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Spécialité
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Abstract

The recent evolution of mobile communications and the wide spread of “smart” mobile devices
have radically changed the way we communicate. Ubiquitous access to Internet, fast data rates,
online and location-based social networking, are some of the numerous possibilities that can
be offered to someone even through his mobile phone. In addition to this, portable devices
have become powerful, they support multiple wireless radio interfaces, use many sensors, have
large storage capacity, etc. All these capabilities have led to a number of novel services and
applications, and new communication paradigms.

Conventional communication between users, through cellular networks or the Internet, can
now be complemented by direct communication between mobile devices. Users can directly ex-
change data with each other using only local wireless communication (e.g. Bluetooth or WiFi
Direct), and they can form mobile networks with their peers, in parallel to a cellular or WLAN
network, or even when infrastructure is absent. These ad-hoc Mobile Social Networks (MSNs)
can support communication in challenging environments, where infrastructure is limited (e.g.
emergency situations after disasters, rural areas), or enhance existing networking infrastruc-
ture, e.g. by offloading traffic from cellular networks, enabling novel social and location-based
applications, or introducing peer-to-peer collaborative computing.

In MSNs, a message can be directly delivered to the destinations when they meet with
the source node(s) (single-hop) or relay-assisted schemes are employed, where relay nodes store
the message, carry it as they move and (possibly) forward it to other relays till it reaches its
destination (multi-hop). Since mobile-to-mobile communication takes place only during meet-
ings (contacts) between nodes, the communication performance in MSNs heavily depends on
the underlying node mobility patterns. Communication traffic patterns (i.e. who wants to
communicate with whom or is interested in what) can significantly affect the performance of
communication mechanisms too. In addition, numerous studies from different disciplines, like
sociology, opportunistic networking, social media etc., have shown that social characteristics of
users affect both their mobility and traffic patterns. As a result, nodes’ different social behaviors
can lead to very heterogeneous MSNs.

To this end, the primary focus of the thesis is on understanding, analytically, to what extent
social heterogeneity affects the performance of the different networking solutions (e.g. forward-
ing/routing protocols or content-centric schemes) in MSNs. Towards this direction, we propose
models that take into account key aspects of realistic mobility and traffic patterns, but, simulta-
neously, remain simple enough to allow tractable analysis. The second goal is to propose, based
on this analysis, some general design guidelines and/or insights about communication protocols.

Specifically, after providing in Chapter 1 a short introduction to MSNs and the motivation of
our work, we first study the effects of heterogeneous mobility patterns in Chapter 2. We define
a class of models for Heterogeneous Contact Networks, i.e. networks where nodes’ mobility
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Abstract

(and, thus, also their meeting/contacting patterns) is heterogeneous. These models capture two
basic characteristics of real mobility, namely (i) different node pairs can contact with different
frequency, and (ii) some node pairs never contact each other. We perform an asymptotic analysis
for the delivery delay of a message spreading, and derive closed form results that can be used
to predict the delay of epidemic-based routing protocols.

Although contact events between nodes denote the times when a message can be exchanged
between two nodes, one should also take into account that not all nodes are always willing to
relay third party traffic (as most protocols assume) in a MSN. Hence, some contact events might
be incorrectly considered as opportunities for message exchanges. In addition, such reluctance
from nodes to cooperate (node selfishness), is usually related to the social ties between them,
e.g. it might be more probable to relay a message generated by a friend node, rather than
from an unknown device. To this end, in Chapter 3, we propose a model that captures social
selfishness through its correlation to mobility patterns. We extend the analysis of Chapter 2 and
derive results that show how social selfishness impacts the efficiency of various communication
mechanisms.

After having studied the effects of heterogeneity in contact events between (cooperative)
nodes, in Chapters 4 and 5 we turn our attention to communication traffic patterns, whose
effects have not been previously studied analytically in MSNs. In particular, in Chapter 4 we
investigate when traffic heterogeneity can affect performance, we propose a generic model to
describe generic traffic patterns, and we derive analytic results that quantify the joint effects of
traffic and mobility heterogeneity on end-to-end communication mechanisms.

On a different direction, in Chapter 5 we consider content-centric communications, where a
certain message (content) needs to be distributed to nodes (more than one) that are interested
in it. We model and study the two main factors of traffic (or interest) patterns that affect
communication, namely the content popularity (how many nodes are interested in a content)
and availability (how many nodes can provide a content). We derive useful expressions for the
average content delivery delay and the delivery probability by a given deadline, and use them
to optimize the performance of a mobile data offloading scheme.

Based on the insights stemming from our analysis in Chapter 5, we focus on mobile data
offloading in Heterogeneous Networks (HetNets) comprising infrastructure (small-cells) and mo-
bile (MSN) edge nodes. In Chapter 6, we model and analyze the content dissemination, and
calculate the performance of the system, as well as the costs it incurs for the cellular network op-
erator. We then formalize the offloading cost minimization problem and provide initial insights
for optimal storage allocation policies.

Finally, we conclude our findings and discuss future research direction in Chapter 7.
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8.1.2.2 Graphe de modèle de configuration . . . . . . . . . . . . . . . . 169

8.1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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8.2.3.1 Délai de livraison vs Consommation énergétique . . . . . . . . . 174
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cation dans les RSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
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Simulations synthétiques avec une politique d’égöısme (a) uniforme et (b) non-
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8.5 Les délais des protocoles de routage:Direct Transmission, Spray and Wait (SnW ),
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Chapter 1

Introduction

1.1 Mobile Social Networks (MSNs)

The recent advances in mobile communication technologies have led to faster connection speeds,
ubiquitous connectivity and access to information resources, countless mobile applications, trans-
forming thus continuously the way we communicate, and even affecting many habits of our
everyday life. The prevalence of online social networking, or the integration of a multitude of
services (entertainment, navigation, etc.) in a single handheld device, are prominent examples
of this ample and ongoing evolution.

The proliferation of portable devices with augmented capabilities has largely contributed
towards these changes. Modern portable communication devices, like smartphones, pads, lap-
tops, are equipped with a number of communication interfaces (3G/4G, WiFi, Bluetooth, etc.),
large storage capacity, and high computational power. As a result, communication is not re-
stricted to traditional voice calls or messaging, but it is enriched with new elements, e.g. rich
multimedia sources, introduced by novel applications. Moreover, the increased density of mobile
devices and the ability to mingle different wireless communication techniques, enables new ways
of mobile networking. Combining cellular communications (through base stations), short-range
communications with the infrastructure (e.g., WiFi access points) or directly between neighbor-
ing devices, in an ad-hoc manner (e.g. using Bluetooth, WiFi Direct), a user can enhance its
connectivity to Internet, connect and exchange data with its peers, share data (content sharing)
or resources (collaborative computing, mobile cloud computing), etc.

Through this broad potential, the Mobile Social Networking paradigm has emerged. In Mo-
bile Social Networks (MSNs), the term ”Mobile” indicates that end nodes are users connected to
the network through a mobile device (infrastructure nodes, e.g. acting as relays or gateways, can
be a part of the network as well), while the term ”Social” indicates their focus, which is mainly
on social networking applications, and/or the fact that the participants’ social characteristics
are exploited in order to set up, facilitate, or enhance communication.

Although the social dimension has been recently introduced in mobile networking with MSNs,
the mobility component was inherited from previous networking paradigms. Specifically, and
following a chronological order, one can think of Mobile Ad-hoc Networks (MANETs), Delay
Tolerant Networks (DTNs), and Opportunistic Networks, as the ancestors of MSNs. MANETs
are ad-hoc networks, where nodes can move, causing thus a frequently changing topology. When
topology has changed, nodes have to re-calculate (in a distributed or local manner) the connec-
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tivity graph, the multi-hop routing paths, etc. Delay Tolerant Networking (DTN) has been
proposed a decade ago as an architecture for challenged networks [33]. Despite the resemblance
to MANETs, DTNs are regarded as an individual research field due to a number of differ-
ent major characteristics: disconnections in communication between nodes, frequent absence
of (continuous) end-to-end paths, long delays and low throughput, etc. [33]. The term “Op-
portunistic Networks”, although it has been introduced later than the term “DTNs”, is often
used interchangeably with DTNs, or, according to [110], it describes a more generic class of
intermittently connected networks.

From the network connectivity perspective, MSNs can be considered equivalent to Oppor-
tunistic Networks or DTNs. A difference is that while DTNs might refer to sensor networks,
vehicular networks, deep space communication networks, etc., and Opportunistic Networking
has been used to describe a wide range of networking environments [110], from pocket switched
networks [58] to wildlife monitoring [67, 128], Mobile Social Networks are mostly used for de-
scribing networks composed of portable devices (as well as infrastructure nodes) or refer to
applications used by mobile phone users. The common baseline among these networks (DTNs,
Opportunistics Networks, and MSNs) is the way their nodes can connect and communicate with
each other. MSNs (or DTNs, Opportunistics Networks) are composed mainly of nodes moving
in an area much larger than their transmission range. Data exchange between nodes can take
place only when they are within transmission range of each other, or, as it is also called, when
they are in contact. Message dissemination can be end-to-end or content-centric, yet neither
the existence nor the knowledge of an end-to-end path is assumed. Message dissemination from
a source to a destination node could be achieved by direct transmission [130], when source and
destination come in contact. Alternatively, over a sequence of node encounters, messages can
get copied to many nodes, stored and carried by them (as nodes move), and forwarded over
multiple hops to the destination.

Early opportunistic networking solutions comprise flooding mechanisms, where a message is
copied by every node having it to every node not having it upon their encounter, and epidemic-
based limited replication schemes, where a message can be copied to a maximum (concurrent)
number of intermediate nodes (we refer to them as relays) before it reaches its destination(s).
With the advent of MSNs, the design of routing methods has advanced: protocols exploit the
knowledge of nodes’ social characteristics in order to make better forwarding decisions and
achieve faster (and/or more likely) message delivery. Furthermore, the social component had an
effect on the envisioned use cases for MSNs: a number of novel applications have been proposed,
which merge mobile networking with social networking, and fit better to network environments
composed mainly of people holding portable devices (rather than other kind of non-rational
nodes, e.g. sensors).

In the remainder, we give a general overview of the aforementioned use cases and networking
solutions for MSNs, as a preliminary step towards understanding (a) the research challenges in
MSNs that motivated our work, and (b) what are the contributions of this thesis.

1.1.1 Use Cases

Extreme Environments. The initial application of Opportunistic Networks / DTNs was to
support communication in challenging environments with total or partial absence of infrastruc-
ture. Some prominent examples, which apply in the more specific case of MSNs as well, are:
− Providing asynchronous connectivity to Internet or between users of the same network, in
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rural or developing areas, where conventional networks are not deployed (and it is not feasible
or cost efficient to do so), see e.g. [42,46,111]. Special stations can be installed in remote villages,
and users request information from these stations. If the requested content does not exist in
the station’s storage, then the station requests it from mobile access points (e.g. mounted on
vehicles) or other users (e.g. with smartphones), which periodically pass by the stations and
other locations where connectivity to Internet is available.
− Allowing users to communicate in emergency from spots without infrastructure. For in-
stance, in situations after disasters that destroyed infrastructure [53], or areas without mobile
coverage [136], people that need help (injured, trapped, etc.) can wirelessly communicate with
neighboring devices, which will then spread the data from phone to phone till it access a rescue
team or a region where infrastructure is operational.

Mobile Data Offloading. The mobile data demand is rapidly increasing, due to the recent
growth in the number of mobile devices and connection speeds. Cellular networks are currently
overloaded and they are not expected to be able to keep up with the data demand [23]. As a
result, mechanisms that reduce cellular traffic by offloading data to mobile devices have attracted
a lot of attention. In opportunistic mobile data offloading, e.g. [50,85,141], the cellular network
provider, instead of serving separately each user requesting a content (e.g. a popular video, or
software update), distributes a few copies of the content in some relay nodes, which store it in
their caches. A user interested in the given content, can retrieve it through direct communication
from a relay node holding it, when they come within transmission with each other. Although
this mechanism implies that the users might have to wait for some amount of time until they
receive the content (i.e. they encounter a node storing it), appropriate incentives (e.g. price
reductions) [48] can be provided by the operator to guarantee the feasibility of the service.

Location-based Applications. In many mobile applications, the specific data that is ac-
cessed depends on or is related to the current location of the user [62, 105, 133]. Examples
include live road traffic information, reviews of restaurants and local businesses, local event
notification, map tiles, localization services, etc. To access such data, a user has first to obtain
its location (e.g. through GPS) and transmit it to the data provider. However, this might rise
location or content privacy concerns, and overload wireless access links unnecessarily. Alterna-
tively, users that reside in the same area and frequently come within transmission range can
form a MSN, and exchange directly and spread such location-based information.

Mobile Computing. Every node in a MSN is a powerful mobile device, with large memory
and processing power, and a number of sensors. Combining the software, hardware, and sensing
resources of more than one devices allows to increase their capabilities, by building a mobile
cloud, distributed applications, or collaborative sensing [26,119,122,123]. For instance, tasks that
cannot be executed in a single device of a MSN, because not all resources (e.g. sensors, software)
are available in it, or they need a lot of time, or they are energy-consuming, can be segmented
in sub-tasks. Then the device can assign the sub-tasks to other devices, by sending them the
necessary input through the MSN (single-hop direct transmission or multi-hop communication
using relay nodes). When a sub-task is executed, the output is send back to the requesting
device through the MSN as well. After the completion and reception of all sub-task outputs,
the results are combined to complete the service.
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1.1.2 Networking Solutions

The above use cases show that MSNs can support both end-to-end and content-centric applica-
tions. In end-to-end applications, a source node generates a message (or a sequence of messages),
whose destination is a specific node (unicast) or a set of specific nodes (multicast). Examples
of end-to-end communication can be online social networking (e.g. exchange of Facebook mes-
sages, or posts on Twitter), and emergency messages sent from a user needing help to all rescue
stations/nodes. On the other hand, in the content-centric communication model, many users
are interested in the same content or, possibly, in any content belonging to a given category.
A “content” can be a message (i.e. a data file, like a map tile, a trending video, etc.) or even
a service provided by other users (see Mobile Computing applications). Interested users can
access the content they are looking for directly from any encountered node that offers it.

End-to-end communication. A message exchange between two users in a MSN can be
achieved (i) by direct transmission, where the source transmits the message directly to the
destination when they come within transmission range, or (ii) through the store-carry-forward
mechanism, where nodes of the network can be used as relays and, after they receive the message
from the source (or another relay), they can deliver it to the destination, when they contact, or
forward it to other relays.

Since message exchanges can take place only during contact events between nodes, it be-
comes evident that the communication performance (e.g. how fast a message can be delivered,
or what is the probability of never reaching its destination) heavily depends on the mobility of
the nodes involved in the communication process (i.e. the source, destination, and relay nodes).
When information about the mobility patterns is not available, the selection of the relay nodes is
random [43,129,137,143], and one can just use the maximum number of copies (i.e. concurrent
relays) as a protocol design parameter [129]. Nevertheless, in an MSN, some social charac-
teristics of its participants are known, and thus information about their mobility patterns can
be usually retrieved as well: either explicitly, e.g. in cases where users share mobility related
data with other users or with a central entity [30], or implicitly, e.g. when users belong to a
social network and their mobility is inferred by other correlated available data, like their social
ties [54]. Therefore, recent MSN protocols exploit such mobility related information to improve
delivery performance1, for instance, by selecting relay nodes that are expected to meet soon the
destination.

Socially-aware routing protocols. Although some information about mobility patterns is
available, neither the exact movement trajectories of nodes nor the contact events between them
can be known a priori. Hence, a deterministic calculation of the optimal paths is not possible
in MSN routing. Mobility-related information that is usually available or a user is willing to
disclose is (i) how frequently contacts with other users, (ii) the duration of staying in contact
(i.e. within transmission range of each other), or (iii) the time of last encounter with every of
them. The goal of a social-aware MSN routing algorithm is to use such history-based knowledge
of mobility metrics, and predict future contact events between nodes. Then, based on these
predictions, the optimal set of relays or the forwarding and routing policies can be selected in
order to improve performance.

1However, we need to stress here that the base mechanism behind all these protocols derive from the store-
carry-forward framework and epidemic-based spreading.
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A common way to capture such mobility and interactions between nodes is through graph
representation, namely the contact graph, which is defined as following

Definition 1 (Contact Graph). The contact graph of a network N is a weighted graph G =
{V,E} whose vertices represent the network nodes and an edge between two vertices implies that
these two nodes can contact each other regularly; the weight of an edge measures the mobility
correlation between the respective nodes.

Different techniques have been proposed for how to build a contact graph from the knowledge
of past contact events, e.g. which metrics should be used (frequency, duration, age of contacts)
and how to infer the edge weights from them (e.g. aggregation or sliding time window) [35,52].

Finally, after having built the contact graph, a node can select to which node to forward a
message depending on the weight of the edge connecting it with the destination (e.g. EBR [98]),
or their similarity (which relates to community structure), or its centrality (see e.g. SimBet [29]
or BubbleRap [60]), etc.

Content-centric communication. The underlying mechanism for disseminating data in
content-centric applications is the same as in end-to-end applications: content is delivered to
interested users through direct transmissions or store-carry-forward schemes. Therefore, tech-
niques that exploit nodes mobility patterns are also used in content-centric protocols. For
instance, the holders of a content (i.e. the nodes which are delegated to distribute the content)
can be selected according to the weights of edges connecting them with every node interested in
the content [34,85], or based on the community structure of the network [10,142].

In addition to mobility, content-centric communication is inherently related to the interests
of users. Thus, to optimally select the content holders, it does not suffice to know how nodes
move, but information about their interests is needed as well. Usually users interests are not
explicitly known, and protocols are based on predictions of interests, e.g. inferring interests
patterns from the social relationships between users, their association to social communities,
etc., [10, 28,142].

1.2 Motivation and Contributions of the Thesis

1.2.1 Motivation

Performance Evaluation. The goal of a MSN communication mechanism is to efficiently
deliver data to the destination nodes (end-to-end) or to any interested node (content-centric).
To quantify this efficiency, metrics like the delivery delay (how fast nodes receive a message or
find a content of interest), delivery probability (how probable for a message/content is to reach
a node by a given deadline), and overhead (e.g. number of relays or transmissions) per message,
are used. The performance evaluation of MSN protocols, as well as the comparison of different
approaches, is usually done by calculating the statistics of such metrics through simulations,
real experiments, or analytic models.

In simulations, a trace of node movements is generated, and the timings of communication
opportunities between them (contact events) are calculated. Mobility traces are usually gener-
ated by random (uniform) mobility models, like the RandomWalk or RandomWaypoint models,
or, more recently, by state-of-the-art mobility models, e.g. [13,14,57,77,93,97], that capture the
complex, heterogeneous characteristics of mobility patterns observed in real traces [25,35,36,117].
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Although simulations can provide with accurate results in certain settings, they can be lengthy
and complex when the performance needs to be evaluated under a various range of network
parameters. Scalability problems appear in performance evaluation through real experiments as
well. Furthermore, till now large-scale MSNs have not been deployed and the only experience
we have is of small, experimental settings [19, 31, 51, 58, 81, 91], which might not always satisfy
the necessary conditions for a thorough performance evaluation of different protocols. Hence,
the need for performance prediction under generic settings, led researchers to study MSNs using
analytic models. Analytic models not only can be used for performance prediction, but also
can provide useful insights about the feasibility of possible applications, appropriate selection
of routing mechanisms, etc., and reveal which are the network characteristics/parameters that
affect performance and to what extent.

Analytic Models. Early analytic models were based on simple mobility assumptions [43,49,
143], namely:

• The sequence of contact events between a pair nodes is given by a Poisson process; or
equivalently, the inter-contact times (i.e. time intervals between two successive contacts)
are independent and exponentially distributed.

• Mobility is homogeneous, with every node pair contacting with the same frequency (i.e.
with rate λ).

With the above assumptions, the message dissemination can be modeled using absorbingMarkov
Chains [43,49] or fluid models [49,143]. This simplifies analysis and closed form expressions pre-
dicting the message delivery delay, delivery probability, overhead per message, buffer occupancy,
etc., can be found for a number of epidemic-based schemes. Simple, closed form expressions not
only facilitate performance evaluation, but also provide useful intuition for the dependence be-
tween communication performance and network characteristics. For example, with only a single
inspection of the expressions in [43, 143], one can see how performance metrics change with
network parameters, like the total number of nodes or the contact rate λ.

However, the social characteristics of users (including their mobility patterns) in a MSN
cannot be expected to be homogeneous [25, 35, 36, 117], rendering thus the above assumptions
unrealistic. Moreover, the large number of social-aware protocols (see Section 1.1.2), which
exploit the network heterogeneous characteristics, cannot be analyzed with the above homo-
geneous models where all nodes (or node pairs) are considered equivalent. Motivated by this
insufficiency of previous models, a number of more realistic analytic models capturing observed
social properties and mobility patterns have been proposed [9,11,20,34,36,63,73,76,113,114,132].

Some main modeling approaches followed in these studies are to consider networks with
heterogeneous contact rates, where each node pair {i, j} contacts with rate λij (which can
be different among different pairs), e.g. [36, 113, 114], or to divide nodes in social or spatial
communities, where nodes residing in the same community contact each other with the same
rate, but contact rates in different communities (or between two communities) can take different
values [20, 73, 76, 132]. However, introducing heterogeneous rates, increases the complexity of
analyzing the performance of content dissemination schemes. As a result, exact predictions of
performance metrics cannot be derived in closed form expressions, and only numerical solutions,
e.g. [73,132], or upper bounds using rough spectral arguments [113] are allowed. Hence, despite
the usefulness of these models in predicting performance under a given setting and/or a given
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dissemination scheme, it is not always possible to generalize their findings or to provide insights
about how communication performance is affected by the different network characteristics.

To this end, in this thesis, we propose analytic models that take into account key aspects of
heterogeneity in MSNs, and, simultaneously, remain simple enough to allow tractable analysis
and derivation of closed form results. Our aim is to (i) provide useful intuition about how
performance is affected by the different network parameters (e.g. network size, traffic patterns,
cooperation of nodes) when mobility is heterogeneous, as well as how these effects change under
varying mobility heterogeneity, and (ii) propose some general design guidelines about routing
protocols and content-dissemination mechanisms.

In the next section, we summarize the contributions and present the outline of the thesis.

1.2.2 Contributions and Outline

The focus of this thesis is on understanding, analytically, the effects of social heterogeneity on
the performance of information dissemination mechanisms. The different social characteristics
of people (i.e. the users in a MSN), affect a number of aspects related to the communication
performance in MSNs, like the way they move (which places visit more frequently, with whom
they contact regularly, etc.) and communicate (with whom and how frequently), their interests,
their willingness to participate in data dissemination, etc. Throughout the remaining chapters,
we address such issues, by (i) trying to capture different dimensions of heterogeneity with analytic
models, (ii) analyzing the effects on the performance of basic communication mechanisms, (iii)
providing useful intuition and discussing important implications for mobile social networking.
Since models and analysis are usually based on simplifying assumptions, which might not be
always able to capture exactly all complex characteristics of a real MSN, we test the validity of
our results through extensive simulations in a number of network settings.

Specifically, the chapters of the thesis, and the main contributions in each of them, are
organized as following:

Chapter 2 – Delay Analysis of Epidemic Schemes in Sparse and Dense Heteroge-
neous Contact Networks.

As stressed earlier, nodes can exchange data only when they are in contact. Therefore, to
analyze communication, we first need a model describing the way nodes contact each other. To
this end, in Chapter 2, we define a class of heterogeneous contact models (or, mobility models),
with which we can capture heterogeneity in contact processes among different nodes and node
pairs. In particular, we extend previous homogeneous models (see Section 1.2.1) in the following
two directions: (i) we allow different node pairs to contact each other with different frequencies;
(ii) we allow some pairs to never contact each other.

With respect to realism and simplicity, the class of models we define, lies between homoge-
neous models (unrealistic, but simple), e.g. [43,49,143], and previously proposed heterogeneous
models (realistic, but complex), e.g. [36,73,113]. As a result, analysis becomes tractable (though
complex) even for settings with heterogeneous contact/mobility patterns, and this allows us to
derive simple, closed form expressions that require knowledge of only a few network parameters,
for the information spreading delay in a network. To demonstrate the utility of these results in
practice, we use them to compute the delay of basic epidemic-based schemes.

The works related to this chapter are:
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• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Delay analysis of epidemic schemes in sparse
and dense heterogeneous contact environments”, Research Report RR-12-272, Eurecom,
July 2012.

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Information diffusion in heterogeneous net-
works: The configuration model approach”, Proc. 5th IEEE International Workshop on
Network Science for Communication Networks (NetSciCom’13), co-located with IEEE IN-
FOCOM 2013, 19 April 2013, Turin, Italy.

Chapter 3 – Understanding the Effects of Social Selfishness.

Mobility models determine when nodes are in contact, and assuming that data exchanges take
place during these contacts, one can evaluate various routing and forwarding algorithms. How-
ever, any possible unwillingness of the relay nodes to cooperate (i.e. to store or forward a
message at a contact event) can affect gravely the performance of message dissemination tech-
niques. Hence, it becomes evident that performance is controlled only by a subset of the contact
events; those in which nodes are willing to exchange data.

To this end, in this chapter, we study analytically the effects of node cooperation, or node
selfishness, on mobile social networking. Extending previous studies that assumed uniform
selfishness patterns, e.g. nodes are equally reluctant to cooperate, we propose a framework for
analysing cases where the level of selfishness, is related to social ties between nodes or their
mobility patterns. We refer to this, correlated to social characteristics, selfishness as social
selfishness. Incorporating our social selfishness model into the models of Chapter 2, we capture
the combined effects of mobility and selfishness heterogeneity. Following also a similar analysis,
we derive expressions for important metrics, namely the message delivery delay, the average
power consumption and the message delivery probability, and demonstrate the applicability of
our results in various application scenarios.

The work in this chapter is published in:

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Understanding the effects of social selfishness
on the performance of heterogeneous opportunistic networks”, Computer Communications,
Elsevier, Volume 48, April 2014.

Chapter 4 – Modeling and Analysis of Communication Traffic Heterogeneity in
MSNs.

Despite the fact that mobility heterogeneity and its impact in MSNs has been extensively studied
(through simulations or analyses), this has not been the case with communication traffic patterns.
In the vast majority of works on performance evaluation of MSN routing protocols, traffic is
assumed to be homogeneous, i.e. each pair of nodes is equally probable to be the source and
destination of a message. This assumption is generally not true, as nodes’ social characteristics
can significantly affect the end-to-end traffic demand between them.

Motivated by this lack of related work, in this chapter we explore the effect of heterogeneous
traffic patterns in MSNs. Based on previous knowledge on the relation between traffic patterns
and social characteristics of users, we propose a model to describe traffic heterogeneity. We
derive results showing the joint effects of traffic and mobility patterns on end-to-end commu-
nication mechanisms. Among the different insights stemming from our analysis, we identify
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conditions under which heterogeneity renders the added value of using extra relays more/less
useful. Furthermore, we confirm the intuition that an increasing amount of heterogeneity closes
the performance gap between different forwarding policies, making end-to-end routing more
challenging in some cases, or less necessary in others. We believe these first analytical results
on the effects of traffic heterogeneity are an important step towards better protocol design and
evaluation of the feasibility of applications in opportunistic networks.

The work in this chapter has resulted to the following submission:

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Modelling and analysis of communication
traffic heterogeneity in opportunistic networks”, IEEE Transactions on Mobile Computing,
pending major revision, October 2014.

Chapter 5 – Content-Centric Traffic: Effect of Content Popularity and Availability
Patterns

In Chapter 4 we focused on the effects of traffic heterogeneity in end-to-end communication. Yet,
as discussed in Section 1.1.2, many MSN applications are content-centric: traffic is not between
a source-destination node pair, but the main goal is to distribute contents to interested users.
Thus, in this case, heterogeneity cannot be viewed from a node pair perspective, but it appears
among the groups of nodes involved in the dissemination of different contents. Specifically, the
interest patterns, i.e. how many nodes are interested in each content (popularity), as well as
how many users can provide a content (availability), impact the performance and feasibility of
content-centric applications.

To this end, in this chapter, we establish an analytical framework to study the effects of
these factors on the delay and success probability of a content access request served through
mobile social networking. We derive results that calculate these effects as a joint function of
(i) mobility patterns, (ii) content popularity patterns, and (iii) content availability patterns.
We also derive closed form expressions for performance prediction that require little knowledge
of the network characteristics and interest patterns, and thus can be used in real settings, for
protocol tuning, online optimization, etc. As an example case, we further apply our framework
to the mobile data offloading problem and provide some initial insights for the optimization of
its performance.

The work in this chapter corresponds to the following conference paper and its extended
version (under submission):

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Not all content is created equal: Effect of
popularity and availability for content-centric opportunistic networking”, Proc. 15th ACM
International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’14),
August 11-14, 2014, Philadelphia, PA, USA.

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Effects of content popularity in the perfor-
mance of content-centric opportunistic networking: An analytical approach and applica-
tions”, IEEE/ACM Transactions on Networking, submitted, September 2014.
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Chapter 6 – Offloading on the Edge: Analysis and Optimization of Local Data
Storage and Offloading in HetNets

Based on the analysis in Chapter 5 for the effects of content-centric traffic heterogeneity, and the
insights stemming from the corresponding results, in this chapter, we focus on a content-centric
application, namely mobile data offloading, which has recently attracted a lot of attention, due
to the rapid increase in data traffic demand that has overloaded cellular networks.

We propose an analytical model to explore how much local storage and opportunistic com-
munication through “edge” nodes could help offload traffic in various heterogeneous network
(HetNet) setups and levels of user tolerance to delays. We derive results predicting the perfor-
mance from the perspective of the user (content delivery probability, delivery delay) and the
cellular operator (offloading cost). We then use our model and results to optimize the storage
allocation and access mode of different contents as a tradeoff between user satisfaction and cost
to the operator.

The work related to this chapter is found in:

• Pavlos Sermpezis, Luigi Vigneri, Thrasyvoulos Spyropoulos, ”Offloading on the Edge: Anal-
ysis and optimization of local data storage and offloading in HetNets”, Research Report
RR-14-297, Eurecom, December 2014.
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Chapter 2

Delay Analysis of Epidemic Schemes
in Sparse and Dense Heterogeneous
Contact Networks

2.1 Introduction

Epidemic spreading is probably one of the most popular bio-inspired principles that have made
their way into computer engineering. Epidemic algorithms and variants have been used for com-
munication in distributed systems, synchronization of distributed databases, content searching
in peer-to-peer systems, etc. Recently, epidemic-based schemes have also been proposed for
routing and data dissemination in Mobile Social Networks.

In the epidemic routing case [137], any node that has a message (is “infected”) will forward
it to any node encountered that does not have it yet (is “susceptible”). While this guarantees
that every node in the network will eventually receive the message, it comes with a high resource
overhead. Numerous variants have been proposed to improve the resource usage of epidemic
routing while maintaining good performance (see [110,131] for a detailed survey).

Since the mobility process of nodes involved (e.g. humans or vehicles carrying the devices) is,
in most cases, not deterministic, the performance of epidemic-based algorithms heavily depends
on the underlying contact patterns between nodes. To this end, epidemic algorithms have been
extensively studied through both simulations and analytical models. While simulations with
state-of-the-art synthetic models or real mobility traces can provide more reliable predictions for
the specific scenario tested, analytical models can give quick, qualitative results and intuition,
answer “what-if” questions, and help optimize epidemic-based protocols (e.g. choosing the
number of copies in [129], or gossip probability [143]).

For the sake of tractability, analytical models for epidemic spreading mainly rely on simple
mobility assumptions (e.g. RandomWalk, RandomWaypoint), where node mobility is stochastic
and independent, identically distributed (IID) (see e.g. [43, 49, 143]). Nevertheless, numerous
studies of real mobility traces [25, 36, 56, 108] reveal a different picture: Two key findings are
that (i) contact rates between different pairs of nodes can vary widely, and (ii) many pairs of
nodes may never meet. This puts in question the accuracy and utility of these homogeneous
models’ predictions. Yet, departures from these assumptions [12,36,73,76,132] seem to quickly
increase complexity and/or limit the applicability of results.
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HETEROGENEOUS CONTACT NETWORKS

These observations leave us with the following question: Can we still derive useful and ac-
curate closed-form expressions for the performance of epidemic schemes, even when considering
more generic mobility assumptions?

To this end, in this chapter, we consider a large class of contact/mobility models with
heterogeneous contact rates and contact graphs. At first, we assume that every pair of nodes
{i, j} meets according to a random process with a different contact rate λij , drawn from an
arbitrary probability distribution fλ(λ) with known mean µλ and variance σ2

λ (Section 2.2):

• Through an asymptotic analysis for the epidemic spreading process, we derive results for
the expected spreading delay and provide intuition about how it is affected by the contact
rates heterogeneity (Section 2.2.3).

• For finite network sizes, we derive approximative results that predict the expected epidemic
spreading delay (Section 2.2.4). The expressions we provide are simple, closed form and
only involve the 1st and 2nd moments of the contact rate distribution fλ(λ).

• To demonstrate how our framework could be used in practice, we derive closed form ex-
pressions for the delay of various epidemic based protocols (Section 2.2.5):

We then further extend the class of mobility models and consider arbitrarily sparse networks by
allowing pairs of nodes to never meet each other (Section 2.3):

• Extending the heterogeneous contact model of Section 2.2, we show how the delay predic-
tions we derived can be used for arbitrarily sparse networks modeled as Poisson Graphs
(Section 2.3.1).

• We capture further complex characteristics of the network contact graphs, namely het-
erogeneous node degree distributions, using the Configuration Model. We show (though
under uniform contact rates) that we can still derive simple, closed form approximations
for various quantities related to the delay of epidemic spreading (Section 2.3.2).

We validate all our results against various synthetic simulation scenarios, and show that their
accuracy is significant. Moreover, we test our theory against real traces, capturing node mobility
and respective contacts, and find that useful levels of accuracy can still be achieved even for
scenarios that are known to entail considerable more complexity.

As a final remark, while our initial motivation and focus stems from the area of MSNs,
we believe that our methodology and results could also be applicable to other processes and
complex networks [102], if the key metric of interest is spreading delay. In such contexts, contacts
between nodes might still be subject to a random process, e.g. related to online communication,
email transmission, etc., superimposed over a complex network (e.g. an Online Social Network
friendship graph).

2.2 Heterogeneous Contact Networks and Epidemic Schemes

2.2.1 Modeling Heterogeneous Contact Networks

We consider a network N , with N nodes. We assume that the node transmission range is much
smaller than the total network area, so that each pair of nodes can only communicate directly
during the contact events of this pair (i.e. when the two nodes come into the transmission range
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of each other). We model this sequence of contact events for a pair of nodes {i, j} by a random
point process1, and we introduce the concept of the Contact Network.

Definition 2 (Contact Network).
− A contact network N is defined by an (underlying) graph G = {V, E} whose vertices represent
the network nodes and an edge between two vertices implies that these two nodes contact each
other regularly.
− The sequence of the contact events between each pair of nodes {i, j} connected with an edge
({i, j} ∈ E), is given by a random point process with rate λij .
− Contact duration is negligible compared to the time between contacts events, though sufficient
for all data transfers to take place.

Remark: From the above definition, it follows that, equivalently to its graph, a contact
network N can be represented by the contact matrix Λ = {λij}.

Although Def. 2 is quite general, to ensure analytical tractability it is commonly assumed, ei-
ther implicitly or explicitly, that (i) the underlying graph G is fully meshed (i.e. λij > 0, ∀{i, j}),
and (ii) mobility is homogeneous (i.e. λij = λ, ∀{i, j} ) [43,143]. Yet, in most scenarios of inter-
est, this homogeneity is rather unrealistic. Study of real traces has provided strong evidence that
contacts between different pairs of nodes are in fact largely heterogeneous, with some pairs never
meeting each other and others meeting much more frequently [25,36,108], resulting in a sparse,
and largely heterogeneous contact graph G. This motivates us to depart from the homogeneous
mobility model.

Hence, our goal is to extend previous analytical works, by considering heterogeneous contact
networks, and derive useful, closed form results also for these more realistic settings. To this
end, we first raise the mobility homogeneity assumption. Later, in Section 2.3, we extend our
analysis and results for sparse networks (i.e. λij ≥ 0) as well. Specifically, we perform our
analysis assuming the following class of heterogeneous contact networks:

Definition 3 (Heterogeneous Contact Network).
A heterogeneous contact network is defined as a Contact Network (Def. 2), where:
− Contact events between a pair of nodes {i, j} follow a Poisson process with rate λij, i.e. inter-
contact times are independent and exponentially distributed with rate λij.
− Contact rates λij are independently drawn from an arbitrary distribution with probability den-
sity function fλ(λ), λ ∈ [λmin, λmax] ⊆ (0,∞), and finite mean µλ and variance σ2

λ (coefficient
of variation CVλ = σλ

µλ
).

With the choice of the above model we try to strike a tradeoff between realism and usability.
We will now motivate our choices above in a bit more detail.

First, the assumption of independent and exponentially distributed inter-contact times (or
equivalently Poisson contact processes) for each pair of nodes is needed to allow an exact analysis
of performance metrics of interest using a Markovian framework. For this reason, it is a common
assumption in most related works for epidemic spreading on Opportunistic Networks [36,43,73,
76,113]. Furthermore, analyses of real-world traces, suggesting that the exponential distribution
can sometimes approximate the distribution of the inter-contact times [25,36], or at least the tail
of it [16,68]. This exponential tail is also supported by known results about the hitting times of

1We ignore the actual contact duration for simplicity and assume that contacts are instantaneous, since band-
width concerns are orthogonal to the problem we consider here.
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random walks [2]. Finally, findings of two recent analytic studies are consistent with our model:
(a) even if the aggregate inter-contact time distribution is non-exponential (as suggested in [18]),
individual pair contacts might still be exponential but with different rates [108]; and (b) even if
the actual contact times are not Poisson this suffices, under certain conditions, to use a Markov
Chain based analytical framework, as a good approximation [112].

