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On the Optimality of Simple Schedules for

Networks with Multiple Half-Duplex Relays

Martina Cardone, Daniela Tuninetti and Raymond Knopp

Abstract

This paper studies networks that consist of N half-duplex relays assisting the communication

between a source and a destination. In ISIT’12 Brahma, Özgür and Fragouli conjectured that in Gaussian

half-duplex diamond networks (i.e., without a direct link between the source and the destination, and

with N non-interfering relays) an approximately optimal relay scheduling policy (i.e., achieving the

cut-set upper bound to within a constant gap uniformly over all channel gains) has at most N + 1

active states (i.e., at most N + 1 out of the 2N possible relay listen-transmit configurations have a

strictly positive probability). Such relay scheduling policies were referred to as simple. In ITW’13 the

authors of this paper conjectured that simple approximately optimal relay scheduling policies exist for

any Gaussian half-duplex multi-relay network irrespectively of the topology. This paper formally proves

this more general version of the conjecture and shows it holds beyond Gaussian noise networks.

In particular, for any memoryless half-duplex N -relay network with independent noises and for

which independent inputs are approximately optimal in the cut-set upper bound, an approximately

optimal simple relay scheduling policy exists. The key step of the proof is to write the minimum of

the submodular cut-set function by means of its Lovász extension and use the greedy algorithm for

submodular polyhedra to highlight structural properties of the optimal solution. This, together with

the saddle-point property of min-max problems and the existence of optimal basic feasible solutions
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for linear programs, proves the conjecture. A convergent iterative polynomial-time algorithm, which

alternates between minimizing a submodular function and maximizing a linear program, is proposed to

find the approximately optimal simple relay scheduling policy. As an example, for N -relay Gaussian

networks with independent noises, where each node in equipped with multiple antennas and where

each antenna can be configured to listen or transmit irrespectively of the others, the existence of an

approximately optimal simple relay scheduling policy with at most N + 1 active states, irrespectively

of the total number of antennas in the system, is proved. Through a line-network example it is also

shown that independently switching the antennas at each relay can provide a strictly larger pre-log /

multiplexing gain compared to using the antennas for the same purpose.

Index Terms

Approximate capacity, half-duplex networks, linear programming, relay scheduling policies, sub-

modular functions.

I. INTRODUCTION

Adding relaying stations to today’s cellular infrastructure promises to boost network perfor-

mance in terms of coverage, network throughput and robustness. Relay nodes, in fact, provide

extended coverages in targeted areas, offering a way through which the base station can com-

municate with cell-edge users. Moreover, the use of relay nodes may offer a cheaper and lower

energy consumption alternative to installing new base stations, especially for regions where

deployment of fiber fronthaul solutions are impossible. Depending on the mode of operation,

relays are classified into two categories: Full-Duplex (FD) and Half-Duplex (HD). A relay is

said to operate in FD mode if it can receive and transmit simultaneously over the same time-

frequency-space resource, and in HD mode otherwise. Although higher rates can be attained

with FD relays, due to practical restrictions (such as the inability to perfectly cancel the self-

interference [1], [2]) currently employed relays operate in HD mode, unless sufficient isolation

between the antennas can be achieved.

Motivated by the current practical importance of relaying stations, in this paper we study

networks where the communication between a source and a destination is assisted by N HD

relays. In particular each relay is assumed to operate in time division duplexing, i.e., in time it

alternates between transmitting and receiving. In such a network there are 2N possible listen-

transmit states whose probability must be optimized. Due to the prohibitively large complexity of

this optimization problem (i.e., exponential in the number of relays N ) it is critical to identify, if
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any, structural properties of such networks that can be leveraged in order to find optimal solutions

with limited complexity. This paper uses properties of submodular functions and Linear Programs

(LP) to show that a class of memoryless HD multi-relay networks has indeed intrinsic structural

properties that guarantee the existence of approximately optimal simple relay scheduling policies

that can be determined in polynomial time.

A. Related Work

The different relaying strategies studied in the literature are largely based on the seminal work

by Cover and El Gamal [3] on memoryless FD relay channels. In [3] the authors proposed a

general outer bound (now known as the max-flow min-cut outer bound, or cut-set for short) and

two achievable strategies named Decode-and-Forward (DF) and Compress-and-Forward (CF).

In [4], these bounds were extended to networks with multiple FD relays. The capacity of a multi-

relay network is open in general. In [5], the authors showed that for Gaussian noise networks with

N FD relays Quantize-reMap-and-Forward (QMF)—a network generalization of CF—achieves

the cut-set upper bound to within
∑N+2

k=1 5min{Mk, Nk} bits per channel use, with Mk and

Nk being the number of transmit and receive antennas, respectively, of node k ∈ [1 : N + 2].

For single-antenna nodes, this gap was reduced to 1.26(N + 2) bits per channel use in [6] by

means of a novel transmission strategy named Noisy Network Coding (NNC)—also a network

generalization of CF. In [7], [8], the authors showed that for Gaussian FD multi-relay networks

with a sparse topology, namely diamond networks without a direct source-destination link and

with N FD non-interfering relays, the gap is of 2 log(N + 1) bits per channel use.

Relevant past work on HD multi-relay networks comprises the following papers. By follow-

ing the approach of [9], in [10] the authors evaluated the cut-set upper bound for Gaussian

multi-relay networks and, for the case of single-antenna nodes, they showed that a lattice-code

implementation of QMF is optimal to within 8(N + 2) bits per channel use [10, Theorem 2.3].

Recently, in [11] we showed that the gap can be reduced to 1.96 (N + 2) bits per channel use

by using NNC. In general, finding the capacity of a single-antenna Gaussian HD multi-relay

network is a combinatorial problem since the cut-set upper bound is the minimum between 2N

bounds (one for each possible cut in the network), each of which is a linear combination of

2N relay states (since each relay can either transmit or receive). Thus, as the number of relays

increases, optimizing the cut-set bound becomes prohibitively complex. Identifying structural

properties of the cut-set upper bound, or of a constant gap approximation of the cut-set upper
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bound, is therefore critical for efficient numerical evaluations and can have important practical

consequences for the design of simple / reduced complexity relay scheduling policies.

In [12], the authors analyzed the single-antenna Gaussian HD diamond network with N = 2

relays and proved that at most N + 1 = 3 states, out of the 2N = 4 possible ones, suffice

to approximately (to within a constant gap) characterize the capacity. We say that these N + 1

states are active (have a strictly positive probability) and form an (approximately) optimal simple

schedule. In [13], Brahma et al verified through extensive numerical evaluations that single-

antenna Gaussian HD diamond networks with N ≤ 7 relays have (approximately) optimal

simple schedules and conjectured this to be true for any N . In [14], Brahma et al’s conjecture

was proved for single-antenna Gaussian HD diamond networks with N ≤ 6 relays; the proof

is by contradiction and uses properties of submodular functions and LP duality but requires

numerical evaluations; for this reason the authors could only prove the conjecture for N ≤ 6,

since for larger values of N “the computational burden becomes prohibitive” [14, page 1].

Our numerical experiments in [15] showed that Brahma et al’s conjecture holds for general

single-antenna Gaussian HD multi-relay networks (i.e., not necessarily with a diamond topology)

with N ≤ 8; we conjectured that the same holds for any N . If our more general version of

Brahma et al’s conjecture is true, then single-antenna Gaussian HD multi-relay networks have

(approximately) optimal simple schedules irrespectively of their topology, i.e., known results for

diamond networks are not a consequence of the simplified / sparse network topology. In this work,

we formally prove the conjecture for a general Multiple-Input-Multiple-Output (MIMO) Gaussian

HD multi-relay network and show that this result holds beyond Gaussian noise networks.

In [11] we also discussed polynomial-time algorithms to determine the (approximately) op-

timal simple schedule and their extensions beyond relay networks. Other algorithms seeking to

determine optimal relay scheduling policies, but not focused on characterizing the minimum

number of active states, are available in the literature. The authors of [16] proposed an iterative

algorithm to determine the optimal schedule when the relays use DF. In [17] the authors proposed

a ‘grouping’ technique to find the relay schedule that maximizes the approximate capacity of

certain Gaussian HD relay networks, including for example layered networks; because finding

a good node grouping is computationally complex, the authors proposed an heuristic approach

based on tree decomposition that results in polynomial-time algorithms; as for diamond networks

in [13], the low-complexity algorithm of [17] relies on the ‘simplified’ topology of certain

networks. As opposed to these works, we propose a polynomial-time algorithm that determines
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the (approximately) optimal simple relay policy with a number of active states at most equal to

the number of relays plus one for any network topology.

The first step in the derivation of our main result uses [18, Theorem 1] that states that for

FD relay networks “under the assumption of independent inputs and noises, the cut-set bound

is submodular”; wireless erasure networks, Gaussian networks and their linear deterministic

high-SNR approximations are examples for which [18, Theorem 1] holds.

