A. SD Complexity

For complexity analysis we note that for the K-user MAC
with full-rate codes described in Section I-A, the overall lattice
Λ := Λ1⊕ · · · ⊕ΛK has rank 2KT . For the underdetermined
case of K > nt, we might require an MMSE-preprocessing in
order to allow for a SD implementation of ML decoding [12].
Towards this, let M̃ be the MMSE-preprocessed code-channel
matrix given by

M̃ =

[
M
αIu

]
= QR (18)

where u = 2(K − nr)T and α = SNR−
r
2 if K > nr, and

α = u = 0 if otherwise, and where the second equality means
the QR factorization of M̃ . In which case (4) yields

r :=
(
R†
)−1

M†y = Rs+ w′

where w′ = −α2
(
R†
)−1

s +
(
R†
)−1

M†w. Let Sr :={
s ∈ Z2KT : SNR−

r
2Gs ∈ Xr

}
denotes the set of coordinates

of points in Λ that lie in Xr after certain scaling. Then the



MMSE-preprocessed SD decoder for this system then takes
the form

ŝMMSE-SD = arg min
s∈Sr
‖r −Rs‖2 (19)

and can be implemented by the sphere decoder which re-
cursively enumerates all candidate vectors s ∈ Sr within a
given search sphere of radius δ =

√
z log2 SNR for some

z > d∗mac(r). Moreover, it has been shown [2] that the MMSE-
preprocessed SD decoder allows for a vanishing gap to the
exact solution found by the ML decoder.

To compute an upper bound on the complexity exponent, we
follow the approach similar to [2], i.e., let λi = σi(H

†
eqHeq),

i = 1, . . . , ν = min{K,nr}, be the nonzero singular values,
arranged in ascending order, of matrix H†eqHeq, and define
µi = − log2 λi

log2 SNR . It then follows that

σi(R) = σi(M̃) =
√
α2 + σi(M†M) (20)

with i = 1, . . . , 2KT . Moreover, we have σi(R)
.
=

SNR
1
2 (1−r−µd i

2T
e) for K < nr, and

σi(R)
.
=

{
SNR−

r
2 , if 1 ≤ i ≤ 2T (K − nr)

SNR−
r
2+

1
2 (1−µj)

+

, otherwise
(21)

for K ≥ nr, where j = d i−2T (K−nr)
2T e, and we have used the

fact that σi(G)
.
= SNR0.

The total number of visited nodes is commonly taken as
a measure of the SD complexity [1]. For any given channel
realization µ := [µ1 · · ·µν ]>, the total number of visited nodes
is given by

NSD(µ) :=

2KT∑
k=1

Nk(µ)

and it has been shown in [1, Lemma 1] that

Nk(µ) ≤
k∏
i=1

[√
k + 2 min

{
δ

σi(R)
,
√
kSNR

r
2

}]
It then follows that

NSD(µ) ≤
2KT∑
k=1

k∏
i=1

[√
k + 2 min

{
δ

σi(R)
,
√
kSNR

r
2

}]
,

and in particular, by (20) for the overdetermined case, i.e,
K ≤ nr, we have

NSD(µ) ≤̇ SNRT
∑K
i=1[min{r,r+µi−1}]+ (22)

and by (21) for the underdetermined case it yields

NSD(µ) ≤̇ SNR(K−nr)rT+T
∑nr
i=1(r−(1−µi)

+)
+

, (23)

where we have used the fact of 2T multiplicity of the singular
values of H defined in (3).

Following the footsteps of the complexity analysis in [2] for
the MMSE-preprocessed channel matrix R, the upper bound
on the complexity exponent can be obtained as the solution to
a constrained minimization problem of finding a value c∗mac(r)

such that the probability of a prematurely termination of SD
algorithm is no larger than the channel outage probability, i.e.,

Pr
{
NSD(µ) ≥ Nmax(r) = SNRc

∗
mac(r)

}
≤ SNR−d

∗
mac(r).