The assumption of independence (or even stationarity), while not that well supported by
real traces, due to temporal or periodic characteristics in real mobility scenarios [35,117,147], is
also necessary for analytical tractability (and any hope for closed form expressions). To our best
knowledge, departing from the above assumptions (e.g. maintaining independence but allowing
for pareto inter-contact time distributions [12,18]), can only be used for asymptotic, convergence
analysis about the message delivery delay of a routing protocol, i.e. if it achieves finite or infinite
delay.

The second assumption, the heterogeneity of contact rates between different pairs of nodes,
as mentioned above, is motivated by analysis of real traces [25,36,108]. For instance, Passarella
et al. [108], shown, using data from real-world social networks, that (i) each person interacts
and contacts its friends and acquaintances with higher rate as closer their relationship is, and
(ii) the contact rates, between any individual and the other nodes, can be approximated by a
distribution (which in our case corresponds to the distribution fλ). Moreover, it is often quite
difficult, in a MSNs context, to know all rates λij exactly, or estimates might be rather noisy,
which justifies our selection for representing mobility heterogeneity in a probabilistic way (i.e.
λij are randomly drawn from fλ).

While this contact class is far from exhaustive and cannot directly capture all types of
macroscopic structure often observed in real-world networks (e.g. assortativity and community
structure [55, 102]), we can use any valid probability density function fλ to create an infinite
range of random contact networks (in contrast to homogeneous models that correspond to only
one function, i.e. fHOM

λ (λ) = λ0 = const.). Different functions lead to classes of contact
processes with very different macroscopic characteristics. For example, large σ2

λ values imply that
the contact frequencies between different pairs are very heterogeneous, e.g. some pairs will rarely
contact each other while others much more often. An fλ symmetric around µλ (e.g. uniform
distribution) implies a balanced number of high and low rates, while a right-skewed fλ (e.g.
Pareto) describes a network with most pairs having large intercontact times, but few meeting
very frequently. Small µλ values could correspond to slow moving nodes, e.g. pedestrians, (or
large geographical areas), etc.

For these reasons, we believe the above model strikes a good tradeoff, and as will see, allows
us to explore the effect of different social-based characteristics and derive interesting insights,
which is the main goal of this work. When possible, we will test these insights against real
traces as well, to examine the extent to which departures from the above assumptions affect our
conclusions.

2.2.2 Epidemic Spreading

In a contact network N , “messages” might be exchanged between nodes. In the context of
MSNs, a message could be a data packet, a file, etc.2

2In other contexts, the “message” could be a rumour or news in an online social network [80], a virus in a
computer network [140], a disease in the physical world [100], etc.
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Figure 2.1: Epidemic spreading in a homogeneous network with N nodes.

During a contact event, a message currently on one of the nodes could be forwarded to
(“infect”) the other node as well. In the basic epidemic scheme (epidemic routing [137]), a
message starts from a source node, and a message transfer occurs at every contact opportunity
involving a node with the message and one without it. To compute the expected message delivery
delay of different dissemination mechanisms (e.g. routing protocols, content sharing schemes),
we need to split the spreading process in steps, compute the delay of each one of these steps,
and use them as the building blocks to calculate the total delay.

In a homogeneous contact network (λij = λ, ∀{i, j}), epidemic spreading can be modelled
with a pure-birth Markov chain of N states, as depicted in Fig. 2.1, where a state k denotes the
number of “infected” nodes (i.e. nodes with the message). Then, it is easy to show that the
step time Tk,k+1 (i.e. the time to move from state k to state k + 1) is exponentially distributed
with rate k(N − k)λ. Its expected value is then given by E[Tk,k+1] =

1
k(N−k)λ , and, therefore,

one could straightforwardly calculate the expected spreading time.

However, introducing different contact rates for each pair of nodes complicates the problem.
The message dissemination process depends on which nodes exactly have the message (in contrast
to the homogeneous case, where we only need to track the number of infected nodes). As
an example, in Fig. 2.2, we present the Markov Chain of a message epidemic spreading in a
heterogeneous network with four nodes, {A,B,C,D}. This Markov Chain is composed of 8
states (or 15 states, if we consider different starting nodes), whereas the respective Markov
Chain of an homogeneous network with 4 nodes would be composed of only 4 states. Hence,
it becomes evident that the complexity increases quickly, even for this simple 4-node network.
In a network with N nodes, the state space explodes with 2N − 1 total states, or, equivalently,
with

(N
k

)

different states for step k (i.e. when k nodes have the message / are “infected”), and
only numerical solutions (and only for N not large) [73] or upper bounds using rough spectral
arguments [113], are allowed.

While keeping track of all these states, their probabilities and the rates between them, could
be done recursively, the task becomes intractable. To avoid this complication, the main idea
behind our results is to prove that, in the limit of large N , all such starting states become
statistically equivalent, and then collapse them.

2.2.3 Asymptotic Analysis

In this section, we study the step delay Tk,k+1, which is the building block for the calculation
of the total epidemic spreading delay, and derive results for its expectation in a large (N)
heterogeneous contact network.

As said above, the step delay Tk,k+1 is the time starting when the kth node just received the
message (i.e. any k nodes are infected) until the (k+1)th node receives it (i.e. any k+1 nodes
are infected). The calculation of its expectation, E[Tk,k+1], involves three sources of randomness:
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Figure 2.2: Epidemic spreading in a heterogeneous network with 4 nodes

(i) A network is initially created according to fλ(λ). In other words, N(N − 1)/2 contact
rates λij are drawn independently from fλ(λ). The resulting graph or (symmetric) contact rate
matrix Λ = {λij} is a contact network instance3.

(ii) When at step k, there are k nodes with the message. Conditioned on Λ, Tk,k+1 is a
random variable whose distribution will also depend on the actual set of k nodes that have the
message, and their contact rates with the remaining nodes. Let Cm

k denote this set, where m is
an integer indicating one of the

(

N
k

)

possible sets of infected relays at step k.

(iii) Finally, conditional on both the network instance Λ and Cm
k , Tk,k+1 will also depend on

the randomness of the inter-contact times involved.

More specifically, let i and j be two nodes, where i ∈ Cm
k and j /∈ Cm

k , and tij be the next time
they contact after the time the kth node received the message. As the next message exchange
will take place when any of the nodes with the message contacts any of the nodes without it,
the step delay is given by Tk,k+1 = mini∈Cm

k j /∈Cm
k
{tij}. Moreover, since tij are independent,

exponentially distributed random variables with rate λij , Tk,k+1 is also exponentially distributed
with rate

∑

i∈Cm
k

∑

j /∈Cm
k
λij :

tij ∼ exp(λij) ⇒ Tk,k+1 ∼ exp





∑

i∈Cm
k

∑

j /∈Cm
k

λij



 (2.1)

and, thus [121]

E [Tk,k+1|Cm
k ] =

1
∑

i∈Cm
k

∑

j /∈Cm
k
λij

(2.2)

Using the properties of conditional expectation, we get the expected delay for the transition

3In the following analysis, we will assume that the message is spread in such a network instance with contact
rate matrix Λ, and, thus, all the expressions will be considered to be conditional on Λ. However, for a clearer
presentation of the analysis and the results, we will not denote in our expressions the condition on Λ.
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from step k to step k + 1:

E [Tk,k+1] =

(Nk )
∑

m=1

E [Tk,k+1|Cm
k ] · P{Cm

k }

=

(Nk )
∑

m=1

1
∑

i∈Cm
k

∑

j /∈Cm
k
λij
· P{Cm

k }

=

(Nk )
∑

m=1

1

Sm
k

· P{Cm
k } (2.3)

where we denoted
Sm
k =

∑

i∈Cm
k

∑

j /∈Cm
k

λij (2.4)

The problem in Eq. (2.3) is that keeping track of the probabilities P{Cm
k } is exceedingly

complex, and even if we did (e.g. recursively) it would not lead to a useful expression. Instead,
we will follow a different approach to compute the expected delay E[Tk,k+1]:

To derive our main result (Theorem 1) for the expected step delay E [Tk,k+1] (Eq. (2.3)), we
will need Lemmas 1 and 2.

Hence, let us first define the random variable Sk as

P{Sk = Sm
k } = P{Cm

k } (2.5)

and the random variable Xk as Xk = Sk

k(N−k) , i.e.

P

{

Xk =
Sm
k

k(N − k)

}

= P{Cm
k } (2.6)

Now we can state Lemma 1 that gives the first two moments of the random variable Sk, and
Lemma 2 that shows how the random variable Xk converges as the network size N increases.
The proofs of Lemmas 1 and 2 can be found in Appendices 2.6.1 and 2.6.2, respectively.

Lemma 1. The expectation and variance of the random variable Sk at step k, are given by

E[Sk] = k(N − k) · µλ · (1− ǫk)

V ar [Sk] = k(N − k) · σ2
λ · (1− δk)

where ǫk = O
(

λmax

N

)

and |δk| = O
(

λ2
max

N

)

.

Lemma 2. As the network size N increases, the random variable Xk converges as follows

Xk
m.s.−−→ µλ

where
m.s.−−→ denotes convergence in mean square.

Using the above Lemmas, we can prove Theorem 1, which suggests that in a large Heteroge-
neous Contact Network the expected step delay at a step k, can be approximated with infinite
accuracy as following.

E[Tk,k+1] ≈
1

k(N − k)µλ
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Theorem 1. As the network size N increases, the relative error REk between the expected step
delay E[Tk,k+1] and the quantity 1

k(N−k)µλ
converges to zero

lim
N→∞

REk = lim
N→∞

E[Tk,k+1]− 1
k(N−k)µλ

E[Tk,k+1]
= 0

Proof. Lemma 2 shows the convergence in mean square for Xk. Therefore, it follows directly
that Xk converges in probability as well [70, p. 140-141]

Xk
m.s.−−→ µλ ⇒ Xk

p−→ µλ (2.7)

where
p−→ denotes convergence in probability.

Let us, now, define the random variable Yk as Yk = 1
Xk

= k(N−k)
Sk

, with probability distribu-
tion

P

{

Yk =
k(N − k)

Sm
k

}

= P{Cm
k } (2.8)

Since (see Eq. (2.7)) Xk
p−→ µλ, it also holds that [70, Thm. 5.23, p. 148]

Yk =
1

Xk

p−→ 1

µλ
(2.9)

Moreover, since each contact rate λij takes values in the interval [λmin, λmax], it is easy to
see that

1

λmax
≤ Yk ≤

1

λmin
(2.10)

Using Eq. (2.10) and the definition of uniform integrability [70, Def. 5.15, p. 142], it follows
that Yk is uniformly integrable ∀N and ∀k ∈ [1, N − 1], i.e.

lim
α→∞

sup
N

E [|Yk|; {|Yk| > α}] = 0 (2.11)

because P{|Yk| > α} = 0 for α > 1
λmin

.

Eq. (2.9) states that Yk converges in probability to 1
µλ

and Eq. (2.11) that Yk is uniformly
integrable. Therefore, [70, Thm. 5.17, p. 144], it follows that Yk converges in mean value (denoted
with

m.−→) to 1
µλ

:

Yk
m.−→ 1

µλ
or E[Yk] = E

[

1

Xk

]

→ 1

µλ
(2.12)

Finally, the relative error REk can be written as

REk =
E[Tk,k+1]− 1

k(N−k)µλ

E[Tk,k+1]
=

E
[

1
Sk

]

− 1
k(N−k)µλ

E
[

1
Sk

] =
E
[

1
Xk

]

− 1
µλ

E
[

1
Xk

] =
E[Yk]− 1

µλ

E[Yk]
(2.13)

Taking the limit in Eq. (2.13) for N →∞ and using Eq. (2.12), gives

lim
N→∞

REk =

1
µλ
− 1

µλ

1
µλ

= 0 (2.14)
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Table 2.1: Relative Step Delay Error REk: Averaged over All Steps and over 100 Network Instances

N = 20 N = 50 N = 100 N = 200 N = 500

CVλ = 0.5 4.3% 2.8% 2.7% 2.6% 2.5%

CVλ = 1 10.6% 4.2% 3.1% 2.7% 2.6%

CVλ = 1.5 22.4% 8.2% 4.6% 3.2% 2.6%

CVλ = 3 126.7% 34.1% 15.3% 8.2% 3.8%

To verify our results, we test them against simulations. We use a simulator that creates
network instances belonging to the class of Heterogeneous Contact Networks (Def. 3), we ran
Monte Carlo simulations of epidemic spreading, and calculate the mean step delay (further
details for the simulation methodology are given in Section 2.2.5.1). In Table 2.1, we present
the values for the relative error REk (Theorem 1) in simulation scenarios of different network
sizes N and contact rates heterogeneity CVλ. The values in Table 2.1 correspond to the relative
error REk averaged over all the steps k of the epidemic process and over 100 different network
instances Λ with equivalent characteristics (N , fλ). It can be seen that in networks with higher
heterogeneity CVλ (and, thus, larger ranges [λmin, λmax], since we set the mean rate µλ = 1)
the errors are larger, as our theory predicts. However, as the network size increases, the errors
for all scenarios become very small.

The decrease of the relative errors can be observed also in Fig. 2.3, where we present the
distribution (boxplots4) of the values of REk over the different network instances. Here, the
relative errors do not correspond to averaged (over different steps) values, but we present the
REk at the steps that correspond at the 20% (e.g. in the scenario with N = 100, we present
the relative errors in the step k = 20) and 70% of the spreading process, in Fig. 2.3(a) and
Fig. 2.3(b), respectively. It can be seen that in later steps the error is slightly larger, which
is expected, due to the accumulation of errors from all previous steps. Nevertheless, for large
network sizes, the error diminishes for every step considered.

2.2.4 Finite Size Networks

The asymptotic analysis and results of the previous section can be used to predict accurately the
spreading delay in large networks. In addition to this, they provide useful insights and guidelines
for the analysis of finite cases (small networks). In that sense, in this section, we interpret the
results of Section 2.2.3 and derive simple, closed-form approximations for the behavior of finite
size networks.

Specifically, from Theorem 1, the quantity 1
k(N−k)µλ

can be used as a predictor for the step
delay, and the prediction error converges to 0 as networks get larger. For finite cases though,
this error might not be negligible. This motivates us to investigate how the approximation for
the step delay can be improved (e.g. by adding higher order terms). To this end, we consider
the following analysis.

4In each box, the central horizontal (red) line is the median, the edges of the (blue) box are the 25th and 75th

percentiles, the (black) whiskers extend to the most extreme data points not considered outliers, and outliers are
plotted individually as (red) crosses.
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Figure 2.3: Relative Step Error for the step (a) k = 0.2 ·N (i.e. message spreading at 20% of the network) and
(b) k = 0.7 ·N . Each boxplot corresponds to a different network size N (with µλ = 1 and CVλ = 1.5). Box-plots
show the distribution of the Relative Step Error REk for 100 different network instances of the same size.

At first, from Eq. (2.3) we can express the mean step time E[Tk,k+1] as

E [Tk,k+1] =

(Nk )
∑

m=1

1

Sm
k

· P{Cm
k } = E

[

1

Sk

]

(2.15)

where Sk is defined in Eq. (2.5). Since we do not know the probabilities P{Cm
k } (i.e. the exact

distribution of Sk), it is not possible to calculate the quantity E
[

1
Sk

]

. However, E
[

1
Sk

]

is the

expectation of a function of Sk (i.e. the function g(x) = x−1), and thus we can approximate it
by using the Delta method [103], where the expectation of a function of a random variable (i.e.

E[g(Sk)] ≡ E
[

1
Sk

]

) is approximated using the Taylor expansion of the function and the first

moments of the random variable (i.e. E[Sk], V ar [Sk], etc.).
The calculation of these moments though, still depends on the knowledge of the probabilities

P{Cm
k }, and exact expressions cannot be found. Hence, to proceed further and be able to derive

useful results, we approximate the first two central moments of Sk, by neglecting the terms ǫk
and δk in the expressions of Lemma 1, i.e.

E[Sk] ≈ k(N − k) · µλ (2.16)

V ar[Sk] ≈ k(N − k) · σ2
λ (2.17)

These approximations, as Lemma 1 implies, become more accurate as (i) the size of the network
increases, or (ii) the heterogeneity of the contact rates decreases. To further support this argu-
ment, we present some initial simulation results. Table 2.2 and Fig. 2.4 (in a similar way to the
previous section) show the relative errors between the quantity E[Xk] and the approximation
we consider, k(N − k)µλ. As it can be seen, the approximation is relatively accurate even for
moderate network sizes.

Now, using the Delta method and the expressions of Eq. (2.16) and Eq. (2.17), we provide
in Result 1 a second order approximation for the expected step delay.
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Table 2.2: Relative Error E[Xk]−k(N−k)µλ

k(N−k)µλ
: Averaged over All Steps and over 100 Network Instances

N = 20 N = 50 N = 100 N = 200 N = 500

CVλ = 0.5 3.3% 1.3% 0.7% 0.3% 0.1%

CVλ = 1 8.3% 3.0% 1.7% 0.9% 0.3%

CVλ = 1.5 15.3% 6.6% 3.5% 1.9% 0.7%

CVλ = 3 38.7% 21.6% 12.1% 7.1% 2.8%
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Figure 2.4: Relative Error for the step (a) k = 0.2 · N (i.e. message spreading at 20% of the network) and (b)
k = 0.7 ·N . Each boxplot correspond to a different network size N (with µλ = 1 and CVλ = 1.5). Box-plots show

the distribution of the Relative Error E[Xk]−k(N−k)µλ

k(N−k)µλ
for 100 different network instances of the same size.
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Result 1. In a Heterogeneous Contact Network (Def. 3) the expected step delay can be approx-
imated by

E[Tk,k+1] =
1

k(N − k)µλ
·
(

1 +
CV 2

λ

k(N − k)

)

(2.18)

Proof. To estimate E
[

1
Sk

]

= E[g(Sk)], at first we express the function g(Sk) =
1
Sk

as a Taylor

series expansion, centered at E[Sk], the mean value of Sk.

Tg(Sk) =
∞
∑

n=0

g(n)(E[Sk])

n!
(Sk − E[Sk])

n =
∞
∑

n=0

(−1)n(Sk − E[Sk])
n

(E[Sk])n+1
(2.19)

We can approximate g(Sk) by taking the first m terms of the Taylor series. That will result in:

g(Sk) ≈

m
∑

n=0

(−1)n
(E[Sk])n+1

(Sk − E[Sk])
n (2.20)

An approximation for the mean value of g(Sk) follows after taking the expectation of both sides
in the last equation.

E[g(Sk)] ≈

m
∑

n=0

(−1)n
(E[Sk])n+1

Mn (2.21)

where Mn = E[(Sk − E[Sk])
n] is the nth central moment.

This method, of approximating a function with a finite Taylor sum and taking the expectation
of it for evaluating the mean value of the function, is widely known as the delta method [27,103].

Considering m = 2 in Eq. (2.21) and using the expressions of Eq. (2.16) and Eq. (2.17) for
the moments M0 = E[Sk] and M2 = V ar [Sk], proves the result.

Remark: In the Delta method, different number of terms of the Taylor series can be taken into
account, depending on the required accuracy (the more terms one considers, the more accurate
the result). For example, taking only the first term (m = 0), we get the asymptotic expression,
i.e. E[Tk,k+1] =

1
k(N−k)µλ

. As a better approximation, we consider here the first three terms

(m = 2) of the Taylor series, which involve the first two moments of Sk. Our choice for using
the approximation that depends on the first two moments is a trade off between usability and
expressibility of the result, and its accuracy.

2.2.5 Delivery Delay of Opportunistic Routing Protocols

Having found the necessary approximations for individual epidemic steps in heterogeneous sce-
narios, we turn our attention to applications of these results. Specifically, we use the basic
building blocks of our analysis (i.e. step delay Tk,k+1) to predict the end-to-end delivery delay
for three routing protocols, namely, epidemic routing [137], 2-hop routing [43] and Spray and
Wait routing [129].

We briefly present here the mechanism of these schemes and how the expected delivery delay
can be computed for each of them. Table 2.3 gives the approximative closed-form expressions
for the delivery delay (corresponding to the approximation of Result 1 for the step delay), while
detailed derivations of the formulas can be found in Section 2.6.3.
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Epidemic routing

In unicast epidemic routing, we are interested in the time until a given destination node receives
the message. Assuming the selection of the source and destination nodes is random, the prob-
ability that the destination node is the kth node to receive the message is the same for every
k, i.e. 1

N−1 . Consequently, adding up the expected delays of all steps (due to the linearity of

expectation) and multiplying them with the probabilities 1
N−1 , we get

E[T uni
epid] =

1

N − 1

N
∑

n=2

n−1
∑

k=1

E[Tk,k+1] =
1

N − 1

N−1
∑

k=1

(N − k)E[Tk,k+1]. (2.22)

where E[Tk,k+1] can be calculated e.g. by the approximate expression of Result 1.

2-hop routing

In the 2-hop routing scheme, the source sends the message to every node it meets, like in epidemic
routing. However, other nodes receiving the message can only give it directly to the destination,
when and if they encounter it.

Therefore, in step k (the source and k− 1 relays carry the message) there are N − 1 possible
meeting events in which a message exchange can take place, i.e. (i) N − k− 1 possible meetings
between the source and a node without the message, other than the destination, and (ii) k
possible meetings between the relay nodes (including the source) and the destination. Due to
randomness, the probability that the destination node will be involved in the exact next meeting
event with message exchange is k

(N−k−1)+k = k
N−1 . Based on the previous observations, we can

at first compute the probability the message to be delivered at each step k and the expected
step delay (E[T 2−hop

k,k+1 ]), from which we can eventually derive the expected delivery delay.

Spray and Wait (SnW) routing

In the Spray and Wait scheme5, the source generates L copies of the message and when it meets
another node, it gives to it half of the messages it holds at that time (if it holds more than
one). The same mechanism applies when a relay node with more than one copies meets another
node without the message. Eventually there would be L nodes (including the source) holding
the message. If the message is not delivered to the destination before the L message copies are
spread (spray phase), it will be delivered the first time any of the L nodes with the message
meets the destination (wait phase).

The expression for the delivery delay is calculated by following a similar procedure as in the
2-hop routing case.

2.2.5.1 Model Validation

Synthetic Scenarios

In order to validate the accuracy of our predictions for the message delivery delay under differ-
ent routing schemes, we first compare them against simulations of various synthetic scenarios

5Here we describe the binary Spray and Wait, which is the scheme with the lowest expected delivery delay
among all the SnW-based schemes (e.g. source SnW ) [129].
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Table 2.3: approximative expressions for the Expected Delivery Delay of different routing protocols.

Epidemic E[T
(epid)
D ] ≈ 1

N · µλ
·
(

ln(N) + CV 2
λ ·

1.65 ·N + 2 · ln(N)

N2

)

2-hop E[T
(2−hop)
D ] = AN−1 ·

N−1
∑

k=1

k2 · (N − 1)!

(N − 1)k+1 · (N − k − 1)!
≈

√

π
2√

N · µλ

·
(

1 +
CV 2

λ

N

)

SnW, L copies E[T
(SnW )
D ] ≤ AN−1 ·

L−1
∑

k=1

k2 · (N − 1)!

(N − 1)k+1 · (N − k − 1)!

+ (L ·AN−1 +AL) ·
(N − 1)!

(N − 1)L · (N − L− 1)!

where Am =
1

mµλ
·
[

1 +
CV 2

λ

m

]

belonging to the class of Heterogeneous Contact Networks (Def. 3). We use Monte Carlo simula-
tions to examine the accuracy of our various analytical expressions (i) in finite size networks and
(ii) as a function of other parameters of interest (e.g. statistics of the contact rates generating
function fλ).

In each simulation, we create a network of N nodes and a contact pattern by generating a
N ×N matrix Λ = {λij}. Each entry λij characterizes the contact process of the pair of nodes
i and j, and it takes values drawn from a chosen distribution fλ with mean µλ and variance σ2

λ

(CVλ = σλ

µλ
). Then for each pair we generate a sequence of contact events with exponentially

distributed intercontact times with rate λij.

For every network instanceΛ, we run 1000 message spreading simulations, choosing randomly
the source and destination nodes, and calculate the average delivery delay. We have considered
scenarios with contact rate distributions fλ with varying heterogeneity (CVλ). Without loss of
generality and for a clearer comparison we set the average contact rate equal to the unit, i.e.
µλ = 1.

Fig. 2.5 shows the relative error between the expected delivery delay of epidemic routing
(for different network instances) and the corresponding theoretical prediction (Table 2.3) under
two set of scenarios with different contact rates heterogeneity. It can be seen that the accuracy
of our prediction is significant, even for small networks, when the heterogeneity is not high
(Fig. 2.5(a)). Although the accuracy decreases with heterogeneity (Fig. 2.5(a)), for networks
larger than a hundred nodes, the relative errors are less than 10%.

Similar observations can be made also in Fig. 2.6 for the expected delivery delay of Epidemic
and Spray and Wait routing. In Fig. 2.6(a), we present simulation results in four scenarios
with different network sizes (N) and mobility heterogeneity (CVλ), where epidemic routing is
used for delivering messages. Fig. 2.6(b) shows similar results for the case of Spray and Wait
routing. Networks with N = 500 nodes and varying mobility heterogeneity are considered. In
all scenarios, simulation results are averaged over 100 network instances. As it can be seen, the
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(b) µλ = 1, CVλ = 3

Figure 2.5: Relative Error between the simulated expected delivery delay of epidemic routing and the theoretical

approximation. Each boxplot corresponds to a different network size N . Box-plots show the distribution of the
Relative Error for 100 different network instances of the same size.

predictions of our approximate expressions are quite close to the simulated values.

Real Mobility Traces

The above simulation results show that our analytical predictions achieve significant accuracy
even in finite networks whose mobility patterns fall under the class of Heterogeneous Contact
Networks. While these contact classes are rather broad, whether they capture “real” scenarios,
and to what extent, depends on the application setting, contact scenario, etc.

In the context of MSNs, some mobility traces collected in real experiments and/or networks
do exist. Arguably, the size of most of them is small and they represent each only a single instance
of the random mobility process at play, often with a number of measurement complications and
errors. Nevertheless, it is of interest to see how our performance predictors behave in some of
these scenarios, and whether they can capture the quantities of interest (even if qualitatively),
despite the considerably higher complexity (e.g. community structure) of such scenarios, and
departures from the assumptions for which our predictors are designed.

To this end, we use the following sets of real mobility traces: (i) Cabspotting [118], which
contains GPS coordinates from 536 taxi cabs collected over 30 days in San Francisco, and (ii)
Infocom [125], which contains traces of Bluetooth sightings of 78 mobile nodes from the 4 days
iMotes experiment during Infocom 2006. We also generated mobility traces with two recent
mobility models that have been shown to capture well different aspects of real mobility traces,
namely, TVCM [57] and SLAW [77]. In order to compare with analysis, we parse each trace and
estimate the mean contact rate for all pairs {i, j}. We then produce estimates for the 1st and

2nd moments of these rates, µ̂λ and σ̂2
λ, and use them in our analytical expressions.

Fig. 2.7 shows the message delay under epidemic and 2-hop routing. Source and destination
are chosen randomly in different runs and messages are generated in random points of the trace.

The first thing to observe is that delay values span a wide range of values for different
source-destination pairs. This implies a large amount of heterogeneity in the “reachability” of
different nodes. Our analytical predictions are shown as thick dark horizontal lines. As it can
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Figure 2.6: Delivery Delay of (a) epidemic and (b) spray and wait routing in different scenarios of Heterogeneous
Contact Networks. Simulation results are averaged over 100 network instances.

be seen, our result is in most cases close to the median and in almost all cases between the
25th and 75th percentile of the delay observed in both the real traces and mobility models6. It
is somewhat remarkable that our delay predictors are close to the actual results (qualitatively
or even quantitatively in some cases) in a range of real or realistic scenarios; studies of these
scenarios reveal considerable differences to the much simpler contact classes for which our results
are derived. We should also be careful not to jump to generalizations about the accuracy of
these results in all real scenarios, as we are aware of situations that could force our predictors
to err significantly. Nevertheless, we believe these results are quite promising in the direction of
finding simple, usable analytical expressions even for complex, heterogeneous contact scenarios.

2.3 Sparse Contact Graphs

After having investigated to what extend the heterogeneity of contact rates affects the delay
of information spreading, we now remove the second unrealistic key assumption. Specifically,
the network contact model of Def. 3 assumes that every pair of nodes meets with non-zero
rate. However, the network contact graph is not necessarily fully mixed (Fig. 2.8(a)) but can be
sparse and/or very heterogeneous (Fig. 2.8(b)). To describe such sparse networks, we propose
the following two models for the network contact graph. These models are (i) based on random
graphs and thus the network can be studied using analytic methods, and (ii) can describe
networks arbitrarily sparse (Poisson Contact Graph model - Section 2.3.1) and with arbitrarily
heterogeneous nodes (Configuration Contact Graph model - Section 2.3.2).

2.3.1 Poisson Contact Graph

We first extend the Heterogeneous Contact Network model of Def. 3, by allowing some pairs
to never meet, i.e. we allow λij = 0. Specifically, we consider the following class of Contact

6We tend to underestimate the delay in SLAW, a mobility model that was designed to capture power-law
characteristics of contact meetings [77]
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Figure 2.7: Box-plots of the unicast (i.e. message delivery) delay under epidemic and 2-hop routing. On each
box, the central horizontal line is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are plotted individually as crosses.
The thick lines represent the theoretical values predicted by our model.

Networks

Definition 4 (Heterogeneous Poisson Contact Network). For each pair of nodes i and j the
following holds: (i) with probability 1− ps they never contact each other, (ii) with probability ps
they contact with rate λij , according to a contact process as defined in Def. 3.

In other words, we now first create a Poisson (or Erdös-Renyi) graph [102] between nodes.
We then assign rates λij, as before, but only to the existing links. With the parameter ps, we
can now also capture arbitrarily sparse scenarios, where each node meets only a percentage of
all nodes7.

The following corollary suggests that the previous analysis (Section 2.2) is valid also in the
case of a sparse network (Def. 4) and the results hold by just modifying the values of µλ and σ2

λ.

Corollary 1. Under a Heterogeneous Poisson Contact Network (Def. 4), the theoretical results
for a Heterogeneous Contact Network (Def. 3), are modified by substituting the moments of the
contact rate distribution (µλ and σ2

λ) with the expressions

µλ(p) = ps · µλ

σ2
λ(p) = ps ·

[

σ2
λ + µ2

λ · (1− ps)
]

Corollary 1 can be proved similarly to the theoretical results of Section 2.2. In Appendix 2.6.4,
we present a sketch of this proof comprising the main analytical arguments and differences com-
pared to the analysis for the full-meshed network case.

To validate Corollary 1, we perform simulations as in the previous section. In Fig. 2.9 we
compare our theoretical predictions (calculated from the expressions of Table 2.3, which we

7We do assume that the probability ps is large enough for connectivity to be achieved. In practice, the theory
of Poisson graphs tells us that connectivity can be achieved with arbitrary low ps as long as N is large enough
(with percolation occurring at an average degree as low as 1 in the limit) [102].
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(a) Full mesh graph (b) Sparse graph

Figure 2.8: Representation of contact networks with graphs

modified according to Corollary 1) against simulation results for the expected delivery delay
of Epidemic and Spray and Wait routing. It can be seen the predictions are not far from
the simulation results in these sparse network cases. However, they are less accurate than the
corresponding dense networks of the same size (see Fig. 2.6). This is due to the fact that the
poisson contact graph introduces further randomness and, thus, more diversity in the spreading
process. Hence, the same accuracy is achieved for larger network sizes.

2.3.2 Configuration Model Contact Graph

As presented in the previous section, modeling the network’s contact graph with a Poisson graph
allows us to capture different levels of sparseness by selecting appropriately the probability ps.
However, contact graphs of real networks, in general, have more complex characteristics than
a Poisson graph. In particular, the Poisson distribution cannot always approximate accurately
the nodes degree distribution8 [102].

To this end, in this section, we add further complexity and heterogeneity in the network
contact graph model (and thus, better approximate real scenarios), by allowing different nodes
to have different degrees. Therefore, we would be able to describe networks where some nodes
can meet/contact a lot of nodes, e.g. because the are more mobile or because they visit more
crowded areas, whereas others meet only a few nodes.

To incorporate such contact graphs in our analysis, we use the Configuration Model [95,102],
which creates random graphs that can have any generic degree distribution, and, thus, it can
capture the degree characteristics of real-world scenarios and networks (Fig. 2.8(b)).

Definition 5 (Configuration Model). Given a network size N and a degree distribution pd (or a
degree sequence di, i = 1, ..., N), the Configuration Model draws random instances among all the
graphs G, with N vertices, for which the degree distribution is pd. Connections between nodes

8The degree of a node/vertex is the number of edges connected to it, or, in the context of MSNs, the number
of other nodes it ever meets.
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Figure 2.9: Delivery Delay of (a) epidemic and (b) spray and wait routing in different scenarios of Heterogeneous
Poisson Contact Networks with (ps = 0.2). Simulation results are averaged over 100 network instances.

are made randomly, and the probability of having a link between two nodes i and j is proportional
only to the degrees of i and j.

The main strengths of the Configuration Model are that: (i) It can describe networks in
which the degrees of the vertices can follow any arbitrary distribution. The degree distribution
of the vertices9 is an important characteristic of contact networks and it can determine the
evolution of processes on the network (e.g. whether information, a virus, or a disease manages
to spread.) [102]; (ii) It is based on random graphs and thus the network can be studied using
analytic methods, which is the goal of our work.

Summarizing, in this section we consider the following class of Contact Networks

Definition 6 (Heterogeneous Configuration Model Contact Network).
− Given a degree distribution pd, with mean value µd and variance σ2

d (and CVd =
σd

µd
), a contact

graph G is generated by the Configuration Model.
− Each pair of nodes i and j, connected with an edge, contact each other with rate λ (equal for
all contacting pairs), according to a contact process as defined in Def. 3.

With the above contact class, we are able to capture more complex characteristics, with
respect to contact graph structure, than the classes of Def. 3 and 4. However, assuming both
heterogeneous node degrees (i.e. configuration model) and heterogeneous contact rates (different
λij for each pair {i, j}) would make the problem of investigating the effects on the communication
performance analytically intractable. To this end, in our analysis, we assume homogeneous con-
tact rates λ (for nodes that do contact each other), which allows us to derive useful, closed form
results, and then we test this approximation with simulations on networks with heterogeneous
rates λij as well (Section 2.3.2.2).

9We will use the terms vertex and node interchangeably.
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Figure 2.10: Epidemic spreading over a Heterogeneous Configuration Model Contact Network with N nodes. The
transition rate from state k to state k + 1 is λ(k).

2.3.2.1 Analysis

We consider now, similarly to Section 2.2.2, an epidemic spreading of message over a contact
network N consisting of N total nodes, and we are interested to compute the expected message
delivery delay of different dissemination schemes. As before, we define the spreading process to
be at state k, k = 1, ..., N −1 when k nodes have the message (as shown in Fig. 2.10), we denote
the set of the “infected” nodes as C(k), and we refer to the transition from state k to state k+1
as step k.

Due to the memoryless property of the Poisson contact events, the duration of step k only
depends on the sum of contact rates between nodes with the message (∈ C(k)) and nodes that
have not received it yet (/∈ C(k)). In Fig. 2.10, the sum of these rates is denoted as λ(k). In a
Heterogeneous Configuration Model Contact Network (Def. 6), the contact rates have the same
value λ for all node pairs. Hence, λ(k) is given by

λ(k) = λ ·Dout(k) = λ ·∑i∈C(k)

∑

j /∈C(k) Iij (2.23)

where Iij = 1 iff there exists an edge between nodes i − j (i.e. i and j contact each other).
Dout(k) =

∑

i∈C(k)

∑

j /∈C(k) Iij is defined as the out degree of step k. In other words, the out
degree is the number of all the possible ways that the message can infect one additional node,
when at state k.

Knowing Dout(k) (i.e. the number of i− j node pairs that could further spread the message
at step k) is enough to derive the total delay of each step. However, in a Heterogeneous Config-
uration Model Contact Network, Dout(k) is a random variable which depends on the degrees of
the k nodes that happen to get infected first, as shown in Fig. 2.11. What is more, unlike uniform
degree models, not all nodes here have the same probability of being infected first: nodes with
higher degrees clearly have a bigger chance than nodes with low degrees. These observations
complicate the derivation of step-wise delay considerably.

Consequently, in order to be able to derive the rate λ(k) and the mean delay of step k
(Tk,k+1), we need to keep track of the (expected) degrees that the infected nodes have at state k.
Specifically, we need to derive the following quantities related to spreading over a configuration
contact graph: (i) the expected degree of the next node to receive the message at state k,
µnew
d (k); and (ii) the out degree at step k, Dout(k).

2.3.2.1.1 Mean Degree Assume we are at state k. Let us denote as pd(k) the degree
distribution of the N − k nodes that do not have the packet at state k and µd(k) and CVd(k)
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Figure 2.11: Sets of nodes with (left) and without (right) the message at state k. Nodes are represented by circles
and edges by the straight lines.

its expectation and coefficient of variation respectively10. As we mentioned, not all (uninfected)
nodes are equally likely to be the next one infected. As a result, the expected degree of the next
infected node is neither equal to µd (the original mean degree) nor µd(k).