B. Contributions

In this work we study multi-relay HD networks. In particular, we seek to identify properties

of the network that allow for the reduction of the complexity in computing an (approximately)

optimal relay scheduling policy. Our main contributions can be summarized as follows:

1) We formally prove Brahma et al’s conjecture beyond the Gaussian noise case. In particular,

we prove that for any HD network with N relays, with independent noises and for which

independent inputs in the cut-set bound are approximately optimal, the optimal relay policy

is simple. The key idea is to use the Lovász extension and the greedy algorithm for

submodular polyhedra to highlight structural properties of the minimum of a submodular

function. Then, by using the saddle-point property of min-max problems and the existence

of optimal basic feasible solutions for LPs, an (approximately) optimal relay policy with

the claimed number of active states can be shown.

2) We propose an iterative algorithm to find the (approximately) optimal simple relay sched-

ule, which alternates between minimizing a submodular function and maximizing a LP.

The algorithm runs in polynomial-time (in the number of relays N ) since the unconstrained

minimization of a submodular function can be performed in strongly polynomial-time and

a LP maximization can also be performed in polynomial-time.

3) For Gaussian noise networks with multi-antenna nodes, where the antennas at the relays

may be switched between transmit and receive modes independently of one another, we

prove that NNC is optimal to within 1.96 bits per channel use per antenna, and that an

(approximately) optimal schedule has at most N +1 active states (as in the single-antenna

case) regardless of the total number of antennas in the system. We also show, through

two examples, that switching independently the antennas at each relay achieves in general

higher rates than using all of them for the same purpose (either listen or transmit).
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C. Paper Organization

The rest of the paper is organized as follows. Section II describes the general memoryless HD

multi-relay network. Section III first summarizes some known results for submodular functions

and LPs, then proves the main result of the paper, and finally designs a polynomial-time algorithm

to find the (approximately) optimal simple relay schedule. Section IV applies the main result

to Gaussian noise networks with multi-antenna nodes. In particular, we first show that NNC

achieves the cut-set outer bound to within a constant gap that only depends on the total number

of antennas, then we prove that the number of active states only depends on the number of

relays (and not on the number of antennas) and we finally show that switching independently

the antennas at each relay achieves higher rates than using all of them for the same purpose (either

listen or transmit). Section V concludes the paper. Some proofs may be found in Appendix.

D. Notation

In the rest of the paper we use the following notation convention. With [n1 : n2] we indicate

the set of integers from n1 to n2 ≥ n1. For an index set A we let YA = {Yj : j ∈ A}. For two

sets A1,A2, A1 ⊆ A2 indicates that A1 is a subset of A2, A1∪A2 represents the union of A1 and

A2, while A1∩A2 represents the intersection of A1 and A2. With ∅ we denote the empty set and

|A| indicates the cardinality of the set A. Lower and upper case letters indicate scalars, boldface

lower case letters denote vectors and boldface upper case letters indicate matrices (with the

exception of Y j , which denotes a vector of length j with components (Y1, . . . , Yj)). 0j denotes

the all-zero column vector of length j, while 0i×j is the all-zero matrix of dimension i× j. 1j is

a column vector of length j of all ones and Ij is the identity matrix of dimension j. |A| is the

determinant of the matrix A and Tr [A] is the trace of the matrix A. For a vector a we let diag[a]

be a diagonal matrix with the entries of a on the main diagonal, i.e.,
[
diag[a]

]
ij
= aiδ[i − j],

where δ[n] is the Kronecker delta function. To indicate the block matrix A =

A1,1 A1,2

A2,1 A2,2

,

we use the Matlab-inspired notation A = [A1,1,A1,2;A2,1,A2,2]; for the same block matrix A,

the notation AR,C indicates a submatrix of A where only the blocks in the rows indexed by the

set R and the blocks in the columns indexed by the set C are retained. |a| is the absolute value

of a and ‖a‖ is the norm of the vector a; a∗ is the complex conjugate of a, aT is the transpose

of the vector a and a† is the Hermitian transpose of the vector a. X ∼ N (µ, σ2) indicates that
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X is a proper-complex Gaussian random variable with mean µ and variance σ2. E [·] indicates

the expected value; [x]+ := max{0, x} for x ∈ R and log+(a) = max{0, log(a)}.

II. SYSTEM MODEL

A memoryless relay network has one source (node 0), one destination (node N + 1), and N

relays indexed from 1 to N . It consists of N + 1 input alphabets (X1, · · · ,XN ,XN+1) (here Xi
is the input alphabet of node i except for the source / node 0 where, for notation convenience,

we use XN+1 rather than X0), N +1 output alphabets (Y1, · · · ,YN ,YN+1) (here Yi is the output

alphabet of node i), and a transition probability PY[1:N+1]|X[1:N+1]
. The source has a message W

uniformly distributed on [1 : 2nR] for the destination, where n denotes the codeword length and

R the transmission rate in bits per channel use (logarithms are in base 2). At time i, i ∈ [1 : n],

the source maps its message W into a channel input symbol XN+1,i (W ), and the k-th relay,

k ∈ [1 : N ], maps its past channel observations into a channel input symbol Xk,i

(
Y i−1
k

)
. The

channel is assumed to be memoryless, that is, the following Markov chain holds for all i ∈ [1 : n]

(W,Y i−1
[1:N+1], X

i−1
[1:N+1])→ X[1:N+1],i → Y[1:N+1],i.

At time n, the destination outputs an estimate of the message based on all its channel observations

as Ŵ
(
Y n
N+1

)
. A rate R is said to be ε-achievable if there exists a sequence of codes indexed

by the block length n such that P[Ŵ 6= W ] ≤ ε for some ε ∈ [0, 1]. The capacity is the largest

non-negative rate that is ε-achievable for any ε > 0.

In this general memoryless framework, each relay can listen and transmit at the same time,

i.e., it is a FD node. HD channels are a special case of the memoryless FD framework in the

following sense [9]. With a slight abuse of notation compared to the previous paragraph, we

let the channel input of the k-th relay, k ∈ [1 : N ], be the pair (Xk, Sk), where Xk ∈ Xk as

before and Sk ∈ [0 : 1] is the state random variable that indicates whether the k-th relay is in

receive-mode (Sk = 0) or in transmit-mode (Sk = 1). In the HD case the transition probability

is specified as PY[1:N+1]|X[1:N+1],S[1:N ]
. In particular, when the k-th relay, k ∈ [1 : N ], is listening

(Sk = 0) the outputs are independent of Xk, while when the k-th relay is transmitting (Sk = 1)

its output Yk is independent of all other random variables.

The capacity C of the HD multi-relay network is not known in general, but can be upper

bounded by the cut-set bound

C ≤ max
PX[1:N+1],S[1:N ]

min
A⊆[1:N ]

I
(rand)
A , (1)
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where

I
(rand)
A := I (XN+1, XAc , SAc ;YN+1, YA|XA, SA) (2)

≤ H(SAc) + I
(fix)
A , (3)

for

I
(fix)
A := I

(
XN+1, XAc ;YN+1, YA|XA, S[1:N ]

)
(4)

=
∑

s∈[0:1]N
λs fs(A), (5)

where

λs := P[S[1:N ] = s] ∈ [0, 1] :
∑

s∈[0:1]N
λs = 1, (6)

fs(A) := I
(
XN+1, XAc ;YN+1, YA|XA, S[1:N ] = s

)
, s ∈ [0 : 1]N . (7)

In the following, we use interchangeably the notation s ∈ [0 : 1]N to index all possible binary

vectors of length N , as well as, s ∈ [0 : 2N − 1] to indicate the decimal representation of

a binary vector of length N . I(rand)
A in (2) is the mutual information across the network cut

A ⊆ [1 : N ] when a random schedule is employed, i.e., information is conveyed from the

relays to the destination by switching between listen and transmit modes of operation at random

times [9] (see the term H(SAc) ≤ |Ac| ≤ N in (3)). I(fix)
A in (4) is the mutual information with

a fixed schedule, i.e., the time instants at which a relay transitions between listen and transmit

modes of operation are fixed and known to all nodes in the network [9] (see the term S[1:N ] in

the conditioning in (4)). Note that fixed schedules are optimal to within N bits.

III. SIMPLE SCHEDULES FOR A CLASS OF HD MULTI-RELAY NETWORKS

We next consider networks for which the following holds: there exists a product input distri-

bution

PX[1:N+1]|S[1:N ]
=

∏
i∈[1:N+1]

PXi|S[1:N ]
(8a)

for which we can evaluate the set function I(fix)
A in (4) for all A ⊆ [1 : N ] and bound the capacity

as

C′ − G1 ≤ C ≤ C′ + G2, : C′ := max
PS[1:N ]

min
A⊆[1:N ]

I
(fix)
A , (8b)
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where G1 and G2 are non-negative constants that may depend on N but not on the channel

transition probability. In other words, we concentrate on networks for which using independent

inputs and a fixed relay schedule in the cut-set bound provides both an upper (to within G2 bits)

and a lower (to within G1 bits) bounds on the capacity.