(24)

B. Optimality of Uncoded QAM

It remains to show that the upper bounds (22) and (23)
can be significantly tightened by setting T = 1 while the
probabilitic complexity constraint (24) still holds. In particular,
setting T = 1 means that the overall code lattice Λ has
rank 2K, which is isomorphic to the rectangular lattice Z2K .
Equivalently, it means that the overall code Xr is given by

Xr = Lr =
{

SNR−
r
2 x : x ∈ (Z[ ı ])

K
, |xi|2 ≤ SNRr

}
,

i.e., the uncoded QAM signaling after scaling. To show that the
above code Lr satisfies the probabilistic complexity constraint
(24), following the footsteps in [6], [8], we consider a K-fold
extension of the Lr,

Lr,ext =

K⊕
i=1

Lr ⊂ SNR−
r
2MK(Z[ ı ])

that is, elements of Lr,ext are square K ×K matrices whose
entries are independent QAM constellation points after a
scaling of SNR−

r
2 . It is obvious that the error probability

of code Lr,ext is at most K times that of code Lr, provided
that the same decoder is used for decoding both codes; hence
Lr,ext and Lr achieve the same DMT performance. Assuming
a quasi-static fading channel with a channel coherence time
Tc ≥ K channel uses, the error probability of code Lr,ext
achieved by the ML decoder is upper bounded by

Pe,ext(r)

= E Pr {L′ ∈ E(L) decoded}

= E Pr

{
K⋃
k=1

{L′ ∈ Ek(L) decoded}

}
(i)
≤

K∑
k=1

E Pr {L′ ∈ Ek(L) decoded}

(ii)
≤

K∑
k=1

E Pr

 ⋃
L′∈Ek(L)

{
Heq :

∥∥∥SNR
1
2Heq(L− L′)

∥∥∥2 ≤̇1

}
(25)

where the expectation is taken over all codeword matrices
L ∈ Lr,ext, and where E(L) := Lr,ext \ {L} is the set of all
possible erroneous codewords given L transmitted, Ek(L) :=
{L′ ∈ E(L) : rank(L− L′) = k} with k = 1, . . . ,K is a
partition of E(L). Step (i) follows from the union bound and
step (ii) is due to the use of a suboptimal bounded distance
decoder (cf. [6]). For any L′ ∈ Ek(L), set ∆L′ = L − L′

and let ∆L′∆
†
L′ = UL′ΣL′U

†
L′ be the corresponding eigen-

decomposition. Note that as rank(∆L′) = k, the eigenvalue
matrix ΣL′ has form ΣL′ = diag(ΩL′ , 0K−k), where ΩL′



consists of all nonzero eigenvalues of ∆L′∆
†
L′ . Substituting

the above into (25) we obtain

Pr

 ⋃
L′∈Ek(L)

{
Heq :

∥∥∥SNR
1
2Heq(L− L′)

∥∥∥2 ≤̇1

}
= Pr

 ⋃
L′∈Ek(L)

{
G : tr

(
G†ΩL′G

)
≤̇1
} , (26)

where G is an (nr × k) random matrix with i.i.d. CN (0, 1)
entries. Let λ1 ≤ · · · ≤ λm be the nonzero eigenvalues
of G†G, where m = min{k, nr}, and set µi = − log2 λi

log2 SNR .
Noting that det(ΩL′) ≥̇SNR−kr and tr(ΩL′) ≤̇ 1, it can be
shown using arguments similar to [6] that the condition of
tr
(
G†ΩL′G

)
≤̇ 1 implies

∑m
i=1(1 − µi)

+ ≤ kr, which is
independent of the choice of L′. Hence we have

Pr

 ⋃
L′∈Ek(L)

{
G : tr

(
G†ΩL′G

)
≤̇1
}

≤̇ Pr

 ⋃
L′∈Ek(L)

{
µ = [µ1 · · ·µk]> :

m∑
i=1

(1− µi)+ ≤ kr

}
= Pr

{
µ = [µ1 · · ·µk]> :

m∑
i=1

(1− µi)+ ≤ kr

}
.
= SNR−d

∗
k,nr

(kr),

where the last dotted equality follows from [7]. Finally, note
that the error probability of Lr subject to ML decoding is
upper bounded by

Pe(r) ≤
1

K
Pe,ext(r) ≤̇

1

K

K∑
i=1

SNR−d
∗
k,nr

(kr) .
= SNR−d

∗
mac(r),

and the proof is complete.