Result 2. The expected degree of the next node that will receive the message at step k, is
approximately given by

µnew
d (k) = µd ·

(

N − k − 1

N − 1

)CV 2
d

· (1 + CV 2
d ) (2.24)

Proof. To derive the above result, we need to define and solve an appropriate recursion. Observe
that there are Dout(k) links across which the infection may proceed from state k to k + 1 (see
Fig. 2.11) and each of these occurs with equal probability (due to equal rates λ). It is a standard
result in complex network analysis [102] that the degree distribution of the node reached from
that link (i.e. the next node which will receive the message) is11:

pnewd (k) =
d · pd(k)

∑

d d · pd(k)
=

d

µd(k)
· pd(k) (2.25)

Eq. (2.25) implies that the higher degree d a node has, the more probable is that this node
will be the next node to receive the message: the probability the new node to have degree d is
proportional to d · pd(k). Now, we can easily derive µnew

d (k):

µnew
d (k) =

∑

d d · pnewd (k) = µd(k) ·
[

1 + CV 2
d (k)

]

(2.26)

We can see that the expected degree of the next node infected is higher than the mean degree
of all the uninfected nodes: µnew

d (k) ≥ µd(k).
To proceed further, we need to know µd(k) and CV 2

d (k) first. To this end, we can set up
a recursion for the degree distribution pd(k) of the nodes that do not have the message in the

10The values of these quantities before the beginning of the spreading, are equal to the values of the initial
distribution, i.e. pd(0) = pd, µd(0) = µd and CVd(0) = CVd.

11In the remainder we denote as pd(k) the probability the degree of a node to be equal to d. Note the difference
with the (whole) degree distribution, which is denoted (with a bold symbol) as p

d
(k). I.e., p

d
(k) is a vector :

p
d
(k) = {p1(k), p2(k), · · · , pdmax(k)}
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next state. Notice that the set of the nodes without the message in state k + 1 is the same set
as in the previous state k, except for the node that just received the message. Hence, we can
write for the number of nodes with degree d in states k and k + 1:

[N − (k + 1)] · pd(k + 1) = (N − k) · pd(k)− pnewd (k) (2.27)

Substituting in Eq. (2.27) the value of pnewd (k) from Eq. (2.25), we find:

pd(k + 1) =
N − k

N − (k + 1)
· pd(k)−

1

N − (k + 1)
· d

µd(k)
· pd(k) (2.28)

In Eq. (2.28), we have expressed pd(k + 1) as a function of pd(k). Now, it is straightforward to
do the same for the expected value, µd(k + 1) =

∑

d d · pd(k + 1), and the recursive relation for
it, is:

µd(k + 1) = µd(k) ·
(

1− CV 2
d (k)

N − (k + 1)

)

(2.29)

where CV 2
d (k) =

σ2
d
(k)

µ2
d
(k)

=
∑

d d2·pd(k)−µ2
d
(k)

µ2
d
(k)

.

To calculate µd(k + 1), the value of CV 2
d (k) is also needed. While we could also set up

a recursion to derive the latter, it is proved in Appendix 2.6.5 that it requires knowledge of
all higher moments of the degree distribution. To keep things simple and avoid requiring such
knowledge (beyond the second moment), we will assume that CVd(k) = CVd ∀k. The conditions
for this assumption and its accuracy are discussed in Appendix 2.6.5 and, here, we will only
mention the main points which are: (i) the approximation can be accurate for steps k for which
it holds N − k ≫ CVd, and (ii) it becomes more accurate as the CVd decreases.

Thus, using CVd(k) = CVd, and µd(0) = µd, Eq. (2.29) gives

µd(k) = µd ·
k−1
∏

m=0

(

1− CV 2
d

N −m− 1

)

(2.30)

To find an equivalent closed-form expression for Eq. (2.30), we can use the Taylor series approx-
imation for the function f(x) = e−x, about x = 0, which is T (e−x) ≈ 1−x and is quite accurate

for values 0 < x < 0.5 (with increasing accuracy as x decreases). Then, setting x =
CV 2

d

N−m−1

(the accuracy condition is satisfied for the states k for which N − k > 2 · CV 2
d and thus more

accuracy can be achieved for lower values of CVd), we can write for Eq. (2.30)

µd(k) ≈ µd ·
k−1
∏

m=0

e−
CV 2

d
N−m−1 = µd · exp

{

−CV 2
d ·

k−1
∑

m=0

1

N −m− 1

}

= µd · exp
{

−CV 2
d ·

N−1
∑

ℓ=N−k

1

ℓ

}

≈ µd · exp
{

−CV 2
d · [ln(N − 1)− ln(N − k − 1)]

}

= µd · exp
{

ln

[

(

N − k − 1

N − 1

)CV 2
d

]}

= µd ·
(

N − k − 1

N − 1

)CV 2
d

(2.31)

where we have used the harmonic series approximation12, which holds for N−k ≫ 1 and whose
accuracy increases for larger values of N − k.

Substituting Eq. (2.31) in Eq. (2.26) gives us Result 2.

12
∑k

n=1
1
n
≈ ln(k) + γ, where γ is the Euler-Mascheroni constant.
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2.3.2.1.2 Out Degree

Result 3. The mean value of the out degree at step k, Dout(k), is approximately given by

D
out

(k) = (N − k)µd

[

(

N − k

N − 1

)CV 2
d

−
(

N − 2

N − 1

)(

N − k

N − 1

)2CV 2
d +1

]

(2.32)

To derive Result 3 we have followed a similar method as before to form a recursion:

D
out

(k + 1) = D
out

(k) + [µnew
d (k)− 2]− 2

[

D
out

(k)− 1
] µnew

d (k)− 1

(N − k) · µd(k)− 1
(2.33)

The details about the setup and solution of Eq. (2.33) can be found in Appendix 2.6.6. We
will only provide here an intuitive sketch of proof based on a simple example.

In Fig. 2.11, the set of nodes with the message is C(k) = {x1, ..., xk} and the out degree of
step k is given by the number of edges that connect the nodes ∈ C(k) with the nodes /∈ C(k)
(blue+green edges). If we denote as xk+1 the next node to receive the message and assume that
the node x2 disseminates the message to xk+1, the out degree of the next step, Dout(k + 1), is
calculated as following:

From the value of Dout(k) we have to subtract the number of edges that connect the nodes ∈
C(k) with the node xk+1 (green edges). Let us denote this number as N1. Then we have to
add the number of the edges of the new node xk+1 that connect it with the nodes /∈ C(k) (red
edges) and we denote this number as N2. It is evident that N2 = dnew −N1, where dnew is the
degree of the node xk+1. So we can write:

Dout(k + 1) = Dout(k)−N1 +N2 = Dout(k) + dnew − 2 ·N1 (2.34)

To estimate the number of the edges that connect the nodes ∈ C(k) with the node xk+1

(green edges), i.e. N1, we should consider that each of the edges of Dout(k), except for the one

that connected to xk+1, is connected with another edge of xk+1 with probability dnew(k)−1
(N−k)·µd(k)−1 ,

where dnew(k) − 1 is the number of the unoccupied edges of xk+1 and (N − k) · µd(k) − 1 is
the total number of edges of the nodes /∈ C(k). We do not take into account the probability of
double edges or self-loops, because this probability for large networks is almost zero [102]. So
the expectation of N1 will be

E[N1] = 1 + (Dout(k)− 1) · dnew(k) − 1

(N − k) · µd(k)− 1
(2.35)

Now, from equations Eq. (2.34) and Eq. (2.35), we can prove Eq. (2.33)13. Furthermore, using
Eq. (2.26) (with CVd(k) ≈ CVd) and assuming that the minimum degree, dmin, of the network
is much larger than 1, which also implies that µnew

d (k),Dout(k) ≥ dmin ≫ 1, we can write for
Eq. (2.33):

D
out

(k + 1) = D
out

(k) ·
[

1− 2
1 + CV 2

d

N − k

]

+ (1 + CV 2
d ) · µd(k) (2.36)

13Note the difference in notation between Dout(k) and its mean value D
out

(k).
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The solution of Eq. (2.36), for D
out

(1) = µd, is the Result 3.
Piecewise Formula: The above result provides us with a closed form expression for the

mean value of the out degree Dout(k), at step k, which allows us to calculate the necessary
transition rates λ(k) in Eq.(2.23). However, it is based on Eq. (2.31) that was derived using
some assumptions (N − k ≫ 1 and CVd(k) = CVd), under which we tend to underestimate
µd(k). Specifically, for some distributions pd, Eq. (2.31) might produce, in the last steps of the
recursion, unacceptably small values for µd(k). We can easily correct this by explicitly forcing
µd(k) ≥ dmin (which always holds). Then, it can be proved (Appendix 2.6.7) that a better
approximation for Dout(k) is given by the following piecewise result:

Result 4. The mean value of the out degree is calculated by Result 3 for k ≤ kstop, and by

D
out

(k) = (N − k)2 ·
[

Dstop − dmin · (N − kstop)

(N − kstop)2
+

dmin

N − k

]

(2.37)

for k > kstop, where kstop =

[

1−
(

dmin

µd

) 1

CV 2
d

]

·(N−1), and Dstop is computed by setting k = kstop

in the expression of Result 3.

2.3.2.1.3 Spreading Delay To conclude our derivation, let us look back at our initial
equation for the rates of Fig.2.10, λ(k) = λ · Dout(k). Note that we have derived thus far the
expected value for Dout(k). Yet, Dout(k) is a random variable depending on C(k), the actual set
of the k nodes that have the message at state k. Given C(k), the delay of step k, Tk,k+1, is an
exponential random variable with rate λ(k) = λ ·Dout(k). Thus,

E [Tk,k+1|C(k)] = 1
λ·Dout(k) , (2.38)

and using the properties of conditional expectation, we get the expected delay of step k:

E [Tk,k+1] =
∑

C(k)

1

λ ·Dout(k)
· P{C(k)} = 1

λ
· E
[

1

Dout(k)

]

(2.39)

We cannot, in general, replace E
[

1
Dout(k)

]

above, which is hard to calculate, with 1

D
out

(k)
,

which follows directly from Eq.(2.32) and (2.37). In fact, Jensen’s inequality suggests that
1

D
out

(k)
≤ E

[

1
Dout(k)

]

.

To proceed with our approximation, we resort to the Delta method [103] for approximating
the expectation of functions of random variables. Here, the random variable is X = Dout(k) and
we need to compute (Eq. (2.39)) the expectation of the function f(X) = 1

X . We can approximate

f(X) with a Taylor series expansion about the mean value E[X] = D
out

(k). Finally, by keeping
only the first few terms of this series and taking their expectation, we can more easily express
E[Tk,k+1] as a function of moments of Dout(k). Specifically, considering the first two terms of
the expansion, we get

E [Tk,k+1] =
1

λ
· E
[

1

Dout(k)

]

≈ 1

λ ·Dout
(k)

(2.40)

Now, in Eq. (2.40), we can calculate the expected step delay by substituting the value of Result 3
or Result 4.
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The accuracy of the Delta method and the above approximation is higher, if the mass of
the random variable X = Dout(k) is concentrated around its mean D

out
(k) [103]. It is known

that, in a configuration model network, the network structural properties and the properties of
processes on the network becoming concentrated more and more narrowly around their mean
value [102], as the network size increases. Therefore, the larger the network size N , the higher
the accuracy of the approximation. Furthermore, if increased accuracy is desired, more terms
in the Taylor series above could be used (by deriving a few higher moments of Dout(k)).

2.3.2.2 Model Validation

In order to validate our model, we compare the theoretical results we derived, against a sample
of simulations for both synthetic and real-world networks.
Synthetic Simulations: At first, we created various synthetic scenarios conforming to our
model (Def. 6). For each scenario, the procedure we follow, is:

1. We choose an initial degree distribution pd.

2. With the configuration model we create 50 different networks (contact graphs) and for each
pair of nodes in a network we create a sequence of contact events with inter-contact times
drawn from an exponential distribution with rate λ = 1.

3. For each network, we generate 1000 messages at random times and at random source nodes
and start the spreading.

4. We calculate the average values, over all networks and spreading processes of the specific
scenario, of the out degree, D

out
(k), and step delay, E[Tk,k+1], of each step.

To choose realistic parameters for the degree distributions in our scenarios, we analysed
contact graphs of real-world mobile social networks14 and found that the degrees follow either a
uniform or right-skewed distribution with CVd in the range [0.6, 0.85] (details for the scenarios
are given in Table 2.4).

Table 2.4: Parameters of the contact graphs of four real-world scenarios.

TRACE network size N µd CVd

Sigcomm 2009 76 25.5 0.6

SocioPatterns 111 7.6 0.85

Cabspotting 536 120 0.74

Infocom 2006 98 32 0.61

In Fig. 2.12 we present the out degree for each step in two scenarios with 1000 nodes. We
compare the simulation values with the theoretical (Results 3 and 4). We can see that the
achieved accuracy is significant. As expected, in the scenario with higher CVd the accuracy is

14The traces are available at:
1) Sigcomm 2009 : http://crawdad.cs.dartmouth.edu/thlab/sigcomm2009
2) SocioPatterns: http://www.sociopatterns.org/
3) Cabspotting : http://crawdad.cs.dartmouth.edu/epfl/mobility
4) Infocom 2006 : http://crawdad.cs.dartmouth.edu/cambridge/haggle
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lower, especially for the last steps, because the approximations we did in the derivation of the
theoretical results are less accurate as the CVd increases. Also, in Fig. 2.12(a) there was not
need to use the piecewise formula (Result 4) and in the second case, Fig. 2.12(b), it should be
used only for the last 25% of the steps. The corresponding values for Dout(k) that a fully-meshed
network model would predict are very far from the simulated values (e.g. for the 500th step it
gives a value 15 times larger). We therefore also compare our results to a baseline model: a
regular graph with the same number of edges as our network, but where every node has the
same degree. Fig. 2.12 confirms that our model performs significantly better.

In Table 2.5 we present the average relative errors for Dout(k), defined as

E

[ |Dout(k)sim −Dout(k)th|
Dout(k)sim

]

for four networks (of which the two correspond to the results presented in Fig. 2.12) of 1000
nodes and similar µd values. We show the average relative error for the first 250, 500 and 750
steps and the total (over all steps). The more steps we consider, the higher the error is. This
comes of the fact that our theoretical results are less accurate for the last steps of the spreading.
It can be seen that for networks with lower CVd the error is lower. For example, for CVd = 0.31,
the error is insignificant, even for the last steps. For the extreme case of CVd = 1.29 15 the error
is not negligible. However, our prediction is still acceptable, if we consider the heterogeneity
this scenario has.

Table 2.5: Relative step error of Dout(k) on different network scenarios.

250 steps 500 steps 750 steps over all steps

CVd = 0.31 1% 2% 2% 2%

CVd = 0.65 1% 1% 2% 6%

CVd = 0.92 4% 4% 11% 15%

CVd = 1.29 14% 18% 27% 29%

Fig. 2.13 shows the aggregate step delay (i.e. the time the message needs to be spread in k
nodes) for two synthetic scenarios: (a) network with with 100 nodes, µd = 23 and CVd = 0.71;
and (b) network with 500 nodes, µd = 30 and CVd = 1.16 16. Similarly to the results for Dout(k),
it can be seen also here that the theoretical aggregate step delay is close to the simulated value
for almost every step.

Synthetic Simulations - Heterogeneous Rates: Further, we investigate the performance
of our model in networks with heterogeneous contact rates (different λij for each pair). We
create synthetic scenarios and run simulations as before. The only difference is the generation of
the contact events, where, now, the inter-contact times are exponentially distributed but with
a different rate for each pair. We chose λij to follow a log-normal distribution with µλ = 1 and
σ2
λ = 3.

15We characterise it as an extreme case, as the min and max degrees in this network are 22 and 968, respectively,
in order to have a CVd value as high as possible.

16It is the higher variance we could achieve among all the scenarios of 100 and 500 nodes, respectively. The
degree distribution was highly skewed and the maximum degree in the network was almost equal to the network
size, dmax = 100 and dmax = 500 for the two cases.
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Figure 2.12: Dout(k) of each step in two scenarios with 1000 nodes.
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Figure 2.13: Aggregate step delay. Synthetic simulations in scenarios with: (a) 100 nodes, µd = 23 and CVd = 0.71;
and (b) network with 500 nodes, µd = 30 and CVd = 1.16.
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Figure 2.14: Aggregate step delay. Synthetic simulations in scenarios with heterogeneous contact rates: (a) 100
nodes, µd = 23 and CVd = 0.71; and (b) network with 500 nodes, µd = 30 and CVd = 1.16.

The results for the aggregate step delay are presented in Fig. 2.14. The scenarios presented are
the corresponding to the homogeneous-rates scenarios of Fiq. 2.13. As can be seen in Fig. 2.14,
simulation and theoretical results diverge more for the heterogeneous contact rate scenario.

This divergence is more clearly seen in Fig. 2.15, which shows the relative error of the average

aggregate step delay over all the steps, i.e. E
[

|Dsim−Dth|
Dsim

]

where D denotes the aggregate step

delay. We present six scenarios of different network sizes. For each scenario we chose a bounded
pareto degree distribution with minimum value dmin = 0.1·N (N is the network size), dmax = N
and shape factor the one that resulted in the higher CVd. These represent the worst case
parameters (among the ones we observed in real traces) that most hurt the accuracy of our
model. Nevertheless, in the homogeneous scenarios, the error is very low (below 10% for almost
all the networks) and, in the heterogeneous scenarios, it is always higher, but decreases for larger
network sizes. For a network with 300 nodes, it becomes approximately 20%, which is rather
satisfying, given the high variability in both the degrees and rates in this scenarios.

Real-world Networks: After evaluating the accuracy of our model in a range of different
(regarding the network size, degree distribution, contact rates) synthetic scenarios, we present
here the results of simulations on real-world traces. It is of interest to see to what extent our
model can capture the quantities of interest in a real-world scenario, where the assumptions do
not hold exactly, as we have noted community structure (i.e. the clustering coefficient [102] is
27− 50% more than in the corresponding configuration model network), heterogeneous contact
rates and non-Poisson contact events (e.g. less contacts during night hours).

Fig. 2.16 shows the results of 1000 simulation runs on the mobility trace from the 4 days
iMotes experiment during Infocom 2006 [125], which contains traces of Bluetooth sightings of
78 mobile and 20 static nodes. In Fig. 2.16(a) it can be seen that the theoretically predicted out
degree only differ slightly, except for some last steps, from the simulation’s average. Thus we
can infer, that despite the community structure of this network, our model can still capture the
way the spreading proceeds among nodes with different degree. Fig. 2.16(b) shows the aggregate
step delay. We can see that the accuracy is good for more than half of the steps. However, in
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Figure 2.15: Relative errors of the delay averaged over all the steps in scenarios with Homogeneous and Hetero-
geneous contact rates for 6 different network sizes.

the following steps our theoretical results are far from the observed delay. An explanation for
this, is the correlation between the contact events of different pairs which affects the spreading
process (e.g. in conference events there are much more contact events than during night hours).

We have observed similar good accuracy for the first 70-75% steps and divergence subse-
quently, in other traces as well. In Fig. 2.17 we present the results of 1000 simulation runs
on the mobility trace Cabspotting [118], which contains GPS coordinates from 536 taxi cabs
collected over 30 days in San Francisco.

2.4 Related Work

Models for epidemic spreading of diseases [102] and/or computer malware [140], were early
derived, based on the well known SIR model, and studied widely. In DTNs, efforts to analyze
the performance of epidemic routing and other protocols also abound. Stochastic analyses, like
the one in [43], define a Markov chain as in Fig. 2.1, in order to give closed form results for
epidemic and 2-hop routing. Fluid models [49, 72, 143], take an approach similar to the SIR
model in biology, and define the number of messages in the network as a continuous function (of
time). Then, ordinary differential equations (ODEs) are used to derive expressions for the total
delay, delivery probability etc. While these models provide closed form results and thus can
be used in tuning protocol parameters (e.g. gossiping probability [143], number of copies [129],
TTL [89], they all assume a homogeneous network with a common meeting rate for every pair
of nodes.

Recent studies on real network traces [25, 36, 56] suggest that the homogeneity assumption
is not true. To overcome this limitation, a number of works introduced heterogeneity in contact
network models, by allowing different meeting rates for each node pair [36,60,76,113,132]. Yet,
most of these works use the heterogeneous model to design new, better protocols (e.g. multi-
cast [36] or unicast [60]) that take heterogeneity into account, but do not analyze performance.
One exception is [76], but only for the cases of direct transmission and 2-hop routing. To our
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Figure 2.16: Simulations on Infocom 2006 trace: 96 nodes, µd = 33, CVd = 0.6
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Figure 2.17: Simulations on Cabspotting trace: 536 nodes, µd = 120, CVd = 0.74
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best knowledge, the work closer to this paper is that of [113], where a very generic contact graph
is considered. However, due to the large generality of the contact model, only upper bounds for
the delay can be provided.

In our work, while we allow arbitrary link rates between nodes, similarly to [36,76,113], we
restrict the underlying contact graph model, in order to derive closed-form analytical expressions.
We validated our results with synthetic simulations for the targeted contact classes, as previous
work did [43,129,143], but also demonstrate their applicability in real networks.

As a final note, numerous studies exist in the field of Complex Networks (including theoretical
biology, epidemiology, etc.) on epidemic processes over various complex network models (e.g. [7,
71, 96, 100, 101, 140]). However, the majority of these works focus on deriving thresholds above
which the epidemic will spread and their results usually consider infinite time. Additionally, it
is not always feasible to apply them in real scenarios for predicting the spreading delay, as they
require, e.g., the complete knowledge of the underlying contact graph [140] or the exact degree
distribution [96,100,101], information that is usually very difficult, if not impossible, to estimate
in real-time MSNs. On the contrary, our results include only average statistics of the network,
e.g. moments of the contact rates distribution (µλ, CVλ) or the degree distribution (µd, CVd),
which are easier to calculate, estimate or infer.

2.5 Conclusions

In this chapter, we have considered a generic class of heterogeneous contact models, and have
derived both asymptotic results and simple closed form approximations for epidemic spreading.
We also extended our analysis for networks with sparse graphs and graphs with arbitrary degree
distributions, where neighbors contact randomly. From the validation of the model against
synthetic simulations and real traces we can conclude that: (a) simple delay expressions that
can be used for performance prediction and protocol optimization (and require only partial
knowledge of the network characteristics), exist not only for the homogeneous contact case;
(b) performance predictions that are accurate qualitatively, and (somewhat more surprisingly)
sometimes quantitatively also, can be made even for a number of real scenarios, despite the
highly more complex structure of the latter.

A further utility of the Heterogeneous Contact Network model is that it makes possible
to take into account additional properties, related to (the heterogeneous) social characteristics
of users in MSNs. To this direction, in the following chapter, based on this model and the
theoretical results we derived, we investigate the effects of another social dimension of MSNs,
namely the users’ social cooperation or social selfishness.

2.6 Appendix: Supplementary Theoretical Results and Proofs

2.6.1 Proof of Lemma 1

Proof. The sum of the contact rates between infected nodes (i ∈ Cm
k ) and susceptible nodes

(j /∈ Cm
k ) at step k, is related to the respective sum of the previous step as following

Sm
k = Sm

k−1 −
∑

i∈Cm
k−1,j=nk

λij +
∑

i/∈Cm
k ,j=nk

λij (2.41)
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where:
(i) We denote as nk the kth infected node (i.e. the node infected at the transition between

step k − 1 and step k).
(ii)

∑

i∈Cm
k−1,j=nk

λij is the sum of the contact rates between the infected nodes at step k−1

and node nk. These rates are included in the sum Sm
k−1, but are not included to the sum Sm

k

(since at step k they belong to the set of contact rates between infected nodes), and, hence, we
subtract them in Eq. (2.41).

(iii)
∑

i/∈Cm
k ,j=nk

λij is the sum of the contact rates between node nk and the susceptible
nodes at step k. These rates are included in the sum Sm

k , but are not included to the sum Sm
k−1

(since at step k − 1 they belong to the set of contact rates between susceptible nodes), and,
hence, we add them in Eq. (2.41).

Now, we first split the sum
∑

i∈Cm
k−1,j=nk

λij in two terms

∑

i∈Cm
k−1,j=nk

λij = λnext
k−1 +

∑

i∈Cm
k−1,j=nk,λij 6=λnext

k−1

λij = λnext
k−1 + Snext

k−1 (2.42)

where we denoted as λnext
k−1 the meeting rate between the next node to get the message (i.e. nk)

and the node who infected him, and

Snext
k−1 =

∑

i∈Cm
k−1,j=nk,λij 6=λnext

k−1

λij (comprising k − 2 terms) (2.43)

We further denote

Sk
next =

∑

i/∈Cm
k ,j=nk

λij (comprising N − k terms) (2.44)

Using Eq. (2.42), Eq. (2.43) and Eq. (2.44), we can write Eq. (2.41) as

Sm
k = Sm

k−1 − λnext
k−1 − Snext

k−1 + Sk
next (2.45)

Based on the above recursive relation, in the remainder, we calculate the expectation and
variance of Sk. Before proceeding, let us first define the following quantities (for k = 1, · · · , N−1)

µk =
E[Sk]

k(N − k)
(2.46)

σ2
k =

V ar [Sk]

k(N − k)
(2.47)

Expectation

Taking the expectation in Eq. (2.45), gives17

E[Sk] = E[Sk−1]− E[λnext
k−1 ]− E[Snext

k−1 ] + E[Sk
next] (2.48)

Now, we express the terms in the right side of Eq. (2.48), as following:

17In Eq. (2.42)-Eq. (2.45), the quantities λnext
k−1 , S

next
k−1 and Sk

next correspond to the sets Cm
k−1 and Cm

k . We
dropped the superscripts m to avoid notation complexity. In the remainder, the expectations are taken over all
the possible values (for different m) that these quantities can take.
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(i) At first, by the definition of Eq. (2.46), we can write

E[Sk−1] = (k − 1)(N − k + 1) · µk−1 (2.49)

(ii) The probability the node pair {x, y}, x ∈ Cm
k−1, y /∈ Cm

k−1 (among all the node pairs {i, j},
i ∈ Cm

k−1, j /∈ Cm
k−1) to be the pair through which the message is spread at step k − 1 (i.e. y

is the kth node that is infected, and it is infected by node x) is proportional to its contact rate
λxy (because intercontact intervals are exponentially distributed). Hence, we can, equivalently,
write

P{λnext
k−1 = λxy|x ∈ Cm

k−1, y /∈ Cm
k−1} =

λxy
∑

i∈Cm
k−1

∑

j /∈Cm
k−1

λij
=

λxy

Sm
k−1

(2.50)

From Eq. (2.50), it is easy to see that the rate λnext
k−1 will be on average larger than the average

rate between node pair {i, j}, i ∈ Cm
k−1, j /∈ Cm

k−1, i.e.

E[λnext
k−1 ] ≥ µk−1 (2.51)

Combining the previous inequality with the fact that the contact rates take values in the interval
[λmin, λmax], we can write

E[λnext
k−1 ] = µk−1 + ǫnextk−1 (2.52)

where
0 ≤ ǫnextk−1 ≤ λmax − µk−1 ǫnextk−1 = O (λmax) (2.53)

(iii) Since Snext
k−1 is a sum of k−2 independent random variables with mean value µk−1, it follows

that
E[Snext

k−1 ] = (k − 2) · µk−1 (2.54)

Remark: In fact the mean value of the terms in the sum Snext
k−1 is slightly different (smaller) than

µk−1, because the rate λ
next
k−1 is not taken into account. Thus, the exact expression for Eq. (2.54)

is E[Snext
k−1 ] = (k − 2) · µk−1 + ǫ∗k−1. However, it can be shown that

ǫ∗k−1 ≤
(λmax − µk−1) · (k − 1)

(k − 1)(N − k + 1)− 1
⇒ ǫ∗k−1 = O

(

λmax

N − k + 1

)

(2.55)

In Eq. (2.55) it is easy to see that ǫ∗k−1 ≪ (k − 2) · µk−1,∀k (for large N). Therefore, in the
remainder, we ignore it18.
(iv) It holds for each step k that the rates λout

k ∈ {λij : i /∈ Cm
k , j /∈ Cm

k } are independent of the
spreading process. Thus, they are distributed with the initial contact rates distribution fλ(λ),
which means that

E[λout
k ] = E[λ] = µλ (2.56)

V ar
[

λout
k

]

= V ar [λ] = σ2
λ (2.57)

Therefore, from Eq. (2.56) it follows that the expectation of the sum Sk
next, which consists of

N − k contact rates between nodes that are not infected in step k− 1 (i.e. /∈ Cm
k−1), is equal to

E[Sk
next] = (N − k) ·E[λout

k−1] = (N − k) · µλ (2.58)

18Additionally, since in Eq. (2.48) we consider ǫnext
k−1 = O (λmax) (Eq. (2.53)), we can omit ǫ∗k−1, for which it

holds ǫ∗k−1 = O
(

λmax

N−k+1

)

≤ ǫnext
k−1 .
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Substituting in Eq. (2.48) the expressions we derived in (i)-(iv) (Eq. (2.49), Eq. (2.52),
Eq. (2.54) and Eq. (2.58)), we get

E[Sk] = (k − 1)(N − k + 1)µk−1 − (µk−1 + ǫnextk−1 )− (k − 2)µk−1 + (N − k)µλ

= (k − 1)(N − k + 1) · µk−1 − (k − 1) · µk−1 − ǫnextk−1 + (N − k) · µλ

= (k − 1)(N − k) · µk−1 − ǫnextk−1 + (N − k) · µλ

= k(N − k) ·
(

(k − 1) · µk−1 + µλ

k
− ǫnextk−1

k(N − k)

)

(2.59)

or

E[Sk] = k(N − k) ·
(

(k − 1) · µk−1 + µλ

k
− ǫ

′

k

)

(2.60)

where

ǫ
′

k = O

(

λmax

k(N − k)

)

(2.61)

Now, to calculate E[Sk] for every step k, we start from the first step (k = 1), where Sm
1 is a

sum of N − 1 i.i.d. random variables λij with mean value µλ (by the definition of the mobility
class). Therefore,

E[S1] = (N − 1) · µλ (2.62)

For the second step (k = 2), substituting Eq. (2.62) in Eq. (2.60), gives

E[S2] = 2(N − 2) · µλ · (1− ǫ
′

2), ǫ
′

2 = O

(

λmax

N − 1

)

(2.63)

Finally, following the same process recursively, for k = 3, 4, ..., it is easy to show that ∀k it holds

E[Sk] = k(N − k) · µλ · (1− ǫk), ǫk = O

(

λmax

N − 1

)

(2.64)

which proves the first part of Lemma 1.

Variance

Taking the variances in Eq. (2.45), gives [121]19

V ar [Sk] = V ar [Sk−1] + V ar
[

λnext
k−1

]

+ V ar
[

Snext
k−1

]

+ V ar
[

Sk
next

]

− 2 · Cov
[

Sk−1, λ
next
k−1

]

− 2 · Cov
[

Sk−1, S
next
k−1

]

(2.65)

We proceed similarly to the derivation of the expectation, and express the terms in the right
side of Eq. (2.65), as following:
(i) At first, by the definition of Eq. (2.47), we can write

V ar [Sk−1] = (k − 1)(N − k + 1) · σ2
k−1 (2.66)

19The covariances of independent variables are zero, and, thus, we do not include them in Eq. (2.65).
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(ii) Similarly to Eq. (2.54)-Eq. (2.55), it follows that

V ar
[

Snext
k−1

]

= (k − 2) · σ2
k−1 + δ∗k−1 (2.67)

and because δ∗k−1 is small, we ignore it:

V ar
[

Snext
k−1

]

= (k − 2) · σ2
k−1 (2.68)

(iii) Making similar arguments as in Eq. (2.58) and using Eq. (2.57), it follows that

V ar
[

Sk
next

]

= (N − k) · σ2
λ (2.69)

(iv) The covariance of two random variables is given by the expression

Cov [X,Y ] = E[X · Y ]− E[X] ·E[Y ]

Therefore, for the first covariance appearing in the sum of Eq. (2.65) we can write

Cov
[

Sk−1, λ
next
k−1

]

= E[Sk−1 · λnext
k−1 ]− E[Sk−1] · E[λnext

k−1 ] (2.70)

Since Sk−1 is a sum of (k − 1)(N − k + 1) independent random variables, of which one of them
is the contact rate λnext

k−1 , it follows that

E[Sk−1 · λnext
k−1 ] = E[(λnext

k−1 )
2] + [(k − 1)(N − k + 1)− 1] · µk−1 ·E[λnext

k−1 ] (2.71)

Substituting Eq. (2.71) in Eq. (2.70), and using the expression derived in Eq. (2.49), we get

Cov
[

Sk−1, λ
next
k−1

]

=

= E[(λnext
k−1 )

2] + [(k − 1)(N − k + 1)− 1] · µk−1 · E[λnext
k−1 ]− (k − 1)(N − k + 1) · µk−1 ·E[λnext

k−1 ]

= E[(λnext
k−1 )

2]− µk−1 · E[λnext
k−1 ]

=
(

V ar
[

λnext
k−1

]

+ (E[λnext
k−1 ])

2
)

− µk−1 ·E[λnext
k−1 ]

= V ar
[

λnext
k−1

]

+ E[λnext
k−1 ] ·

(

E[λnext
k−1 ]− µk−1

)

(2.72)

Remark: In the previous derivations we used the the expression that relates the second moment
of a random variable with its variance and mean value, i.e.

V ar [X] = E[x2]− (E[x])2 ⇔ E[x2] = V ar [X] + (E[x])2

Substituting in Eq. (2.72) the expression of Eq. (2.52), gives

Cov
[

Sk−1, λ
next
k−1

]

= V ar
[

λnext
k−1

]

+
(

µk−1 + ǫnextk−1

)

· ǫnextk−1 (2.73)

(v) We, similarly, express the second covariance appearing in the sum of Eq. (2.65) as

Cov
[

Sk−1, S
next
k−1

]

= E[Sk−1 · Snext
k−1 ]− E[Sk−1] · E[Snext

k−1 ] (2.74)
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The sum Snext
k−1 consists of k − 2 terms, which are also included in the sum Sk−1. For each term

λ∗ in Snext
k−1 , there are (k − 1)(N − k + 1)− 1 terms in Sk−1 that are independent of λ∗. Hence,

we can, successively, write for Eq. (2.74)

Cov
[

Sk−1, S
next
k−1

]

= (k − 2) ·E[Sk−1 · λ∗]− E[Sk−1] · (k − 2) ·E[λ∗]

= (k − 2)
(

(σ2
k−1 + µ2

k−1) + [(k − 1)(N − k + 1)− 1]µ2
k−1

)

− (k − 1)(N − k + 1)µk−1 · (k − 2) · µk−1

= (k − 2) · σ2
k−1 (2.75)

Substituting in Eq. (2.65) the expressions we derived in (i)-(v) (Eq. (2.66), Eq. (2.68),
Eq. (2.69), Eq. (2.73) and Eq. (2.75)), we get

V ar [Sk] = (k − 1)(N − k + 1) · σ2
k−1 + V ar

[

λnext
k−1

]

+ (k − 2) · σ2
k−1

+ (N − k) · σ2
λ − 2 ·

(

V ar
[

λnext
k−1

]

+
(

µk−1 + ǫnextk−1

)

· ǫnextk−1

)

− 2 · (k − 2) · σ2
k−1

= (k − 1)(N − k + 1) · σ2
k−1 − (k − 2) · σ2

k−1 + (N − k) · σ2
λ

−
(

V ar
[

λnext
k−1

]

+ 2 ·
(

µk−1 + ǫnextk−1

)

· ǫnextk−1

)

= (k − 1)(N − k)σ2
k−1 + (N − k)σ2

λ −
(

V ar
[

λnext
k−1

]

+ 2 ·
(

µk−1 + ǫnextk−1

)

· ǫnextk−1 − σ2
k−1

)

= k(N − k) ·
[

(k − 1) · σ2
k−1 + σ2

λ

k
− V ar

[

λnext
k−1

]

+ 2 ·
(

µk−1 + ǫnextk−1

)

· ǫnextk−1 − σ2
k−1

k(N − k)

]

(2.76)

or

V ar [Sk] = k(N − k) ·
(

(k − 1) · σ2
k−1 + σ2

λ

k
− δ

′

k

)

(2.77)

where

|δ′

k| = O

(

λ2
max

k(N − k)

)

(2.78)

Following a recursive procedure (for k = 1, 2, ...) as previously, it can be shown that ∀k it
holds

V ar [Sk] = k(N − k) · σ2
λ · (1− δk), |δk| = O

(

λ2
max

N − 1

)

(2.79)

which proves the second part of Lemma 1.

2.6.2 Proof of Lemma 2

Proof. Using Lemma 1 we can write for the random variable Xk = Sk

k(N−k) :

E[Xk] =
E[Sk]

k(N − k)
=

k(N − k) · µλ(1− ǫk)

k(N − k)
= µλ · (1− ǫk) (2.80)

and

V ar [Xk] =
V ar [Sk]

(k(N − k))2
=

k(N − k) · σ2
λ · (1− δk)

(k(N − k))2
=

σ2
λ · (1− δk)

k(N − k)
(2.81)
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The variance of Xk, Eq. (2.81), can be written as

V ar [Xk] = E
[

(Xk − E[Xk])
2
]

= E
[

(Xk − µλ · (1− ǫk))
2
]

= E
[

(Xk − µλ)
2
]

− (µλ · ǫk)2

(2.82)

where we used the expression of Eq. (2.80).
Combining Eq. (2.81) and Eq. (2.82), we get

E
[

(Xk − µλ)
2
]

=
σ2
λ · (1− δk)

k(N − k)
+ (µλ · ǫk)2 (2.83)

and taking the limit, for N →∞, in both sides of Eq. (2.83), gives

lim
N→∞

E
[

(Xk − µλ)
2
]

= lim
N→∞

(

σ2
λ · (1− δk)

k(N − k)
+ (µλ · ǫk)2

)

= 0

since ǫk = O
(

λmax

N−1

)

.

Therefore, (by definition [70, Def. 5.3, p. 136]) it follows that

Xk
m.s.−−→ µλ (2.84)

where
m.s.−−→ denotes convergence in mean square.