The main result of the paper is:

Theorem 1. If in addition to the assumptions in (8) it also holds that

1) the “noises are independent,” that is

PY[1:N+1]|X[1:N+1],S[1:N ]
=

∏
i∈[1:N+1]

PYi|X[1:N+1],S[1:N ]
, (8c)

2) and that the functions in (7) are not a function of {λs, s ∈ [0 : 1]N}, i.e., they can depend

on the state s but not on the {λs, s ∈ [0 : 1]N},

then simple relay policies are optimal in (8b), i.e., the optimal probability mass function PS[1:N ]

has at most N + 1 non-zero entries / active states.

We first give some general definitions and summarize some properties of submodular functions

and LPs in Section III-A, we then prove Theorem 1 in Sections III-B-III-E, by also illustrating

the different steps of the proof for the case N = 2. Finally, in Section III-F we discuss the

computational complexity of finding (approximately) optimal simple schedules.

A. Submodular Functions, LPs and Saddle-point Property

The following are standard results in submodular function optimization [19] and LPs [20].

Definition 1 (Submodular function, Lovász extension and greedy solution for submodular poly-

hedra). A set-function f : 2N → R is submodular if and only if, for all subsets A1,A2 ⊆ [1 : N ],

we have f (A1) + f (A2) ≥ f (A1 ∪ A2) + f (A1 ∩ A2)
1.

Submodular functions are closed under non-negative linear combinations.

For a submodular function f such that f(∅) = 0, the Lovász extension is the function f̂ :

RN → R defined as

f̂ (w) := max
x∈P (f)

wTx, ∀w ∈ RN , (9)

1A set-function f is supermodular if and only if −f is submodular, and it is modular if it is both submodular and supermodular.
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where P (f) is the submodular polyhedron defined as

P (f) :=

{
x ∈ RN :

∑
i∈A

xi ≤ f(A), ∀A ⊆ [1 : N ]

}
. (10)

The optimal x in (9) can be found by the greedy algorithm for submodular polyhedra and has

components

xπi = f ({π1, . . . , πi})− f ({π1, . . . , πi−1}) , ∀i ∈ [1 : N ], (11)

where π is a permutation of [1 : N ] such that the weights w are ordered as wπ1 ≥ wπ2 ≥ . . . ≥

wπN , and where by definition {π0} = ∅.

The Lovász extension is a piecewise linear convex function.

Proposition 2 (Minimum of submodular functions). Let f be a submodular function and f̂ its

Lovász extension. The minimum of the submodular function satisfies

min
A⊆[1:N ]

f (A) = min
w∈[0:1]N

f̂ (w) = min
w∈[0,1]N

f̂ (w) ,

i.e., f̂ (w) attains its minimum at a vertex of the cube [0, 1]N .

Definition 2 (Basic feasible solution). Consider the LP

maximize cTx

subject to Ax ≤ b x ≥ 0,

where x ∈ Rn is the vector of unknowns, b ∈ Rm and c ∈ Rn are vectors of known coefficients,

and A ∈ Rm×n is a known matrix of coefficients. If m < n, a solution for the LP with at most

m non-zero values is called a basic feasible solution.

Proposition 3 (Optimality of basic feasible solutions). If a LP is feasible, then an optimal

solution is at a vertex of the (non-empty and convex) feasible set S = {x ∈ Rn : Ax ≤ b,x ≥ 0}.

Moreover, if there is an optimal solution, then an optimal basic feasible solution exists as well.

Proposition 4 (Saddle-point property). Let φ(x, y) be a function of two vector variables x ∈ X

and y ∈ Y . By the minimax inequality we have

max
y∈Y

min
x∈X

φ (x, y) ≤ min
x∈X

max
y∈Y

φ (x, y)

and equality holds if the following three conditions hold: (i) X and Y are both convex and one

of them is compact, (ii) φ (x, y) is convex in x and concave in y, and (iii) φ (x, y) is continuous.
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B. Overview of the Proof of Theorem 1

The objective is to show that simple relay policies are optimal in (8b). The proof consists of

the following steps:

1) We first show that the function I
(fix)
A defined in (4) is submodular under the assumptions

in (8).

2) By using Proposition 2, we show that the problem in (8b) can be recast into an equivalent

max-min problem.

3) With Proposition 4 we show that the max-min problem is equivalent to solve a min-

max problem. The min-max problem is then shown to be equivalent to solve N ! max-min

problems, for each of which we obtain an optimal basic feasible solution by Proposition 3

with the claimed maximum number of non-zero entries.

We now give the details for each step in a separate subsection.

C. Proof Step 1

We show that I(fix)
A in (4) is submodular. The result in [18, Theorem 1] showed that fs(A)

in (7) is submodular for each relay state s ∈ [0 : 1]N under the assumption of independent

inputs and independent noises (the same work provides an example of a diamond network with

correlated inputs for which the cut-set bound is neither submodular nor supermodular). Since

submodular functions are closed under non-negative linear combinations (see Definition 1), this

implies that I(fix)
A =

∑
s∈[0:1]N λs fs(A) is submodular under the assumptions of Theorem 1. For

completeness, we provide the proof of this result in Appendix A, where we use Definition 1 as

opposed to the “diminishing marginal returns” property of a submodular function used in [18].

Example for N = 2: In this setting we have 22 = 4 possible cuts, each of which is a linear

combination of 22 = 4 possible listen/transmission configuration states. In particular, from (5)

we have

A = ∅, I
(fix)
∅ := λ0f0 (∅) + λ1f1 (∅) + λ2f2 (∅) + λ3f3 (∅) ,

A = {1} , I
(fix)
{1} := λ0f0 ({1}) + λ1f1 ({1}) + λ2f2 ({1}) + λ3f3 ({1}) ,

A = {2} , I
(fix)
{2} := λ0f0 ({2}) + λ1f1 ({2}) + λ2f2 ({2}) + λ3f3 ({2}) ,

A = {1, 2} , I
(fix)
{1,2} := λ0f0 ({1, 2}) + λ1f1 ({1, 2}) + λ2f2 ({1, 2}) + λ3f3 ({1, 2}) ,

where, ∀s ∈ [0 : 3], we have that the functions in (7) are given by

fs (∅) := I
(
X3, X2, X1;Y3|S[1:2] = s

)
,
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fs ({1}) := I
(
X3, X2;Y3, Y1|X1, S[1:2] = s

)
,

fs ({2}) := I
(
X3, X1;Y3, Y2|X2, S[1:2] = s

)
,

fs ({1, 2}) := I
(
X3;Y3, Y2, Y1|X2, X1, S[1:2] = s

)
,

and are submodular under the assumptions in (8).

D. Proof Step 2

Given that I(fix)
A in (4) is submodular, we would like to use Proposition 2 to replace the

minimization over the subsets of [1 : N ] in (8b) with a minimization over the cube [0 : 1]N .

Since I(fix)
∅ = I

(
X[1:N+1];YN+1|S[1:N ]

)
≥ 0 in general, we define a new submodular function

g (A) := I
(fix)
A − I(fix)

∅ (12)

and proceed as follows

min
A⊆[1:N ]

I
(fix)
A = I

(fix)
∅ + min

A⊆[1:N ]
g (A)

= I
(fix)
∅ + min

w∈[0,1]N

[
wπ1 wπ2 . . . wπN

]
g ({π1})− g (∅)

...

g ({π1, . . . , πN})− g ({π1, . . . , πN−1})



= I
(fix)
∅ + min

w∈[0,1]N

[
wπ1 wπ2 . . . wπN

]
I
(fix)
{π1} − I

(fix)
∅

...

I
(fix)
{π1,...,πN} − I

(fix)
{π1,...,πN−1}



= min
w∈[0,1]N

[
1 wπ1 wπ2 . . . wπN

]


I
(fix)
∅

I
(fix)
{π1} − I

(fix)
∅

...

I
(fix)
{π1,...,πN} − I

(fix)
{π1,...,πN−1}


=: min

w∈[0,1]N

{
[1,wT ] Hπ,f

}
, (13)

which implies that the problem in (8b) is equivalent to

C′ = max
λvect

min
w∈[0,1]N

{
[1,wT ] Hπ,fλvect

}
, (14)
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where λvect is the probability mass function of S[1:N ] in (6), Hπ,f is defined as

Hπ,f := Pπ



1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0
...

0 0 . . . −1 1


︸ ︷︷ ︸

(N+1)×(N+1)

Fπ ∈ R(N+1)×2N , (15)

where Pπ ∈ R(N+1)×(N+1) is the permutation matrix that maps [1, w1, . . . , wN ] into [1, wπ1 , . . . , wπN ],

and Fπ is defined as

Fπ :=



f0(∅) . . . f2N−1(∅)

f0({π1}) . . . f2N−1({π1})

f0({π1, π2}) . . . f2N−1({π1, π2})

. . .

f0({π1, . . . , πN}) . . . f2N−1({π1, . . . , πN})


∈ R(N+1)×2N , (16)

with fs (A) being defined in (7). We thus expressed our original optimization problem in (8b)

as the max-min problem in (14).

