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1. Introduction joint mutual information with respect to the MMSE, channels

Due to the lack of explicit closed form expressions of thand precoders (power allocation) matrices of the user amd th

mutual information for binary inputs, which were providednterferer.

only for the BPSK and QPSK for the single input single outpiuch new unveiled relation allows, the derivation of new

(SISO) case, [1], [2], [3], it is of particular importance @0- closed form expressions of the mutual information for seng|

dress connections between information theory and estmatiuser and multiuser channels driven by BPSK/QPSK inputs,

theory for the multiuser case. and to provide asymptotic expansions of the mutual informa-
Connections between information theory and estimatidgion and the MMSE for multiuser setups, [10].

theory dates back to the work of Duncan, in [4] who showebBhroughout the paper, the following notation is employed,

that for the continuous-time additive white Gaussian noidg®ldface uppercase letters denote matrices, lowercasseslet

(AWGN) channel, the filtering minimum mean squared erratenote scalars. The superscrip}, !, ()7, (.)*, and(.)" de-

(causal estimation) is twice the input-output mutual infar note the inverse, transpose, conjugate, and conjugatpuaa

tion for any underlying signal distribution. Recently, Guooperations. ThéV) denotes the gradient of a scalar function

Shamai, and Verdu have illuminated intimate connectiongth respect to a variable. ThE[.] denotes the expectation

between information theory and estimation theory in a samiroperator. The|.|| and7r {.} denote the Euclidean norm, and

paper, [1]. In particular, Guo et al. have shown that in thée trace of a matrix, respectively.

classical problem of information transmission through théhe rest of the paper is organized as follows; section

conventional AWGN channel, the derivative of the mutud introduces the system model. Section 3 introduces

information with respect to the SNR is equal to the smootlthe new fundamental relation between the multiuser mutual

ing minimum mean squared error (noncausal estimation);irdormation and the MMSE. Section 4 provides the conditiona

relationship that holds for scalar, vector, discrete-timmd and non-conditional components of the I-MMSE identity.

continuous-time channels regardless of the input stegisti

There have been extensions of these results to the case2.ofystem Model

mismatched input distributions in the scalar Gaussian mélan Consider the deterministic complex-valued vector channel

in [5] and [6]. o

However, the fundamental relation between the derivative o y = Vonr HaPaxy ++/snr HaPaxa + 0, @

the mutual information and the MMSE, known as I-MMSEvhere then, x 1 dimensional vectoly and then; x 1

identity, and defined for point to point channels with anglimensional vectorsx;, xz represent, respectively, the

noise or input distributions in [1] is not anymore suitabléeceived vector and the independent zero-mean unit-w@ian

for the multiuser case. Therefore, in this paper, we retfigit transmitted information vectors from each user input to

connections between the mutual information and the MMSBe multiuser channél The distributions of both inputs

for the multiuser setup. We generalize the I-MMSE relation t@re not fixed, not necessarily Gaussian nor identical. The

the multiuser case. In particular, we prove that the devigat 7 x n; complex-valued matricebl;, Hy correspond to the

of the mutual information with respect to the signal to noiséeterministic channel gains for both input channels (known

ratio (SNR) is equal to the minimum mean squared erré® both encoder and decoder) amd ~ CAN(0,1) is the

(MMSE) plus a covariance induced due to the interference; x 1 dimensional complex Gaussian noise with independent

quantified by a term with respect to the cross correlation 8ero-mean unit-variance components. Tiex n; P1, P2

the users inputs’ estimates, their channels, and theiogieg are precoding matrices that do not increase the transmitted

matrices. Further, we capitalize on this unveiled multiuse POWer.

MMSE relation to derive the components of the multiuser

mutual information. In particular, we derive the derivatiof 3. New Fundamental Relation between the Mutual Infor-

the conditinal and non-conditional mutual information twit mation and the MM SE

respect to the SNR. The first contribution is given in the following theorem, whi
Further extensions of this result allows a generalizatibthe Provides a generalization of the I-MMSE identity to the
relations of linear vector Gaussian channels in [7] to gk Multiuser case.

channels. In part'CUI_ar’ (81, [9] genere_‘“ZE the I-MMSEaIan Iwe consider the two-user case for ease of exploitation. Mewehe
to the per-user gradient of the conditional, non-condédland relations apply to thé-user case.