2.6.3 Delivery Delay of Opportunistic Routing Protocols

2.6.3.1 Epidemic Routing

Substituting the expression for the expected step delay from Result 1 in Eq.(2.22) we get

E[T
(epid)
D ] =

1

N − 1

N−1
∑

k=1

(N − k)E[Tk,k+1] =

∑N−1
k=1 (N − k) · 1

k(N−k)µλ
·
(

1 +
CV 2

λ

[k(N−k)]

)

N − 1

=
1

(N − 1)µλ

N−1
∑

k=1

(

1

kµλ
+

CV 2
λ

k2(N − k)

)

=
1

(N − 1)µλ

[

N−1
∑

k=1

1

k
+ CV 2

λ

N−1
∑

k=1

1

k2(N − k)

]

(2.85)

Using partial fraction decomposition, the sum
∑N−1

k=1
1

k2(N−k)
in Eq.(2.85) becomes

N−1
∑

k=1

1

k2(N − k)
=

1

N2

(

N−1
∑

k=1

1

k
+

N−1
∑

k=1

1

N − k
+N

N−1
∑

k=1

1

k2

)

. (2.86)

We can approximate the harmonic sum
∑N−1

k=1
1
k as [40]

N−1
∑

k=1

1

k
≈ ln(N − 1). (2.87)

and, similarly,
∑N−1

k=1
1
k2

can be approximated as [40]

N−1
∑

k=1

1

k2
≈ 1.65, (2.88)
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Using the approximations of Eq. (2.87) and Eq. (2.88) in Eq.(2.86) we get

N−1
∑

k=1

1

k2(N − k)
=

1.65N + 2 · ln(N − 1)

N2
. (2.89)

Substituting Eq.(2.87) and Eq.(2.89) in Eq.(2.85) and approximating N − 1 ≈ N we get the
expression in Table 2.3.

2.6.3.2 2-hop Routing

Under 2-hop routing, in step k there are k nodes that carry the message (the source and k − 1
relays). As relays can forward the message only to the destination node and the source to
everyone it meets, there are N − 1 possible contact events in which a message exchange can
take place, i.e. (a) N − k − 1 possible meetings between the source and a non-infected node,
other than the destination, and (b) k possible meetings between the infected nodes (including
the source) and the destination. As a result, we can make the following two observations:

1. In contrast to epidemic spreading, where at each step k, the number of possible contact
events is k(N −k), here there are only N−1 possible contact events. Thus in the results we
derived for the expected step delay E[Tk,k+1], we should substitute the expression k(N −k)
with the expression N − 1. For example, Result 1 in the case of 2-hop routing becomes

E[Tk,k+1] ≡ E[T 2hop
step ] ≈ 1

(N − 1)µλ
·
(

1 +
CV 2

λ

N − 1

)

(2.90)

As we can observe in Eq. (2.90), the expected step delay is independent of the step k, i.e.
it is equal for every step k.

2. Due to randomness, the probability that the destination node will be involved in the exact
next contact event with message exchange (conditioning that the message has not been
delivered in any of the first k − 1 steps) is

P{delivery at step k|no delivery before step k} ≡ P{at k|not before}

=
k

(N − k − 1) + k
=

k

N − 1
(2.91)

Then, from Eq. (2.91), it can be shown recursively that

P{delivery at step k} ≡ P{at k} = k

N − 1
·
k−1
∏

m=1

(

1− m

N − 1

)

=
k

(N − 1)k+1
· (N − 1)!

(N − k − 1)!

(2.92)

Now, if we denote as E[T 2hop
D |at k] the expected delivery delay, given that the delivery takes

place at step k, it holds that (using Eq. (2.90))

E[T 2hop
D |at k] =

k
∑

m=1

E[Tk,k+1] = k · E[T 2hop
step ] (2.93)
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Therefore, using the property of conditional expectation, we can calculate the expected delivery
delay for 2-hop routing, as following:

E[T 2hop
D ] =

N−1
∑

k=1

E[T 2hop
D |at k] · P{at k} =

N−1
∑

k=1

k · E[T 2hop
step ] · P{at k}

=

N−1
∑

k=1

k ·E[T 2hop
step ] · k

(N − 1)k+1
· (N − 1)!

(N − k − 1)!

‘ = E[T 2hop
step ] ·

N−1
∑

k=1

k2

(N − 1)k+1
· (N − 1)!

(N − k − 1)!

=
1

(N − 1)µλ
·
(

1 +
CV 2

λ

N − 1

)N−1
∑

k=1

k2

(N − 1)k+1
· (N − 1)!

(N − k − 1)!
(2.94)

where we used the expressions of Eq. (2.93) and Eq. (2.92).

We can further simplify Eq. (2.94) by using the approximation presented in [43]:

E[T 2hop
D ] =

1

(N − 1)µλ
·
(

1 +
CV 2

λ

N − 1

)

·
N−1
∑

k=1

k2

(N − 1)k+1
· (N − 1)!

(N − k − 1)!

=
1

µλ
·
(

1 +
CV 2

λ

N − 1

)

·
N−1
∑

k=1

k2

(N − 1)k+2
· (N − 1)!

(N − k − 1)!
≈ 1

µλ
·
(

1 +
CV 2

λ

N − 1

)

·
[

√

π
2√
N

+O

(

1

N

)

]

(2.95)

2.6.3.3 Spray and Wait Routing

Among all the Spray and Wait (SnW) protocol versions, the one with the highest expected
delivery delay is the source-SnW (i.e. where the source gives to each relay only 1 message

copy) [129], which implies that E[T
(SnW )
D ] ≤ E[T

(source−SnW )
D ]. Its mechanism is similar to

the 2-hop routing; the only difference is that now the number of message copies is limited,
L < (N − 1).

Thus, the analysis follows similar steps. At first, for the expected step delay it holds

E[Tk,k+1] ≈







1
(N−1)·µλ

·
(

1 +
CV 2

λ

N−1

)

, k ≤ L− 1

1
L·µλ
·
(

1 +
CV 2

λ

L

)

, k = L

and for the probability of message delivery at step k, it holds that

P{at k} =
{

k
(N−1)k+1 · (N−1)!

(N−k−1)! , k ≤ L− 1
1

(N−1)L
· (N−1)!
(N−L−1)! , k = L

(2.96)

Then, using the property of conditional expectation, we can calculate the expected delivery
delay for source-SnW routing, as in Section 2.6.3.2.

49



CHAPTER 2. DELAY ANALYSIS OF EPIDEMIC SCHEMES IN SPARSE AND DENSE
HETEROGENEOUS CONTACT NETWORKS

2.6.4 Sketch of Proof of Corollary 1

As previously defined, Cm
k is the set of nodes with the message (the “infected” nodes) at step

k. For each node i ∈ Cm
k , we now define the set DCm

k
(i) as

DCm
k
(i) = {j : j /∈ Cm

k and λij > 0} (2.97)

DCm
k
(i) is the set of the nodes j that have not received yet the message and can contact node

i. In a full-mesh network (Def. 3), the cardinality of the set DCm
k
(i) is ‖DCm

k
(i)‖ = (N − k),

whereas in a sparse network 0 ≤ ‖DCm
k
(i)‖ ≤ N −k. In particular, for the case we consider here

(Poisson graphs), the sizes ‖DCm
k
(i)‖ are (approximately; and exactly in the limit of large N)

binomially distributed20 as

P{‖DCm
k
(i)‖ = d} =

(

N − k

d

)

· (ps)d · (1− ps)
(N−k)−d (2.98)

with

E
[

‖DCm
k
(i)‖

]

= (N − k) · ps (2.99)

V ar
[

‖DCm
k
(i)‖

]

= (N − k) · ps · (1− ps) (2.100)

where the probability space is defined over all possible sets m at step k, and all nodes i.

Now, similarly to Eq. (2.4) and Eq. (2.5), we define

Sm
k(p) =

∑

i∈Cm
k

∑

j∈DCm
k
(i)

λij (2.101)

and the random variable

P{Sk(p) = Sm
k } = P{Cm

k } (2.102)

In a full-mesh network, Sm
k is a sum of k(N − k) terms λij , and the moments of Sk are given

by Lemma 1. In the Poisson graph case we consider here, Sm
k(p) is a sum of

∑

i∈Cm
k
‖DCm

k
(i)‖

terms, where the quantity

Dm
k =

∑

i∈Cm
k

‖DCm
k
(i)‖ (2.103)

is a random variable as well.

Therefore, (i) taking into account that Sm
k(p), as a sum of a random number (Dm

k ) of i.i.d.

random variables (λij)
21, (ii) making similar arguments as in the proof of Lemma 1, and (iii)

neglecting terms O
(

1
N

)

(see e.g. ǫk and δk in Lemma 1), it can be shown that the expectation
and variance of Sk(p)

E[Sk(p)] = E[Dm
k ] · µλ (2.104)

V ar
[

Sk(p)

]

= E[Dm
k ] · σ2

λ + µ2
λ · V ar [Dm

k ] (2.105)

20This is because, by the definition of a Poisson graph, for each node i ∈ Cm
k , there are N − k other nodes

j /∈ Cm
k , each of which is a neighbor of i with probability ps and independently of all other links.

21Expressions for the statistic moments of sums of random number of random variables are given in [121].
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Then, sinceDm
k is a sum of k independent random variables (Eq. (2.103)), whose expectations

and variances are given by Eq. (2.99) and Eq. (2.100), respectively, it follows that [121]

E[Dm
k ] = k · E

[

|DCm
k
(i)‖

]

= k(N − k) · ps (2.106)

V ar [Dm
k ] = k · V ar

[

|DCm
k
(i)‖

]

= k(N − k) · ps · (1− ps) (2.107)

Substituting Eq. (2.106) and Eq. (2.107) in the expressions of Eq. (2.104) and Eq. (2.105), we
get

E[Sk(p)] = k(N − k) · ps · µλ (2.108)

V ar
[

Sk(p)

]

= k(N − k) · ps · σ2
λ + µ2

λ · k(N − k) · ps(1− ps)

= k(N − k) · ps
[

σ2
λ + µ2

λ · (1− ps)
]

(2.109)

Comparing Eq. (2.108) and Eq. (2.109) to the corresponding expressions of Lemma 1, we
can observe the correspondence suggested in Corollary 1.

2.6.5 Assuming a Constant Coefficient of Variation CVd

From Eq. (2.28), we can easily result to the recurrence relation for the second moment of the
degree distribution:

d2(k + 1) =
N − k

N − (k + 1)
d2(k)− 1

N − (k + 1)

d3(k)

µd(k)
(2.110)

where dn(k) is the nth moment of the degree distribution.
As we have computed the expectation and the second moment of the degree distribution in

step k + 1, Eq. (2.29) and Eq. (2.110) respectively, we can find the recurrence relation for the
coefficient of variation, which is:

CV 2
d (k + 1) =

CV 2
d (k) ·

(

1− γd(k)·CVd(k)+2
N−k−1

)

+ 1
(

1− CV 2
d
(k)

N−k−1

)2 − 1 (2.111)

where we denote as γd(k) the skewness of the degree distribution. In Eq. (2.111), if we do not
know the value of γd(k), we cannot solve the recurrence relation for CVd(k) and we cannot
evaluate it. Thus, as we can see, the expression for the value of CV 2

d (k) (which is equivalent to
the second moment E[d2(k)]) includes the value of the third moment of the degree distribution
at state k. So, recursively, it follows that the exact solution of Eq. (2.29) requires the knowledge
of all the higher moments of the degree distribution. However, this requirement both increases
complexity and decreases applicability as it is not always efficient or possible to know or estimate
all the higher moments of the degree distribution. Therefore, in order to find a closed form
solution for µd(k), we assume CVd(k) = CVd ∀k.

This relation hold for the cases where γd(k)·CVd(k)+2
N−k−1 ≪ 1 and

CV 2
d (k)

N−k−1 ≪ 1, where it is easy
to see from Eq. (2.111) that

CV 2
d (k + 1) ≃ CV 2

d (k) (2.112)

Summarizing, it is relatively accurate to assume that the coefficient of variation of the degree
distribution remains the same for each state k, when

N − k ≫ max{1, CV 2
d , γd · CV 2

d } (2.113)
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2.6.6 Proof of Result 3

2.6.6.1 Derivation of the Recurrence Relation of Eq. (2.33)

At first we provide the derivation of the recurrence relation for the mean out degree in each step,
i.e. D

out
(k).

Proof. At step k, the average degree of the nodes that do not have the message is µd(k) and
is given by Eq. (2.31). Thus, it holds that the total number of edges, connected to them, is
(N − k) · µd(k). Let the out degree to be Dout(k) and the degree of the next node to receive the
message to be dnew(k) 22. According to the reasoning of Section 2.3.2.1.2, the out degree of the
next step will be

Dout(k + 1) = Dout(k) + (dnew(k) − 2)− 2 · H (M,m,n) (2.114)

where H (M,m,n) is a random variable drawn from a Hypergeometric distribution 23 with pa-
rameters

M = (N − k) · µd(k)− 1

m = dnew(k)− 1

n = Dout(k)− 1

Taking the expectation of both sides of Eq. (2.114) we get

D
out

(k + 1) = D
out

(k) + (µnew
d (k)− 2)− 2 ·E [H (M,m,n)] (2.115)

The value of µnew
d (k) is given by Result 2. We cannot calculate directly the expectation of the

Hypergeometric distribution, because its arguments are random variables too. Therefore, we
need to compute first the conditional expectation, conditioning on Dout(k) and dnew(k):

E [H (M,m,n)] =
∑

Dout′

∑

dnew′

E [H (M,m,n)|Dout′ , dnew
′

] · P
(

Dout′ , dnew
′
)

=
∑

Dout′

∑

dnew′

n ·m
M
· P
(

Dout′ , dnew
′
)

=
∑

Dout′

∑

dnew′

(dnew
′ − 1) · (Dout′ − 1)

(N − k) · µd(k)− 1
· P
(

Dout′ , dnew
′
)

(2.116)

and as Dout(k) and dnew(k) are independent random variables, then Eq. (2.116) becomes

E [H (M,m,n)] =
(µnew

d (k)− 1) · (Dout(k)− 1)

(N − k) · µd(k) − 1
(2.117)

and Eq. (2.115) turns into Eq. (2.33).

22Note that Dout(k) and dnew(k) are not expectations, but they are random variables.
23The Hypergeometric distribution is a discrete probability distribution that describes the probability of l

successes in n draws from a finite population of size M , containing m successes, without replacement.
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2.6.6.2 Solution of Eq. (2.36)

Having derived the recurrence relation Eq. (2.33), we solve its equivalent expression, which is
given by Eq. (2.36).

Proof. For k = 1, Eq. (2.36) gives:

D
out

(2) = D
out

(1) ·
[

1− 2
1 + CV 2

d

N − 1

]

+ (1 + CV 2
d ) · µd(1),

for k = 2, it gives:

D
out

(3) = D
out

(2) ·
[

1− 2
1 + CV 2

d

N − 2

]

+ (1 + CV 2
d ) · µd(2)

= D
out

(1)·
[

1− 2
1 + CV 2

d

N − 1

]

·
[

1− 2
1 +CV 2

d

N − 2

]

+(1+CV 2
d )·µd(1)·

[

1− 2
1 + CV 2

d

N − 2

]

+(1+CV 2
d )·µd(2)

and recursively, it can be expressed as

D
out

(k) = D
out

(1) ·
k−1
∏

m=1

[

1− 2
1 + CV 2

d

N −m

]

+
k−1
∑

m=1

(1 + CV 2
d ) · µd(k)

k−1
∏

ℓ=m+1

[

1− 2
1 + CV 2

d

N − ℓ

]

(2.118)

To find a closed-form expression for Eq. (2.118) we need first to calculate the sums and products
separately. So, at first:

k−1
∏

m=1

[

1− 2
1 + CV 2

d

N −m

]

≈
k−1
∏

m=1

e−2
1+CV 2

d
N−m

= exp

{

−2
(

1 + CV 2
d

)

·
k−1
∑

m=1

1

N −m

}

= exp

{

−2
(

1 + CV 2
d

)

·
N−1
∑

m=N−k+1

1

m

}

≈ exp
{

−2
(

1 + CV 2
d

)

· [ln(N − 1)− ln(N − k)]
}

= exp

{

−2
(

1 + CV 2
d

)

· ln
(

N − 1

N − k

)}

=

(

N − k

N − 1

)2(1+CV 2
d )

=

(

N − k

N − 1

)

·
(

N − k

N − 1

)1+2CV 2
d

(2.119)

where for the first approximation we used the Taylor series expansion (similarly to the proof of
Result 2), which is accurate for N − k > 4(1+CV 2

d ), and for the second approximation we used
the harmonic series approximation, whose accuracy increases for larger values of N − k.
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Similarly to Eq. (2.119), we can find that

k−1
∏

ℓ=m+1

[

1− 2
1 + CV 2

d

N − ℓ

]

≈
(

N − k

N −m− 1

)2(1+CV 2
d )

(2.120)

and now, using Eq. (2.120), we can write for the summation in Eq. (2.118)

k−1
∑

m=1

(1 + CV 2
d ) · µd(k)

k−1
∏

ℓ=m+1

[

1− 2
1 +CV 2

d

N − ℓ

]

=

k−1
∑

m=1

(1 + CV 2
d ) · µd(k) ·

(

N − k

N −m− 1

)2(1+CV 2
d )

= (1 + CV 2
d )

k−1
∑

m=1

µd

(

N −m− 1

N − k

)CV 2
d

·
(

N − k

N −m− 1

)2(1+CV 2
d )

= (1 + CV 2
d ) · µd ·

(N − k)2(1+CV 2
d )

(N − 1)CV 2
d

·
k−1
∑

m=1

(

1

N −m− 1

)2+CV 2
d

= (1 + CV 2
d ) · µd ·

(N − k)2(1+CV 2
d )

(N − 1)CV 2
d

·
N−2
∑

m=N−k

1

m2+CV 2
d

(2.121)

We approximate the sum that appears in the right side of the last line in Eq. (2.121) with the
integral

N−2
∑

m=N−k

1

m2+CV 2
d

≈
∫ N−1

N−k

1

m2+CV 2
d

dm

=
(N − 1)(1−(2+CV 2

d )) − (N − k)(1−(2+CV 2
d ))

1− (2 +CV 2
d )

=
1

1 + CV 2
d

[

1

(N − k)1+CV 2
d

− 1

(N − 1)1+CV 2
d

]

(2.122)

and finally, combining Eq. (2.121) and Eq. (2.122), we get

k−1
∑

m=1

(1 + CV 2
d ) · µd(k)

k−1
∏

ℓ=m+1

[

1− 2
1 + CV 2

d

N − ℓ

]

= µd ·
(N − k)2(1+CV 2

d )

(N − 1)CV 2
d

·
[

1

(N − k)1+CV 2
d

− 1

(N − 1)1+CV 2
d

]

= µd · (N − k) ·
[

(

N − k

N − 1

)CV 2
d

−
(

N − k

N − 1

)1+2CV 2
d

]

(2.123)

Substituting in Eq.(2.118) the expressions from Eq.(2.119) and Eq.(2.123) and having in
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mind that D
out

(1) = µd, we can write

D
out

(k) = µd ·
(

N − k

N − 1

)

·
(

N − k

N − 1

)1+2CV 2
d

+ µd · (N − k) ·
[

(

N − k

N − 1

)CV 2
d

−
(

N − k

N − 1

)1+2CV 2
d

]

= µd · (N − k)

[

(

N − k

N − 1

)CV 2
d

−
(

1− 1

N − 1

)(

N − k

N − 1

)1+2CV 2
d

]

(2.124)

which gives Result 3.

2.6.7 Proof of Result 4

Applying the condition µd(k) ≥ dmin in Eq. (2.31), we can find that it is satisfied for the steps
k that

k ≤
[

1−
(

dmin

µd

)
1

CV 2
d

]

· (N − 1) = kstop (2.125)

The previous equation means that after the kthstop state 24, Eq. (2.31), gives values µd(k) ≤ dmin.

To overcome this problem, we will use Eq. (2.32) for calculating D
out

(k) for k ≤ kstop till step
kstop and then, as all the remaining nodes must have degree dmin, use the recurrence relation:

D
out

(k + 1) = D
out

(k) + dmin −
2 ·Dout

(k)

N − k
(2.126)

Solving, similarly as in Appendix 2.6.6, the Eq. (2.126), for initial condition D
out

(kstop) = Dstop

where the value of Dstop is taken from Eq. (2.32), we end up to the recurrence relation

D
out

(k) = Dstop ·
k−1
∏

m=kstop

(

1− 2

N −m

)

+ dmin ·
k−1
∑

m=kstop

k−1
∏

ℓ=m+1

(

1− 2

N −m

)

(2.127)

for k > kstop. Using the Taylor series expansion and Harmonic series approximations we can
show that

k−1
∏

m=kstop

(

1− 2

N −m

)

=

(

N − k

N − kstop

)2

(2.128)

k−1
∏

ℓ=m+1

(

1− 2

N −m

)

=

(

N − k

N −m− 1

)2

(2.129)

24In case kstop > N − 1 the following analysis is not needed and we can use the Result 3
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and then, by Eq. (2.129):

k−1
∑

m=kstop

k−1
∏

ℓ=m+1

(

1− 2

N −m

)

=
k−1
∑

m=kstop

(

N − k

N −m− 1

)2

= (N − k)2 ·
N−kstop−1
∑

m=N−k

1

m2

≈ (N − k)2 ·
∫ N−kstop

m=N−k

1

m2
dm

= (N − k)2 ·
[

1

N − k
− 1

N − kstop

]

(2.130)

Now, Result 4 follows easily by substituting the expressions of Eq. (2.128) and Eq. (2.130) in
Eq. (2.127).

Remark: As we saw, in our analysis, we first consider Result 2 and for the last steps we
assume µnew

d (k) = dmin in order to derive Result 4. In addition to the intuitive reasons, which
we described, this assumption can also justified by a similar work. In [7], the authors investigate,
through analysis and simulations, the average degree of the newly infected nodes, µnew

d (k). They

conclude that in early steps µnew
d (k) is given by d2

d
= µd · (1+CV 2

d ), which is in agreement with
our result, and then it gradually decreases and in the last steps it becomes equal to the minimum
degree of the network, dmin.
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Chapter 3

Understanding the Effects of Social
Selfishness

3.1 Introduction

An abundance of routing techniques have been proposed for MSNs, comprising social-oblivious
protocols (e.g. epidemic [137], two-hop [43], spray and wait [129]) where replication is used
as a diversity mechanism to improve performance, and social-aware protocols (see [146] for
a survey) where “good” relays are selected based on social (or other) characteristics. It is
common for these protocols to be extensively evaluated under various mobility environments,
using synthetic simulators, mobility models, or real mobility traces. There exist also a number
of studies comparing the performance tradeoffs (e.g. delivery delay or probability vs. number
of transmissions per message, etc.) of different protocols in different mobility environments.

However, the vast majority of works proposing, modeling, or optimizing protocols for MSNs
assume cooperation of nodes in relaying messages: when the protocol dictates that a relay node
should receive or transmit a message (neither destined to nor originating from it), it does. In
practice, a relay node might: (i) never be willing to carry traffic for 3rd parties, (ii) be willing
to only perform some number of transmissions/receptions for relay traffic, or (iii) be more
willing to receive or transmit traffic from nodes it has some (social) “ties” with. The reasons
for this reluctance range from privacy concerns (e.g. not trusting an exchange with unknown
nodes) to resource consumption (e.g. battery depletion). Such behaviors are natural, and could
significantly degrade the predicted performance of the above protocols.

To this end, some recent works have used both simulations and analysis to study the effect
of having some “selfish” nodes among “altruistic” nodes [61], or the effect of nodes reducing
the transmission probability for all relay traffic (e.g. accepting or forwarding a packet with a
probability p < 1) [88, 106]. Nevertheless, these works assume a mostly uniform behavior of
relays when it comes to treating contacts with different nodes.

Contrary to the above approach, everyday experience suggests that people take into account
the strength of their relation with a peer, when deciding whether to cooperate or not (social
selfishness). As a result, a node A may be more willing to spend some energy (or take the risk)
to forward a message of possible interest to an encountered node B, if A and B have strong ties,
than if B is unknown to A. Furthermore, a long line of research has revealed that: (i) the strength
of the “social” tie between two nodes (where “social” here may also be context-dependent) can
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often be reasonably predicted by the contact rate between them [55, 108], and (ii) the contact
patterns and rates between mobile nodes exhibit significant amounts of heterogeneity [25,36].

This opens up a very large space of possible cooperation policies, whose performance might be
intimately related to the underlying mobility. E.g. a node might choose to forward (or accept)
messages only to (from) nodes that it encounters frequently enough, or attempt to explore
“weak ties” [64]. Alternatively, a node could instead “modulate” the forwarding probability as
a function of the encounter rate with a given node. The following questions are then raised:

Q.1 Can we predict the performance of a routing mechanism, under a given cooperation policy,
if we only know some basic statistics about the underlying heterogeneous mobility process?

Q.2 Can we improve performance by choosing the cooperation policy wisely, subject to a given
constraint (e.g. power consumption rate for relay traffic)?

The former question is relevant, for example, when the policy is given (related to external,
e.g. security factors). One then might like to know what kind of performance he should expect
from the network, so as to choose the right protocol or protocol parameters, without knowing
the global network topology, or to decide whether opportunistic networking is useful in this
context or it is better to simply use the infrastructure. The latter question is relevant when we
can assume that the average node is willing to contribute some fixed amount of resources (e.g.
amount of power spent for relay traffic) towards participating in an opportunistic network, but
we are interested in how to best use these resources to optimize network performance.

Our main contributions in this chapter are

• We propose a generic model for social selfishness (or cooperation) related to mobility, which
can capture a wide range of selfish behaviors and describe cooperation policies proposed in
past literature (Section 3.2).

• Towards answering the first question, we use our model to provide closed-form expressions
for the expected message delivery delay under a large class of mobility scenarios with hetero-
geneous contact rates; these expressions provide insights about the effect of the cooperation
policy used and of the macroscopic mobility properties (mean value and variance of contact
rates) (Section 3.3).

• Towards answering the second question, we examine the achievable performance-power
consumption tradeoff regions under different cooperation policies. Specifically, we show
that (i) when considering an interesting class of Power-vs-Delay tradeoffs, complex “social-
based” policies cannot achieve better performance than the simple uniform policy, while (ii)
when we consider Power-vs-Delivery-Probability tradeoffs, social cooperation policies can
indeed be optimized (Section 3.4).

• Finally, we show that the intuition of our framework can be useful also in some real-world
scenarios with significantly more complexity than the class of heterogeneous mobility models
that we consider for our analysis.
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3.2 Social Selfishness Models

We consider a network N , with N nodes. We assume that nodes contact each other according
to the Heterogeneous Contact Network model of Def. 31. Users exchange messages using the
store-carry-forward paradigm (like the epidemic-based protocols described in Chapter 2), and
communication can be end-to-end (e.g. unicast) or content-centric.

The store-carry-forward mechanism requires from the relay nodes to (i) receive messages,
(ii) store them, (iii) forward the messages they have to other relays and/or the destinations.
As it is evident, this mechanism requires the cooperation of the relay nodes, and may put a
heavy toll on their resources (bandwidth, storage space, battery life, etc.), dependent on the
network traffic and protocol used. Furthermore, exchanging messages with unknown nodes may
raise important security and privacy concerns. These considerations may render wireless nodes
reasonably reluctant to relay traffic.

This unwillingness to cooperate might come in different flavors:
1. A node will not relay any traffic (individual selfishness).
2. A node will choose to relay each packet with some probability p. We will call this uniform
selfishness.
3. A node will relay packets preferentially to other nodes it has a social relationship with (social
selfishness).

The first case is an extreme case that could be handled with incentive or reputation mech-
anisms [22, 74, 94, 127, 145]. Such mechanisms are orthogonal (but possibly complementary) to
our work. The second scenario has already been addressed in the past, with both theory and
simulations, indicating that a low p can significantly hurt performance (e.g. [106]). The third
case is closer, in our opinion, to human behavior. It is reasonable to assume that nodes are more
willing to forward messages to or receive messages from nodes with whom they have a social tie.
A social tie can be considered as a social relation in the real world (e.g. friendship), as a rela-
tion that originates from a routing mechanism (e.g. common interests in social-aware routing,
SANE [92]), as a trust-relation that depends on how many times they have met in the past or
they have collaborated (e.g. message exchanges or participation in a service composition) etc.

An important observation (for opportunistic networking) is that such social ties seem to
be related with the mobility patterns. Studies from sociology [41] and social media [37] have
shown that the stronger the social tie between two people is, the more they tend to meet or
contact each other. Another study of Social Pervasive Networks [108], based on results from
the anthropology field [144], shown that a relation between social ties and contact frequency
(e.g. interaction on the respective social network) is supported in real networks. More recently,
studies have directly suggested that the actual physical contact (related to mobility) can often
serve as a good predictor for the strength of a social tie [54].

Combining the relations, we discussed above, between (i) selfishness and social ties, and (ii)
social ties and mobility patterns, it is reasonable to assume a social selfishness model, where
nodes decide to utilize a given contact opportunity with a probability pij = p(λij), related to
the contact frequency between the two nodes involved {i, j} . Such a model has been taken into
account in a number of studies of routing protocols or message dissemination performance [64,
82, 84]. Some proposed strategies are, for example, to give more emphasis to ”strong ties” or
”weak ties” (i.e. large or small λij): e.g. a node might decide to exchange messages only with

1The analysis and results of this chapter apply to the corresponding sparse network models of Section 2.3
(considering though heterogeneous rates λij) as well.
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the nodes it contacts more frequently, or the probability for message exchange to be linearly
increasing with the contact rate of a pair of nodes, etc.

To be able to capture most of the above selfishness behaviors (and more), in a simple and
generic way, we choose to model this willingness to forward a message (essentially, the existence
of related constraints affecting this willingness), in a probabilistic way.

Specifically, we propose two types of selfishness models, which correspond to typical behaviors
that can appear in a MSN.

Definition 7. [Selfishness: Type I] The probability for a message to be exchanged in a contact
event between two nodes i and j, depends on their meeting rate λij and is described by the
relation:

pij = p(I)(λij), pij ∈ [0, 1] (3.1)

Definition 8. [Selfishness: Type II] A pair of nodes i and j either can exchange messages in
every contact event with probability pij or can never exchange messages with probability 1− pij .
The probability pij depends on the meeting rate between these nodes, i.e. λij , and is described
by the relation:

pij = p(II)(λij), pij ∈ [0, 1] (3.2)

The probabilities for message exchange may depend, as described earlier, on various factors,
e.g. willingness of the nodes, routing protocol mechanism, battery constraints, duration of the
contact. The above two models allows to capture a number of such concerns. Furthermore,
Type II selfishness is useful to capture situations where nodes decide a priori whether they will
interact with a given node or not (e.g. due to security concerns), while Type I selfishness models
situations where the contact probability might be modulated according, for example, to current
battery level, content sensitivity, desire to control relay traffic, etc.

3.3 Message Delivery Delay

Having defined the types of node mobility and the types of node selfishness that we consider,
we can now commence our analysis. Our goal is twofold:

1) To capture the combined effect of all nodes applying a given “selfishness” policy (or coop-
eration policy, to be less negative) on the performance of basic opportunistic routing protocols
(e.g. epidemic routing, spray and wait, etc.).

2) To compare different cooperation behaviors and understand the impact of mobility prop-
erties on absolute and relative performance.

We state upfront that an exact analysis of random opportunistic routing protocols is al-
ready very challenging for Heterogeneous Contact Networks (as explained in Section 2.2), and
it becomes significantly more complex when social-selfishness policies are considered. For this
reason, we try instead to derive useful closed form approximations, that can be directly used for
performance predictions as well as policy optimization.

3.3.1 Effect of Social Selfishness

In Result 1 we shown (using the Delta method [103]) that the expectation of the spreading
delay from state k to state k + 1 for a Heterogeneous Contact Network can be approximated
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with a series expansion as

E[Tk,k+1] =
1

M · µλ
·
(

1 +
CV 2

λ

M
+R

)

=
1

M · µλ
+

CV 2
λ

M2
+R (3.3)

where CVλ = σλ

µλ
, M = k · (N − k) when epidemic routing is considered, and R = O( 1

M2 )
corresponds to the impact of higher order terms.

The quantity M denotes the number of eligible pairs {i, j} of nodes whose contact will take
the process to the next state. In epidemic routing, each pair of nodes {i, j} , where i has the
message and j does not, is an eligible pair. Under other epidemic-based schemes, not all such
pairs are eligible. For instance, it is easy to see that under Spray and Wait routing with k copies,
the number of eligible pairs (in the wait phase) is M = k. Therefore, generalizing Result 12, we
can use Eq. (3.3) as an approximation for the step delay of different epidemic-based protocols
by selecting appropriately the value of M .

When we introduce (social) selfishness, not all contacts resulting from the mobility model
are useful in the spreading process, as was the case above. For instance, a node pair {i, j} that
meets with rate λij, may exchange messages, on average, only half of the times (due to a Type
I policy). Then, the effective (i.e. useful) contact rate will be λ

′

ij = 0.5 · λij.

The following lemmas give the mean value and variance of the effective contact rates in
networks with contact rate probability function fλ (with µλ and σ2

λ) and selfishness of Type I
(Lemma 3) or Type II (Lemma 4).

Lemma 3. The mean value, µ
(I)
λ , and the variance, σ

2(I)
λ , of the effective contact rates in a

network with contact rate probability function fλ (µλ, σ
2
λ) and selfishness of Type I, are given by

µ
(I)
λ = E

[

λ · p(I)(λ)
]

(3.4)

σ
2(I)
λ = E

[

λ2 ·
(

p(I)(λ)
)2
]

−
(

E
[

λ · p(I)(λ)
])2

(3.5)

where the expectations are taken over the p.d.f. fλ.

Proof. As defined in Def. 3, the contact process for a pair {i, j} is a Poisson process with rate
λij . Thus, if, according to Def. 7, in each of the contact events a message can be exchanged with
probability pij (independently of what happened in the previous or following contact events),
then the effective contact events are described by another Poisson process, which results after
thinning the initial contact process. The rate of the new, thinned, Poisson process is then

λ
(I)
ij = λij · pij = λij · p(I)(λij)

Hence, the mean value of the rate of the effective contact events, is given by

µ
(I)
λ = E

[

λ(I)
]

=

∫ ∞

0

E
[

λ(I)|λij = x
]

· fλ(x)dx =

∫ ∞

0

(

x · p(I)(x)
)

· fλ(x)dx = E
[

λ · p(I)(λ)
]

2The same generalization has been used for deriving the results of Section 2.2.5.
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Similarly the second moment, is given by

E

[

(

λ(I)
)2
]

=

∫ ∞

0

E

[

(

λ(I)
)2

|λij = x

]

· fλ(x)dx =

∫ ∞

0

(

x · p(I)(x)
)2

· fλ(x)dx = E
[

λ2 ·
(

p(I)(λ)
)2
]

and, finally, the variance can be computed as:

σ
2(I)
λ = E

[

(

λ(I)
)2
]

−
(

µ
(I)
λ

)2

= E

[

λ2 ·
(

p(I)(λ)
)2
]

−
(

E
[

λ · p(I)(λ)
])2

Lemma 4. The mean value, µ
(II)
λ , and the variance, σ

2(II)
λ , of the effective contact rates in a

network with contact rate probability function fλ (µλ, σ
2
λ) and selfishness of Type II, are given

by

µ
(II)
λ = E[λ · p(II)(λ)] (3.6)

σ
2(II)
λ = E[λ2 · p(II)(λ)]−

(

E[λ · p(II)(λ)]
)2

(3.7)

where the expectations are taken over the p.d.f. fλ.

Proof. According to Def. 8, a pair of nodes {i, j} that contacts with rate λij, either can always
exchange a message during a contact event, with probability pij = p(II)(λij), or never exchanges
messages during its contact events, with probability 1 − pij. The equivalent of this constraint

mechanism, is a network where some pairs of nodes contact with their initial rate, i.e. λ
(II)
ij = λij,

and some never contact, i.e. λ
(II)
ij = 0.

Thus, we can compute the mean value of the effective contact events as following:

µ
(II)
λ =

∫ ∞

0

E
[

λ(II)|λij = x
]

· fλ(x)dx

=

∫ ∞

0

(

x · p(II)(x) + 0 · (1− p(II)(x))
)

· fλ(x)dx =

∫ ∞

0

(

x · p(II)(x)
)

· fλ(x)dx = E[λ · p(II)(x)]

Similarly,

E

[

(

λ(II)
)2
]

=

∫ ∞

0

E

[

(

λ(II)
)2

|λij = x

]

· fλ(x)dx

=

∫ ∞

0

(

x2 · p(II)(x) + 02 · (1 − p(II)(x))
)

· fλ(x)dx =

∫ ∞

0

(

x2 · p(II)(x)
)

· fλ(x)dx = E[λ2 · p(II)(x)]

and finally

σ
2(II)
λ = E

[

(

λ(II)
)2
]

−
(

µ
(II)
λ

)2

= E
[

λ2 · p(II)(λ)
]

−
(

E
[

λ · p(II)(λ)
])2

Thus, when the network is characterised by social selfishness, we can use the above expres-
sions in Eq. (3.3) to calculate the delay E[Tk,k+1].
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As discussed earlier, one can use one, two or more terms of Eq. (3.3) (and the respective

moments, e.g. µ
(I)
λ , σ

2(I)
λ , etc.) to increase accuracy. However, by including many terms,

expressions get complex and it might be difficult to be used for optimization or to provide
insights. Thus, without loss of generality and in order to simplify our discussion, in the remainder
we will use the simplest first order approximation, i.e. E[Tk,k+1] =

1

M ·µ
(I)
λ

for Type I selfishness

(similarly for Type II).
Having computed the delay E[Tk,k+1], we can now use the linearity of expectation rule to

calculate the expected message delivery delay under different random routing protocols.