Example for N = 2: With N = 2, we have g (A) = I
(fix)
A − I(fix)

∅ ,A ⊆ [1 : 2] and the Lovász

extension (see Definition 1) is

ĝ(w1, w2) =

 w1g ({1}) + w2 [g ({1, 2})− g ({1})] if w1 ≥ w2

w2g ({2}) + w1 [g ({1, 2})− g ({2})] if w2 ≥ w1

. (17)

A visual representation of the Lovász extension ĝ(w1, w2) in (17) on [0, 1]2 is given in Fig. 1,

where we considered g ({1}) = 3, g ({2}) = 4 and g ({1, 2}) = 6 (recall g(∅) = 0).

Let

iM := argmax {w1, w2} and im := argmin {w1, w2} . (18)

The optimization problem in (13) for N = 2 can be written as

min
0≤wim≤wiM≤1


[
1 wiM wim

]
1 0 0

−1 1 0

0 −1 1

Fπ


= min

0≤wim≤wiM≤1

{[
1− wiM wiM − wim wim

]
Fπ

}
, (19)
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Fig. 1: Lovász extension ĝ(w1, w2) in (17), with g ({1}) = 3, g ({2}) = 4 and g ({1, 2}) = 6.

with

Fπ =


f0(∅) f1(∅) f2(∅) f3(∅)

f0({iM}) f1({iM}) f2({iM}) f3({iM})

f0({1, 2}) f1({1, 2}) f2({1, 2}) f3({1, 2})

 , (20)

and finally the optimization problem in (14) is

C′ = max
λvect

min
0≤wim≤wiM≤1


[
1− wiM wiM − wim wim

]
Fπ


λ0

λ1

λ2

λ3




. (21)

E. Proof Step 3

In order to solve (14) we would like to reverse the order of min and max. We note that

the function φ (λvect,w) := [1,wT ] Hπ,fλvect satisfies the properties in Proposition 4 (it is

continuous; it is convex in w by the convexity of the Lovász extension and linear (under the
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assumption in item 2 in Theorem 1), thus concave, in λvect; the optimization domain in both

variables is compact). Thus, we now focus on the problem

C′ = min
w∈[0,1]N

max
λvect

{
[1,wT ] Hπ,fλvect

}
, (22)

which can be equivalently rewritten as

C′ = min
π∈PN

min
wπ∈[0:1]N

max
λvect

{
[1,wT

π ] Hπ,fλvect

}
(23)

= min
π∈PN

max
λvect

min
wπ∈[0:1]N

{
[1,wT

π ] Hπ,fλvect

}
, (24)

where PN is the set of all the N ! permutations of [1 : N ]. In (23), for each permutation π ∈ PN ,

we first find the optimal λvect, and then find the optimal wπ : wπ1 ≥ wπ2 ≥ . . . wπN . This is

equivalent to (24), where again by Proposition 4, for each permutation π ∈ PN , we first find

the optimal wπ : wπ1 ≥ wπ2 ≥ . . . wπN , and then find the optimal λvect.

Let now consider the inner optimization in (24), that is, the problem

P1 : max
λvect

min
wπ∈[0:1]N

{
[1,wT

π ] Hπ,fλvect

}
. (25)

From Proposition 2 we know that, for a given π ∈ PN , the optimal wπ is a vertex of the cube

[0 : 1]N . For a given π ∈ PN , there are N +1 vertices whose coordinates are ordered according

to π. In (25), for each of the N + 1 feasible vertices of wπ, it is easy to see that the product

[1,wT
π ] Hπ,f is equal to a row of the matrix Fπ. By considering all possible N + 1 feasible

vertices compatible with π we obtain all the N+1 rows of the matrix Fπ. Hence, P1 is equivalent

to

P2 : maximize τ

subject to 1(N+1)τ ≤ Fπλvect

and 1T2Nλvect = 1, λvect ≥ 02N , τ ≥ 0.

(26)

The LP P2 in (26) has n = 2N + 1 optimization variables (2N values for λvect and one value

for τ ), m = N +2 constraints, and is feasible (consider for example the uniform distribution of

λvect and τ = 0). Therefore, by Proposition 3, P2 has an optimal basic feasible solution with at

most m = N + 2 non-zero values. Since τ > 0 (otherwise the channel capacity would be zero),

it means that λvect has at most N + 1 non-zero entries.

Since for each π ∈ PN the optimal λvect in (24) has at most N +1 non-zero values, then also

for the optimal permutation the corresponding optimal λvect has at most N +1 non-zero values.

This shows that the (approximately) optimal schedule in the original problem in (8b) is simple.

This concludes the proof of Theorem 1.
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Example for N = 2: For N = 2, we have |P2| = 2! = 2 possible permutations. From

Proposition 2, the optimal w is one of the vertices (0, 0), (0, 1), (1, 0), (1, 1). Let now focus on

the case iM = 1 and im = 2 (a similar reasoning holds for iM = 2 and im = 1 as well). Under this

condition P1 in (25) is the problem in (21) with iM = 1 and im = 2. The vertices compatible with

this permutation are (w1, w2) ∈ {(0, 0), (1, 0), (1, 1)}, which result in (1 − w1, w1 − w2, w2) ∈

{(0, 0, 0), (0, 1, 0), (0, 0, 1)}. This implies that P2 in (26) is

P2 : maximize τ

subject to τ ≤ f0(∅)λ0 + f1(∅)λ1 + f2(∅)λ2 + f3(∅)λ3,

τ ≤ f0({1})λ0 + f1({1})λ1 + f2({1})λ2 + f3({1})λ3,

τ ≤ f0({1, 2})λ0 + f1({1, 2})λ1 + f2({1, 2})λ2 + f3({1, 2})λ3,

λ0 + λ1 + λ2 + λ3 = 1, λi ≥ 0 i ∈ [0 : 3], τ ≥ 0,

(27)

where each of the three inequality constraints correspond to a different row of Fπ multiplied

by λvect = [λ0, λ1, λ2, λ3]
T . Therefore, P2 in (27) has four constraints (three from the rows of

Fπ and one from λvect) and five unknowns (one value for τ and four entries of λvect). Thus, by

Proposition 3, P2 has an optimal basic feasible solution with at most four non-zero values, of

which one is τ and thus the other (at most) three belong to λvect.

By [11, Appendix C], we know that either λ0 or λ3 is zero, thus giving the desired (approxi-

mately) optimal simple schedule.

Remark 1. In order to apply the saddle-point property (see Proposition 4) and hence cast our

optimization problem as a LP, the proof of Step 3 requires that the matrix Fπ does not depend

on λvect; this is the reason of our assumption in item 2 in Theorem 1. In our Gaussian noise

example (see Section IV), this excludes the possibility of power allocation across the relay states

because power allocation makes the optimization problem non-linear in λvect.

Remark 2. As stated in Theorem 1, the assumptions in (8) provide a set of sufficient conditions

for the existence of an (approximately) optimal simple schedule. Since those conditions are not

necessary, there might exist networks for which the assumptions in (8) are not satisfied, but for

which the (approximately) optimal schedule is still simple. Determining necessary conditions

for optimality of simple schedules is an interesting challenging open question.

Remark 3. For FD relays, it was showed in [18] that wireless erasure networks, Gaussian

networks with single-antenna nodes and their linear deterministic high-SNR approximations
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are examples for which the cut-set bound (or an approximation to it) is submodular. Since

submodular functions are closed under non-negative linear combinations (see Definition 1), this

implies that the cut-set bound (or an approximation to it) is still submodular when evaluated for

these same networks with HD relays. As a consequence, Theorem 1 holds for wireless erasure

networks, Gaussian networks with single-antenna nodes and their linear deterministic high-SNR

approximations with HD relays.

F. On the complexity of finding the (approximately) optimal simple schedule

Our proof method for Theorem 1 seems to suggest that finding the (approximately) optimal

schedule requires the solution of N ! different LPs. Since log(N !) = O(N log(N/e)), the com-

putational complexity of such an approach would be prohibitive for large N . Next we propose a

polynomial-time algorithm in N to determine the (approximately) optimal simple schedule for

any network regardless of its connectivity / topology.

The idea is to use an iterative method that alternates between a submodular function mini-

mization over w and a LP maximization over λvect. The saddle-point property in Proposition

4, which holds with equality in our setting, ensures that the algorithm converges to the optimal

solution. The pseudo-code of the proposed algorithm is given below. The algorithm runs in

polynomial-time since:

a) the unconstrained minimization of our submodular function can be solved in strongly

polynomial-time in N ; in particular, the algorithm in [21] runs in O (N5κ+N6), with κ

being the time the algorithm needs to compute fs(A) in (7) for any subset A ⊆ [1 : N ]

and for each state s ∈ [0 : 1]N ;

b) by strong duality, the dual of our LP maximization in (14) with N + 2 unknowns can be

solved in polynomial-time in N ; in particular, the ellipsoid method in [22] has complexity

O (N4).