APPENDIX B
PROOF OF THEOREM 3

Let Heq be the (nr×K) equivalent channel matrix defined
in (1). To select the L users, Jiang-Varanasi algorithm [11]
takes L iterations of column permutation Πi and Householder
transformation Ti to obtain the following matrix R

R = TL · · ·T1HeqΠ1 · · ·ΠL

=



r1,1 ∗ · · · ∗ ∗ · · · ∗
r2,2 · · · ∗ ∗ · · · ∗

. . .
...

...
...

...
rL,L ∗ · · · ∗

...
...

...
∗ · · · ∗


.

Let ui be the user associated with the ith column of R
and denote the set of selected users by {u1, u2, . . . , uL}.
Since entries of Heq are i.i.d. CN (0, 1), to meet an average
multiplexing gain r for each user, the selected user has to

transmit at a larger multiplexing gain of K
L r. We consider a

series of specific outage events,

Ok,` := {the sum-rate of users uk+1, · · · , uk+` is in outage}
(27)

for all k ≥ 0, ` ≥ 1, and k + ` ≤ L. It will be seen that the
outage event considered by Jiang and Varanasi [11, Theorem
4.1] is a special case of the above when setting k = 0 and
` = L, i.e., the outage event O0,L.

A. DMT Analysis for error event Ok,`
To analyze the DMT for the error event Ok,` for any k ≥

0, ` ≥ 1, and k + ` ≤ L, let Rk,` be the matrix resulting
from applying (k + `) iterations of Jiang-Varanasi algorithm
to overall matrix Heq. We partition matrix Rk,` as follows

Rk,` = Tk+` · · ·T1HeqΠ1 · · ·Πk+`

=

 RL RC,U RR,U
RC,B RR,M

RR,B

 , (28)

where

RL =

 r1,1 · · · r1,k
. . .

...
rk,k

 ,
RC,U =

 r1,k+1 · · · r1,k+`
...

...
...

rk,k+1 rk,k+`

 ,
RC,B =

 rk+1,k+1 · · · rk+1,k+`

. . .
...

rk+`,k+`

 ,
RR,U =

 r1,k+`+1 · · · r1,K
...

...
...

rk,k+`+1 · · · rk,K

 ,
RR,M =

 rk+1,k+`+1 · · · rk+1,K

...
...

...
rk+`,k+`+1 · · · rk+`,K

 ,
RR,B =

 rk+`+1,k+`+1 · · · rk+`+1,K

...
...

...
rnr,k+`+1 · · · rnr,K


and the entries satisfy

|ri,i|2 ≥
nr∑
m=i

|rm,j |2 , (29)

for i = 1, 2, . . . , k + ` and for j = i+ 1, . . . ,K.
Set

RC :=

[
RC,U
RC,B

]
;

then the probability that the sum-rate of users uk+1, · · · , uk+`
is in outage is

Pr {Ok,`}



= Pr

{
log2 det

(
Inr + SNRRCR

†
C

)
<

K

L
`r log2 SNR

}

=

∫
I(r)

c ·

k+∏̀
i=1

fχ2
2(nr−i+1)

(
|ri,i|2

) K∏
j=i+1

1

π
e−|ri,j |

2


× 1

π(K−k−`)(nr−k−`) e
−‖RR,B‖2 dR(30)

:
.
= SNR−dk,`(

K
L `r) (31)

for some constant c due to ordered statistics (cf. the first
constraint in (32)), where fχ2

κ
(·) is the probability density

function for χ2 random variable with degree of freedom κ
and mean κ

2 , and where the region for integration is

I(r) :=

R :

|ri,i|2 ≥
∑nr
m=i |rm,j |

2
,

i = 1, . . . , k + `, j = i+ 1, . . . ,K

det
(
Inr + SNRRCR

†
C

)
< SNR

K
L `r


(32)

We make the following observations.
1) In seeking the DMT dk,`(r) by applying the Laplace

principle, entries in RL and RR,U are not involved in
the second constraint in D(r). This implies that the
dominant sub-event in I(r) has RL, RR,U

.
= 1, the all-

one matrix with proper size.
2) Let λ1 ≥ · · · ≥ λ` be the ordered singular values for

RC and let µ1 ≥ · · · ≥ µ` be the ordered singular values
of RC,B . Clearly, as RC,BR