Result 5. The expected message delivery delay in an Heterogeneous Contact Network can be
approximated by

E[TD] =
c(N,L)

µeff.
λ

, (3.8)

where µeff.
λ is given by Eq. (3.4) or Eq. (3.6) for selfishness of Type I or Type II, respectively,

and c(N,L) is a constant dependent on the size of the network, N , the routing protocol P and
the number of message copies, L. Values of c(N,L) are given in Table 3.1 for three well-known
routing protocols3 .

In other words, as a first order approximation, the message delivery delay under random
routing protocols is inversely proportional to the mean value of the effective contact rates in the
network. Furthermore, the effect of Type I and Type II policies, with the same function p(λ),
turns out to be equal. We will thus not differentiate between the two policies, in the remainder,
and simply refer to the mean effective contact rate as µeff

λ .
Finally, it is interesting to note that the effect of the mobility heterogeneity, in this first

order approximation, when nodes are not selfish, affects performance only through its mean and
not its variance (we have confirmed this to be the case for large N and non-heavy-tailed fλ). In
contrast, as we will show in the following sections, this is not the case when we introduce social
selfishness in the spreading process.

Table 3.1: The values of c(N,L) for three routing protocols.

Epidemic c(N,L) ≈ ln(N)
N

2-hop c(N,L) =
∑N−1

k=1
k2·(N−1)!

(N−1)k+2·(N−k−1)!

SnW c(N,L) ≤∑L−1
k=1

k2·(N−1)!
(N−1)k+2·(N−k−1)!

+
(

L
N−1 + 1

L

)

(N−1)!
(N−1)L·(N−L−1)!

3The expressions in Table 3.1 are derived similarly to the corresponding expressions of Section 2.2.5.
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CHAPTER 3. UNDERSTANDING THE EFFECTS OF SOCIAL SELFISHNESS

3.3.2 Case Studies

With the basic performance result now in hand, we can go ahead and consider specific mobility
processes, fλ, and selfishness policies, p(λ). To this end, we have analysed four policies (Ta-
ble 3.3), which can represent a wide (and diverse) set of common behaviors for social selfishness
and/or have been proposed before [64]. We will describe these policies only as Type I selfishness,
but the analysis holds for the respective Type II policies as well.

Policy A Uniform: Each pair of nodes exchanges messages with probability p0 every time they
contact. The selfishness is not related with the contact rates between nodes.

Policy B Strong / Weak ties: Each pair of nodes exchanges messages with probability p1 if
they contact with rate less than λ0 and with probability p2 otherwise. The values of p1 and
p2 determine the level of selfishness between pairs with strong and weak ties, respectively,
while the value of λ0 corresponds to the percentage of pairs that have strong (or weak) ties.

Policy C Limit - Rates: Each pair of nodes exchanges messages with probability p1 if they
contact with rate lower than λ0, and adjust the message exchange probability if they contact
with higher rate. Hence, for all pairs {i, j} with λij > λ0, it will hold that p(λij) · λij =
p2 · λ0 = const..

Policy D Exponential : Each pair of nodes {i, j} exchanges messages with probability p0 · (1−
e−m·λij ), where λij is their meeting rate and p0 < 1 and m are positive constants. The
message exchange probability is higher for node pairs that meet more frequently.

Table 3.3: Selfishness policies.

Policy A p(λ) = p0

Policy B p(λ) =

{

p1 : λ ≤ λ0

p2 : λ > λ0

F λ(λ0) = p0

Policy C p(λ) =







p1 : λ ≤ λ0

p2 ·
λ0

λ
: λ > λ0

F λ(λ0) = p0

Policy D p(λ) = p0 · (1− e−m·λ)

To find the expected message delivery delay, for a certain network size and a certain routing
protocol, only the computation of the effective contact rates’ mean value (µeff.

λ ) is needed

(Result 5). In Table 3.2, we present the closed form expressions for the µeff.
λ for these selfishness

policies, under different mobility patterns. Specifically, we considered three cases for the contact
rates distribution fλ: (i) Gamma, (ii) Exponential4, and (iii) Pareto distribution. We chose

4The Exponential distribution can be defined also as a Gamma distribution with parameters α = 1 and
β = µ−1

λ . However, for clarity, we present the results separately.
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Figure 3.1: Delivery Delay in networks with N = 100 nodes and varying Mobility characteristics (µλ = 1 and
CVλ ∈ [0, 3]) for three different selfishness policies and under epidemic routing. The theoretical values of Delivery
Delay for two parameters (p0) for each selfishness policy are denoted with dashed lines and the corresponding
simulations’ average delivery delays are denoted with dots.

to analyze these distributions, because they capture a large range of contact variabilities, and
(especially Gamma) were shown to match well the observed contact rates distributions in real
social networks [108].

Similar closed form expressions of µeff.
λ , which depend only on the selfishness policy’s pa-

rameters, p(λ), and the first moments of the contact rates distributions, fλ, can be found as well
for other cases of p(λ) and fλ.

3.3.3 Validation

The results derived so far provide us with closed-form predictions for the performance of various
protocols and selfishness behaviors under a broad class of mobility models. In Section 3.3.3.1, we
first validate their accuracy in (synthetic) scenarios belonging to this mobility class, in order to
isolate the effects of the various analytical approximations we have performed towards obtaining
the expressions for these otherwise very complex problems. Then, in Section 3.3.3.2 we further
consider trace-driven scenarios, where in addition to approximation errors, departures from
many, if not most, of the model assumptions are expected to introduce further inaccuracies.

3.3.3.1 Synthetic Simulations

We developed a simulator that generates synthetic networks with mobility conforming to the
mobility class of Def. 3: In each scenario, we assign to each pair {i, j} a contact rate λij , which
we draw randomly from fλ

5 and create a sequence of contact events (according to a Poisson
process with rate λij). We also assign to {i, j} a probability pij according to the function p(λ).
Then, we simulate a large number of message exchanges, by choosing randomly for each message
the source-destination pair, and calculate the mean simulated delivery delay by averaging the
results.

In Fig. 3.1 we present, for networks with N = 100 nodes, how the mobility heterogeneity
(i.e. CVλ = σλ

µλ
) affects the message delivery delay, under different selfishness policies.

5In the results we present, the contact rates are drawn from a Gamma distribution, fλ ∼ Gamma, with
variable parameters µλ and CVλ (see Fig. 3.1).
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The theoretical results (dashed lines) show (Fig. 3.1(a)) that in the case of uniform selfish-
ness (Policy A), the mobility heterogeneity (i.e. CVλ) level does not affect the message delivery
delay. For the same parameters of p(λ) (i.e. p0), the expected message delivery delay is equal
for different mobility heterogeneity scenarios. However, for the non-uniform selfishness policies
(Policies B and D), where the selfishness depends on the pairs’ contact rates, mobility hetero-
geneity highly affects the message delivery delay (Fig. 3.1(b) and Fig. 3.1(c)). For the same
parameters of p(λ), the expected delivery delay decreases as the mobility heterogeneity level
increases.

In all cases presented in Fig. 3.1, the synthetic simulations results (dots), are very close to
our theoretical predictions, despite the various assumptions and approximations we used in our
theoretical analysis. We have also performed simulations for larger networks (i.e. 300 and 1000
nodes), with similar findings.

3.3.3.2 Real-world Traces

In this section, we conduct simulations on the following sets of real mobility traces6:
Cabspotting [118]: GPS coordinates from 536 taxi cabs collected over 30 days in San Francisco.
Infocom [125]: Bluetooth sightings of 98 mobile and static nodes (iMotes) collected during
Infocom 2006.
Sigcomm [115]: Bluetooth sightings of 76 mobile users of the MobiClique application at Sigcomm
2009.

In Fig. 3.2 we show, for the Cabspotting and the Infocom traces, how the delivery delay of
SnW routing decreases as the cooperation between nodes increases. Specifically, we present the
relative delay decrease7, E[TD]

E[Tmax
D ] , i.e. the ratio of the average delivery delay in each scenario

(E[TD]) over the delay of the scenario with the highest level of selfishness (E[Tmax
D ]).

In Fig. 3.2(a) we simulated scenarios where nodes apply a Policy B selfishness (Table 3.3)
with parameters p1 = 0, p2 = 1 (i.e. only “strong” ties). In each scenario different values of p0
(i.e. percentage of pairs that cooperate) are selected; higher values of p0 correspond to scenarios
with less selfishness. Results of scenarios where nodes apply a Policy D selfishness are presented
in Fig. 3.2(b). It can be seen that for Policy B, the accuracy is significant, while for Policy D, the
average simulated delivery delay (red line) decreases slower than predicted (dashed blue line).
However, for both policies, the simulation results and theoretical predictions agree qualitatively,
even if not always quantitatively.

In the Infocom trace (Fig. 3.2(c) and 3.2(d)), the theoretical predictions are less accurate
than in Cabspotting. The main reason for this, is that the mobility patterns of the Infocom
trace deviate from the assumptions of our mobility model more than the mobility patterns of
the Cabspotting trace. In particular, we observed higher community structure and temporal
characteristics that cannot be captured by a Poisson contact process (i.e. during night, there
are almost no contacts).

6For brevity, we present here results only on the first two traces and we test our predictions on the Sigcomm
trace in following sections.

7We present relative values in order to allow a direct comparison between the two traces, whose characteristics
(network size, mobility statistics, etc.) differ significantly.
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Figure 3.2: Relative decrease of delay, E[TD]
E[Tmax

D
]
, of SnW routing, in scenarios on the Cabspotting trace with (a)

Policy B (p1 = 0, p2 = 1 and variable p0) selfishness and L = 10 copies, and (b) Policy D (p0 = 0.2 and variable
m) selfishness and L = 20 copies; Infocom trace with(c) Policy B (p1 = 0, p2 = 1 and variable p0) selfishness and
L = 20 copies, and (d) Policy D (p0 = 0.2 and variable m) selfishness and L = 20 copies.

3.4 Performance and Power Consumption Trade-offs

We have so far considered the effect of different selfishness policies on performance, assuming that
the actual policy is given (e.g. user preferences, security or privacy concerns, etc.). However, it
might be the case that a node’s reluctance to always relay 3rd party traffic stems from resource-
related concerns (e.g. spending energy). In this case, the selfishness policy could be seen as a
way for the node to control the amount of resources (e.g. transmission power) contributed to
participate in the network.

Moreover, nodes would not object to use a different policy, e.g. one that improves the
network-wide, and thus average node performance, if it would not result in a higher expected
resource consumption for them. For instance, if with a policy x and a policy y, a node consumes
the same energy, but the message delivery probability achieved by policy x is higher than this
of y, i.e. Px > Py, then it could choose to apply policy x in order to improve the overall network
performance.

To this end, in this section, we examine the extent to which nodes could achieve different
tradeoffs between resource consumption and network performance, using different policies, in two
generic communication scenarios. At first, using a simple communication traffic injection model,
we investigate the tradeoff between Delivery Delay and Power Consumption (Section 3.4.1). In
the second case, we turn our attention to the possible Delivery Probability - Power Consumption
tradeoffs that can be achieved by an opportunistic content sharing mechanism (Section 3.4.2).

3.4.1 Delivery Delay vs Power Consumption

As mobile devices rely on their batteries, whose energy capacity is limited, power consumption
becomes a crucial issue. Nodes might prefer saving energy resources than consuming a significant
amount of them for network operations (i.e. storing and relaying messages).

Nevertheless, the total power consumption for relay traffic does not only depend on the
policy choice, but also on the total message load in the network, and the protocol used. In order
for a node to be able to estimate the expected power overhead of a given policy, we need to
“level the ground”, in a sense, and define a simple traffic model (see Table 3.4 for notation) that
will allow us to compare directly the power overhead of different policies.

Let us assume that there are (on average) Nf number of flows in the network, i.e. Nf number
of source-destination pairs that exchange messages (we assume that sources are “backlogged”,
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Table 3.4: Notation for the Communication Traffic Model

TTL Message lifetime

Nf Nb of flows

M Window length (in nb of messages)

E[Nmsg
t ] Avg nb of message transmissions per message and per node

T∞ Observation time

Nm Nb of generated messages during time interval [0, T∞]

E[Nt] Avg nb of transmissions per node in the time interval [0, T∞]

Et Avg energy consumption of a message transmission

P Avg power consumption

i.e. always have messages to transmit). In order to ensure that source nodes do not insert
new messages (input rate) faster than the network can deliver (output rate), some flow control
mechanism is needed.

Some works suggest the use of an “out-of-band” channel (e.g. cellular network) for acknowl-
edgements [6]. In this case, each source node could be forced, e.g. to not send a new message
before the previous message is ACKed. In fact, we could also assume a window of M messages
per flow that can go unacknowledged before a new message is send. Thus, if E[TD] is the ex-
pected delay of a message, the total load per flow is M messages per E[TD] time units (assuming
an instant acknowledgement). If on the other hand, a slower “in-band” flow control is used, the
RTT could also be expressed as c · E[TD], c > 1.

Alternatively, each message can be assigned a message lifetime value, i.e. a TTL, after which
the message cannot be forwarded or delivered to the destination, and nodes can drop any copies
of it, in order to release valuable storage space8. To achieve a high message delivery probability
(i.e. PDR ≈ 1), the message lifetime must be set as

TTL = cTTL · E[TD] (3.9)

and cTTL is large enough, such that the probability that the TTL expires before the message is
delivered to the destination is small (this is necessary since we are interested in this section on
the message delay).

Regardless of the exact flow control policy used (not of interest to this work), the above
discussion suggests that a reasonable model for (stable) traffic loads is to assume that each
source injects on average M new packets for each time interval c · E[TD] (with c dependent on
the flow control policy). In following, without loss of generality, we will assume a TTL flow
control mechanism.

Under the condition of large c = cTTL (i.e. value of TTL such as PDR ≈ 1), we can easily
show that the average number of transmissions per message a node has to perform, E[Nmsg

t ],
depends only on the routing protocol, P, and the network size, N , and is independent of the
message delivery delay, i.e.:

E[Nmsg
t ] = ct (3.10)

8The lack or volatility of end-to-end paths in opportunistic networks, implies that the implementation of a
transport protocol with feedback per packet (e.g. as ACK messages in TCP), as described above, might be either
inefficient or infeasible. As a result, the TTL can often be used as an implicit flow control, allowing up to M new
packets per TTL for each flow.
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where ct is a constant dependent on N and P. As an example, in Spray and Wait routing with L
copies, as there are in total approximately L messages transmissions (L−1 to relay nodes and 1
to destination node) before the expiry of the TTL, the average number of message transmissions
per message and per node is given by E[Nmsg

t ] = L
N .

Hence, if we observe our network with communication traffic as described above, for a long
time period T∞, it follows easily that the expected number of generated messages is

Nm = Nf ·M ·
T∞

c ·E[TD]
. (3.11)

As the number of transmissions per generated message a nodes does is E[Nmsg
t ], the total

number of transmissions a node does in the time interval [0, T∞] is

E[Nt] = Nm ·E[Nmsg
t ] = Nf ·M ·

T∞

c ·E[TD]
· ct (3.12)

where we substituted from Eq. (3.10) and Eq. (3.11)
Then, the power consumption rate can be calculated as

P =
Total Energy Consumption in [0, T∞]

T∞
=

Et · E[Nt]

T∞
(3.13)

where Et is the average energy for a single message transmission. The following result follows
after substituting Eq. (3.12) in Eq. (3.13).

Result 6. The average node power consumption is inversely proportional to the average message
delivery delay and is given by

P = cp ·
1

E[TD]
(3.14)

where cp =
Et·Nf ·M ·ct

c .

In Result 6, cp is a constant that depends on the (i) network size N , (ii) the protocol used
P, (iii) the message size (Et) and (iv) the traffic intensity (Nf ,M). However, cp is independent
of the selfishness policy and the mobility of the nodes. Therefore, the main implication that
comes of Result 6, is that:

Corollary 2. In a Heterogeneous Contact Network, no matter how simple or sophisticated the
selfishness policy used, the achievable power-delay operating regimes are exactly the same; In
other words, whatever power-delay tradeoff can be achieved by some socially selfish policy, can
also be achieved by the simple uniform policy.

The above conclusion is somewhat surprising at first, given the range of strategies available
under our social selfishness definition. However, we will try to shed some light on this coun-
terintuitive result: Let assume a relay node i with some messages in its buffer. At the next
contact event, i will forward each of the messages, e.g. to node j, with some probability, which
depends on the protocol and the state of j (i.e. if j has the message or is the destination, etc.)9.
It, then, follows that the more (effective) contact events a node has, the more messages it will

9Similarly, i will receive a message from j with some probability. Since we assume backlogged sources, the
number of messages in the buffer of each node will be on average the same.
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transmit (i.e. power consumption). Since all nodes apply the same policy, the average number
of contact events per time unit (and thus the power consumption) is the same for every node

and ∝ E[p(λ) · λ] ≡ µeff.
λ . Now, considering the discussion and results in Section 3.3, which

show that the delivery delay is inversely proportional to µeff.
λ , the relation suggested by Result 6

becomes evident.

To this direction, we can derive the following result (by simply combining Results 5 and 6)
that relates the power consumption with the selfishness policy and mobility characteristics:

Result 7. The average node power consumption in an Heterogeneous Contact Network is ap-
proximately given by

P =
cp

c(N,L)
· µeff.

λ (3.15)

where c(N,L) and cp are defined in Results 5 and 6, respectively.

Thus, the expressions in Table 3.2 can be used to compute the average node power consump-
tion, under the selfishness policies of Table 3.3.

3.4.1.1 Validation
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Figure 3.3: Power consumption - message delivery delay trade off. Synthetic simulations with (a) uniform and
(b) non-uniform selfishness policies. Simulations on the (c) Infocom and (d) Sigcomm real traces of both uniform
and non-uniform selfishness policies scenarios.

From Result 6 we can see that the relation between power consumption and message delivery
delay can be described by a reciprocal function or by a curve of the form y = a

x .

To investigate how accurate this prediction is, we first consider a heterogeneous mobility
scenario (fλ ∼ Gamma, µλ = 1, CVλ = 1), consisting of 100 nodes. We generate communication
traffic between node pairs, according to the rules of the traffic model described in Section 3.4.1,
and select SnWwith L = 10 copies as the routing protocol. We performMonte Carlo simulations.
At first, we simulate scenarios with the uniform selfishness policy (Policy A) and choose values
for the selfishness intensity (i.e. p0) spanning the range (0, 1), i.e. for minimum to maximum
power consumption. Fig. 3.3(a) shows the simulation results for some sample values of p0. It
can be seen there that these exactly match our theoretical predictions.

We then simulate scenarios with different, non-uniform selfishness policies, in order to ex-
amine whether the delay-power curve is indeed the same or not. As is evident by Fig. 3.3(b),
the simulated results for both non-uniform policies considered also coincide with the theoretical
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curve, which is also the delay-power curve for the uniform policy. In other words, by changing
selfishness policies and their parameters, one can only achieve a shift on the theoretical curve.

To further examine the validity of this interesting finding, we test our predictions also in
two real-world scenarios, the Infocom and Sigcomm traces. In Fig. 3.3(c), we use SnW routing
with L = 5 copies in the Infocom trace and we create traffic conditions as described earlier.
We measured the delivery delay of the messages and the power consumption of the nodes and
plot the achievable delay-power tradeoff points for different policies. As it can be seen, our
qualitative finding also holds here (i.e. all policies seem to have the same achievable region),
and experimental values are quite close to the theoretically predicted curve. Similar observations
can be made for the results of simulations on the Sigcomm trace (Fig. 3.3(d)). In this trace,
although the theoretical curve seems to be a slightly displaced, it is clear that all policies also
lie on the same tradeoff curve, as predicted.

3.4.2 Delivery Probability vs Power Consumption

In the previous section, we showed that the region of possible tradeoffs between Delivery Delay
and Power Consumption is not affected by the selfishness policy. A key question arising then
is: is there not a way to achieve better performance-power tradeoff regions, e.g. compared to the
uniform policy, by intelligently choosing the selfishness policy?

In order to further explore this question, we turn our attention to another metric of high
importance, namely the delivery probability of a message (or Probability Delivery Ratio, PDR).
Thus, in this section, we investigate the PDR - Power Consumption tradeoffs using another
example application, namely content sharing in opportunistic networks. The rationale behind
this choice is twofold: first because content-centric applications have attracted increasing atten-
tion in both wired and wireless networks, and second to demonstrate the applicability of our
framework to non end-to-end communication scenarios.

3.4.2.1 Opportunistic Content Sharing

In content sharing scenarios, new messages might be useful only for some fixed amount of time
(e.g. related to the content nature), and interested nodes would like to access such messages
before this time. We assume that there are NA(≤ N) nodes, in the network, that hold a content
A for which another node i is interested in. This content can be data (e.g. a map, news,
video, etc.) or even a service that these nodes can provide (e.g. Internet access or a computing
service [26]). We also assume that this content can be only delivered directly when node i
contacts any of the NA nodes with the content, and not through relay nodes (this assumption
might related to protocol complexity, but often comes very natural, as for example, when the
content is an actual computing service the NA providers can offer)10.

The following result, gives the probability for a node i to successfully access content A by
some time T .

Result 8. In a Heterogeneous Contact Network with selfishness policy p(λ), if NA nodes hold a
content A, then the probability for another node to access the content by a time T , is given by

PA{T} = 1−
(

E
[

e−λ·p(λ)·T
])NA

(3.16)

10Note that the selfishness policy applies even in this direct case, since e.g. content providers might not be
equally willing to service or forward to any interested node.
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where the expectation is taken over fλ.

Proof. Let us denote Pa{j, T} the probability the node i to contact a node j ∈ [1, ..., NA] and
exchange messages with it (i.e. effective contact event) before a certain time T . Obviously
Pa{j, T} (i) depends on the contact rate λij and the selfishness policy p(λ), and (ii) as the
inter-contact intervals are exponentially distributed it is given by11

Pa{j, T |λij , p(λij)} = 1− e−λij ·p(λij)·T

Since the probability a node to have the content is the same for all nodes, we can write

Pa{j, T } =
∫ ∞

0

Pa{j, T |λij , p(λij)} · fλ(x)dx =

∫ ∞

0

(

1− e−λij ·p(λij)·T
)

· fλ(x)dx = 1− E
[

e−λ·p(λ)·T
]

where the expectation in is taken over fλ.
Node i will not access the content by time T , only if it does not contact any of the NA nodes.

Hence, we can write for the probability that i will get the content by time T :

PA{T } = 1− PA{T } = 1−
NA
∏

j=1

Pa{j, T } = 1−
NA
∏

j=1

(1− Pa{j, T })

where P denotes the probability of the complementary event. Now, combining the above two
equations and the fact that the nodes j with the content (and the respective contact rates λij)
are independent, it follows

PA{T } = 1−
NA
∏

j=1

(

1−
(

1− E
[

e−λ·p(λ)·T
]))

= 1−
NA
∏

j=1

E
[

e−λ·p(λ)·T
]

= 1−
(

E
[

e−λ·p(λ)·T
])NA

Closed form expressions for the probability PA{T} under different selfishness policies (Ta-
ble 3.3) and mobility patterns (fλ) can be found in Table 3.5.

We know from Result 7 that the average power consumption is proportional to µeff.
λ . How-

ever, the expression for the content delivery probability (Result 8) relates to the mobility pattern
and the selfishness policy in a non-linear way, that is also more complex than the case of delay.
The first observation is that it’s not easy to deduce a simple relation between the power con-
sumption and the PDR, under generic mobility and selfishness characteristics, as was the case
for power and delay (Result 6). The non-linearity also implies that it might now be possible
indeed to change (and ultimately improve) the achievable power - performance (PDR) region.

11The CDF of an exponential distribution with rate λ is given by F (x) = 1− e−λ·x.
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3.4.2.2 Evaluation

To obtain some useful evidence, we will focus here on two selfishness policies, namely the uniform
policy (Policy A) and the limit-rates policy (Policy C). Our choice for the specific non-uniform
selfishness policy is based on the fact that it was proposed in [64] as a policy designed for a
content dissemination application, which resembles the application we study.

From its definition (Table 3.3), we can see that Policy C limits the average number of effective
contacts for pairs that contact more frequently than a certain threshold. The intuition behind
this mechanism, is that a node i avoids communicating every time with the nodes j with whom
it meets frequently, because (i) each effective contact incurs some energy consumption, and (ii)
as they meet frequently, the probability node j to hold a content message in which node i is
interested in and which did not exist in the memory of j their previous contact event, is small.
Thus, limiting the effective contact events with frequently met nodes would result in a better
PDR-power tradeoff.

Our theoretical predictions among with simulated results from two scenarios where we assign
a content to random nodes and measured the delivery probability of it to a certain node, are
presented in Fig. 3.4. These confirm the intuition about the superiority of Policy C regarding
content sharing applications. In Fig. 3.4(a) we present the PDR values in scenarios with uniform
and rate-limit selfishness policies, where only one node holds the content message. As it can
be seen, Policy C achieves always higher PDR than policy A for the same power consumption
values. Specifically, Fig. 3.4(b) shows the improvement (i.e. the ratio PDRC−PDRA

PDRA
) in PDR we

achieve with Policy C, which, for some values of power consumption, is almost 30%. In some
other scenarios we simulated, this improvement was even up to 70%.

Fig. 3.4(c) and 3.4(d) present the comparison of the two policies, in a scenario with more
heterogeneous mobility (CVλ = 2) whereM = 5 nodes hold the content. The observations about
the performance of the two policies remain the same.

Finally, it is evident in Fig. 3.4 that simulations results for the synthetic heterogeneous model
(red dots) match our theoretical predictions very well.

As a final step, we test again the accuracy of our findings in two real-networks, the Sigcomm
and Infocom traces. We simulated scenarios with different number of content holders and for
the same selfishness policies as before. The results are presented in Fig. 3.5 and compared to the
theoretical prediction. As it can be observed, while the absolute values do not match exactly,
Policy C again outperforms the uniform policy, and the relative performance improvement follow
the shape of the theoretical curve quite well (this is very important when considering finding
optimal operating points, using the theoretical curve).

Hence, we can conclude that our model can provide quite accurate predictions, even for real
network scenarios. Finally, it is clear that, unlike the case of delay-power tradeoff, using social
selfishness wisely can improve performance here, and our model could be used in order to predict
the relative performance of different policies and, consequently, for policy optimization.

3.5 Related Work

The feasibility of communication over a MSN highly depends on the willingness of nodes to
cooperate. To this end, many techniques and protocols were proposed in order to motivate nodes
to act as relays for messages that are not generated by or destined to them [22,74,94,127,145].
In [94] a reputation mechanism is used to encourage nodes to cooperate in order (i) to be able to
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Figure 3.4: (a),(c) Probability Delivery Ratio of a content of policy A selfishness (blue) and policy C selfishness
(black) for different power consumption levels. (b),(d) Relative difference of the Probability Delivery Ratio
between Policy C and Policy A selfishness, i.e. PDRC−PDRA

PDRA
. Mobility characteristics: µλ = 1; (a),(b) CVλ = 1

and (c),(d) CVλ = 2.
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Figure 3.5: Relative difference of the Probability Delivery Ratio between Policy C and Policy A selfishness, i.e.
PDRC−PDRA

PDRA
, in the Sigcomm trace with (a) M = 3, (b) M = 5 number of copies and T = 20/µλ, and in Infocom

trace with (c) M = 3, (d) M = 5 number of copies and T = 10/µλ.
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receive the messages destined to them, and (ii) the other nodes to offer them their services (i.e.
relay their messages). Another approach, which results in growing incentives to nodes for acting
as relays, is followed in [127], where each node i is willing to forward the messages of another
node j, according to the number of messages node j has forwarded already for it. Finally,
credit-based mechanisms are presented in [145] and [22], as well as barter-based mechanisms
in [74].

Furthermore, many analytical and simulation-based studies investigate the effects of node
selfishness on communication performance [61, 69, 86, 88, 106]. In [106] authors investigate,
through simulations, how the performance of epidemic schemes is affected when the network
comprises of non-cooperative nodes. They consider two kinds of selfishness: in each contact
event either nodes are unwilling to copy a message with probability pnc or they are unwilling to
forward it with probability pnf . For a similar scenario, Karaliopoulos [69] models probabilistic
selfish behavior of nodes in homogeneous networks (i.e. constant contact rate λ for every pair of
nodes). In [86] authors extend the work of [69] in terms of multicast applications. The authors
of [88] model selfishness in a different scheme, where each node transmits its own message (op-
erates as a source) with probability p and transmits one of the messages it has as a relay with
probability 1-p. They assume that only one message can be exchanged per contact event and
use only 2-hop routing. Another approach of selfishness is tackled in [61], where authors propose
a selfishness model where each node is either selfish or altruist (modeled as a probability pi for
each node i) regarding all its contacts (i.e. i shows the same selfishness for every other node j,
pij = pi) and investigate through simulations the effect on the communication throughput.

The above protocols and studies, assume (under different models) that every node is either
totally selfish or not. However, the assumption that users are selfish and are not willing to
forward packets for anyone else, might not always hold. In this direction, the notion of social
selfishness appears. In social selfishness, the nodes might be selfish only regarding some other
nodes with which they have a weak (or even a strong) social relation (”tie”) [64,82,84]. In [84]
authors use a model of a network with two communities and introduce the notion of selfishness
that depends on the contact rate between nodes. For nodes with high contact rate (e.g. within
the same community) the selfishness is characterised by the probability pi and for nodes with
low contact rate another value po for selfishness is considered. They build a Markov Chain and
investigate the effect on the performance through simulations. In [64] the authors investigate
the role of the ”weak ties” (i.e. pairs of nodes that contact infrequently, which in our case means
the pairs of nodes with small contact rate λij) in a content updating/dissemination scenario.
Finally, in [82] a routing protocol, designed for networks where nodes have social selfishness
behaviors, is proposed.

Our work, being the first to provide a theoretical framework and analytical closed-form
results, complements previous studies on the effect of social selfishness on communication per-
formance, which are limited to evaluation through simulations [64,82] or analytical modeling of
specific cases [84]. Moreover, not only the heterogeneous mobility model we consider can capture
much wider range of scenarios than the models used in previous analytical studies [69, 84, 88],
but also our results were shown to capture (either qualitatively or quantitatively) the much more
complex characteristics of real-networks’ mobility.
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3.6 Conclusion

In this chapter, we analysed the effect of social selfishness on opportunistic communications.
Based on the model for heterogeneous mobility presented in Chapter 2, we built a generic
model that can describe a wide range of common social selfishness behaviors (related to privacy
concerns, resources consumption, etc.). Based on our mobility / selfishness framework, we
derived closed form results for predicting the message delivery delay in a network with (socially)
selfish nodes. Furthermore, we investigated how selfishness affects the performance - power
consumption tradeoffs in a network, under two communication scenarios. We derived results
that show if and when it is possible to optimize a selfishness policy in order to achieve better
tradeoffs.

Due to the lack of existing solutions fighting social selfishness, we deem as essential to have
an analytical framework for it and predict the performance degradation it causes on message
dissemination, which as shown depends on various factors (selfishness behaviors and mobility).
We believe that our work can be a useful tool for the design of novel protocols and applications
for socially selfish environments.
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Chapter 4

Modeling and Analysis of
Communication Traffic
Heterogeneity in MSNs

4.1 Introduction

As discussed earlier, node mobility plays a major role both in the performance and the design of
protocols and applications for MSNs, and a lot of effort has been made recently to capture and
model the heterogeneous mobility patterns of real networks [76,109,112,113]. On the contrary,
the communication traffic patterns used in studies of MSNs have not received an equal amount
of attention.

It is usually assumed, implicitly or explicitly, that all traffic is uniform: each pair of nodes
exchanges the same amount of messages. However, intuition suggests that traffic between nodes,
just like mobility, cannot be expected to be homogeneous either. This is also supported by
empirical studies on social networks [54,138], where the frequency of message exchanges might
widely vary among pairs of nodes. Further, nodes that have a social relation or reside/move
in the same areas, often tend to exchange more messages than others. Therefore, a number of
interesting questions arise:

How should one model the heterogeneity in communication traffic? Do heterogeneous traffic
patterns affect the performance of information dissemination mechanisms and to what extent?

Towards answering these questions, in this chapter we investigate if, when and how traffic
patterns affect the communication performance in mobile social networks. Specifically:

•We examine what characteristics of traffic heterogeneity can have an effect on performance,
and show that only when (end-to-end) traffic demand is correlated with pairwise contact rates
performance is affected. Based on these findings, we propose an analytically tractable model
that can describe a large range of non-uniform traffic patterns (Section 4.2).

• We derive analytical expressions for calculating the joint effect of traffic and mobility
heterogeneity in the performance of basic forwarding mechanisms (Section 4.3).

• We use these expressions to show that the common understanding about these mecha-
nisms, e.g. the gains from having additional replicas, might radically change when traffic is
heterogeneous (Sections 4.3.2 and 4.3.3).

• We validate our analytical findings through simulations (Section 4.4.1) and, by apply-
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ing them to datasets of real-world networks that contain information about the mobility and
communication patterns of participating nodes (Section 4.4.2).

• Finally, we present possible extensions of our study (Section 4.5).

To our best knowledge, this is the first attempt to model end-to-end traffic heterogeneity
and analytically study its (quantitative and qualitative) effects on the performance of communi-
cations in MSNs. Our analytical findings, as well as simulation results, reveal important aspects
of mobile social networking that have not been explored or have not been taken into account in
previous studies:

− When frequently meeting node pairs tend to exchange (on average) more/less traffic than
other nodes, the communication performance can considerably differ from the homogeneous case.
Taking into consideration such traffic patterns allows to better design or tune routing protocols.

− The effects on some forwarding mechanisms, like Direct Transmission [130], can be signifi-
cant, while at the same time flooding (e.g. Epidemic [137]) or routing (e.g. Spray and Wait [129],
EBR [98]) protocols are less affected. In particular, an increasing amount of heterogeneity closes
the performance gap between the best (Epidemic) and the worst (Direct Transmission) forward-
ing.

− Under certain conditions, the impact of traffic heterogeneity can be so important, that
it can lead to a reconsideration of the employed communication mechanisms, and even the
feasibility of applications (e.g. online social messaging, file sharing, service composition) over a
MSN.

4.2 Communication Traffic Model

We consider a network N with N nodes, which communicate in an opportunistic way. Since
data exchange is subject to nodes mobility and the resulting contact events, we first need to
define the mobility model to be used. Similarly to previous chapters, in order to capture mobility
heterogeneity and, at the same time, to perform an analytical performance evaluation, we assume
nodes to contact each other according to Def. 3.

In addition to who contacts whom and how often, another major question that should be
raised when evaluating communication schemes in MSNs (but rarely is) is who wants to com-
municate with whom and how much traffic do they exchange?

Intuition suggests that every pair of nodes will not exchange the same amount of traffic. To
support intuition, studies from fields related to technological and social networks [37,54,138] have
demonstrated the existence of heterogeneous traffic patterns. The same studies further suggest
that this heterogeneity depends on the spatial and social characteristics of these networks.
Since location-based services [104] and social networking [116] are considered among the major
applications supported by MSNs, such traffic dependencies on social and/or spatial factors
are very probable to appear. What is more, mobility characteristics have also been found
to depend on spatial and social characteristics [31, 41, 109]. This clearly seems to argue for a
non-homogeneous traffic model. Moreover, traffic and mobility in such networks are expected
to exhibit some correlations [54,138].

Before we proceed to choose a traffic model, one should consider the following questions:
Would the mere heterogeneity of traffic suffice to affect performance? Is it necessary to consider
traffic and mobility correlations?

As stated earlier, information dissemination is determined by the sequence of contact events.
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Figure 4.1: Mean delivery delay of 4 routing protocols, namely Direct Transmission, Spray and Wait (SnW ),
2-hop, and SimBet, on the (a) Gowalla and (b) Strathclyde datasets.

Hence, if traffic characteristics are independent of node mobility, one might expect a limited
impact on performance.

Towards examining the validity of the above argument, we decided to compare the per-
formance of some well-known opportunistic protocols (direct transmission [130], spray and
wait [129], 2-hop routing [43], and SimBet [29]) through simulations on two real traces (we dis-
cuss the traces in more detail, later, in Section 4.4), for three traffic scenarios: (i) homogeneous
traffic: every pair of nodes has the same chance of being chosen as the source-destination pair
for the next message; (ii) heterogeneous traffic that is mobility independent : we assign randomly
to each pair a different end-to-end traffic demand (with the normalized message generation rate
for a pair drawn uniformly in [1, 1000]); (iii) heterogeneous traffic that is mobility dependent :
end-to-end traffic between two nodes is proportional to their contact rate. We generated an
equal (sufficiently large) number of messages for all scenarios.

Results for the mean message delivery delay are shown in Fig. 4.1. As is evident from these
results, when traffic heterogeneity is independent of mobility (middle bar), the average delay
is practically the same to the homogeneous case (left bar), for all protocols, and across all
scenarios (including additional ones we have tried). In contrast, when traffic is heterogeneous
and correlated with the contact rates (rightmost bar), Fig. 4.1 shows a clear difference in average
delay for all scenarios and protocols. These results provide an initial answer to the above
questions:
It is not traffic heterogeneity itself that affects performance, but rather the joint
effect of mobility and traffic (heterogeneity).
In other words, unless differences in traffic demand correspond also to differences in contact
frequency (e.g. frequently meeting pairs tend to also consistently generate more/less traffic for
each other), end-to-end performance will not be affected. This statement is also formally proven
in Lemma 5 (Section 4.8.1).

The above observation, together with the initial insight coming from real datasets, motivates
us to propose the following simple, yet quite generic, model for end-to-end traffic.
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Definition 9 (Heterogeneous Communication Traffic). The end-to-end traffic demand (per time
unit) between a pair of nodes {i, j}, is a random variable τij , such that E[τij ] = τ(λij), where
τ(·) is a continuous function from R

+ to R
+.