IV. EXAMPLE: THE GAUSSIAN NOISE CASE WITH MULTI-ANTENNA NODES

In this section we show that Theorem 1 applies to the practically relevant Gaussian noise

network where the nodes are equipped with multiple antennas and where the N relays operate

in HD mode. The complex-valued power-constrained Gaussian MIMO HD relay network has

input/output relationship

y = Heqx+ z ∈ C(mtot+mN+1)×1, (28a)
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Algorithm 1: Find C′ in (14)
Input: Matrix Hπ,f defined in (15), MyToll

Output: C′, w and λvect in (14)

t = 0;

λvect [t] =
1
2N

12N ;

w [t] = 0N ;

while err > MyToll do

t← t + 1;

(C′w,w[t])←solve minw

{
[1,wT ] Hπ,fλvect [t− 1]

}
;(

C′λvect , λvect[t]
)
← solve maxλvect

{
[1,wT [t]] Hπ,fλvect

}
;

err←
∣∣C′w − C′λvect

∣∣;
return C′w,w[t], λvect[t].

Heq :=

 Imtot − S 0mtot×mN+1

0mN+1×mtot ImN+1

 H

 S 0mtot×m0

0m0×mtot Im0

 , (28b)

where

• m0 is the number of antennas at the source, mk is the number of antennas at relay k ∈ [1 : N ]

with mtot :=
∑N

k=1mk (i.e., mtot is the total number of antennas at the relays), and mN+1

is the number of antennas at the destination.

• y := [y1; . . . ;yN ;yN+1] ∈ C(mtot+mN+1)×1 is the vector of the received signals with yi ∈

Cmi×1, i ∈ [1 : N + 1] being the received signal at node i.

• x := [x1; . . . ;xN ;x0] ∈ C(mtot+m0)×1 is the vector of the transmitted signals where xi ∈

Cmi×1, i ∈ [0 : N ] is the signal transmitted by node i. As opposed to Section II we indicate

here the input of the source / node 0 as x0.

• z := [z1; . . . ; zN ; zN+1] ∈ C(mtot+mN+1)×1 is the jointly Gaussian noise vector which is

assumed to have i.i.d. N (0, 1) components.

• S is the block diagonal matrix of dimension mtot ×mtot to account for the state (either

February 8, 2015 DRAFT



19

transmit or receive) of the relay antennas; in particular

S :=


S1 0m1×m2 . . . 0m1×mN

0m2×m1 S2 . . . 0m2×mN
...

...
...

...

0mN×m1 0mN×m2 . . . SN

 , Si := diag[Si,1, . . . , Si,mi ] ∈ [0 : 1]mi ,

where Si,j = 1 if the j-th antenna of the i-th relay is transmitting and Si,j = 0 if it is

receiving, with j ∈ [1 : mi], i ∈ [1 : N ]. In this model the antennas of each relay can

be switched independently of one another to transmit or receive mode for a total of 2mtot

possible states. If all the antennas at a given relay must be in the same operating mode then

Si := Si diag[1
T
mi
], Si ∈ [0 : 1], i ∈ [1 : N ].

• H ∈ C(mN+1+mtot)×(m0+mtot) is the constant, hence known to all nodes, channel matrix

defined as

H :=

Hr→r Hs→r

Hr→d Hs→d

 , (29)

where:

– Hr→r ∈ Cmtot×mtot is the block matrix which defines the network connections among

the relays. In particular

Hr→r :=


? H1,2 . . . H1,N

H2,1 ? . . . H2,N

...
...

...
...

HN,1 HN,2 . . . ?

 ,

with Hi,j ∈ Cmi×mj , (i, j) ∈ [1 : N ]2, being the channel matrix from the j-th relay to

the i-th relay. Notice that the matrices on the main diagonal of Hr→r do not matter for

the channel capacity since the relays operate in HD mode.

– Hs→r := [H1,0;H2,0; . . . ;HN,0] ∈ Cmtot×m0 is the matrix which contains the channel

gains from the source / node 0 to the relays. In particular, Hi,0 ∈ Cmi×m0 , i ∈ [1 : N ],

is the channel matrix from the source to the i-th relay.

– Hr→d := [HN+1,1,HN+1,2, . . . ,HN+1,N ] ∈ CmN+1×mtot is the matrix which contains

the channel gains from the relays to the destination. In particular, HN+1,i ∈ CmN+1×mi ,

i ∈ [1 : N ], is the channel matrix from the i-th relay to the destination.

– Hs→d ∈ CmN+1×m0 is the channel matrix between the source and the destination.
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For single antenna nodes, i.e., mk = 1, k ∈ [0 : N + 1], in [11] we showed that NNC is

optimal to within 1.96(N +2) bits per channel use universally over all channel gains. The NNC

strategy uses independent inputs at the different nodes. Thus, since all the conditions in (8) are

satisfied, the result in Theorem 1 proves the existence of an (approximately) optimal simple

schedule, with at most N +1 non-zero entries, for single-antenna Gaussian HD relay networks.

The goal of this section is to show that our framework immediately extends to Gaussian relay

networks with multi-antenna nodes. The main result of this section is:

Theorem 5. Under the assumption of independent noises, the cut-set upper bound for the MIMO

Gaussian HD network with N relays can be attained to within 1.96 bits per channel use per

antenna universally over all channel gains with NNC. Moreover, the (approximately) optimal

schedule has at most N + 1 non-zero entries, independently on the total number of antennas in

the network.

Proof: To prove the constant gap we proceed similarly to [11], where the different nodes

were assumed to be equipped with a single antenna. In particular, the main step consists of

evaluating the NNC and the cut-set bounds for a general multicast Gaussian network with K

nodes, where each node is equipped with multiple antennas and operates in HD mode. The

derivation of the gap for the multicast scenario is reported in Appendix B for completeness.

Since the unicast Gaussian HD multi-relay network is a particular case of the multicast scenario

treated in Appendix B, the claim follows straightforwardly.

Since all the conditions in (8) are satisfied, Theorem 1 applies. In particular, we must solve

maxPS:S∈[0:1]mtot minA⊆[1:N ] I
(fix)
A . Since what dictates the number of active states is related to the

minimization over A ⊆ [1 : N ] (and not to the maximization over S ∈ [0 : 1]mtot) we conclude

that the optimal schedule has at most N +1 active states regardless of the total number of states

given by 2mtot .

A. Line Network Example

The network in Fig. 2 consists of a single-antenna source (Tx), a single-antenna destination

(Rx) and N = 1 relay (RN) equipped with mr = 2 antennas. Since there is no direct link between

the source and the destination, this is a line network, which in the case of one relay is also a

diamond network. In [23, Theorem 3] we showed that the cut-set bound is tight for this line
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Tx RN Rx

hdr,1

hrs,2 hdr,2

hrs,1

Fig. 2: Line network with one relay with mr = 2 antennas, and single-antenna source and

destination.

network with independent noises and is achieved by partial DF. The input-output relationship is

yr =

(1− S1)hrs,1

(1− S2)hrs,2

x0 + zr, (30a)

yd =
[
hdr,1 hdr,2

]S1x1

S2x2

+ zd, (30b)

where we let (note the slightly different use of the subscripts in this section compared to the

rest of the paper):

• x0 and xr = [x1; x2] be the signals transmitted by the source and the relay, respectively;

• yr = [y1; y2] and yd be the signals received at the relay and destination, respectively;

• zr = [z1; z2] and zd be the noises at the relay and destination, respectively;

• sr = [S1; S2] be the state of the relay antennas; in the following we will consider two

different possible strategies at the relay: (i) sr ∈ [0 : 1]2 (i.e., the mr = 2 antennas at the

relay are switched independently of one another) and (ii) sr = S12 : S ∈ [0 : 1] (i.e.,

the mr = 2 antennas at the relay are used for the same purpose); clearly the highest rate

can be attained in case (i) since case (ii) is a special case of case (i) when we enforce

P[S1 6= S2] = 0;

• the channel gains are constant and known to all nodes;

• the inputs are subject to the power constraints

E[|x0|2] =
∑

s∈[0:1]2
λsE[|x0|2|sr = s]
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=
∑

s∈[0:1]2
λsP0|s ≤ 1, (31a)

E
[
‖xr‖2

]
= Tr

 ∑
s∈[0:1]2

λsE
[
xrx

†
r|sr = s

]
= Tr

 ∑
s∈[0:1]2

λs

 P1|s ρs
√
P1|sP2|s

ρ∗s
√
P1|sP2|s P2|s

 ≤ 1, (31b)

where ρs : |ρs| ∈ [0, 1] is the correlation coefficient among the relay antennas in state

s ∈ [0 : 1]2.