Theorem 1. The relation between the derivative of the muef Theorem 1 is a generalization of such connection between
tual information with respect to the SNR and the non-linedhe two canonical operational measures in informationrheo

MMSE for a multiuser Gaussian channel satisfies: and estimation theory - the mutual information and the MMSE
dI(snr) - and boils down to the result of Guo et. al, [1] under certain
dony = mmse(snr) + (snr) (2)  conditions which are: (i) when the cross correlation betwee

the inputs estimates equals zero (ii) when interferencebean
neglected, and (iii) under the single user setup.
mmse(snr) = Tr {H1P1E1(H1P1)T} Such ggneralized fun.damentgl relation betwee_n the chqnge i
i the multiuser mutual information and the SNR is of particula
+Tr {H;P3E5(HzP3)' ), (3) relevance. Firstly, such result allows us to understand the
behavior of per-user rates with respect to the interferetuse
Y(snr) = to the mutual interference and the interference of othersuse
—Tr {HlPlEy [Exl\y[xl|y]Ex2\y[X2‘y]T](H2P2)T} terms of their power levels and channel .strengths. In a_uiditi
i i the result allows us to be able to quantify the losses indurre
= Tr {HzPaEy [Exy y [X2 |y |Exy iy [x1 [y]'] (2 P1) T} due to the interference in terms of bits.

Where,

Proof: See Appendix A m Therefore, when the terni(snr) equals zero. The derivative
of the mutual information with respect to the SNR equals the
The per-user MMSE is given respectively as follows: total mmse(snr):
E; = Ey[(xa —X1)(x1 — %1)T] 4) d.;(snr) = mmse(snr), (12)
Snr
Ez = Ey[(x2 — Xa)(x2 — X2)]. (5)  which matches the result by Guo et. al in [1].

The non-linear input estimates of each user input is given o o
respectively as follows: 4. The Conditional and Non-Conditional |-MM SE

In this section, we capitalize on the new fundamental retati
%) = By, y [x1ly] = Z X1Pylay,ao (Y[X15 X2)Pay (X1)Ps (X2) 10 extend the derivative with respect to the SNR to the
py(y) conditional and non-conditional mutual information. Tokaa
(6) this more clear, we capitalize on the chain rule of the mutual
N X2Py|e1 2, (Y]X1, X2) P2, (X1)P, (X2) information which states the following:
X2 = By, py[xalyl = )

X1,X2

X1,X2 Py(y) @) I(x1,x2;y) = I(x1;y) + I(x2:y[x1) (13)
The conditional probability distribution of the Gaussiasise Therefore, through this observation we can conclude the
is defined as: following theorem.

1 e Hy—\/snrHlplxl—\/snrH2P2X2 ||2

T

Theorem 2: The relation between the derivative of the
(8) conditional and the non-conditional mutual informationrdan
The probability density function for the received vecgolis their corresponding minimum mean squared error satisfies,

Py|azq 20 (y|X17 X2) =

defined as: respectively:
dI(x2;
P3) = Y Dyt (V1 32 1, (1) (2). - (9) OB _ g onr) +9onr) — (14)
7 . . dl(x1;y)

Henceforth, the system MMSE with respect to the SNR is e = mmsey (ysnr) (15)

iven by: ST
g y Proof: Taking the derivative of both sides of (13), and

mmse(snr) = Ey [HHlPl(xl—Exl‘y[xl\y])nz} subtracting the derivative off (x;;y) which is equal to

5 mmse; (ysnr), v is a scaling factor, due to the fact that
+Ey [||H2P2(X2 — Exyly[x2ly]) || } . (10) s decoded first considering the other users’ inpu&s noise.
Therefore, Theorem 2 has been proved. |
= T’I‘ {H1P1E1 (H1P1)T} + T?“ {HszEg(Hng)T%

(11) Of particular relevance is the implication of the derived
Note that the termmmse(snr) is due to the users MMSEs, relations on understanding the achievable rates of imtwée
particularly,mmse(snr) = mmse;(snr) +mmses(snr) and channels. In particular, such relation allows for better
Y (snr) are covariance terms that appear due to the covarianoalerstanding of the changes in the rates due the interferer
of the interferers. Those terms are with respect to the alannwhich is either decoded first or considered as noise.
precoders, and non-linear estimates of the user inputs.  Additionally, further details on the generalized relatithat
When the covariance terms vanish to zero, the mutual informa¢presses the gradient with respect to arbitrary paraméier
tion with respect to the SNR will be equal to the MMSE withthe joint, conditional, and non-conditional mutual infation
respect to the SNR, this applies to the relation for the singtan be found in [8], [9].
user and point to point communications. Therefore, theltresu



5. Conclusions Therefore, we have:

We generalize the fundamental relation between the dervat Eu, .o, [Vsm«pym 2 (Y11, X2)] _

of the mutual information and the MMSE to multiuser setups. ’ e .