Hence, traffic demand between node pairs can differ and is on average correlated with the
nodes’ contact rate. However, τij itself is still random, allowing some node pairs to have little
traffic demand even if they meet often (e.g. “familiar strangers”). Furthermore, through the
function τ(·) one can introduce a number of different types and amounts of (positive or negative)
correlations between traffic and mobility. While real mobility and traffic patterns are clearly
expected to have a number of additional nuances and details, not captured by the models of
Def. 3 and Def. 9, respectively, it turns out that these abstractions are still “rich” enough to
allow us to draw useful conclusions.

4.3 Analysis

Consider now a MSN with mobility and traffic as defined in the previous section. To calculate
a performance metric for this network, e.g. the expected delay, one would consider a large
number of messages generated between various source-destination pairs. Therefore, one would
further need to know the contact rates between the sources and destinations of these messages.
If a message was equally likely to be generated between any pairs of nodes, then the contact
rate between the source and destination of this message should be distributed as fλ (Def. 3).
However, if messages are more likely to come from a frequently meeting pair rather than an
“average” pair, then the source-destination contact rate (we refer to it as the effective contact
rate) would be biased towards higher values.

To this end, we derive the following basic proposition for the probability distribution of the
effective contact rates between source destination node pairs.

Proposition 1. The probability density function fτ of the contact rate between the source and
the destination {s, d} of a random message, in a network following Def. 3 and Def. 9, converges
as follows:

fτ (x)
p→ 1

C · τ(x) · fλ(x) (4.1)

where fτ (x)dx = P{λsd ∈ [x, x+dx)}, p→ denotes convergence in probability, and C = E[τ(λ)] =
∫∞
0 τ(x)fλ(x)dx is a normalizing constant.

Proof. Consider a network N with N nodes. Let dλ = O
(

1
N

)

, and define the set of nodes with
contact rate λij ∈ [λ, λ+ dλ):

N (λ) = {{i, j} : i, j ∈ N , λ ≤ λij < λ+ dλ},

The total number of messages generated per time unit between pairs ∈ N (λ) is equal to

T (λ) =
∑

{i,j}∈N (λ) τij (4.2)

where τij in the sum are i.i.d. random variables with mean τ(λ). Then, the probability that the
contact rate λsd, between the source and the destination of a randomly selected message, lies in
the interval [λ, λ+ dλ), is given by
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P{λ ≤ λsd < λ+ dλ} = T (λ)
∑

i

∑

j τij
=

∑

{i,j}∈N (λ) τij
∑

i

∑

j τij
(4.3)

We can express Eq. (4.3) as following:

P{λ ≤ λsd < λ+ dλ} = T (λ)

‖N (λ)‖ ·
‖N (λ)‖

N(N − 1)/2
· N(N − 1)/2
∑

i

∑

i τij

where ‖ · ‖ denotes the cardinality of a set and N(N−1)
2 is the total number of node pairs in a

network with N nodes. Let us further denote:

X1 =
T (λ)

‖N (λ)‖ , X2 =
‖N (λ)‖

N(N − 1)/2
, X3 =

∑

i

∑

i τij
N(N − 1)/2

Applying the weak law of large numbers [47], it holds that for a large network1

X1
p→ τ(λ) and X2

p→ fλ(λ) (4.4)

where
p→ denotes convergence in probability.

Also, X3 corresponds to the sample average of τij over all disjoints sets N (λ). Thus, applying
Cramér’s theorem (Theorem 6.5 in [47])2 and using the convergence expressions of Eq. (4.4), we
can get

X3
p→
∫∞
0 τ(y)fλ(y)dy = E[τ(λ)] = C

Similarly, using Cramér’s theorem, it can be shown that the expression X1 ·X2 · 1
X3

converges
too, i.e.

X1 ·X2 ·
1

X3

p→ τ(λ) · fλ(λ) ·
1

C

Finally, denoting the probability density function of the source-destination contact rate λsd as
fτ (λ), i.e. P{λ ≤ λsd < λ+ dλ} = fτ (λ)dλ gives us the desired result.

As Proposition 1 shows, the source-destination contact rate distribution depends both on
the contact rate distribution fλ(λ) and the traffic patterns τ(λ) (i.e. joint effect of mobility
and traffic). Specifically, the probability that the contact rate of a selected node pair takes a
certain value, e.g. λsd ∈ [x, x + dx), is proportional to the number of pairs that contact with
rate λij ∈ [x, x+ dx) (i.e. ∝ fλ(x)) and the average traffic demand between them (i.e. ∝ τ(x)).

4.3.1 End-to-end Delivery Performance

An opportunistic routing protocol tries to deliver the end-to-end traffic demand τij , and we
would like to consider the effects of different contact patterns fλ and traffic patterns τ(λ) on its
performance. There exists a very large abundance of proposed schemes [131] and it would not
be possible, nor would it provide any intuition, to analyze the effect of heterogeneity on each
and every one. Instead, we focus here on some basic mechanisms to gain intuition.

1When N → ∞, then dλ = O
(

1
N

)

→ 0, and ‖N (λ)‖ = O
(

N(N−1)
2

dλ
)

= O (N) → ∞.
2Equivalently, one could use here the Continuous Mapping Theorem.
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The approach with the minimum overhead and complexity is Direct Transmission (“DT”):
nodes wishing to exchange data or information with each other, may do so, only when they are
in direct contact, without involving any relays. For instance, DT is often assumed in content-
centric applications, where a node interested in some content will query directly encountered
nodes for content of interest, and retrieve it only if it is available there. Furthermore, it is the
only feasible approach if nodes do not have incentives to relay traffic they are not personally
interested in, e.g. due to privacy or resource-related concerns [74]. Nevertheless, DT is known
to suffer from long delays and low throughput [44].

To improve the performance of direct transmission, replication or relay-assisted schemes can
be used. Extra copies can be handed over to encountered nodes, and the destination can receive
the message from either the source or any of the relays, reducing thus the expected delivery
delay. Taken to the extreme, schemes like epidemic routing [137] forward the message at every
possible encounter (deterministically, probabilistically, or based on some utility-function). Yet
these do not usually scale well beyond networks with few tens of nodes, due to large resource
usage. Instead, few relays are normally used, in an attempt to strike a good tradeoff.

In networks with homogeneous mobility and traffic, it is known that using just a few extra
copies leads to significant performance gains. For example, in a network of 1000 nodes, sim-
ply distributing 10 extra copies to the first 10 nodes encountered provides an almost 10-fold
improvement in delay compared to direct transmission [129]. Although this also comes with a
10-fold increase in the amount of (storage and bandwidth) resources needed, it presents a very
useful tradeoff to DTN protocol designers.

However, when it comes to heterogeneous mobility and traffic, Proposition 1 suggests that,
unlike the above example, the source is no longer equivalent with other random relays, in terms
of their probability of contacting an intended destination soon. It is thus of particular interest
to examine whether the above trade-off still holds, if one considers the joint effect of realistic
mobility and communication traffic patterns.

We thus consider, in the following, Relay-assisted routing, which is a simple abstraction of
schemes that use extra randomly chosen relays3. To compare the performance of Relay-assisted
routing and Direct Transmission, in terms of delivery delay and delivery probability (the two
main metrics considered in related work), we first define the following metrics:
(a) Delay Ratio, R: the ratio of the expected delivery delay of Relay-Assisted routing, E[TR],
over the expected delivery delay of Direct Transmission routing, E[TDT ], i.e.

R =
E[TR]

E[TDT ]

(b) Source Delivery Probability, P(src.): the probability that a message is delivered to the
destination by the source node, rather than by any of the relays.

Both metrics contain information about the performance gain of Relay-assisted routing com-
pared to Direct Transmission. Specifically, R shows how faster (on average) a message can be
delivered under Relay-assisted routing, whereas P(src.) gives the probability that any of the re-
lays will actually contribute in the delivery process. It is easy to see that (i) R and P(src.) always
take values in the interval [0, 1], and (ii) the higher their values are, the less the gain due to
relay nodes is.

For instance, when R = 0.1 Relay-assisted routing delivers (on average) a message 10 times
faster than Direct Transmission, while a value R = 0.5 denotes that Relay-assisted routing is

3We will briefly consider mobility-aware schemes in Section 4.5.
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only 2 times faster. Respectively, when P(src.) = 0.1 the probability that the source node s meets
the destination d, before any other relay node meets d, is 10%, and P(src.) = 0.5 means that this
probability is 50%. In the limiting cases, when R,P(src.) → 1 the message is delivered to the
destination by the source node itself, while when R,P(src.) → 0 delivery takes place (entirely)
due to the relays.

In Result 9, we derive analytical expressions for these two metrics, R and P(src.).

Result 9. When Relay-assisted routing with L extra copies is considered, then

R =
1

E
[

τ(λ)
λ

] ·
∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy

P(src.) =
1

E[τ(λ)]
·
∫ ∞

0

∫ ∞

0

x · τ(x)
x+ y

· fλ(x)dx · fR(y)dy

where the expectations are taken over fλ and fR = f
(∗L)
λ is the L-fold convolution of fλ.

Proof.
Delay Ratio, R

Let Isd(t) be an indicator random variable that is equal to 1 if nodes s and d are within
transmission range at time t, and 0 otherwise. Let further Tsd denote the random inter-contact
time between node pair {s, d}:

Tsd = inf{t > 0 : Isd(0) = 1, Isd(0
+) = 0, Isd(t) = 1}.

Since we have assumed that contact duration is negligible for the networks we consider (Def.2),
the contact process is essentially a point process, and the above could be simplified to Tsd =
inf{t > 0 : Isd(0) = 1, Isd(t) = 1}.

Assume now that end-to-end messages between {s, d} are generated at random times and
independently from the contact process. If TDT denotes the delay of directly transmitting a
message from s to d, and the contact rate between s and d is λsd = x, then one can use
renewal-reward theory [121] to show that

E[TDT |λsd = x] = E[T
(e)
sd |λsd = x] =

1

x
.

That is, the expected delay of direct transmission is equal to the mean of the residual (or excess)

inter-contact time T
(e)
sd , which is an exponential variable with the same rate x.

Using the property of conditional expectation and the distribution of λsd (Proposition 1) we
can get:

E[TDT ] =

∫ ∞

0
E[TDT |λsd = x]fτ (x)dx =

∫ ∞

0

1

x
fτ (x)dx =

1

C

∫ ∞

0

τ(x)

x
fλ(x)dx

=
1

E[τ(λ)]
·E
[

τ(λ)

λ

]

(4.5)

Assume now that the same messages, between {s, d} are routed using Relay-Assisted routing,
with L message copies given to L relays. Let T ∗

R denote the total delay to deliver a message using
Relay-Assisted routing, TR the remaining delay after all L copies have been distributed, Tfwd
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the time to distribute the L copies to the L relays, and pfwd = P (T ∗
R < Tfwd) the probability

that the message is delivered to the destination before L relay nodes have been found.
Since relays are selected randomly (e.g. [129]), pfwd = L

N → 0 for L ≪ N . Similarly, if

L2 ≪ N ,
Tfwd

TR
→ 0 [129]. We can thus focus only on TR, the time after L relays have received

a copy.
Denote now with L the set of selected relays. Using a similar argument as in the direct

transmission case, we can easily show that,

TR ≡ min
i∈L∪{s}

Tid ∼ exp(Xr) and Xr = λsd +
∑

i∈L λid = λsd +XR

where XR =
∑

i∈L λid, and the expected value of TR will be

E[TR] =
1

Xr
=

1

λsd +XR
, (4.6)

where λsd ∼ fτ (Proposition 1) and XR ∼ fR = f
(∗L)
λ , the L-fold convolution of fλ.

Then, from Eq. (4.6) and using the property of conditional expectation, we find:

E[TR] =

∫ ∞

0

∫ ∞

0
E [TR|λsd = x,XR = y] fτ (x)dx · fR(y)dy

=

∫ ∞

0

∫ ∞

0

1

x+ y
· fτ (x)dx · fR(y)dy =

1

E[τ(λ)]

∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy (4.7)

where in the last equality we substituted the expression for fτ from Proposition 1.
Finally, dividing Eq. (4.7) with Eq. (4.5) gives the expression of Result 9 for the delay ratio

R.

Source Delivery Probability, P(src.)

Using similar arguments and notation as above, the event of the message delivery by the
source is equivalent to the destination contacting the source before any other relay.

Then, P(src.) ≡ P{Tsd < Tr−d} (where Tr−d = mini∈L{Tid}), will be given by the ratio
λsd

λsd+XR
[121]. Conditioning on the the rates λsd and XR, we can write

P(src.) ≡ P{Tsd < Tr−d} =
∫ ∞

0

∫ ∞

0
P{Tsd < Tr−d|λsd = x,XR = y}fτ (x)dxfR(y)dy

=

∫ ∞

0

∫ ∞

0

x

x+ y
· fτ (x)dx · fR(y)dy

and substituting fτ (x) from Proposition 1 gives

P(src.) =

∫ ∞

0

∫ ∞

0

x

x+ y
· τ(x)

E[τ(λ)]
· fλ(x)dx · fR(y)dy

which is equal to the expression for P(src.) in Result 9.

In addition to the main metrics considered in this paper (Result 9), and for ease of reference,
in Table 4.1 we provide expressions for the absolute performance (message delivery delay and
delivery probability) of Direct Transmission and Relay-Assisted routing. The expressions follow
straight from the proof of Result 9 or through similar analysis.

86



CHAPTER 4. MODELING AND ANALYSIS OF COMMUNICATION TRAFFIC
HETEROGENEITY IN MSNs

Table 4.1: Expected delivery delay and delivery probability of Direct Transmission and Relay-Assisted routing.

Direct Transmission Relay-Assisted

Generic Case:

E[TDT ] =
1

E[τ(λ)]
·E
[

τ(λ)

λ

]

E[TR] =
1

E[τ(λ)]
·
∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy

P{TDT ≤ t} = 1− E[τ(λ) · e−λ·t]

E[τ(λ)]
P{TR ≤ t} = 1− E[τ(λ) · e−λ·t]

E[τ(λ)]
·
∫ ∞

0

e−y·t · fR(y)dy

Mobility fλ(x) ∼ Γ(x;α, β), Traffic τ(x) = c · xk:

E[TDT ] =
1

µλ

· 1

1 + (k − 1) · CV 2
λ

E[TR] ≥
1

µλ

· 1

1 + k · CV 2
λ + L

P{TDT ≤ t} = 1−
(

1 + µλ · CV 2
λ · t

)−
1+k·CV 2

λ

CV 2
λ P{TR ≤ t} = 1−

(

1 + µλ · CV 2
λ · t

)−
1+k·CV 2

λ
+L

CV 2
λ

4.3.2 Insights for Real Mobile Social Networks

The expressions we derived in Result 9 are generic and can be used under any mobility and
traffic pattern (i.e. for any fλ and τ(·)). However, they do not give a good feel as to how
exactly these metrics are affected by mobility and traffic heterogeneity. To obtain some further
insights, in this section, we consider specific classes of mobility and traffic patterns that capture
commonly observed characteristics of real networks. For these classes, we derive simple closed
form expressions that bound the performance metrics R and P(src.).

Mobility

We will assume the contact rates to be gamma distributed, i.e. fλ(x) ∼ Γ(x;α, β) = βα

Γ(α)x
α−1e−βx.

Our choice is initially motivated by the findings of Passarella et al. [109], who have shown,
through statistical analysis of pervasive social networks’ datasets, that the Gamma distribution
matches well the observed contact rates. In addition, the analytical findings of [109], further
suggest that the choice of a Gamma distribution can be supported in real MSNs and can explain
many of the observed properties (e.g. distribution of aggregate inter-contact times). Finally,
by selecting appropriately the parameters α and β of a Gamma distribution, we can assign any
desired value to the mean value µλ and the variance σ2

λ of the contact rates4. This allows us to
describe (or fit up to the first two moments) a large range of scenarios with different mobility
heterogeneities captured by CVλ = σλ

µλ
.

Traffic

We further describe the traffic using a polynomial function of the form τ(x) = c · xk, c > 0.

As in the case of mobility, the reasons for our choice are as following. Observations of
real networks have shown that the nodes with high contact frequencies tend to exchange more
traffic [54,138], which is consistent with the above choice when k > 0. Second, the exact traffic
patterns (i.e. τ(x)) in a real scenario are difficult (if not impossible) to determine, and, hence,

4The mean value and variance of a gamma distribution are given by µλ = α
β

and σ2
λ = α

β2 , respectively.
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it is more probable that simple methods will be used. For example, one might get some traffic
samples and perform linear regression on the measured data. This would result in a linear τ(x)
(i.e. k = 1). Our model extends this logic by going beyond linear fitting and allowing as well
sub- and super-linear fitted traffic patterns. In general, the values of k capture the amount of
traffic heterogeneity. Furthermore, by choosing 0 < k < 1 (or k > 1) one can emulate concave
(or convex) functions and, thus, approximate different traffic patterns. Finally, one can also
consider negative correlations, by choosing k < 0. Although less common, these could arise,
for example, in applications where users want to communicate more when they do not meet
frequently (e.g. messaging).

Under the above assumptions, the following result for the relative performance of the informa-
tion dissemination mechanisms we consider in this paper, holds. The corresponding expressions
for the absolute performance metrics are given in Table 4.1.

Result 10. In a Heterogeneous Contact Network where fλ ∼ Γ(α, β) with mean value µλ and
variance σ2

λ (coefficient of variation CVλ = σλ

µλ
) and τ(x) = c · xk, it holds:

1 ≥ R ≥ Rmin =
1 + (k − 1) · CV 2

λ

1 + k · CV 2
λ + L

(4.8)

for k > kmin = 1− 1
CV 2

λ

, and

1 ≥ P(src.) ≥ Pmin =
1 + k · CV 2

λ

1 + (k + 1) · CV 2
λ + L

(4.9)

for k > kmin = − 1
CV 2

λ

.

Proof.
Delay Ratio, R

The expression for the delay ratio R of Result 9 can be written as

R =
1

E
[

τ(λ)
λ

] ·
∫ ∞

0
ER

[

1

x+ y

]

· τ(x) · fλ(x)dx (4.10)

where the expectation ER[·] is taken over fR. Using Jensen’s inequality5 for the function h(y) =
1

x+y , we get:

ER

[

1

x+ y

]

≥ 1

x+ ER[y]
(4.11)

where ER[y] is given by (as the expectation of a sum of L i.i.d. random variables with expectation
µλ) [121]:

ER[y] = E[XR] = E

[

∑

i∈L

λid

]

= L · µλ (4.12)

Hence, using Eq. (4.11) and Eq. (4.12) in Eq. (4.10), we get

R ≥ 1

E
[

τ(λ)
λ

] ·
∫ ∞

0

τ(x)

x+ L · µλ
· fλ(x)dx =

1

E
[

τ(λ)
λ

] · E
[

τ(λ)

λ+ L · µλ

]

(4.13)

5Jensen’s inequality for a convex function h(x): E[h(x)] ≥ h (E[x]).
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Now, Eq. (4.13), for τ(x) = c · xk, is written as

R ≥ 1

E[λk−1]
· E
[

λk

λ+ L · µλ

]

(4.14)

The expectations in Eq. (4.14) are taken over the contact rates’(Gamma) distribution, whose
general form is [121]

fλ(x) =
βα

Γ(α)x
α−1e−βx

where α > 0 is the shape parameter, β > 0 the rate parameter. Its mean value and variance are
given by µλ = α

β and σ2
λ = α

β2 , respectively, and, equivalently, we can write

α = 1/CV 2
λ , β = 1/

(

µλ · CV 2
λ

)

(4.15)

To calculate Eq. (4.14), first we find an expression for E[λk−1]:

E[λk−1] =

∫ ∞

0
xk−1fλ(x)dx =

∫ ∞

0
xk−1 βα

Γ(α)
xα−1e−βxdx

=
Γ(k − 1 + α)

Γ(α)

1

βk−1

∫ ∞

0

βk−1+α

Γ(k − 1 + α)
x(k−1+α)−1e−βxdx =

Γ(k − 1 + α)

Γ(α)

1

βk−1
(4.16)

where the integral in the second line is equal to 1 because the integrated function is the pdf of
a Gamma distribution with parameters α

′

= k − 1 + α (it must hold that α
′

> 0, which means
that k > 1− α = 1− 1

CV 2
λ

) and β
′

= β.

Similarly to the derivation of Eq. (4.16), it can be shown that

E

[

λk

λ+ L · µλ

]

==
Γ(k + α)

Γ(α)

1

βk
·
∫ ∞

0

1

x+ L · µλ

βk+α

Γ(k + α)
xk+α−1e−βxdx

=
Γ(k + α)

Γ(α)

1

βk
·Eλ′

[

1

λ′ + L · µλ

]

(4.17)

where λ′ follows a Gamma distribution with parameters α′ = k + α and β′ = β. Since the
function g(x) = 1

x+c is convex, we can apply Jensen’s inequality to Eq. (4.17) and get

E

[

λk

λ+ L · µλ

]

≥ Γ(k + α)

Γ(α)

1

βk
· 1

E[λ′] + L · µλ
=

Γ(k + α)

Γ(α)

1

βk
· 1
k+α
β + L · µλ

(4.18)

where we substituted E[λ′] = α′

β′ =
k+α
β .

Thus, from Eq. (4.16) and Eq. (4.18), it holds for R (Eq. (4.14)):

R ≥ Γ(k+α)
Γ(k−1+α) · 1β · 1

k+α
β

+L·µλ

and because of the Gamma function’s property Γ(z + 1) = z · Γ(z), we can write

R ≥ k−1+α
β · 1

k+α
β

+L·µλ
(4.19)

and Eq. (4.8) follows easily by substituting α and β from Eq. (4.15) to Eq. (4.19).
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Source Delivery Probability, P(src.)

Using the same notation, the expression for the delivery probability P(src.) of Result 9 can
be written as

P(src.) =
1

E[τ(λ)]
·
∫ ∞

0
ER

[

x · τ(x)
x+ y

]

· fλ(x)dx (4.20)

and applying Jensen’s inequality as in Eq. (4.11), we get

P(src.) ≥
∫ ∞

0

x · τ(x)
x+ L · µλ

· fλ(x)dx =
1

E[τ(λ)]
· E
[

λ · τ(λ)
λ+ L · µλ

]

(4.21)

Now, setting τ(x) = c · xk in Eq. (4.21), gives

P(src.) ≥
1

E[λk]
· E
[

λk+1

λ+ L · µλ

]

(4.22)

Using Eq. (4.16) - Eq. (4.18) (where instead of k we consider k+1), the result for P(src.) follows
similarly as before.

The expressions of Result 10 depend only on 3 parameters (CVλ, k, L) and, thus, could be
used to tune Relay-Assisted schemes: At first, since mobility (CVλ) and traffic (k) parameters
are characteristics of the network, they either remain constant or change slowly over a long time
period. Hence, we can assume that nodes know their values, or can estimate them (e.g. with a
distributed mechanism, locally, etc.) [8,45]. Then, the required number of relays L to achieve a
certain expected delay, could be easily estimated.
Practical Example: If the measured network characteristics are CVλ = 2 and k = 2, then from
Result 10 we get R = 5

9+L . Therefore, to achieve delivery delay two times faster than Direct
Transmission, one extra copy should be used (L = 1→ R = 0.5), while to achieve 4 times faster
delivery, L = 11 relay nodes are needed. In the latter case, if traffic/mobility heterogeneity has
not been taken into account [129], the prediction would be L = 3 and this would lead only to
2.5 (instead of 4) times faster delivery (i.e. R = 5

12).

4.3.3 Implications

It is evident from the above example that traffic heterogeneity can have a major impact on
performance and thus protocol design. Table 4.2 formalizes this impact, by considering how
Rmin and Pmin (Eq. (4.8) and Eq. (4.9)) behave:
The middle column shows their monotonicity as mobility heterogeneity (CVλ), traffic hetero-
geneity (k), and amount of extra copies (L) increase. For instance, when k increases (ր), Rmin

and Pmin increase (ր) too.
The right column gives their values in the limit for large/small k or CVλ; e.g.

lim
CVλ→0

Rmin = lim
CVλ→0

1 + (k − 1) · CV 2
λ

1 + k · CV 2
λ + L

=
1

1 + L

and

lim
CVλ→∞

Pmin = lim
CVλ→∞

1 + k · CV 2
λ

1 + (k + 1) · CV 2
λ + L

= 1− 1

k + 1

In this section, we elaborate on some important implications that follow from Table 4.2.
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Table 4.2: Rmin, Pmin: Monotonicity and Asymptotic Limits

Parameter Monotonicity as Limits for

x parameter x increases ր x → min{x} x → max{x}

mobility

heterogeneity:

CVλ ∈ [0,∞)

Rmin

increases ր , if k > 1 + 1
L

decreases ց , otherwise

Pmin

increases ր , if k > 1
L

decreases ց , otherwise

lim
CVλ→0

Rmin =
1

1+L

lim
CVλ→0

Pmin =
1

1+L

lim
CVλ→∞

Rmin = 1-
1

k

lim
CVλ→∞

Pmin = 1-
1

k+1

traffic

heterogeneity:

k ∈ (kmin,∞)

Rmin, Pmin increase ր lim
k→kmin

Rmin, Pmin = 0 lim
k→∞

Rmin, Pmin = 1

extra copies:

L (L ≪ N)
Rmin, Pmin decrease ց -

Gain of Extra Copies

A strong positive correlation (large k) between traffic and mobility reduces the added value of
extra copies (i.e. Rmin, Pmin ր as k ր). This indicates that, as correlation (k) increases, one
needs to distribute message copies to more relays nodes in order to achieve a certain performance
improvement compared to the baseline, Direct Transmission.

In contrast, a negative (or weak positive) correlation renders each extra copy more useful
(i.e. Rmin, Pmin → 0 as k → kmin

6). The fact that a weak positive correlation, e.g. k ∈ (0, 1
L),

actually makes extra copies more useful might be a bit surprising. However, it is explained as
following: Mobility heterogeneity (when traffic is homogeneous or uncorrelated with mobility)
affects negatively the message delivery delay (of random protocols and Direct Transmission) [76,
113], whereas positively-correlated traffic has an opposite effect (i.e. decreases delay). The
counterbalancing effects of these two factors determine a threshold (e.g. 1 + 1

L for Rmin or 1
L

for Pmin) under which the negative effects of heterogeneity affect more the message delivery
process. Our framework, not only reveals this inherent trade-off, but also provides the tools for
quantifying such thresholds.

From the above discussion it becomes evident that it is crucial to identify whether a traffic-
mobility correlation exists in a given scenario, and what its nature is, as this could decide whether
the overhead of using few or more extra copies is justified or would just waste a lot of valuable
resources. In practice, this means that a relay-assisted protocol should be complemented with an
online estimation algorithm, collaborative or local. Such schemes have been proposed [8, 45] to
collect contact related information for forwarding algorithms, but would now need to maintain
also traffic-related information and correlate it with the information about the node contact
rates, in an efficient manner.

6The values of kmin are given in Result 10.
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Routing for Unicast Applications

For high heterogeneity (traffic and mobility), our results imply that a unicast message is likely
to arrive to its destination at the time the source and destination come in contact (i.e. Rmin,
Pmin → 1 as k,CVλ →∞). This raises questions about the usefulness of mobile social networking
for unicast applications in which end-to-end traffic is expected to be highly correlated with
contact frequency (e.g. Facebook messaging) [54,138].

On the other hand, our results suggest that potential unicast applications with an end-to-end
traffic demand between nodes with non-frequent meetings, i.e. scenarios with small or negative
k, (e.g. social peers residing in different communities) could benefit a lot (more than normally
assumed).

Although these observations might appear somewhat self-evident at first glance (note however
the case described in the previous subsection), the question of how to tune protocols and choose
the right number of replicas stills remains. To our best knowledge, our results are the first to
provide closed form, quantitative insights into the tradeoffs involved in real scenarios with both
mobility and traffic heterogeneity.

Moreover, one could raise a point about their applicability for sophisticated protocols that
choose relays intelligently (e.g. based on contact rates, social graphs). In this case, a source node
could try to wait and select better relays than giving the copies to the first randomly encountered
peers, thus improving the impact per replica. Nevertheless, in a highly heterogeneous scenario,
a source might need to wait a long time until it encounters such good relays (“spray” phase) and
this could counter-balance the effect of better relays. In Section 4.5, we prove that the qualitative
implications of our results hold also for such mobility-aware protocols, which exploit mobility
heterogeneity in order to select better relays. A complementary explanation for this qualitative
result is given in the end of this section (see Fig. 4.2 and the corresponding commentary).

Content-Centric Communication

While our results are somewhat pessimistic when it comes to the usefulness of MSNs for unicast
applications, the opposite holds when it comes to modern, content-centric applications (e.g. file
sharing, D2D-based offloading, service composition). In such applications nodes are looking, for
example, for some content of interest [50] or service [119], which they can access directly from
any encountered node that offers it. If the interests of nodes are heterogeneous (which is known
to be the case [15]) and nodes with similar mobility patterns tend to have some similarity in
their interests too (evidence for this does exist [135]), then our results suggest: (i) that there
is a better chance to find a content or service “soon” from a directly encountered node than
one would expect in homogeneous scenarios, and (ii) coming up with complex, resource-costly
mechanisms, e.g. multi-hop query-response, directories, etc., might not be necessary.

To put some extra evidence on our arguments and further demonstrate how and why traffic
heterogeneity affects the relative performance, in Fig. 4.2 we compare the message delay of (i)
Direct Transmission (i.e. the protocol with the highest delay), (ii) Relay-assisted routing (Spray
and Wait, SnW, [129] with L = 5 copies) and (iii) Epidemic routing [137] (i.e. the protocol with
the lowest delay), in two scenarios, for varying traffic heterogeneity (k). Two main observations,
with respect to the previous implications, can be made in Fig. 4.2.
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Figure 4.2: Message delay under Direct Transmission, Spray and Wait (L = 5), and Epidemic routing in scenarios
with varying traffic heterogeneity; mobility parameters are µλ = 1 and (a) CVλ = 1 and (b) CVλ = 2.

At first, an increasing amount of traffic heterogeneity/correlation closes the performance gap
between the best (Epidemic) and the worst (Direct Transmission) forwarding policies. Hence,
it becomes evident that the possible gain one could achieve by using any routing protocol and
any number of extra copies, diminishes. As a result, routing schemes, whose design is crucial
in homogeneous scenarios (since the improvement gap is large; see Fig. 4.2 for regions with low
k), become less important in heterogeneous scenarios with highly correlated traffic (since the
improvement cannot be large; see Fig. 4.2 for regions with high k) and/or less necessary (since
comparable performance can be achieved with Direct Transmission; e.g. Fig. 4.2(b) for k = 4).

Second, the delay of Direct Transmission decreases radically as traffic heterogeneity in-
creases7. Although the delay of Relay-assisted routing decreases with traffic heterogeneity k
too, the effect is less significant. Specifically, an observation of the delay curves for Direct
Transmission and Relay-assisted routing in Fig. 4.2(a), shows that the delay ratio R = E[TR]

E[TDT ]
increases as traffic becomes more heterogeneous. However, this increase is mainly due to the
improved performance of Direct Transmission rather than this of Relay-assisted routing.

4.4 Model Validation

To validate our model and analysis, in this section we compare the theoretical results against
Monte Carlo simulations on various synthetic scenarios, and on datasets of real networks.

4.4.1 Synthetic Simulations

We generate synthetic networks, conforming to the mobility and traffic models of Section 4.2,
as following:

7The convergence is faster for scenarios where node mobility is more heterogeneous (Fig. 4.2(b)), suggesting,
thus, that the effects of traffic heterogeneity are even more important when coupled with highly heterogeneous
node mobility.
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Figure 4.3: R in scenarios with varying (a) mobility and (b) traffic heterogeneity. Simulation results are denoted
with circles; the theoretical predictions of Result 9 (exact predictions) with continuous lines; and the lower bounds
Rmin (Result 10) with dashed lines.

(i) We assign to each pair {i, j} a contact rate λij , which we draw randomly from fλ, and create
a sequence of contact events (Poisson process with rate λij).
(ii) Since E[τij ] = τ(λij) (from Def. 9), we draw the traffic rate for each pair {i, j} as τij ∼
Uniform[0, 2 · τ(λij)].
(iii) Then, we simulate a large number of message exchanges, choosing randomly for each message
the source-destination pair according to the weights τij.

We created different scenarios (N,L, fλ, τ(·)) to verify our analysis under various network
parameters. Here, we present the simulation results for scenarios with N = 500 nodes8. As
Relay-assisted routing, we used the Spray and Wait protocol [129] with L = 5 copies. To be
consistent with the analysis of Section 4.3.2, we used the Gamma distribution as the contact
rates distribution fλ and traffic functions of polynomial form, τ(x) = c · xk.

In Fig. 4.3 and Fig. 4.4 we present simulation results for the ratios R and probabilities P(src.),
along with the corresponding theoretical results (exact predictions of Result 9 and lower bounds
of Result 10), in scenarios with varying mobility and traffic heterogeneity.

Fig. 4.3 shows the delay ratio R: (a) in three scenarios with different traffic functions τ(x)
(namely9: c · √x, c · x2, and c · x4), under varying mobility heterogeneity; and (b) in three
mobility scenarios with CVλ = {0.5, 1, 2}, under varying traffic heterogeneity. A first observation
is that the exact expressions of Result 9 (continuous lines) can accurately predict the metric R
(simulation results are denoted with circles). Additionally, the lower bounds are always below
the simulation curves (as expected), and in many scenarios are quite tight.

Under the same mobility (CVλ) and traffic (k) simulation scenarios, similar observations can
be made for the source delivery probability P(src.) in Fig. 4.4, where the exact expressions of
Result 9 accurately match the simulation results and the bounds of Result 10 are tight in most
scenarios.

8The simulations we ran for networks with N ∈ [100, 1000] nodes, gave us similar results.
9The value of c does not affect the performance (see also Result 10).
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Figure 4.4: P(src.) in scenarios with varying (a) mobility and (b) traffic heterogeneity. Simulation results are
denoted with circles; the theoretical predictions of Result 9 (exact predictions) with continuous lines; and the
lower bounds Pmin (Result 10) with dashed lines.

In general, for both the metrics R and P(src.), the theoretical lower bounds are less tight
for scenarios where mobility is quite heterogeneous. Specifically, in Fig. 4.3(a) and 4.4(a), the
bounds are less close to the simulation curves in the regimes where CVλ becomes larger than 2.
Also, in the scenarios with varying traffic heterogeneity (Fig. 4.3(b) and 4.4(b)), the bounds
are tight for scenarios with small and moderate mobility heterogeneity, and become less tight
only in the scenarios with CVλ = 2 (bottom plots of Fig. 4.3(b) and 4.4(b)).

In every scenario, the simulation curves R and P(src.) have the monotonicity we predicted in
Table 4.2 (middle column) for the theoretical bounds Rmin and Pmin. For instance, when traffic
heterogeneity (k) increases, R and P(src.) always increase as well (Fig. 4.3(b) and 4.4(b)). Also,
in the regimes that k ≤ kmin

10 the simulation values of the considered metrics become almost
zero, and for large k (especially in the bottom plots of Fig. 4.3(b) and 4.4(b), where mobility
is also very heterogeneous) they get close to 1, thus validating the qualitative predictions of
Table 4.2 (right column).

The simulation results in Fig. 4.3(a) and 4.4(a), where we present scenarios with varying
mobility heterogeneity (CVλ), validate our predictions for the monotonicity and limiting behavior
as well. For example, in Fig. 4.3(a) for k = 0.5, where the traffic-mobility correlation is small (the
same holds also for negative correlations), R and Rmin decrease as the mobility heterogeneity
increases (as suggested in Table 4.2). In the rest of the plots, the bounds and the corresponding
simulated values increase, demonstrating that the gain of the extra copies diminishes under
such conditions, and, thus, confirming our qualitative results (Section 4.3.3). For example, in
the bottom plot (k = 4) of Fig. 4.3(a), we can see that the improvement offered by the extra
relays is at most 6× (since R = 1

1+L = 1
6) for homogeneous network (CVλ = 0), while for

CVλ > 2 the extra gain is at most 1.25× (since R > 0.8); that is, even using 5 relays will only

10(i) kmin = 0 and kmin = 0.75 for the middle (CVλ = 1) and bottom (CVλ = 2) plots in Fig. 4.3(b),
respectively; and (ii) kmin = −1 and kmin = −0.25 for the middle (CVλ = 1) and bottom (CVλ = 2) plots in
Fig. 4.4(b), respectively.

95



CHAPTER 4. MODELING AND ANALYSIS OF COMMUNICATION TRAFFIC
HETEROGENEITY IN MSNs

Table 4.3: Datasets Information

Dataset Nb of Nodes Contacts Traffic

Gowalla/Twitter (AU) 1004 Check-ins Tweets

(SF) 479

Strathclyde 24 Bluetooth Proximity Calls/SMS

marginally improve the delay. Similarly, from Fig. 4.4(b) and for CVλ = 2, we can see that,
while for almost homogeneous traffic (k < 0.5) the probability of the message being delivered
through direct transmission, P(src.), gets less than 40%, when traffic becomes very heterogeneous
(k ≥ 4), this probability is around 80%.

4.4.2 Real-World Networks

To further investigate the applicability of our results in real-world networks, we conduct simu-
lations on datasets collected from online social networks (Gowalla / Twitter dataset [54]) and a
mobile phone usage experiment (Strathclyde dataset [90]). In the following discussion we present
the datasets, whose main features can be found also in Table 4.3.11

Gowalla / Twitter dataset

Gowalla was a location-based social network, where users were able to check-in at ”spots” (bars,
shops etc.) through their mobile phones. In addition, a user could connect her Gowalla account
to her Twitter account. Hence, from this dataset, we could retrieve information related both to
nodes’ mobility (Gowalla check-ins) and communication traffic (tweets).