We start by analyzing case (i), in which the mr = 2 antennas at the relay are switched

independently of one another. In this network there are two cuts to consider for I(fix)
A in (4),

namely, A = ∅ and A = {1}. Recall that it suffices to evaluate I(fix)
A for x0 independent of xr;

actually, in absence of a direct source-destination link it is optimal in the cut-set bound to use x0

independent of xr. Note that Gaussian inputs are not optimal in general for Gaussian networks

with HD relays because information can be conveyed to the destination through random switching

between listen and transmit states at the relays. To within a constant gap a fixed switching

between listen and transmit states is optimal; in this case, for each state a Gaussian input is

optimal. Therefore it is optimal to consider Gaussian inputs when evaluating I
(fix)
A . Moreover,

from the mutual information expressions in the following, it will become clear that an optimal

choice of the correlation coefficients is ρ00 = ρ01 = ρ10 = 0 and ρ11 = ej∠(h
∗
dr,1hdr,2). We have

I
(fix)
∅ =

∑
s∈[0:1]2

λsI (x0,xr; yd|sr = s)

= λ00I (x0; yd|S1 = 0, S2 = 0)

+ λ01I (x0, x2; yd|S1 = 0, S2 = 1)

+ λ10I (x0, x1; yd|S1 = 1, S2 = 0)

+ λ11I (x0, x1, x2; yd|S1 = 1, S2 = 1)

= λ00 log (1 + 0)

+ λ01 log
(
1 + |hdr,2|2P2|01

)
+ λ10 log

(
1 + |hdr,1|2P1|10

)
+ λ11 log

(
1 +

(√
|hdr,1|2P1|11 +

√
|hdr,2|2P2|11

)2)
, (32)
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and

I
(fix)
{1} =

∑
s∈[0:1]2

λsI (x0; yd,yr|xr, sr = s)

= λ00I (x0; yd, y1, y2|xr, S1 = 0, S2 = 0)

+ λ01I (x0; yd, y1|xr, S1 = 0, S2 = 1)

+ λ10I (x0; yd, y2|xr, S1 = 1, S2 = 0)

+ λ11I (x0; yd|xr, S1 = 1, S2 = 1)

= λ00 log
(
1 + (|hrs,1|2 + |hrs,2|2)P0|00

)
+ λ01 log

(
1 + |hrs,1|2P0|01

)
+ λ10 log

(
1 + |hrs,2|2P0|10

)
+ λ11 log (1 + 0) . (33)

To determine the NNC achievable rate it suffices to remove the term I (yr; ŷr|x0,xr, sr, yd) =

mr log(1+1/σ2) from I
(fix)
∅ and the term I (x0;yr|ŷr, yd,xr, sr) ≤ log(1+σ2) from I

(fix)
{1} , with σ2

being the variance of the quantization noise. In what follows we will let σ2 = 1 for simplicity.

The expressions for I(fix)
∅ in (32) and I

(fix)
{1} in (33) involve power allocation across the relay

states, which makes the optimization problem maxλvect min{I(fix)
∅ , I

(fix)
{1} } non-linear in λvect.

As pointed out in Remark 1 (see also the assumption in item 2 in Theorem 1), in order to

apply Theorem 1 we must further bound the mutual information terms so that to obtain a new

optimization problem with constant powers across the relay states. In particular, see Appendix

C, we have that Ccase (i) can be upper and lower bounded to within a constant gap by

C′case (i) = max
λvect

min{I(fixPower)
∅ , I

(fixPower)
{1} },

I
(fixPower)
∅ := λ00 log (1 + 0) + λ01 log

(
1 + |hdr,2|2

)
+ λ10 log

(
1 + |hdr,1|2

)
+ λ11 log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2
)
,

I
(fixPower)
{1} := λ00 log

(
1 + |hrs,1|2 + |hrs,2|2

)
+ λ01 log

(
1 + |hrs,1|2

)
+ λ10 log

(
1 + |hrs,2|2

)
+ λ11 log (1 + 0) ,

where the gap is

G1 + G2 ≤ mr log(2) +mr log(2) + 3 log(2) = 7 bits,
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where the loss 3 log(2) is due to a fixed power allocation (see Appendix C). Now, by applying

Theorem 5, C′case (i) (which can be straightforwardly cast into a LP as in (26)) has at most

N + 1 = 2 active states.

For case (ii) (i.e., the mr = 2 antennas at the relay are used for the same purpose), it suffices

to set λ01 = λ10 = 0 in case (i), i.e., to let λ00 = 1− λ11 = λ ∈ [0, 1]. With this we get that the

rate in (8b) (within again 7 bits) is

C′case (ii) = max
λ∈[0,1]

min

{
λ log

(
1+|hrs,1|2+|hrs,2|2

)
, (1−λ) log

(
1 +

(√
|hdr,1|2+

√
|hdr,2|2

)2
)}

=

log (1 + |hrs,1|2 + |hrs,2|2) log
(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2)
log (1 + |hrs,1|2 + |hrs,2|2) + log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2) ,
where the last equality follows by equating the two expressions within the min in order to find

the optimal λ, which is given by

λcase (ii) =

log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2)
log (1 + |hrs,1|2 + |hrs,2|2) + log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2) .
We now show through two simple examples that not only C′case (i) ≥ C′case (ii), i.e., independently

switching the antennas at the relay brings achievable rate gains compared to using the antennas

for the same purpose, but that the difference between the two can be unbounded. In other words,

at high SNR C′case (i) and C′case (ii) have different pre-logs / multiplexing gains / degrees of freedom.

a) Example 1: let |hrs,2| = |hdr,1| = 0 and |hrs,1|2 = |hdr,2|2 = γ > 0 in Fig. 2. With this

choice of the channel parameters we get

C′case (i) = max
λvect

min {λ01 log (1 + γ) + λ11 log (1 + γ) ,

λ00 log (1 + γ) + λ01 log (1 + γ)}

= log (1 + γ) ,

where the last equality follows since the optimal choice of λvect is given by λ00 = λ10 = λ11 = 0

and λ01 = 1, i.e., there is 1 < N + 1 = 2 active state. For C′case (ii) the optimal λ is 1/2 and

C′case (ii) =
log (1 + γ)

2
.

It hence follows that C′case (i) > C′case (ii),∀γ > 0.
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Moreover, the pre-log factor for C′case (i) is twice that of C′case (ii). This can be interpreted as

follows. By independently switching the mr = 2 antennas at the relay, the achievable rate C′case (i)

equals (to within a constant gap) the capacity of a single-antenna relay channel with a FD relay

with the source-relay and relay-destination channel gains of strength equal to γ. On the other

hand, by using the mr = 2 antennas for the same purpose, the achievable rate C′case (ii) reduces to

the capacity of a single-antenna HD relay channel. This simple example highlights the importance

of smartly switching the relay antennas in order to fully exploit the available system resources.

b) Example 2: let |hrs,1|2 = |hrs,2|2 = |hdr,1|2 = |hdr,2|2 = γ > 0 in Fig. 2. With this choice

of the channel parameters we get

C′case (i) = max
λvect

min {λ01 log (1 + γ) + λ10 log (1 + γ) + λ11 log (1 + 4γ) ,

λ00 log (1 + 2γ) + λ01 log (1 + γ) + λ10 log (1 + γ)}

(a)
= max

{
log (1 + γ) ,

log (1 + 2γ) log (1 + 4γ)

log (1 + 2γ) + log (1 + 4γ)

}
(b)
=

 log (1 + γ) if γ ≥ 0.752

log(1+2γ) log(1+4γ)
log(1+2γ)+log(1+4γ)

otherwise
, (34)

where the equality in (a) follows since among the ten possible (approximately) optimal simple

schedules λvect (six possible λvect with two active states plus four possible λvect with one active

state), it is easy to see that only the two cases λvect = [0, 0, 1, 0] and λvect = [λ, 0, 0, 1−λ], with

λ = log(1+4γ)
log(1+2γ)+log(1+4γ)

, have to be considered and the equality in (b) follows from numerical

evaluations. Thus, if γ ≥ 0.752 the (approximately) optimal schedule has 1 < N + 1 = 2 active

state (i.e., λ10 only), otherwise it has N + 1 = 2 active states (i.e., λ00 and λ11).

For C′case (ii) we obtain that the optimal λ = log(1+4γ)
log(1+2γ)+log(1+4γ)

and

C′case (ii) =
log (1 + 2γ) log (1 + 4γ)

log (1 + 2γ) + log (1 + 4γ)
. (35)

It hence follows that C′case (i) > C′case (ii),∀γ ≥ 0.752, as can also be observed from Fig. 3 (blue

dashed line for C′case (i) versus red red dashed line for C′case (ii)).