We prove that the derivative of the mutual information with T (H1P1x1)" — (H2Pax2)") x
respect to the SNR is equal to the MMSE plus a covariance Vsnr

induced due to the interference, quantified by a term with VyPylaras (Y[X1,x2)] - (28)
respect to the cross correlation of the multiuser inputSubstitute (28) into (22), we get:

estimates, their channels, and their precoding matrices. W 47(x;, x,;y) 1

provide such relations for conditional and non-conditiona dsnr = W/(1+509 (Py(y))) x
components of the multiuser mutual information. ]E;cl,;cg[((Hlplxl)T . (H2P2><2)T) y

Appendix A: Proof of Theorem 1 VyDyler e, (Y[X1,%2)]dy  (29)
The conditional probability density for the two-user mpiki 1
access Gaussian channel can be written as follows: = WEzl,mg[(/ (1+1og (py(y))) x
Pylar,zs (Y[X1,X2) = %6_”y_WHlplxr‘/mHzP?sz ((H1P1x1)" + (HaPax2)') x
(16) Vypylxl,mz (Y|X17X2)d3’)] (30)

Thus, the corresponding mutual information is: Using integration by parts applied to the real and imaginary

I(x1,%x2;y) =E [109 (pylﬂffw2 (yXLXZ)ﬂ (17) parts ofy we have:

py<y) / apy\ml T3 (y|X17X2)
1+ log (py,(y : dt =
Ixt,xaiy) = —nidoglne) ~Ellog ()] gy ) T 9BON T
I(X1,X2§Y) = —nrlog(ﬂ'e) o /py()’)log (py(Y)) dy (19) /(1 +log (py(y)))py‘zl’xz (y|x1,X2)|i°OO
< 1 9
Then, the derivative of the mutual information with respiect - / ) pgiy)pym,m (y|x1,x2)dt (31)
the SNR is as follows: _ o Pyl
dI(x1,X23y) 9 The first term in (31) goes to zero dg|| — oo. Therefore,
o = " Bemr / py(Y)log (py(¥))dy  (20)  aI(xy,x2;y) _
1 I, (y) dsnr
_ Yy 1
N /(py(y)py(y) - log (py(y))) dsnr dy (21) /rnTExlvm2[_ /(((H1P1X1)T+(H2P2X2)T)X
_ apy(y) Pylzy 2o (y|X1,X2)
— [rtog v Bty @) 2P x),
Where; the probability density function of the received vecto dI(x1,%2: ) Vypy(y)dy)] (32)
y is given by: kSt Tt 1T A
dsnr
py(y) = Z Pyla,zo (Y[X1,X2)Pay an (X1, X2) (23) 1 /Vypy(y)x
X1,X2 W
=E X1, X 24 Eay o [(H1P1x1)" + (HaPax2)') x
T1,T2 [py|x1,:1:2 (y| 1, 2)] ( )
The derivative of the conditional output with respect to the Pylay s (Y[X1, X2) dy (33
: Jdy (33)
SNR can be written as: dI(x1,xa2y) 1 /V ( I;yx()’)
ODy|zy on (Y]X1,%X2) dsnr - snr yPylY
dsnr ( | ) Ewl,wz[(Hlpl)TErﬂy [X1|y]]L
— 1,72 X1,X2)X
5 Polar.an \Y1%1, X2 T — (HoP2)'E,.,), [x2ly]Tldy  (34)
Dsnr (y — 4/ STlT‘H1P1X1 — v/ Sn’I‘H2P2X2) X However,
(y —VvsnrHiPixq — / SHTH2P2X2) (25) vypy(}’) = vyEml,.’Ez [py\xl,xz (Y|X15X2)}
1 = Emhz? [vypy‘flaf’z (y|X1,X2)]
= _W ((H1P1X1)Jr + (H2P2X2)T) X - 7E11,I2 [py\wl,xz (y|X1;X2)X

(y —vsnrH{P1x1 — \/sm“H2P2xz)

y — vsnrH1P1x1 — VsnrHaPaxg) X
( s a2 2) =—E; 2, [py(y) (y — VsnrH{P1xq — \/snTHszxz) |y}

pleL’l,IL’Q (y|X13X2) (26)

=—py(y) x (y
1
= e (H1P1x1)" + (H2P2x2)") VyDyley 2 (Y]X1,X2) —VsnrH1P1E, |y [x1]y] — VsnrHaPaE,, , [x2]y])