Mobility: In this dataset, we consider as a contact event the time when two users reside in
the same ”spot” simultaneously12. The contact rates λij can be computed from the number of
the contact events and the inter-contact time intervals. Then, to incorporate this information
in our model, we fit the contact rates distribution fλ with a known probability distribution
f̂λ. Specifically, in the two cities, Austin (AU) and San Francisco (SF), for which we have the
most user records (1004 and 479 nodes, respectively), the experimental CCDF (complementary
cumulative distribution function) of the contact rates λij can be approximated by a straight line
on a log-log plot. This implies that fλ could be fitted with a Pareto distribution, instead of the
Gamma distribution assumed in Section 4.3.2 and often observed in traces. Therefore, we use
here the expressions of Result 9, instead of Result 10.

Communication Traffic: As an indication for the communication traffic that two nodes
would exchange in an opportunistic network, we use the number of tweets in which they are
both involved. Hence, for each pair {i, j} we set its traffic rate τij equal to the number of
tweets posted by i to j or by j to i, i.e. τij = #tweetsij . Then, we approximate the observed

11Here, we need to stress that the selected datasets are not necessarily characteristic examples of MSNs; e.g.,
Gowalla is a very sparse dataset in terms of node contacts, and phone calls (Strathclyde) is not considered among
the main opportunistic applications. However, they are some of the few available datasets containing the type
of data we needed (i.e. both mobility and traffic information), and, thus, this was our best option for a realistic
validation.

12Since Gowalla users only check in and do not check out, we cannot infer directly this information. Therefore,
following the methodology of [54], we assumed that each user remains at a spot she visited for 1 hour.
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relation between traffic and contact rates (τij ∼ λij) with a function τ̂(x), in order to use it in our
theoretical expressions. We also investigate more possible correlations between the opportunistic
traffic (τij) and the Twitter traffic (#tweets), by creating two additional scenarios where we set
τij =

√

#tweetsij and τij = (#tweetsij)
2. The approximative functions τ̂(x) for each scenario

are presented in Table 4.4, where we can see τ̂(x) being of type c · xk with k < 1.

Strathclyde dataset

The Strathclyde dataset was collected in an experiment, in which 24 high school students were
selected and given modified smartphones, which recorded proximity events (through Bluetooth),
calls and sms exchanged between the phone user and the other participants.

Mobility: In this dataset the contact events were already recorded and, thus, we did not
have to preprocess the data as in the Gowalla dataset. We followed the same methodology to
calculate the contact rates λij and fit their distribution with a Gamma distribution, denoted as

f̂λ.

Communication Traffic: We consider three scenarios, in each of which we use a different
communication traffic metric: (i) total number of calls and sms, τij = #callsij + #smsij, (ii)
total duration of calls, τij = callT imeij , and (iii) total length of sms (in characters), τij =
smsLengthij. For each scenario, we fit function τ̂(x) as before, through the relation τij ∼ λij .

Simulations

In both datasets and for each traffic scenario, we generate 10000 messages at random time points,
choosing each time the source - destination pair according to the weights τij. We consider Direct
Transmission and Spray and Wait routing [129] with L = 2, 5, 10, 20 copies per message. In the
analytical expressions we use the fitted functions f̂λ(x) and τ̂(x).

In Fig. 4.5 we present the simulation values for the ratio R and the probability P(src.)

(green/left bars), and the corresponding theoretical predictions (yellow/right bars). We con-
sider homogeneous and heterogenous (denoted with ∗) traffic scenarios in the Gowalla/Twitter
(AU and SF ) and Strathclyde (St) datasets. The first observation is that in all scenarios, for
heterogeneous traffic (i.e. scenarios denoted with ∗), the values of the metrics R and P(src.)

increase, compared to the corresponding homogeneous scenarios. This shows that the relative
gains of relay-assisted schemes decrease with traffic heterogeneity, as our theoretical results pre-
dict. Moreover, larger performance differences predicted by our theory, are matched by larger
performance differences in the respective simulation scenarios as well. For example, in the SF
scenarios (middle bars in Fig. 4.5(a) and Fig. 4.5(b)), the theoretical predictions for hetero-
geneous traffic are slightly higher than for the homogeneous case; the same holds also for the

Table 4.4: Fitting traffic functions for the Gowalla dataset

Scenarios: S1 S2 S3

τij
√

#tweetsij #tweetsij (#tweetsij)
2

τ̂(x) (AU) c · x0.6 c · x0.83 c · x0.79
τ̂(x) (SF) c · x0.31 c · x0.35 c · x0.37
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Figure 4.5: Simulation results for R and P(src.) and theoretical predictions for homogeneous and heterogeneous
(∗) traffic scenarios on the datasets.

simulation results, where it can be seen that R and P(src.) do not significantly increase with
traffic heterogeneity. On the other hand, in the St scenarios (right bars in Fig. 4.5(a) and
Fig. 4.5(b)), our results predict a higher difference (between heterogeneous and homogeneous
cases) than before, which is also confirmed by the simulation results where the performance
effects are not negligible.

To further demonstrate to what extent our results can capture the effect of traffic hetero-
geneity in real scenarios, in Table 4.5 we focus on the qualitative predictions of our theory,
by comparing a number of scenarios with different amounts of heterogeneity to each other, for
the Gowalla/Twitter dataset13. Specifically, if the simulated performance improves from one
scenario to another, and so is the theoretical prediction, the prediction is assumed to be cor-
rect and denoted with X. “Incorrect” predictions are denoted with ×. For example, in the
scenarios AU-S1 and SF-S3 the simulation values for the ratios R are R(AU−S1) = 0.89 and
R(SF−S3) = 0.94, i.e. R(AU−S1) < R(SF−S3). For the theoretical predictions it holds also that
R(AU−S1) = 0.64 < R(SF−S3) = 0.68 and, thus, the prediction is assumed to be correct. The
elements above the diagonal refer to the ratio R, whereas the lower triangular part refers to the
probability P(src.) predictions.

It is evident that in the majority of the cases we consider, the theoretical results can capture
the relative changes in network performance, even between different environments (i.e. between
AU and SF )14. The same conclusions can be reached by the analysis in the Starthclyde dataset,
in which all the respective comparisons were found to be correct X.

13We denote with S1, S2 and S3 the corresponding scenarios presented in Table 4.4 and with HOM the scenarios
with homogeneous traffic.

14Differences in simulation and theoretical results between different heterogeneous scenarios of the same traces,
are very small (due to the dataset limitations), and that is also the main reason for some × entries in Table 4.5.
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Table 4.5: Comparison of predictions for the metrics R and P(src.) between different scenarios on the Gowalla
dataset

* R AU SF

P(src.) * HOM S1 S2 HOM S1 S3

HOM * X X X X X

AU S1 X * X X X X

S2 X X * × X X

HOM X X X * X X

SF S1 X X × X * X

S3 X X × X X *

4.5 Extensions

We have tried to present our results in the context of simple schemes (e.g. unicast traffic,
random relay selection), to keep analysis tractable and illustrate key principles. In this section,
we discuss how our framework could be applied in some additional cases. Although far from
complete, we believe this set of examples, further underlines the utility of our analysis.

4.5.1 Mobility-Aware Protocols

Mobility-aware schemes are often used to select good relays for the intended replicas, rather
than picking random ones, e.g. [29, 59, 60, 98]. The selection of the relays is usually based on
their social or mobility characteristics. For instance, in encounter-based routing (EBR) [98], the
more frequently a node i encounters node d, the higher the probability to become a relay of a
message destined to d.

The relay-selection mechanism in a number of proposed mobility-aware protocols can be
described as following:

Definition 10. The probability pi a node i to be selected as a relay for a message destined to
node d, is related to their contact rate λid and this relation is described by a function p(λid).

As an example, we present two protocols belonging to the above class and their p(λ) functions:
(a) a modified mobility-aware version of spray and wait [129] protocol (we refer to it as U1 ),
and (b) a variation of the EBR [98] protocol (we refer to it as U2 ), where each relay can hold
only one message copy.

U1 : A node i, which would be selected as a relay by the spray and wait mechanism, under
U1 becomes a relay with a probability pi that is proportional to its contact rate with the
destination d, i.e. pi = p(λid) = c · λid, where c a normalizing factor such as p(λ) ∈ [0, 1].

U2 : For each message copy, the source node s selects the relay node i with a probability pi that
is computed according to the EBR mechanism, i.e. pi = p(λid) =

λid

λid+λsd
.

In the following corollary, we prove that our Results 9 and 10 can be simply modified and
capture such mobility-aware protocols as well. Corollary 3 follows from a similar analysis as in
Section 4.3, whose main analytical steps are described in Section 4.8.2.
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Figure 4.6: P(src.) of mobility-aware routing in (a) synthetic scenarios with varying mobility (CVλ) and traffic
heterogeneity (k), and (b) real networks with homogeneous and heterogeneous traffic.

Corollary 3. Under a mobility-aware Relay-Assisted protocol conforming to Def. 10, Results 9
and 10 are modified as:
Result 9: fR is given by the L-fold convolution of fu(λ), where

fu(x) =
1

E[p(λ)]
· p(x) · fλ(x)

Result 10: The number of copies L is multiplied by cu, where

cu =
E[λ · p(λ)]

E[λ] ·E[p(λ)]

For instance, applying Corollary 3, the expression for the delay ratio R, becomes

1 ≥ R ≥ Rmin =
1 + (k − 1) · CV 2

λ

1 + k · CV 2
λ + cu · L

(4.23)

and for the U1 protocol presented above, cu is given by the expression15:

c(U1)
u = 1 + CV 2

λ (4.24)

When mobility is highly heterogeneous (i.e. high CVλ), c
(U1)
u becomes large, and thus Rmin

and Pmin decrease compared to the random replication mechanism (e.g. random SnW ). This
confirms that the performance gain is larger when mobility-aware protocols are used. How-
ever, even in this case, as traffic heterogeneity increases, the performance gain diminishes, i.e.
Rmin, Pmin → 1.

We further demonstrate some preliminary simulation results suggesting that our conclusions
hold also for mobility-aware routing. We use the U2 protocol presented above. In Fig. 4.6(a)

15An expression for cu in the case of the U2 protocol could also be derived, albeit with more complexity, due
to the fact that the function p(λ) involves the source destination contact rate λsd as well.
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we present simulation results for the delivery metric P(src.) on synthetic scenarios with varying
mobility (CVλ) and traffic (k) heterogeneity. Similarly to the random replication case, for
increasing heterogeneity (in mobility and/or traffic) the gain of the extra copies clearly decreases
(i.e. P(src.) increases) under mobility-aware schemes. In Fig. 4.6(b) we compare the probability
P(src.) of scenarios with and without traffic heterogeneity in real networks. As before, the results
are consistent with our theory: the gain of extra copies decreases even for protocols using more
sophisticated techniques for relay selection.

Routing based on Contact Graph Structure

A number of mobility-aware routing schemes, e.g. SimBet [29], BubbleRap [60], are based
on the structure of the contact graph (centrality, similarity, communities, etc.) rather than
the pairwise contact rates. A direct mapping to a function p(λ) (Def. 10) for these protocols
requires a separate, and rather cumbersome analysis for each such protocol, in most cases not
leading to a closed form expression (see, e.g. [112]). However, the contact graphs used to make
forwarding decisions by these more sophisticated protocols, still are built based on pair-wise
contact rates [52]. We thus expect the utility of such mobility-related information to be similarly
affected by the amount of traffic heterogeneity and its relation to mobility patterns.

To test this further, we simulated, as an example, scenarios using the SimBet protocol [29]16.

In Fig. 4.7 we present the simulation results (continuous lines) for the ratio R = E[TSimBet]
E[TDT ]

and

the theoretical predictions Rmin of Eq. (4.23), for different values of the cu parameter (dashed
lines). Two main observations that confirm our intuition are: (i) simulated and theoretical
curves increase in a similar manner, and (ii) one can find (numerically) the value cu that more
accurately predicts the performance.

Although this is clearly not conclusive for the applicability of our result to every mobility-
aware scheme, we believe it helps to corroborate our findings for the interplay between mobility
and traffic heterogeneity on protocol performance.

4.5.2 Multicast Communication

We have also been assuming unicast messages between a {s, d} pair. However, our results apply
also to multicast [36] or anycast (e.g. content sharing or service composition applications) [119]
messages from s, with d being one of the destinations, since similar mechanism are often used
for their dissemination. To demonstrate this, in Table 4.6 we present simulation results for two
multicast scenarios, with homogeneous (HOM ) and heterogeneous (HET ) traffic (τ(x) = c ·x4),
under varying mobility heterogeneity. A source sends messages to 5 destinations (each selected
with a probability ∝ τij) either by Direct Transmission or by Relay-Assisted routing with L = 5
copies. As delivery delay, we consider the delay till all the destinations get the message. It
is evident that R and P(src.) (i) increase significantly with mobility heterogeneity when traffic
is heterogeneous, and (ii) become much larger compared to the homogeneous case (where R
decreases and P(src.) is constant), which is in agreement with our results.

16For the contact graph we considered the 10% most frequently meeting pairs following the guidelines of [52],
we set the similarity and betweenness weights α = β = 0.5 [29], and we generated multiple copies as in [30].
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Figure 4.7: Delay ratio R in two scenarios with varying traffic heterogeneity k. Relay-assisted routing is SimBet
with (a) L = 5 and (b) L = 10 message copies.

Table 4.6: Multicast Communication

CVλ 0.1 0.5 1 1.5 2

HOM R 0.18 0.12 0.01 0 0

P(src.) 0.01 0.01 0.01 0.01 0.01

HET R 0.18 0.26 0.39 0.52 0.61

P(src.) 0.01 0.03 0.12 0.26 0.41
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4.6 Related Work

Useful implications for mobile social networking have arisen from the investigation of mobil-
ity/social ties and social ties/communication traffic correlations, which have been studied ex-
tensively and under different disciplines, like anthropology [41], sociology [31], social media [37]
or pervasive social networks [109]. For example, [37] shown that the amount of exchanged
communication traffic between users of OSNs depends on their social relationships.

On the other hand, the communication traffic / mobility correlation has not been given
similar attention. There exist only a few works [54,138] studying it in a framework relevant to
MSNs. In [54], Hossmann et al. collected and analysed two datasets from online social networks
(Facebook and Gowalla / Twitter), and investigated the relations among three dimensions:
mobility, social ties, communication traffic. With respect to our study, they found that there
is strong dependence between mobility and traffic, and, specifically, node pairs that contact
during the experiments’ duration, communicate with higher probability than the other pairs.
Correspondingly, authors in [138] analysed a massive dataset of Call Detail Records (CDRs) of
6 million users and shown a positive correlation between the mobility and communication traffic
patterns. Not only they shown that the higher the contact rate (λij) of a node pair is, the
higher the probability that the nodes communicate intensively, but also found that information
inferred by the mobility patterns can work as a good predictor for future communication events.
However, despite the fact that [54,138] show clearly that communication traffic is heterogeneous
(and correlated to mobility), to our best knowledge, its effects on communication performance
have not been studied previously.

Finally, with respect to our results and the insights obtained from them, it has already
been observed [59, 92] that realistic mobility patterns (e.g. locality, community) can hurt the
performance of Relay-Assisted routing (especially simple, random protocols [129]). However,
this is a performance degradation that is due to the relays being too similar to the source
(e.g. all in the same community [59] or with common characteristics [92]). Instead, the relative
performance degradation here comes due to the source and relays being too different in terms
of their encounter rates with the destination.

4.7 Conclusions

Motivated by (i) recent findings indicating heterogeneous traffic patterns in mobile social net-
works and (ii) the lack of related studies, we modelled traffic heterogeneity and studied how it
affects the performance in MSNs. We found that the effects can be significant, changing our
understanding of common design principles, such as the added value of relays. Despite the fact
that some of our qualitative conclusions seem to be rather intuitive, they have not attracted
any focus in previous studies, where performance analysis of communication schemes is con-
ducted assuming homogeneous traffic. This indicates a necessity for revisiting the evaluation of
protocols in scenarios that entail diversity in the traffic exchanged between nodes.

We believe that our study provides an initial understanding on the effects of traffic hetero-
geneity. However, traffic patterns in real networks might have much more complex characteristics
than what can be captured by our framework, e.g. time-dependent traffic/mobility correlations.
Therefore, for a more complete characterisation of traffic demands in mobile social networking
(either for end-to-end or content-centric applications [50, 119]), we believe that further exper-
imental (e.g. measurements, recognition of traffic patterns in available datasets, etc.) and
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analytical research is needed.

Moreover, our results have some interesting implications about the usefulness of MSNs for
various applications. Specifically, common communication traffic patterns seem to have a pos-
itive impact on the performance of content-centric applications, rendering them a promising
direction for future MSNs. To this end, in the following chapters, we turn our attention to
content-centric opportunistic communication, and investigate various aspects related to mobil-
ity/traffic patterns and communication performance.

4.8 Appendix: Supplementary Theoretical Results and Proofs

4.8.1 Mobility Independent Heterogeneous Traffic

Heterogeneous communication traffic patterns that are independent of the underlying mobility,
can be captured by the following definition (with respect to Def. 9).

Definition 11 (Mobility Independent Heterogeneous Traffic). The end-to-end traffic demand
(per time unit) between a pair of nodes {i, j}, is a random variable τij, with finite mean value
E[τij ] = µτ , µτ ∈ (0,∞).

Then, under Def. 11, Lemma 5 states that the effective contact rate between sources and
destinations (λsd ∼ fτ (λ)) is not different than the contact rate between a randomly chosen pair
of nodes (λij ∼ fλ(λ)). Therefore, it follows evidently that neither the average communication
performance will be affected by traffic heterogeneity, when it is mobility independent.

Lemma 5. The probability density function fτ of the contact rate between the source and the
destination {s, d} of a random message, in a network following Def. 3 and 11, converges in
probability as follows:

fτ (x)
p→ fλ(x)

Proof. Let us consider the same notation and methodology as in the proof of Proposition 1. The
key difference is that now (under Def. 11), the mean value of the random variables τij is µτ (i.e.
independent of mobility). Thus, it holds that for a large network (weak law of large numbers)

X1 =
T (λ)

‖N (λ)‖
p→ µτ and X3 =

∑

i

∑

i τij
N(N − 1)/2

p→ µτ

Then, applying Cramér’s theorem, gives

X1 ·X2 ·
1

X3

p→ µτ · fλ(λ) ·
1

µτ
= fλ(λ)

which proves the Lemma.

4.8.2 Mobility Aware Protocols - Proof of Corollary 3

Since the relay selection is mobility dependent, the contact rates between relays and destinations
will not be distributed with fλ. Following similar arguments as in the proof of Proposition 1, it
can be shown that for mobility-aware protocols that follow the model presented in Section 4.5,
Lemma 6 holds.
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Lemma 6. The contact rate between a relay and the destination of a random message, under
mobility-aware routing, converges in probability as follows:

fu(x)
p→ 1

E[p(λ)]
· p(x) · fλ(x) (4.25)

where E[p(λ)] =
∫∞
0 p(x)fλ(x)dx

Using Lemma 6, Results 9 and 10 are modified as following:
Result 9: The function fR used in Result 9 (see also Eq. (4.6)-Eq. (4.7) in its proof) will be

now the L-fold convolution of fu(λ) (rather than fλ), i.e. fR = f
(∗L)
u .

Result 10: Since fR = f
(∗L)
u , the mean value ER[y] (see Eq. (4.12)) will be given now by

ER[y] = L ·Eu[y] = L ·
∫ ∞

0
y · fu(y)dy (4.26)

Substituting fu from Eq. (4.25) to Eq. (4.26), gives

ER[y] = L ·
∫ ∞

0
y · p(y)

E[p(λ)]
· fλ(y)dy = L · E[λ · p(λ)]

E[p(λ)]
(4.27)

where the expectations are taken over fλ.
Comparing Eq. (4.12) and Eq. (4.26), it is easy to see that one need to replace the term

L · µλ with a term L · E[λ·p(λ)]
E[p(λ)] = cu · L · µλ, where

cu =
E[λ · p(λ)]
µλ · E[p(λ)]

=
E[λ · p(λ)]

E[λ] · E[p(λ)]
(4.28)
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Chapter 5

Content-Centric Traffic: Effect of
Content Popularity and Availability
Patterns

5.1 Introduction

The proliferation of “smart” mobile devices has led researchers to consider MSNs as a way
to support existing infrastructure and/or novel applications, like file sharing [34, 142], crowd
sensing [105,123], collaborative computing [26,119], offloading of cellular networks [50,85,141],
etc. While MSNs initially proposed for end-to-end communications, lately the trend is shifting
to content-centric communications. Some content-centric applications for which mobile social
networking has been considered are: (i) content sharing [10,34,99]: the source(s) of a ”content”
(e.g. multimedia file, web page) might want to distribute it (e.g. user generated content) or is
willing to share it with other nodes (e.g. content downloaded earlier); (ii) service or resource
access [26,119]: nodes offer access to resources (e.g. Internet access) or services (e.g. computing
resources); (iii) mobile data offloading [50, 85, 141]: the cellular network provider, instead of
serving separately each node requesting a given ”content” (e.g. a popular video, or software
update), distributes a few copies of the ”content” in some relay nodes (or holders) and they can
further forward it to any other node that makes a request for it.

The performance of these mechanisms highly depends on who is interested, in what, and where
it can be found (i.e. which other nodes have it). While the effect of node mobility has been
extensively considered (e.g. [10,34,113]) content popularity has been mainly considered from an
algorithmic perspective (e.g [85, 99]), and in the context of a specific application. Despite the
inherent interest of these studies, some questions remain:

Would a given allocation policy work well in a different network setting? Are there interest
patterns that would make a scheme generally better than others?

Key factors like content popularity and content availability might impact the performance
or even decide the feasibility of a given application altogether. In this paper, we try to provide
some initial insight into these questions, by contributing along the following key directions:

• We propose a simple analytical framework that is applicable to a range of mobility and
content popularity patterns seen in real networks; to our best knowledge, this is the first
application-independent effort in this direction (Section 5.2).
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• We provide closed form expressions for important metrics that require few statistics about
the aggregate node mobility and content popularity; these results facilitate online perfor-
mance prediction and protocol tuning, compared to approaches requiring detailed per node
statistics, as e.g. [85] (Section 5.3).

• While a detailed application-specific optimization is beyond the scope of this paper, we
demonstrate how our analysis can be applied to an example application, mobile data of-
floading, and can help optimize its performance in a generic setting (Section 5.4).

5.2 Content-Centric Traffic Model

We consider a network N with N nodes moving according to the model of Def. 31

We assume that each node might be interested in one or more “contents”. A content of
interest might refer to (i) a single piece of data (e.g. a multimedia file, a google map) [141], (ii)
all messages/data belonging to a category of interests (e.g. local events, financial news) [28,142],
(iii) updates and feeds (e.g. weather forecast, latest news) [79], etc.

A number of content-sharing applications and mechanisms have been proposed in previous
literature, from publish-subscribe mechanisms to “channel”-based sharing and device-to-device
offloading, etc., (e.g. [79,105,123,142]). To proceed with our analysis we need to setup a simple
model of content/service access that can yet capture different (but of course not all) content-
centric applications and approaches.

The main notation we use in our model and analysis is summarized in Table 5.1.

5.2.1 Content Popularity

We assume that when a node is interested in a content or service, it queries other nodes it
directly encounters for it. We denote the event that a node i ∈ N is interested in a contentM
(or, equivalently, i requestsM) as: i →M. We further denote the set of all the contents that
nodes are interested in, as: M = {M : ∃i ∈ N , i → M}. |M| = M , where | · | denotes the
cardinality of a set.

Definition 12 (Content Popularity). We define the popularity of a content M as the number

of nodes N
(M)
p that are interested in it2:

N (M)
p = |C(M)

p |, where C(M)
p = {i ∈ N : i→M} (5.1)

We further denote the percentage of contents with a given popularity value n as

Pp(n) =
1

M

∑

M∈M

I
N

(M)
p =n

, n ∈ [0, N ] (5.2)

where I
N

(M)
p =n

= 1 when N
(M)
p = n and 0 otherwise.

In other words, Pp(n) defines a probability distribution over the different contents and asso-
ciated popularities. In practice, it can be chosen according to common practices (e.g. skewed,
pareto) [34,85,99], or be fitted to real data, if available.

1Our main results can be extended for a contact network, similar to this of Def. 3, but where inter-contact
intervals are Pareto distributed (see Section 5.3.3.3).

2This could be an average, calculated over some time window.
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5.2.2 Content Availability

We assume that a request for a content or service is completed, when (and if) a node that holds
(a copy of) the requested content is directly encountered. We denote the event that a node i

holds (a copy of) a contentM as i ←M, and we define the availability N
(M)
a of a contentM

as

Definition 13 (Content Availability). The availability of a content message M is defined as

the number of nodes N
(M)
a that hold a copy of it.

N (M)
a = |C(M)

a |, where C(M)
a = {i ∈ N : i←M} (5.3)

The availability of a given content might often (although not always) be correlated with
the popularity of that content. A cellular network provider might allocate more holders for
popular contents [85]. In a content-sharing setting, where some nodes might be more willing
than others to maintain and share (“seed”) a content after they’ve downloaded and “consumed”
it, popular content will end up being shared by more nodes. We will model such correlations in
a probabilistic way, as follows.

Definition 14 (Availability vs. Popularity). The availability of any content message M is
related to its popularity through the relation

P{N (M)
a = m|N (M)

p = n} = g(m|n) (5.4)

The above conditional probabilities can describe a wide range of cases where availability
depends on popularity, and some additional randomness might be present due to factors like:
natural churn in the nodes sharing the content, content-dependent differences in the sharing
policies applied by nodes, estimation noise, etc. Some special cases of this model include: (i)
uncorrelated availability, where g(m|n) ≡ g(m); (ii) deterministic availability, where:

N (M)
a = ρ

(

N (M)
p

)

⇔ g(m|n) =
{

1, m = ρ(n)

0, otherwise

where ρ(n) : [1, N ] → [0, N ] can be an arbitrary function. One such example could be a
deterministic approximation of g(m|n) with its average value, namely ρ(n) = ḡ(n) ≡ ∑mm ·
g(m|n).

5.3 Analysis of Content Requests

We will now analyze how different popularity, availability, and mobility patterns (possibly arising
from different applications, policies, and network settings) affect key metrics like: (i) the delay
to access a content of interest, (ii) the probability to retrieve a content before a deadline. A key
parameter for these metrics is the number of holders for the requested content (availability).
The higher this number, the sooner a requesting node will encounter one of them.

While content availability might sometimes be time dependent [99], or the content holders
might be chosen based on their mobility properties [85], we first make two additional assump-
tions that allow us to derive simple, useful expressions. In Section 5.3.3, we relax both these
assumptions.
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Table 5.1: Important Notation

CONTENT TRAFFIC (Section 5.2)

i→M Node i is interested / requests contentM
M Set of contents in the network, |M| = M .

N
(M)
p Popularity of contentM Def. 12

C(M)
p Set of nodes interested in contentM Def. 12

Pp(n) Probability distribution of content popularity Eq. (5.2)

i←M Node i holds a copy of contentM
N

(M)
a Availability of contentM Def. 13

C(M)
a Set of nodes that hold a copy of contentM Def. 13

g(m|n) Availability - Popularity relation Def. 14

ρ(n) Deterministic case for g(m|n)
g(n) The average value of g(·|n)
ANALYSIS (Section 5.3.1)

P req.
p (n) Popularity distribution of a random request Lemma 7

P req.
a (n) Availability distribution of a random request Lemma 8

Tij Time of next meeting between nodes i and j

TM Content access time

XM Sum of meeting rates of j and nodes ∈ C(M)
a Eq. (5.6)
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Assumption 1. The popularity N
(M)
p and availability N

(M)
a of a content M do not change

over time.

Assumption 2. The set of requesters C(M)
p and holders C(M)

a of a content M are independent
of node mobility.

Assumption 1 is valid (or a good approximation), for example, when the number of holders is
chosen by the cellular operator [50,85] or content provider, and other nodes cannot act as holders
or do not have incentives to do so. It is also valid when a given service (e.g. Internet access, or
specific sensor) is offered only by a certain number of devices [119], or the “content” refers to
a channel or category and not a particular file [79]. Nevertheless, if a content is disseminating
and new nodes are willing to share it [141], then its availability might change over time.

Assumption 2 is a reasonable approximation when a mobility oblivious allocation policy is
considered (e.g. [99], or the homogeneous algorithm of [85]) or when there is no knowledge of
the interests-mobility correlation, if any. Nevertheless, there exist scenarios where who holds
what content might depend on the contact rates with other nodes [10,85].

5.3.1 Preliminary Analysis

Assume we observe the network for a long time, during which a large number of requests have
been made. Assume further that we pick one such request randomly, which happens to be for
content M, and we want to predict its performance. We need to answer the following two
questions:

Q.1 What is the popularity ofM?

Q.2 How fast does a requesting node meetM’s holders?

Q.1 is needed to predict the availability for M, which according to Assumption 1 does not
depend on the exact time of the request. Given the availability of M, Q.2 will estimate the
(sum of) contact rates between the requesting node and the holders, according to Assumption 2
and the mobility model.

Answering Q.1

It is easy to see that the popularity of M should be proportional to Pp(n): the higher the
number of different contents with a popularity value n, the higher the chance thatM will be of
popularity n. However, the higher the popularity of a content, the more the requests made for
it. Hence, a first important observation is that the popularity of the content of such a random
request is not distributed as Pp(n) but is also proportional to the popularity value n.

Consider a stylized example, where only two contents exist in the network, content A with
popularity value 10 and content B with popularity value 1. Hence, “half” the contents are of
high popularity (10), and “half” of low (1), or in other words Pp(10) = Pp(1) =

1
2 . However, if

we observe the network for a long time, 10 times more requests will be made, on average, for
content A. Consequently, if we select a request randomly, there is a 10× higher chance that it
will be for content A, that is, for the content of popularity 10. Normalizing to have a proper
probability distribution gives us the following lemma.
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Lemma 7. The probability that a random request is for a content of popularity equal to n is
given by

P req.
p (n) =

n

Ep[n]
· Pp(n)

where Ep[n] =
∑

n n · Pp(n) is the average content popularity 3.

Answering Q.2

The answer to question Q.2 consists of two separate steps: (i) we calculate the number of
holders of M, and then (ii) we calculate how fast the requesting node can meet these holders.
Towards answering (i), Lemma 8 maps the popularity of the content involved in a random
request (derived in Lemma 7) to the number of holders for this content. This number is a
random variable dependent both on the popularity distribution Pp(n), and on the availability
function g(m|n).

Lemma 8. The probability that a random request is for a content of availability equal to m is
given by

P req.
a (m) =

Ep[n · g(m|n)]
Ep[n]

Proof. For a random request for contentM, using the property of conditional expectation, we
can write [121]:

P req.
a (m) =

∑

n

P{N (M)
a = m|N (M)

p = n} · P req.
p (n)

where P req.
p (n) is defined in Lemma 7. Substituting, from Def. 14 and Lemma 7, the above

terms, we successively get

P req.
a (m) =

∑

n

g(m|n) · n

Ep[n]
· Pp(n) =

∑

n g(m|n) · n · Pp(n)

Ep[n]
=

Ep[n · g(m|n)]
Ep[n]

which proves the Lemma.

Having computed the statistics for the content availability, we can now calculate how fast

the requesting node, say j, meets any of the holders i (i.e. nodes i ∈ C(M)
a ). As defined in Def. 3,

the inter-contact intervals are exponentially distributed. Hence, let Tij denote the inter-contact

times between node j and a node i ∈ C(M)
a , and let Tij be exponentially distributed with rate

λij . If we denote with TM the first time until j meets any of the nodes i ∈ C(M)
a (and, thus,

accesses the content), then: TM = min
i∈C

(M)
a
{Tij}, i.e. TM is distributed as a minimum of

exponential random variables, and it holds that [121]:

TM ∼ exp (XM) ⇔ P{TM > t} = e−XM·t (5.5)

3We use subscript p to denote an expectation over the popularity distribution Pp(n), and n denotes the random
popularity values.
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Table 5.2: Performance Metrics when fλ ∼ Gamma with µλ, CVλ and Pp(n) ∼ Pareto(n0, α = 2).

ρ(n) = c · n E[TM] = 1
µλ·CV 2

λ

[

c·n0

CV 2
λ

· ln
(

1

1−
CV 2

λ
c·n0

)

− 1

]

ρ(n) = c · ln(n) P{TM ≤ TTL} = 1− 1
(1+ln(γ))·γln(n0)

where γ = (1 + µλ · CV 2
λ · TTL)

c

CV 2
λ

where

XM =
∑

i∈C
(M)
a

λij (5.6)

Clearly, knowing XM is needed to proceed with the desired metric derivation. Based on
the preceding discussion, XM is a random variable that depends on: (i) the number of content

holders m (i.e. the cardinality of set C(M)
a in Eq.(5.6)), and (ii) the meeting rates with the

holders. Applying Assumption 2, it holds that, conditioning on m, XM (Eq. (5.6)) is a sum of
m i.i.d. random variables λij ∼ fλ(λ), i.e

XM ∼ fmλ(x) = (fλ ∗ fλ · · · ∗ fλ)m , (5.7)

where ∗ denotes convolution, and mean value [121]:

E[XM|N (M)
a = m] = Emλ[x] = m · µλ (5.8)

5.3.2 Performance Metrics

We consider two main performance metrics: the average delay and delivery probability. Based
on the analysis of Section 5.3.1, we derive results under generic content traffic (i.e. Pp(n) and
g(m|n)) and mobility (i.e. fλ(λ)) patterns.

5.3.2.1 Content Access Delay

Result 11. The expected content access delay can be computed with the expression

E[TM] =
1

Ep[n]
· Ep

[

n ·
∑

m

Emλ

[

1

x

]

· g(m|n)
]

Proof. The time TM a node j needs to access a content M is exponentially distributed with
rate XM. However, XM is a random variable itself, distributed with fmλ(x) (Eq. (5.7)). Thus,
we can write for the expected content access delay:

E[TM] =
∑

m

E[TM|N (M)
a = m] · P req.

a (m)

=
∑

m

∫

E[TM|XM = x,N (M)
a = m] · fmλ(x)dx · P req.

a (m) =
∑

m

∫

1

x
· fmλ(x)dx · P req.

a (m) (5.9)
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The last equality follows from the fact that the expectation of an exponential random variable
with rate x is 1

x .
Expressing the integral in Eq. (5.9) as an expectation over the fmλ(x) and substituting

P req.
a (m) from Lemma 8, gives

E[TM] =
∑

m

Emλ

[

1

x

]

· Ep[n · g(m|n)]
Ep[n]

=
1

Ep[n]
·
∑

m

Emλ

[

1

x

]

· Ep[n · g(m|n)] (5.10)

Rearranging the expectations and summation in Eq. (5.10) we get the expression of Result 11.

If the functions fλ(λ), g(m|n) and Pp(n) are known, the expected delay E[TM] can be
computed directly from Result 11, as shown in the following example.

Example Scenario: The contact rates (fλ) follow a gamma distribution, as suggested in [107],
with µλ and CVλ. Content popularity Pp(n) is Pareto distributed, as observed in [83], with
scale and shape parameters n0 and α = 2, respectively. Finally, we consider a (deterministic)
allocation of holders, ρ(n) = c · n (see Section 5.2.2). Then a closed form expression for E[TM ]
is given in the first row of Table 5.2.

However, in a real implementation, it might not be always possible to know the exact dis-
tributions of the contact rates (fλ) and/or the availabilities (g(m|n)), needed to compute the
expression of Result 11. In the following theorem, we derive an expression for E[TM ] that
requires only the average statistics (which are much easier to estimate or measure in a real
scenario), namely (i) the mean value of the contact rates, µλ, and (ii) the average availability
for contents of a given popularity, g(n).

Theorem 2. A lower bound for the expected content access delay is given by

E[TM] ≥ 1

µλ · Ep[n]
·Ep

[

n

g(n)

]

Proof. In Result 11 we can express Emλ

[

1
x

]

as Emλ[h(x)], where h(x) = 1
x . Since h(x) is a

convex function, applying Jensen’s inequality, i.e. h (E[x]) ≤ E[h(x)], gives

Emλ

[

1

x

]

≥ 1

Emλ[x]
=

1

m · µλ
(5.11)

where, in the equality, we used Eq. (5.8).
Substituting Eq. (5.11) in the expression of Result 11, gives

E[TM] ≥ 1

µλ ·Ep[n]
·Ep

[

n ·
∑

m

1

m
· g(m|n)

]

(5.12)

The sum in Eq. (5.12) is the expectation over g(·|n), i.e.
∑

m

1

m
· g(m|n) = Eg

[

1

m

]

(5.13)

Applying, as before, Jensen’s inequality, we get

∑

m

1

m
· g(m|n) = Eg

[

1

m

]

≥ 1

Eg[m]
=

1

g(n)
(5.14)

where we used for Eg[m] the notation g(n).
Combining Eq. (5.14) and Eq. (5.12), the expression of the theorem follows directly.
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5.3.2.2 Content Access Probability

One often needs to also know the probability that a node can access a content by some deadline,
i.e. P{TM ≤ TTL}. E.g, a node might lose its interest in a content (e.g. news) after some time,
or in an offloading scenario a node might decide to access a content directly to the base station.

Result 12. The probability a content to be accessed before a time TTL can be computed with
the expression

P{TM ≤ TTL} = 1− Ep

[

n ·∑mEmλ

[

e−x·TTL
]

g(m|n)
]

Ep[n]

Proof. Conditioning on the values of N
(M)
a and XM, as in Eq. (5.9), we can write:

P{TM ≤ TTL} =
∑

m

∫

P{TM ≤ TTL|XM = x,N (M)
a = m} · fmλ(x)dx · P req.

a (m)

= 1−
∑

m

∫

e−x·TTL · fmλ(x)dx · P req.
a (m) (5.15)

where the last equality follows because TM is exponentially distributed with rate XM = x. After
some similar steps as in Theorem 2, the final result follows.