Fig. 3 also shows the achievable rates C′′case (i) = maxλvect min{I(fix)
∅ , I

(fix)
{1} } (solid blue line) and

C′′case (ii) (solid red line) obtained by optimizing the powers in I(fix)
∅ in (32) and I(fix)

{1} in (33) across

the different states by Water Filling (WF), as described in Appendix D. In particular, under the
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Fig. 3: C′case (i),C
′
case (ii),C

′′
case (i), C

′′
case (ii) versus different values of γ.

channel conditions considered in this example, from Appendix D we get that the optimal power

allocation can be found by solving

C′′case (i) = max
λ∈[0,1],ν≥0

{
λ log+ (γν) +

1− λ
2

log+ (2γν)

}
ν : λ

(
ν − 1

γ

)+

+
1− λ
2

(
ν − 1

2γ

)+

= 1,

where λ01 + λ10 = λ ∈ [0, 1], λ00 = λ11 =
1−λ
2

, which is equal to

C′′case (i) = max
λ∈[0,1]

{
λ log

(
3λ+ 1

2(λ+ 1)
+

2

λ+ 1
γ

)
+

1− λ
2

log

(
3λ+ 1

λ+ 1
+

4

λ+ 1
γ

)}
, (36)

which is represented by the blue solid line in Fig. 3. For case (ii) it suffices to set λ = 0 in

C′′case (i); with this we obtain

C′′case (ii) =
1

2
log (1 + 4γ) , (37)

which is represented by the red solid line in Fig. 3.

From Fig. 3 we observe that the highest rates are achieved by optimizing the powers across

the different states (solid lines versus dashed lines). However, as also highlighted in Remark 1
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(see also the assumption in item 2 in Theorem 1), with optimal power allocation there are no

guarantees that the (approximately) optimal schedule is simple. This is exactly what we observe

in this example for which the optimal λ ∈ [0, 1] that maximizes C′′case (i) in (36) is neither zero

nor one, i.e., the schedule has 3 > N + 1 = 2 active states. From Fig. 3 we also notice that

the difference between the solid lines (obtained by optimizing the powers across the states) and

the dashed lines (obtained with a constant / fixed power allocation) is at most 0.1977 bits for

case (i) (blue lines) and 0.2636 bits for case (ii) (red lines). These differences are far smaller

than the 3 bits computed analytically in Appendix C, showing that the theoretical gap of 3 bits

is very conservative, at least for this choice of the channel parameters.

V. CONCLUSIONS

In this work we studied networks with N half-duplex relays. For such networks, the capacity

must be optimized over the 2N possible listen-transmit relay configurations. We proved that,

if the noises are independent and independent inputs are approximately optimal in the cut-set

bound, then the approximately optimal schedule is simple in the sense that at most N + 1 relay

configurations have a non-zero probability. We proposed a convergent iterative polynomial-time

algorithm to find the (approximately) optimal simple schedule.

We applied the result to Gaussian noise networks with multi-antenna nodes, where the antennas

at the relays can be switched between listen and transmit state independently of one another. We

showed that the cut-set outer bound can be achieved to within a constant gap (which depends on

the total number of antennas but not on the channel gains) and that the corresponding optimal

schedule is simple, i.e., the number of active states only depends on the number of relays.

Through a line-network example we showed that independently switching the antennas at each

relay can provide a strictly larger pre-log / multiplexing gain compared to using the antennas

for the same purpose.

APPENDIX A

PROOF THAT I
(FIX)
A IN (4) IS SUBMODULAR

Consider two possible cuts of the network represented by A1,A2 ⊆ [1 : N ] and let

B0 := A1 ∩ A2, B1 := A1\A2,

B2 := A2\A1, B3 := [1 : N ]\(A1 ∪ A2),
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so that, Bj, j ∈ [0 : 3] is a partition of [1 : N ] and thus

A1 = B0 ∪B1, A2 = B0 ∪B2,

A1 ∩ A2 = B0, [1 : N ]\(A1 ∪ A2) = B3.

Let XA := {Xi : i ∈ A} and X(n) := {Xi : i ∈ Bn}, n ∈ [0 : 3]. We write I
(fix)
A =

H
(
YN+1, YA|XA, S[1:N ]

)
−H

(
YN+1, YA|X[1:N+1], S[1:N ]

)
. We next show that, under the assump-

tion of “independent noises” in (8c), the function h1 (A) := H
(
YN+1, YA|X[1:N+1], S[1:N ]

)
is

modular and that, under the assumption of independent inputs in (8a), the function h2 (A) :=

H
(
YN+1, YA|XA, S[1:N ]

)
is submodular; these two facts imply that I(fix)

A in (4) is submodular.

For h1 (A) we have

h1 (A1) + h1 (A2)− h1 (A1 ∪ A2)− h1 (A1 ∩ A2)

= H
(
YN+1, Y(0), Y(1)|X[1:N+1], S[1:N ]

)
+H

(
YN+1, Y(0), Y(2)|X[1:N+1], S[1:N ]

)
−H

(
YN+1, Y(0), Y(1), Y(2)|X[1:N+1], S[1:N ]

)
−H

(
YN+1, Y(0)|X[1:N+1], S[1:N ]

)
= H

(
Y(1)|YN+1, Y(0), X[1:N+1], S[1:N ]

)
+H

(
Y(2)|YN+1, Y(0), X[1:N+1], S[1:N ]

)
−H

(
Y(1), Y(2)|YN+1, Y(0), X[1:N+1], S[1:N ]

)
= I

(
Y(1);Y(2)|YN+1, Y(0), X[1:N+1], S[1:N ]

)
= 0,

where the last equality follows because of the assumption of “independent noises” in (8c).

Therefore h1 (A) is modular.

For h2 (A) we have

h2 (A1) + h2 (A2)− h2 (A1 ∪ A2)− h2 (A1 ∩ A2)

= H
(
YN+1, Y(0), Y(1)|X(0), X(1), S[1:N ]

)
+H(YN+1, Y(0), Y(2)|X(0), X(2), S[1:N ])

−H(YN+1, Y(0), Y(1), Y(2)|X(0), X(1), X(2), S[1:N ])−H(YN+1, Y(0)|X(0), S[1:N ])

= H(YN+1, Y(0)|X(1), S[1:N ], X(0)) +H(YN+1, Y(0)|X(2), S[1:N ], X(0))

−H(YN+1, Y(0)|X(1), X(2), S[1:N ], X(0))−H(YN+1, Y(0)|S[1:N ], X(0))

+H(Y(1)|X(1), S[1:N ], YN+1, X(0), Y(0)) +H(Y(2)|X(2), S[1:N ], YN+1, X(0), Y(0))

−H(Y(1), Y(2)|X(1), X(2), S[1:N ], YN+1, X(0), Y(0))

= I(YN+1, Y(0);X(2)|X(1), S[1:N ], X(0))− I(YN+1, Y(0);X(2)|S[1:N ], X(0))

+ I(Y(1);X(2)|X(1), S[1:N ], YN+1, X(0), Y(0)) + I(Y(2);Y(1), X(1)|X(2), S[1:N ], YN+1, X(0), Y(0))
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= I(X(1);X(2)|S[1:N ], X(0), YN+1, Y(0)) + I(Y(1);X(2)|X(1), S[1:N ], YN+1, X(0), Y(0))

−I(X(1);X(2)|S[1:N ], X(0)) + I(Y(2);Y(1), X(1)|X(2), S[1:N ], YN+1, X(0), Y(0)) ≥ 0,

where the last inequality follows because the “independent inputs” assumption in (8a) implies

I(X(1);X(2)|S[1:N ], X(0)) = 0. This shows that h2 (A) is submodular.

APPENDIX B

GAP RESULT FOR GAUSSIAN MULTICAST NETWORKS WITH MULTI-ANTENNA NODES

A Gaussian multicast network with K nodes, each equipped with mk, k ∈ [1 : K] antennas,

is defined similarly to the Gaussian multi-relay network in (28), except that now each node

k ∈ [1 : K], with channel input (xk, sk) and channel output yk, has an independent message

of rate Rk to be decoded by the nodes indexed by D ⊆ [1 : K]. The channel input/output

relationship of this HD Gaussian multicast network reads

y = (IMtot − S)HSx+ z

=


? (Im1 − S1)H1,2S2 . . . (Im1 − S1)H1,KSK

(Im2 − S2)H2,1S1 ? . . . (Im2 − S2)H2,KSK
...

...
...

...

(ImK − SK)HK,1S1 (ImK − SK)HK,2S2 . . . ?


︸ ︷︷ ︸

Htot

x+ z,

with Mtot :=
∑K

k=1mk. We let Cmulticast be the capacity region. By following similar bounding

steps as in [11, eq.(27)] and by keeping in mind that each node k ∈ [1 : K] is now equipped

with mk antennas, we have that NNC achieves the following rate region

Cmulticast ⊇
⋃∑

i∈A

Ri ≤
∑

s∈[0:1]Mtot

λs log

∣∣∣∣ImAc + 1

1 + σ2
HA,sH

H
A,s

∣∣∣∣−mA log(1 + 1

σ2

)

such that A ⊆ [1 : K], A 6= ∅, Ac ∩ D 6= ∅

}
, (38)

where σ2 is the variance of the quantization noise which does not depend neither on the user

index k ∈ [1 : K] nor on the antenna index j ∈ [1 : mk] of user k and where the matrix HA,s ∈

CmAc×mA is defined as HA,s := [Htot]Ac,A, with mAc :=
∑K

i=1,i∈Acmi and mA :=
∑K

i=1,i∈Ami.
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Similarly, by proceeding as in [11, eq.(29)], the cut-set upper bound can be further upper

bounded as

Cmulticast ⊆
⋃∑

i∈A

Ri ≤ mA log(2) +
∑

s∈[0:1]Mtot

λs log

∣∣∣∣ImAc + 1

γ
HA,sH

H
A,s

∣∣∣∣
+mA

log
(
emax

{
1, γ

e
mA

min{mA,mAc}

})
max

{
e
γ
, mA
min{mA,mAc}

} such that A ⊆ [1 : K], A 6= ∅, Ac ∩ D 6= ∅

 . (39)

By taking the difference between the outer bound in (39) and the lower bound in (38) (see

also [11, eq.(30)]), we obtain GAP ≤ 1.96Mtot bits per channel use.