@7) (35)



Substitute (35) into (34) we get: [2] S. A. M. Ghanem, "Mutual Information for Generalized Arbitrary

dI(x1,X2;y) Binary Input Constellations"MAP-Tele Workshop, Feb 2010.
1,452,
T dsnr = [8] S. A. M. Ghanem, "Analysis, Modeling, Design, and Opti-
1 mization of Future Communications Systems: From Theory to
—— /py(y)(y _ fsm"H1P1Exl\y[X1|Y] Practice”,Ph.D. Thesis, Dec 2013.
v [4] T. E. Duncan, "On the calculation of mutual informatiol®IAM
+ VsnrHaP2E,, |, [x2|y]) x Journal on Applied Mathematics, vol. 19, pp. 215—220, Jul 1970.

E ( H.P:)E x1|yv]T + (HoP5)'E x T) d [5] S. Verdu, "Mismatched Estimation and Relative EntropyfEEE
wres ((H1P1) Baypy paly] + (HoP2) e,y [x2ly] ) dy Transactions on Information Theory, vol. 56, pp. 3712—3720,

Aug 2010.
dI(x1,X2;y) 7 [6] T. Weissman, "The Relationship Between Causal and Noncausal
dsnr B Mismatched Estimation in Continuous-Time AWGN Channels”,
1 & L Py 1 E P IEEE Transactions on Information Theory, vol. 56, pp. 4256-
X + — X
e Eylyxa](HiPy) =B, [yxz](H2Ps2) 4273, Sept 2010.
E [HsP+F E NH, P [7] D. P. Palomar and S. Verdu, "Gradient of mutual information in
— Ey[HaP1Eq, py [xa [Y]Eq, jy [xa |y]'] (H1P1) linear vector Gaussian channel$EEE Transactions on Infor-
— Ey[Hi1P1E,, |, [X1|Y|E., |y [X2|y]T] (H2P2) ' mation Theory, vol. 52, pp. 141-154, Jan 2006.
—E [HoP-E <o |VIE %o |VIT1(HoPo) T [8] S. A. M. Ghanem, "MAC Gaussian Channels With Arbitrary
1’[ . IQ‘y[ 21Y] IQ‘y[ 21y] T]( 2 Z)T Inputs: Optimal Precoding and Power AllocationEEE Inter-
—Ey [H2P2Em2|y[X2|Y}Ex1|y[xl|}’] ](HlPl) (36) national Conference on Wreless Communications and Sgnal
Processing (WCSP), Oct 2012.
Therefore, _ ) _
dI(x1,x2:y) [9] S. A. M. Ghanem, "Multiple Access Gaussian Channels With
1,22, _ T T Arbitrary Inputs: Optimal Precoding and Power Allocation”,
=H,P,E H,P
dsnr 1Py, o (HiPy) http: //arxiv.org/abs/1411.0446, 2014.
- H,P4E, [Emly[xl\Y]Ewlly[xl\Y]T(Hlpl)T [10] S. A. M. Ghanem, "Multiuser I-MMSE”jn preparation

— HyP1Ey[Ey, (X1 Y] Exy y [x2|y] ] (HaP2)'
+ H2P2Ea;2 [XzX;](H2P2)T
— HoP3E, [IEQL‘2|’£/[X2‘}']Eﬂvﬂy[XZ‘y]T(H2P2)1L
~ H2P2E, [E, ) [x1|y]E,, | [x2[y] | (HP1)T (37)
According to (4) and (5), (37) simplifies to:

dl(x1,X2;
% = H;P,E;(H,Py)" + HyPyEo (HyPy)'

— HyP1E, [Eq, (X1 [Y]Eq, y [x2|y]T] (Ha P2)T

— HaP3E, [E,, |, [X2|y]E., 1y [x1|y]T | (H1P1)T (38)

Therefore, the derivative of the mutual information with re
spect to the SNR and the per users mmse and input estimates
(or covariances) is as follows:

dI(XL X2 Y)

= mmsey(snr) + mmse(snr
dsnr 1(sm7) 2(snr)

~Tr {HlPlEy [ﬁlﬁg](HzpﬁT}
~Tr {H2P2Ey [izﬂ}(HlPl)T} (39)

Therefore, we can write the derivative of the derivativead t
mutual information with respect to the SNR as follows:
dI(snr)

= mmse(snr) + P(snr) (40)

Therefore, Theorem 1 has been proved as a generalization of
the I-MMSE identity to the multiuser case.
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