†
C,B � RCR

†
C , we have

µ2
i ≤ λ2i , i = 1, 2, . . . , `. (33)

By [11, Lemma 3.3] we have

(RC,B)i,i = r2k+i,k+i ≥
∑`
j=i µ

2
j

`− i+ 1

.
= µ2

i (34)

for i = 1, 2, . . . , `. Moreover, by [11, Eq. (27)] that the
squared diagonal elements in RC,B are multiplicatively
majorized by its squared singular values, i.e.

m∏
i=1

µ2
i ≥

m∏
i=1

r2k+i,k+i ≥̇
m∏
i=1

µ2
i , m = 1, 2, . . . , `

(35)
where the second dotted inequality is due to (34). It then
follows that

r2k+i,k+i
.
= µ2

i , (36)

for i = 1, 2, . . . , `.
3) Finally, at the end of first k iterations of Jiang-Varanasi

algorithm, we get

Tk · · ·T1HΠ1 · · ·Πk

=



r1,1 ∗ · · · ∗ ∗ · · · ∗
r2,2 · · · ∗ ∗ · · · ∗

. . .
...

...
...

...
rk,k ∗ · · · ∗

...
...

...
∗ · · · ∗



=
[
RL RR

]
,

where RR is the (nr×(K−k)) matrix consisting of the
rightmost (K−k) columns of the above matrix. Entries
of RR can still be regarded as i.i.d. CN (0, 1) random
variables as RL

.
= 1 due to the first remark above. It

means that the singular values λi, i = 1, . . . , ` are still
of the same probability distribution for ordered singular
values of an (nr×`) random matrix with i.i.d. CN (0, 1)
entries.

With the above, we now proceed to analyze the integral (30)
to obtain a formula for the DMT function dk,`(r). Specifically,
we will show that

dk,`(r) = inf
A`(r)

{∑̀
i=1

(nr+ `−2i+1)αi+

`−1∑
i=1

(K−k− `)αi

+ α`(K − k − `)(nr − k − `+ 1)

}
(37)

where

A`(r) =

{
0 ≤ α1 ≤ · · · ≤ α` :

∑̀
i=1

(1− αi)+ ≤ r

}
.

To see the above, set λ2i
.
= SNR−αi with α1 ≤ α2 · · · ≤ α`.

The first summand appearing in (37) follows from the joint
probability density function of ordered singular values λ1 ≥
· · · ≥ λ` for an (nr × `) matrix with i.i.d. CN (0, 1) entries
is [7], [11]

f(α1, · · · , α`)
.
= SNR−

∑`
i=1(nr+`−2i+1)αi .

Also by (33), (36) and (29), we have the following constraints
for entries in matrix Rk,`:

1) For i = 1, . . . , `−1, entries rk+i,j , j = k+`+1, . . . ,K,
must satisfy

|rk+i,j |2 ≤ |rk+i,k+i|2 ≤ λ2i .

The constraints on rk+i,j contribute to (37) the term∑`−1
i=1(K − k − `)αi.

2) Entries rk+i,j with i = `, . . . , nr − k and j = k + ` +
1, . . . ,K, must satisfy

nr−k∑
i=`

|rk+i,j |2 ≤ |rk+`,k+`|2
.
= µ2

` ≤ λ2`

Such constraints contribute to (37) the term α`(K−k−
`)(nr − k − `+ 1).

Thus we have completed the proof of (37)
Remark 1: It can be shown that with the setting of k = 0

and ` = L ≤ ν, the DMT d0,L(r) is exactly the antenna-
selection DMT given by Jiang and Varanasi in [11, Theorem
4.1], i.e., d0,L(r) is a piecewise linear function connecting the
following (P + 2) points

(r, (K − r)(nr − r)), r = 0, 1, . . . , P, and (L, 0), (38)



where

P = arg min
p=0,1,...,L−1

(K − p)(nr − p)
L− p

. (39)

Hence the DMT result of Jiang and Varanasi in [11, Theorem
4.1] can be seen as a special case of (37).

Finally, the proof of Theorem 3 is complete after noting
that the union of outage events Ok,` is a subset of the overall
outage event, i.e.⋃

k,`≥0
k+`≤L

Ok,` ⊆
⋃

U⊂{u1,...,uL}

{ users in U are in outage} .
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