APPENDIX C

UPPER AND LOWER BOUNDS FOR I
(FIX)
∅ IN (32) AND I

(FIX)
{1} IN (33)

In this section we prove that

C′case (i) − log(2) ≤ C′′case (i) ≤ C′case (i) + 2 log(2), (40)

where

C′′case (i) := max
λvect

min{I(fix)
∅ , I

(fix)
{1} },

C′case (i) := max
λvect

min{I(fixPower)
∅ , I

(fixPower)
{1} },

I
(fixPower)
∅ := λ00 log (1 + 0) + λ01 log

(
1 + |hdr,2|2

)
+ λ10 log

(
1 + |hdr,1|2

)
+ λ11 log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2
)
,

I
(fixPower)
{1} := λ00 log

(
1 + |hrs,1|2 + |hrs,2|2

)
+ λ01 log

(
1 + |hrs,1|2

)
+ λ10 log

(
1 + |hrs,2|2

)
+ λ11 log (1 + 0) .

We start by noting that in (31) we can assume, without loss of optimality that: (i) P0|11 = 0,

since the direct link is absent, the source does not transmit when both the mr = 2 antennas at

the relay are transmitting; and that (ii) P1|00 = P1|01 = 0 (resp. P2|00 = P2|10 = 0), since for the

HD constraint when the first (resp. second) antenna at the relay is receiving the relay’s transmit

power on that antenna is zero. With this, we let

P0|00 =
α0

λ00
, P0|01 =

β0
λ01

, P0|10 =
γ0
λ10

,

P2|01 =
α1

λ01
, P1|10 =

β1
λ10

, P1|11 =
γ1
λ11

, P2|11 =
δ1
λ11

,
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where α0 + β0 + γ0 ≤ 1 and α1 + β1 + γ1 + δ1 ≤ 1 in order to meet the power constraints in

(31). We now upper bound C′′case (i) = maxλvect min{I(fix)
∅ , I

(fix)
{1} } as follows

C′′case (i) = max
λvect

min{I(fix)
∅ , I

(fix)
{1} }

= max
λvect

min

{
λ01 log

(
1 + |hdr,2|2

α1

λ01

)
+ λ10 log

(
1 + |hdr,1|2

β1
λ10

)

+λ11 log

1 +

(√
|hdr,1|2

γ1
λ11

+

√
|hdr,2|2

δ1
λ11

)2
 ,

λ00 log

(
1 + (|hrs,1|2 + |hrs,2|2)

α0

λ00

)
+ λ01 log

(
1 + |hrs,1|2

β0
λ01

)
+λ10 log

(
1 + |hrs,2|2

γ0
λ10

)}
≤ max

λvect
H(λvect) + min

{
λ01 log

(
λ01 + |hdr,2|2α1

)
+ λ10 log

(
λ10 + |hdr,1|2β1

)
+ λ11 log

(
λ11 +

(√
|hdr,1|2γ1 +

√
|hdr,2|2δ1

)2
)
,

λ00 log
(
λ00 + (|hrs,1|2 + |hrs,2|2)α0

)
+ λ01 log

(
λ01 + |hrs,1|2β0

)
+ λ10 log

(
λ10 + |hrs,2|2γ0

)}
≤ 2 log(2) + max

λvect
min

{
λ01 log

(
1 + |hdr,2|2

)
+ λ10 log

(
1 + |hdr,1|2

)
+ λ11 log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2
)
,

λ00 log
(
1 + |hrs,1|2 + |hrs,2|2

)
+ λ01 log

(
1 + |hrs,1|2

)
+ λ10 log

(
1 + |hrs,2|2

)}
,

where the two inequalities follow because: (i) the entropy of a discrete random variable can

be upper bounded by the logarithm of the size of its support (i.e., H(λvect) ≤ log(4)); (ii) by

further upper bounding the power splits by setting αi = βi = γi = δ1 = 1, i ∈ [0 : 1]; (iii) by

further upper bounding all the λs, s ∈ [0 : 1]2 inside the logarithms by one.

We now lower bound C′′case (i) = maxλvect min{I(fix)
∅ , I

(fix)
{1} } as follows

C′′case (i) = max
λvect

min{I(fix)
∅ , I

(fix)
{1} }

= max
λvect

min

{
λ01 log

(
1 + |hdr,2|2

α1

λ01

)
+ λ10 log

(
1 + |hdr,1|2

β1
λ10

)

+λ11 log

1 +

(√
|hdr,1|2

γ1
λ11

+

√
|hdr,2|2

δ1
λ11

)2
 ,
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λ00 log

(
1 + (|hrs,1|2 + |hrs,2|2)

α0

λ00

)
+ λ01 log

(
1 + |hrs,1|2

β0
λ01

)
+λ10 log

(
1 + |hrs,2|2

γ0
λ10

)}
≥ − log(2) + max

λvect
min

{
λ01 log

(
1 + |hdr,2|2

)
+ λ10 log

(
1 + |hdr,1|2

)
+λ11 log

(
1 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2
)
,

λ00 log
(
1 + |hrs,1|2 + |hrs,2|2

)
+λ01 log

(
1 + |hrs,1|2

)
+λ10 log

(
1 + |hrs,2|2

)}
,

where the inequality follows by (i) setting α1 = λ01, β1 = λ10, γ1 = δ1 =
λ11
2

, α0 = λ00, β0 = λ01

and γ0 = λ10 (note that with these power splits the power constraints in (31) are satisfied),

(ii) since log
(
1 +

(√
a
2
+
√

c
2

)2)
= log

(
1 + 1

2
(
√
a+
√
c)

2
)
≥ log

(
1
2
+ 1

2
(
√
a+
√
c)

2
)

=

log
(
1 + (

√
a+
√
c)

2
)
− log(2) and (iii) by removing the term log(2) also from the second term

within the min.

Thus, by considering the difference between the upper and the lower bounds we obtain the

result in (40).

APPENDIX D

WATER FILLING POWER ALLOCATION FOR I
(FIX)
∅ IN (32) AND I

(FIX)
{1} IN (33)

By optimizing the powers in the different relay states subject to the power constraints in (31)

we have

C′′case (i) = max
λvect

min{I(fix)
∅ , I

(fix)
{1} },

where I(fix)
∅ and I(fix)

{1} are defined in (32) and in (33), respectively. By writing the Lagrangian of

the optimization problem above (subject to the power constraints in (31)) we obtain

I
(fix)
∅ = λ01 log

+
(
ν0|hdr,2|2

)
+ λ10 log

+
(
ν0|hdr,1|2

)
+ λ11 log

+
(
ν0(|hdr,1|2 + |hdr,2|2)

)
ν0 : λ01

(
ν0 −

1

|hdr,2|2

)+

+ λ10

(
ν0 −

1

|hdr,1|2

)+

+ λ11

(
ν0 −

1

|hdr,1|2 + |hdr,2|2

)+

= 1,

I
(fix)
{1} = λ00 log

+
(
ν1(|hrs,1|2 + |hrs,2|2)

)
+ λ01 log

+
(
ν1|hrs,1|2

)
+ λ10 log

+
(
ν1|hrs,2|2

)
,

ν1 : λ00

(
ν1 −

1

|hrs,1|2 + |hrs,2|2

)+

+ λ01

(
ν1 −

1

|hrs,1|2

)+

+ λ10

(
ν1 −

1

|hrs,2|2

)+

= 1.
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For case (ii), it suffices to set λ01 = λ10 = 0 in case (i). Let λ11 = 1 − λ00 = λ ∈ [0, 1], and

‖hdr‖2 = |hdr,1|2 + |hdr,2|2, ‖hrs‖2 = |hrs,1|2 + |hrs,2|2. With this we get

C′′case (ii) = max
λ∈[0,1]

min

{
λ log

(
1 +
‖hdr‖2

λ

)
, (1− λ) log

(
1 +
‖hrs‖2

1− λ

)}
∈
[

log(1 + ‖hrs‖2) log(1 + ‖hdr‖2)
log(1 + ‖hrs‖2) + log(1 + ‖hdr‖2)

,
log(1 + ‖hrs‖2) log(1 + ‖hdr‖2)

log(1 + ‖hrs‖2) + log(1 + ‖hdr‖2)
+ 1

]
,

where the optimal λ is obtained by equating the two expressions within the min.
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