The expression of Result 12 for the example scenario of Section 5.3.2.1, with a different
allocation function ρ(n) = c · ln(n), is given in the second row of Table 5.2.

Theorem 3. An upper bound for the probability to access a content by a time TTL is given by

P{TM ≤ TTL} ≤ 1− 1

Ep[n]
· Ep

[

n · e−g(n)·µλ·TTL
]

Proof. The bound follows easily by observing that h(x) = e−x·TTL is a convex function, and
applying Jensen’s inequality and the methodology of Theorem 2.

5.3.3 Extensions

In this section, we study how the results of Section 5.3.2 can be modified, when we remove the
Assumptions 1 and 2, or when we consider pareto distributed intercontact intervals. We state
here only the main findings and sketches of the proofs; the detailed proofs can be found in the
Section 5.7.

5.3.3.1 Popularity / Availability Time Dependence

Let us assume a scenario where, initially, some nodes hold some content items (e.g. data files),
in which some other nodes are interested. This can be, for example, a content sharing scenario
with contents being, e.g., some google maps. When a node interested in a content item, meets
a holder and gets the content, it can hold it in its memory and act as a holder too. Specifically,
we describe such scenarios as:

Definition 15.
I. When a requester accesses a content, acts as a holder for it.
II. The initial content popularity and availability patterns are given by Pp(n) and g(m|n).
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Figure 5.1: Markov Chain for the dissemination of a content with initial popularity and availability n and m,
respectively.

Result 13. Under time changing availability / popularity (Def. 15), the expected content access
delay is approximately given by

E[TM] =
1

µλ ·Ep[n]
· Ep

[

ln

(

1 +
n

g(n)

)]

Sketch of proof: Let us consider a content M of initial popularity N
(M)
p (0) = n and avail-

ability N
(M)
a (0) = m. When the first requester accesses the content, the number of holders will

increase to m + 1 and the remaining requesters will be n − 1. Building a Markov Chain as in
Fig. 5.1, where each state denotes the number of holders, it can be shown for the expected delay
of moving from state m+k to state m+k+1, k ∈ [0, 1], that it holds E[Tk,k+1] ≈ 1

(m+k)·(n−k)·µλ
.

Computing the times E[Tk,k+1] and averaging over all the contents, gives the expected delay.

5.3.3.2 Mobility Dependent Allocation

Definition 16 (Mobility Dependent Allocation). The probability πij a node i to be a holder for a
content in which a node j is interested, is related to their contact rate λij such that πij = π(λij),
where π(·) is a function from R

+ to [0, 1].

Result 14. Under Def. 16, Theorems 2 and 3 and Result 13 hold if we replace µλ with µ
(π)
λ ,

where

µ
(π)
λ =

Eλ[λ · π(λ)]
Eλ[π(λ)]

where Eλ[·] denotes an expectation taken over the contact rates distribution fλ(λ).

Sketch of proof: Since the requesters-holders contact rates are mobility dependent, the con-
tact rates between them are not distributed with the contact rates distribution fλ(λ), but with
a modified version of it, i.e. with a distribution:

fπ(λ) =
1

Eλ[π(λ)]
· π(λ) · fλ(λ)

Hence, Eq. (5.7) and Eq. (5.8) need to be modified as:

XM ∼ fmπ(x) = (fπ ∗ fπ · · · ∗ fπ)m
E[XM|N (M)

a = m] = Emπ[x] = m · Eλ[λ · π(λ)]
Eλ[π(λ)]

= m · µ(π)
λ

Example Scenario: The holders of a contentM are selected taking into account their contact
rates with the requesters, as following: Each node i (candidate to be a holder) is assigned a weight
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wi =
∏

j∈C
(M)
p

λij . Using such weights, the selection of holders that rarely meet the requesters is

avoided. Then, each node is selected to be one of the N
(M)
a holders with probability pi =

wi
∑

i wi
.

With respect to Def. 16, it turns out that this mechanism is (approximately) described by
π(λ) = c · λ. Substituting π(λ) in Result 14, gives

µ
(π)
λ =

Eλ[λ · π(λ)]
Eλ[π(λ)]

=
Eλ[λ

2]

Eλ[λ]
= µλ · (1 + CV 2

λ ) (5.16)

5.3.3.3 Pareto Inter-Contact Times

Although, as discussed in previous chapters, it is common to assume that the times between
consecutive contacts for a given pair are exponentially distributed, there exist some studies [19]
suggesting a power-law (e.g. pareto) distribution for these intercontact intervals. In this section,
we provide the guidelines for applying our analysis to the pareto case.

Let assume that inter-contact times between node j and a node i ∈ C(M)
a are pareto dis-

tributed with shape and scale parameters αij and t0, respectively:

Tij ∼ pareto(αij)⇔ P{Tij > t} =
(

t0
t

)αij (5.17)

Then, following the methodology of Section 5.3.1, it can be shown for TM = min
i∈C

(M)
a
{Tij}

that (Appendix 5.7.3):

TM ∼ pareto(AM)⇔ P{TM > t} =
(

t0
t

)AM (5.18)

where AM =
∑

i∈C
(M)
a

αij .

Remark: In this case the contact rates will be λij =
1

E[Tij ]
= 1

t0
·
(

1− 1
αij

)

, αij > 1. However,

for simplicity, we can use the parameters αij instead of the rates λij, and, correspondingly, a
distribution fα(α), instead of fλ(λ).

Similarly to XM, AM is a random variable that depends on: (i) the number of content

holders m (i.e. the cardinality of set C(M)
a in Eq.(5.6)), and (ii) the meeting rates with the

holders. Hence, the corresponding expressions to Eq. (5.7) and Eq. (5.8) for Pareto intervals
(fa(α), µα) are:

AM ∼ fmα(x) = (fα ∗ · · · ∗ fα)m , Emα[x] = m · µα

Based on the above discussion and the analysis of Section 5.3.2, in Appendix 5.7.4 we derive
the expressions for the performance metrics (i.e. expressions corresponding to Results 11 and 12,
and Theorems 2 and 3), which we present in Table 5.3.

5.3.4 Model Validation

As a first validation step, we compare our theoretical predictions to synthetic simulation sce-
narios conforming to the models of Section 5.2, in order to consider (a) various mobility and
content traffic patterns, and (b) large networks.

Simulation Scenarios: We assign to each pair {i, j} a contact rate λij , which we draw
randomly from a distribution fλ(λ), and create a sequence of contact events (Poisson process
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Table 5.3: Performance metrics for Pareto distributed Inter-Contact times

Exact expressions Bounds

E[TM] t0 +
t0

Ep[n]
·Ep

[

n ·
∑

m

Emα

[

1

x− 1

]

· g(m|n)

]

t0 +
t0

Ep[n]
·Ep

[

n

g(n) · µα − 1

]

P{TM ≤ TTL} 1−
1

Ep[n]
· Ep

[

n ·
∑

m

Emα

[(

t0
TTL

)x]

· g(m|n)

]

1−
1

Ep[n]
· Ep

[

n ·

(

t0
TTL

)g(n)·µα
]
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Figure 5.2: (a) E[TM] and (b) P{TM ≤ TTL} in scenarios with varying content popularity (α: shape parameter)
and ρ(n) = 0.2 · n.

with rate λij)
4. Then, we create M contents and assign to each of them a popularity value

(N
(M)
p ), drawn from the distribution Pp(n). According to the given function g(m|n), we assign

the availability values (N
(M)
a ). Finally, for each content M, we randomly choose the N

(M)
p

nodes that are interested in it and its N
(M)
a holders.

Mobility / Popularity patterns: In most of the scenarios we present, we use the gamma
distribution for the contact rates (i.e. fλ(λ)) [107]. Also, content popularity in mobile social
networks has been shown to follow a power-law distribution, e.g. [83]. Therefore, we select Pp(n)
to follow Discrete (Bounded) Pareto or Zipf distributions, similarly to the majority of related
works [34,85,99].

In Fig. 5.2 we present the simulation results, along with our theoretical predictions, in
scenarios of N = 10000 nodes with varying mobility and content popularity patterns. The mean
contact rate is µλ = 1 and content popularity follows a Bounded Pareto distribution with shape
parameter (i.e. exponent) α and n ∈ [50, 1000]. The availability function is ρ(n) = 0.2 · n

4We present here only scenarios where the inter-contact times are exponentially distributed. Similar behavior
has been observed in simulations of scenarios with Pareto distributed inter-contact-times.
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Table 5.4: Simulation results for scenarios where g(m|n) ∼ Binomial with g(n) = 0.2 · n, and TTL = 0.05.

E[TM] (x103) α = 0.5 α = 1 α = 2 α = 3

lower bound 22.3 31.6 52.2 66.4

simulation (CVλ = 0.5) 23.9 34.8 57.3 75.0

simulation (CVλ = 1) 25.0 36.2 61.9 81.4

P{TM ≤ TTL} α = 0.5 α = 1 α = 2 α = 3

upper bound 0.89 0.81 0.66 0.56

simulation (CVλ = 2) 0.87 0.79 0.62 0.52

(i.e. deterministic). An almost perfect match between simulation results (markers) and the
theoretical predictions (dashed lines) of Results 11 and 12 can be observed. In Fig. 5.2(a), the
lower bound (continuous line) of Theorem 2 is very tight for low mobility (i.e. small CVλ) and/or
content popularity (i.e. small α) heterogeneity. For the delivery probability P{TM ≤ TTL}
(Fig. 5.2(b)), we present the results for two different values of TTL in scenarios with CVλ = 2.
Here, the upper bound (continuous line) of Theorem 3 is very close to the simulation results,
despite the very heterogeneous mobility.

In Table 5.4 we present results of the above scenarios, where the availability - popularity
correlation g(m|n) follows a binomial distribution with mean g(n) = 0.2 · n. It can be seen
that the bounds are tight in most of the scenarios, though (as expected) less tight than in the
deterministic g(m|n) case (i.e. ρ(n)).

In Fig. 5.3(a) we compare Result 13 with simulations on scenarios conforming to Def. 15:
Pp(n) is a Bounded Pareto distribution with α = 2, and fλ(λ) ∼ Pareto. It can be seen that our
theoretical prediction (approximation) achieves good accuracy even in these very heterogeneous
mobility scenarios.

Results for scenarios with mobility-dependent availability (Def. 16) are presented in Fig. 5.3(b).
Pp(n) is selected as before and fλ(λ) ∼ Gamma with µλ = 1, CVλ = 0.5. The allocation of hold-
ers is made as in the example in Section 5.3.3.2. The upper bounds of Result 14 are tight in all
scenarios, similarly to the case without mobility dependence (Fig. 5.2(b)).

Finally, we need to mention that we have also performed a large number of other scenarios,
with similar conclusions.

5.4 Case Study: Mobile Data Offloading

The results of Section 3.3 can be used to predict the performance of a given content allocation
policy or content-sharing scheme. In this section, we show how these results could be also used
to design / optimize policies. We focus on an application that has recently attracted attention,
that of mobile data offloading using MSNs [50, 85, 141]. Nevertheless, the same methodology
applies for a range of other applications where the number of content/service providers must be
chosen.

In a mobile data offloading scenario, the cellular network provider distributes content copies
only to some of the nodes interested in this content (holders), in order to reduce the cellular
traffic (possibly offering some incentives to the holder nodes). The remaining (interested) nodes
must then retrieve the content from the designated holders during direct encounters. A tradeoff
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Figure 5.3: (a) E[TM] in scenarios under Def. 15 and (b) P{TM ≤ TTL} in scenarios under Def. 16. ρ(n) = 0.2·n.

is involved between the amount of traffic offloaded and the average delay for non-holders. In
some cases, an additional QoS constraint might exist: if the delay to access a content exceeds a
TTL, a requesting node will download it from the infrastructure [50,85,141].

Hence, the objective in offloading optimization problems is how the cellular network provider
should choose the set of holders for each content in order to optimize a performance metric, under
a given constraint (e.g. energy or buffer size) and a given popularity distribution Pp(n).

We study cases with and without QoS constraints in Sections 5.4.1 and 5.4.2, respectively.
For simplicity, we use the expressions of Theorems 2 and 3 as approximations for E[TM] and
P{TM ≤ TTL}. Since, these expressions imply that (a) the exact mobility patterns are not
known (i.e. only µλ is needed) and (b) contents with the same popularity are equivalent, our
goal is to select the number of holders for each content with a given popularity. In other words,
we try to find the optimal allocation function g(m|n).

5.4.1 Case 1: no QoS constraints

When no QoS constraints exist, the cellular operator decides the maximum amount of traffic
that it wishes to serve directly over the infrastructure. Under this constraint, which can be
translated as a constraint on the number of holders for different contents, the objective is to
minimize the expected delay E[TM]. The following result, formalizes this optimization problem
and provides with the optimal solution for g(m|n).
Result 15. The minimum expected content access delay, under the constraint of an average
number of cM copies per content, i.e.:

min{E[TM]} s.t.
∑

M

N (M)
a = M · cM , N (M)

a ≥ 0

can be achieved when the allocation function, g(m|n), is deterministic and equal to

ρ∗(n) =
cM

Ep[
√
n]
· √n
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Proof. Using as an approximation for E[TM] the expression of Theorem 2, we can write

E[TM] = 1
µλ·Ep[n]

· Ep

[

n
g(n)

]

Jensen’s inequality used in Eq. (5.14), becomes equality when g(m|n) is deterministic. This
suggests that among all the functions g(m|n) with the same average value g(n), the minimum
delay can be achieved in the case: ρ(n) = g(n). Thus, the E[TM] minimization problem becomes
equivalent to

min

{

Ep

[

n

ρ(n)

]}

=
∑

n

n

ρ(n)
· Pp(n) =

∑

n

n

ρn
· Pp(n) (5.19)

where we expressed the expectation as a sum and denoted ρn = ρ(n).
Moreover, we can express the content copies constraint as

cM =
∑

M
N

(M)
a

M = Ep[ρ(n)] =
∑

n ρn · Pp(n) (5.20)

Using Eq. (5.19) and Eq. (5.20), the optimization problem becomes

min
ρ

{

∑

n

n

ρn
· Pp(n)

}

s.t.
∑

n

ρn · Pp(n) = cM (5.21)

where ρ denotes the vector with components ρn.
The optimization problem of Eq. (5.21) is convex and, thus, it can be solved with the method

of Lagrange multipliers [4]. Hence, we need to find the values of ρ for which it holds that

∇
(

∑

n

n

ρn
· Pp(n)

)

+∇λ0

(

∑

n

ρn · Pp(n)− cM

)

= 0

where λ0 is the langrangian multiplier. Here, the constraint ρn ≥ 0 needs also to be taken into
account. However, it is proved to be an inactive constraint (the solution satisfies it) and thus
we omit it at this step for simplicity. Similarly, we assume a large enough network, i.e. always
holds ρn ≤ N .

The differentiation over ρn gives

ρn =
1√
λ0
· √n (5.22)

Substituting Eq. (5.22) in the constraint expression
∑

n ρn · Pp(n) = cM (Eq. (5.21)), we can
easily get

√

λ0 =

∑

n

√
n · Pp(n)

cM
=

Ep[
√
n]

cM
(5.23)

Then, substituting Eq. (5.23) in Eq. (5.22), gives

ρ(n) = ρn =
cM

Ep[
√
n]
· √n (5.24)

Finally, the values of Eq. (5.24) satisfy the Karush-Kuhn-Tucker conditions, which means that
the solution of Eq. (5.24) is a global minimum [4].
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Result 15 is a generic result, since it holds under any content popularity pattern. We also
note that an allocation policy of ρ(n) ∝ √n has also been shown to achieve optimal results
in (conventional) peer-to-peer networks [24]. This is an interesting finding, given the inherent
differences between the two settings (e.g. node mobility).

Finally, our result is also consistent in scenarios with mobility dependent holders allocation.
For example, after choosing the number of copies for a content (Result 15), the selection of
holders can be made, taking into account mobility utility metrics, e.g. meeting frequency [10]
or node centrality [34].

5.4.2 Case 2: QoS constraints

In cases where a maximum delay TTL is required, the objective is to minimize the traffic load
served by the infrastructure. The metric used in related work, e.g. [85], is the data offloading
ratio, Roff., which is defined as the percentage of content requests that are served by nodes.
Since requests are served by the infrastructure only after the time TTL elapses, it follows that
in our framework: Roff. = P{TM ≤ TTL}.

Hence the optimization problem is equivalent to

maxP{TM ≤ TTL} s.t.
∑

M

N (M)
a = M · cM, N (M)

a ≥ 0

Using the same notation and arguments as in the Section 5.4.1 and the expression of Theorem 3
as an approximation for P{TM ≤ TTL}, the above optimization problem becomes:

min
ρ(n)

{

Ep

[

n · e−ρ(n)·µλ·TTL
]}

s.t. Ep[ρ(n)] = cM (5.25)

with ρ(n) ≥ 0, or, equivalently:

minρ
{
∑

n n · e−ρn·µλ·TTL · Pp(n)
}

s.t.
∑

n ρn · Pp(n) = cM , ρn ≥ 0 (5.26)

The optimization problem of Eq. (5.26) is convex. Although a closed form solution, as in
Result 15, cannot be derived in the same way5, it can be solved numerically, using well known
methods.

5.4.3 Performance Evaluation

To investigate whether the policies suggested as optimal by our theory indeed perform better,
we conducted simulations on various synthetic scenarios and on traces of real networks, where
node mobility patterns usually involve much more complex characteristics than our model.

The results in the majority of scenarios considered have been encouragingly consistent with
our theoretical predictions. Hence, we only present here a small, representative sample. Specifi-
cally, we consider the following traces coming from state-of-the-art mobility models or collected
in experiments.
TVCM mobility model [57]: Scenario with 100 nodes divided in 4 communities of unequal size.
Nodes move mainly inside their community and leave it for a few short periods.
SLAW mobility model [77]: Network with 200 nodes moving in a square area of 2000m (the

5The difference here is that the constraint ρn ≥ 0 is active.
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Figure 5.4: Content access delay E[TM] of different allocation policies ρ(n) = ck · nk, where ck = cM
Ep[nk]

.

other parameters are set as in the source code provided in [77]).
Cabspotting trace [118]: GPS coordinates from 536 taxi cabs collected over 30 days in San
Francisco. A range of 100m is assumed.
Infocom trace [58]: Bluetooth sightings of 98 mobile and static nodes (iMotes) collected in an
experiment during Infocom 2006.

5.4.3.1 Case 1: no QoS constraints

In each scenario, we compare different allocation functions ρ(n) = ck · nk, where ck = cM
Ep[nk]

is

a normalization factor such that the constraint Ep[ρ(n)] = cM is satisfied.

In Fig. 5.4 we present simulation results in scenarios for the TVCM (Fig. 5.4(a)) and Cab-
spotting (Fig. 5.4(b)) traces. Content popularity (Pp(n)) follows a Zipf distribution with n ≤ 30
and exponent α = {1, 2, 3}. The availability constraint is set to cM = 10. It can be seen that
the optimal delay E[TM] is achieved for k = 0.5, as Result 15 predicts (despite the fact that we
used the expression of the lower bound as an approximation for the expected delay E[TM]).

5.4.3.2 Case 2: QoS constraints

To evaluate the performance of the allocation function ρ(n) that follows after solving Eq. (5.26)
(i.e. optimal allocation), we compare the offloading ratio Roff it achieves with the offloading
ratios of the following policies:
Random : We randomly select a content and give a copy of it to a node. We repeat M · cM
times.
Square Root : We select ρ(n) ∝ √n (i.e. the allocation that achieves the minimum expected
delay E[TM ]).
Log : We select ρ(n) ∝ log n.

Random policy has been used in related work as a baseline [85] and square root policy is the
optimal policy when the metric of interest is the content access delay (Section 5.4.1). Finally,
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Figure 5.5: Offloading Ratio Roff. of different allocation policies ρ(n).

we observed that the optimal policy (Eq. (5.26)), in the scenarios considered, allocated copies
only to the 10%−20% highest popularity contents. The log policy allocates in a similar manner
the copies (e.g. no copies to contents with low popularity).

Simulation results on the SLAW and Infocom scenarios are presented in Fig. 5.5(a) and 5.5(b),
respectively. The parameters in these scenarios are: M = 50 messages, Pp ∼ Zipf with
n ∈ [1, 30] and α = 1, total copies M · cM = {50, 100}. As it can be seen our optimal pol-
icy (leftmost bar) achieves the highest offloading ratio Roff.. The random policy is clearly
inferior than the others. Between square root and log policies, it is the latter that achieves
better performance. These results indicate that, to maximize Roff., it is better to allocate the
available resources only for popular contents, and serve the non-popular exclusively through the
infrastructure.

5.5 Related Work

Content-centric applications were introduced in mobile social networking under the publish -
subscribe paradigm [10, 28, 79, 142], for which several data dissemination techniques have been
proposed. In [142], authors propose a mechanism that identifies social communities and the
nodes-“hubs”, and builds an overlay network between them in order to efficiently disseminate
data. SocialCast [28] based on information about nodes interests, social relationships and move-
ment predictions, selects the set of holders. Similarly to the above approaches, ContentPlace [10]
uses both community detection and nodes social relationships information, to improve the per-
formance of the content distribution.

Under a different setting, [34, 99] study content sharing mechanisms with limited resources
(e.g. buffer sizes, number of holders). In [34], authors analytically investigate the data dissem-
ination cost-effectiveness tradeoffs, and propose techniques based on contact patterns (i.e. λij)
and nodes interests. Similarly, CEDO [99] aims at maximizing the total content delivery rate:
by maintaining a utility per content, nodes make appropriate drop and scheduling decisions.

Recently, further novel content-centric application have been proposed, like location-based
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applications [105, 123] and mobile data offloading [50, 85, 141]. The latter category, due to the
rapid increase of mobile data demand, has attracted a lot of attention. In the setting of [141],
content copies are initially distributed (through the infrastructure) to a subset of mobile nodes,
which then start propagating the contents epidemically. Differently, in [50] the authors consider
a limited number of holders, and study how to select the best holders-target-set for each message.
In [85], the same problem is considered, and (centralized) optimization algorithms are proposed
that take into account more information about the network: namely, size and lifetimes of different
contents, and interests, privacy policies and buffer sizes of each node.

In the majority of previous studies, although node interests and content popularity are taken
into account, the focus has been on the algorithms and the applications themselves. We believe
that our study complements existing work, by providing a common analytical framework for a
number of these approaches that can be used both for predicting the performance of proposed
schemes, as well as proposing improved ones.

5.6 Conclusion

The increasing number of mobile devices and traffic demand, renders content-centric applica-
tions through opportunistic communication very promising. Hence, motivated by the lack of
a common analytical framework, we modeled and analyzed the effects of content popularity /
availability patterns in the performance of content-centric mechanisms. In the future, we believe
that the effect of further dimensions of content-centric traffic should be investigated, like traffic
locality, independently from or jointly with the popularity dimension.

Based on this first analysis of content-centric traffic patterns, and the insights obtained
from our results, in the following chapter, we design an MSN-related content-centric application
for offloading mobile data traffic from cellular networks, analyze its performance and study a
number of optimization approaches.

5.7 Appendix: Supplementary Theoretical Results and Proofs

5.7.1 Proof of Result 13

Proof. To calculate the average performance, we need to modify the previous analysis as follow-

ing: Consider a content M of initial popularity N
(M)
p (0) = n and availability N

(M)
a (0) = m,

i.e. initially n nodes are looking for the content and m nodes hold the content. When the first
requester access the content, the number of holders will increase to m + 1 and the remaining
requesters will be n − 1. Building a Markov Chain as in Fig 5.1, where each state denotes the
number of holders, it can be shown for the expected delay of moving from state m+ k to state
m+ k + 1, k ∈ [0, 1], that it holds

E[Tk,k+1] ≈
1

(m+ k) · (n − k) · µλ
(5.27)

where m+k are the nodes holding the content, n−k the remaining requesters and µλ the mean
contact rate.

From the above analysis, it follows straightforward that the expected time till the first
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requester to access the message is E[T 1] = E[T0,1] and till the ℓth requester to access it is

E[T ℓ] =

ℓ−1
∑

k=0

E[Tk,k+1] (5.28)

Let us now define the sum of delays E[T ℓ] (i.e. delivery delays for each requester) for a

messageM with initial availability N
(M)
a (0) = m and initial popularity N

(M)
p (0) = n, as:

S(TM|m,n) =

n
∑

ℓ=1

E[T ℓ|m,n] (5.29)

From Eq. (5.27) and Eq. (5.28), we can write for S(TM|m,n):

S(TM|m,n) ≈
n
∑

ℓ=1

ℓ−1
∑

k=0

1

(m+ k) · (n− k) · µλ
=

n−1
∑

k=0

(n− k) · 1

(m+ k) · (n− k) · µλ

=
1

µλ
·
n−1
∑

k=0

1

m+ k
=

1

µλ
·
m+n−1
∑

k=m

1

k
(5.30)

and using the approximation of the harmonic sum6, we get

S(TM|m,n) ≈ 1

µλ
· ln
(

1 +
n

m− 1

)

≈ 1

µλ
· ln
(

1 +
n

m

)

(5.31)

Averaging over all the content in the network, we can write for the expected content access
delay:

E[TM] =

∑

M S(TM)
∑

MN
(M)
p

(5.32)

or, since (i) (by definition) there are M · Pp(n) contents in the network, and (ii) we do not
differentiate between contents with the same popularity/availability:

E[TM] =

∑

n S(TM|n) · (M · Pp(n))
∑

M n · (M · Pp(n))
=

∑

n S(TM|n) · Pp(n)

Ep[n]

=

∑

n S(TM|n,m) · g(m|n) · Pp(n)

Ep[n]
≈
∑

n
1
µλ
· ln
(

1 + n
m

)

· g(m|n) · Pp(n)

Ep[n]
(5.33)

where in the last line we substituted from Eq. (5.31).
We can further use Jensen’s inequality (since the function h(x) = ln

(

1 + n
x

)

is convex) or
the respective approximation, and finally write:

E[TM] ≈ 1

µλ ·Ep[n]
· Ep

[

ln

(

1 +
n

g(n)

)]

(5.34)

which proves the result.

6
∑N

k=1 ≈ ln(N) + γ +O
(

1
N

)

, where γ is the Euler-Mascheroni constant.
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5.7.2 Proof of Result 14 and Example

Proof. Def. 16 says that who holds a content and who is interested in it is not independent of
their mobility patters. The contact rates between the requester of a content and the holders
of it, are not distributed with the contact rates distribution fλ(λ), since the requesters-holders
contact rates are mobility dependent. It can be shown (see Chapter 4; Result 1) that the
requesters-holders contact rates are distributed as

fπ(λ) =
1

Eλ[π(λ)]
· π(λ) · fλ(λ) (5.35)

Hence, Eq. (5.7) and Eq. (5.8) need to be modified as:

XM ∼ fmπ(x) = (fπ ∗ fπ · · · ∗ fπ)m (5.36)

and

E[XM|N (M)
a = m] = Emπ[x] = m · Eλ[λ · π(λ)]

Eλ[π(λ)]
= m · µ(π)

λ (5.37)

Then, it can be easily seen that following the same analysis, we get the same expressions as in
Theorems 2 and 3 and Result 13 where, now, the mean contact rate µλ is replaced by the mean

mobility dependent requesters-holders contact rate µ
(π)
λ .

Example Scenario: For each content M, its holders are selected taking into account their
contact rates with the requesters with the following mechanism: Each node i candidate to be a
holder is assigned a weight wi =

∏

j∈C
(M)
p

λij. Then, each of them is selected to be one of the

N
(M)
a holders with probability pi =

wi
∑

i wi
. Now, for the node pair {i, j} (i ∈ C(M)

a , j ∈ C(M)
p ) it

holds that

πij =
wi
∑

iwi
=

∏

k∈C
(M)
p

λik
∑

i

∏

k∈C
(M)
p

λik
=

λij ·
∏

k∈C
(M)
p \{j}

λik
∑

i

∏

k∈C
(M)
p

λik
(5.38)

for which, when the node popularity N
(M)
p = |C(M)

p | is large enough, we can write

πij ≈
λij · c1
c2

(5.39)

where c1, c2 take approximately the same value ∀i, j, i.e. π(λ) = c ·λ, c = c1
c2
. Substituting π(λ)

in Result 14, gives

µ
(π)
λ =

Eλ[λ · π(λ)]
Eλ[π(λ)]

=
Eλ[λ

2]

Eλ[λ]
= µλ · (1 + CV 2

λ ) (5.40)

5.7.3 Minimum of Pareto distributed random variables

For the random variable TM = min
i∈C

(M)
a
{Tij}, where each Tij is a random variable distributed

with a Pareto distribution with scale parameter t0 and shape parameter αij, it holds that:

P{TM > t} =
∏

i∈C
(M)
a

P{Tij > t} =
∏

i∈C
(M)
a

(

t0
t

)αij

=

(

t0
t

)

∑

i∈C
(M)
a

αij

(5.41)

which means that TM follows a Pareto distribution with scale and shape parameters t0 and
AM =

∑

i∈C
(M)
a

αij , respectively
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5.7.4 Proofs for the performance metrics expressions of the Pareto case

5.7.4.1 Content Access Delay

The expectation of a Pareto random variable (pareto(t0, αij)) is
t0α
α−1 . Hence, in the derivation

of Eq. (5.9), one only needs to change the integral in the last equality as:

E[TM] =
∑

m

∫

x · t0
x− 1

· fmα(x)dx · P req.
a (m) (5.42)

Substituting P req.
a (m) from Lemma 8 and proceeding as in the exponential case, we subsequently

get:

E[TM] =
∑

m

∫

x · t0
x− 1

· fmα(x)dx ·
Ep[n · g(m|n)]

Ep[n]
=

t0
Ep[n]

· Ep

[

n ·
∑

m

Emα

[

x

x− 1

]

· g(m|n)]
]

=
t0

Ep[n]
·Ep

[

n ·
∑

m

(

1 + Emα

[

1

x− 1

])

· g(m|n)]
]

=
t0

Ep[n]
·Ep

[

n+ n ·
∑

m

Emα

[

1

x− 1

]

· g(m|n)]
]

= t0 +
t0

Ep[n]
· Ep

[

n ·
∑

m

Emα

[

1

x− 1

]

· g(m|n)
]

(5.43)

which is the exact expression for E[TM] in Table 5.3.

Applying Jensen’s inequality for the convex function h(x) = 1
x−1 , gives:

Emα

[

1

x− 1

]

≥ 1

m · µα − 1
(5.44)

and, thus:

E[TM] ≥ t0 +
t0

Ep[n]
·Ep

[

n ·
∑

m

1

m · µα − 1
· g(m|n)

]

= t0 +
t0

Ep[n]
·Ep

[

n ·Eg

[

1

m · µα − 1

]]

≥ t0 +
t0

Ep[n]
· Ep

[

n · 1

g(n) · µα − 1

]

(5.45)

where for the last line we applied Jensen’s inequality for the expectation Eg

[

1
m·µα−1

]

.

5.7.4.2 Content Access Probability

In the Pareto case, the integral in Eq. (5.15) changes as:
∫ (

t0
TTL

)x · fmα(x)dx, for TTL ≥ t0,
because for a Pareto random variable x ∼ pareto(t0, α) it holds that P{x ≤ TTL} = 1−

(

t0
TTL

)α
.

Following the same methodology as before and observing that the function h(x) =
(

t0
TTL

)α
is

convex, the expressions of Table 5.3 follow similarly.
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5.7.5 Proof of Expressions in Table 5.2

Meeting rates are distributed with a Gamma distribution fλ(x) = Γ(x;α, β) = βα

Γ(α) ·xα−1 ·e−β·x,

where Γ(α) is the gamma function and the parameters α, β relate to the expectation µλ and
coefficient of variation CVλ of the meeting rates, as following:

α =
1

CV 2
λ

and β =
1

µλ · CV 2
λ

(5.46)

The sum of m random variables λij ∼ fλ(x) = Γ(x;α, β) is a random variable and is
distributed with a gamma distribution with parameters m · α and β, i.e.

fmλ = Γ(x;m · α, β) = βm·α

Γ(m · α) · x
m·α−1 · e−β·x (5.47)

Moreover, when

Pp(n) ∼ Pareto(x;n0, α = 2) =
2 · n2

0

x3
, for x ≥ n0 (5.48)

the mean value of the popularity is

Ep[n] =
2 · n0

2− 1
= 2 · n0 (5.49)

5.7.5.1 Delivery Delay E[TM]

To calculate the delivery delay, given by Result 11, we need first to calculate the quantity
Emλ

[

1
x

]

. From Eq. (5.47) we get

Emλ

[

1

x

]

=

∫ ∞

0

1

x
· βm·α

Γ(m · α) · x
m·α−1 · e−β·x · dx =

∫ ∞

0

βm·α

Γ(m · α) · x
(m·α−1)−1 · e−β·x · dx

=
β · Γ(m · α− 1)

Γ(m · α)

∫ ∞

0

βm·α−1

Γ(m · α− 1)
· x(m·α−1)−1 · e−β·x · dx ∗

=
β · Γ(m · α− 1)

Γ(m · α)
∗∗
=

β

m · α− 1
=

1

m · βα − β

∗∗∗
=

1

µλ

1

m− CV 2
λ

(5.50)

because it holds that

(∗)
∫ ∞

0

βm·α−1

Γ(m · α− 1)
· x(m·α−1)−1 · e−β·x · dx =

∫ ∞

0
Γ(x;m · α− 1, β) · dx = 1

(∗∗) Γ(ζ + 1) = Γ(ζ)

and for (***) we used Eq. (5.46).

Substituting Eq. (5.50) and g(m|n) ≡ ρ(n) = c · n in the expression of Result 11, we get

E[TM] =
1

Ep[n]
· Ep

[

n · 1

µλ
· 1

c · n− CV 2
λ

]

(5.51)
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To calculate the expectation Ep

[

n · 1
µλ

1
c·n−CV 2

λ

]

we use Eq. (5.48)

Ep

[

n · 1

µλ
· 1

c · n− CV 2
λ

]

=

∫ ∞

n0

x · 1

µλ
· 1

c · x− CV 2
λ

· 2 · n
2
0

x3
· dx =

2 · n2
0

µλ

∫ ∞

n0

1

x2 · (c · x− CV 2
λ )
· dx

=
2 · n2

0

µλ · CV 4
λ





c · x · ln
(

c− CV 2
λ

x

)

+ CV 2
λ

x





∞

n0

=
2 · n2

0

µλ · CV 4
λ

[

c · ln(c)− c · ln
(

c− CV 2
λ

n0

)

− CV 2
λ

n0

]

=
2 · n2

0

µλ · CV 4
λ



c · ln





c

c− CV 2
λ

n0



− CV 2
λ

n0



 =
2 · n0

µλ · CV 2
λ





c · n0

CV 2
λ

· ln





1

1− CV 2
λ

c·n0



− 1



 (5.52)

Finally, substituting Eq. (5.49) and Eq. (5.52) in Eq. (5.51), we get the expression of Ta-
ble 5.2.

5.7.5.2 Delivery Probability P{TM ≤ TTL}
We follow a similar procedure as above.

To calculate the delivery probability, given by Result 12, we need first to calculate the
quantity Emλ

[

e−x·TTL
]

. From Eq. (5.47) we get

Emλ

[

e−x·TTL
]

=

∫ ∞

0
e−x·TTL · βm·α

Γ(m · α) · x
m·α−1 · e−β·x · dx

=

∫ ∞

0

βm·α

Γ(m · α) · x
m·α−1 · e−(β+TTL)·x · dx

=
βm·α

(β + TTL)m·α
=

1

(1 + TTL
β )m·α

=
(

1 + µλ · CV 2
λ · TTL

)− m

CV 2
λ (5.53)

Substituting Eq. (5.53) and g(m|n) ≡ ρ(n) = c · ln(n) in the expression of Result 12, we get

E[TM] = 1−
Ep

[

x ·
(

1 + µλ · CV 2
λ · TTL

)− c·ln(x)

CV 2
λ

]

Ep[n]
(5.54)

To calculate the expectation

Ep

[

x ·
(

1 + µλ · CV 2
λ · TTL

)− c·ln(x)

CV 2
λ

]

= Ep

[

x · γln(x)1

]

(5.55)

where we denoted

γ1 =
(

1 + µλ · CV 2
λ · TTL

)− c

CV 2
λ (5.56)

we use Eq. (5.48):

Ep

[

x · γln(x)1

]

=

∫ ∞

n0

x · γln(x)1 · 2 · n
2
0

x3
· dx = 2 · n2

0

∫ ∞

n0

γ
ln(x)
1

x2
· dx =

2 · n2
0

1− ln(γ1)
·
[

γ
ln(x)
1

x

]n0

∞

(5.57)
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and for γ1 < e, it gives

Ep

[

x · γln(x)1

]

=
2 · n2

0

1− ln(γ1)
· γ

ln(n0)
1

n0
=

2 · n0

1 + ln(γ)
· 1

γln(n0)
(5.58)

where γ = 1
γ1
.

Finally, substituting Eq. (5.49) and Eq. (5.58) in Eq. (5.54), we get the expression of Ta-
ble 5.2.
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Chapter 6

Offloading on the Edge: Analysis
and Optimization of Local Data
Storage and Offloading in HetNets

6.1 Introduction

The growth in the number of mobile devices and connection speeds has led to a high volume
of mobile data traffic. Cellular networks are currently overloaded and, despite a lot of planned
improvements on the physical layer technologies, they are not expected to be able to keep
up with the rapidly increasing user data demand [23]. Radically reducing the communication
distance by deploying, and offloading traffic to, many “small cells” (e.g. femto, pico, or even
WiFi) is seen as the only viable solution [3,21,78]. Nevertheless, this requires a large investment
in upgrading the backhaul network, increasingly based on wireless links, which will often be
the new performance bottleneck [126]. Caching popular content at the “edge”, i.e. on storage
devices installed at small cell base stations could alleviate backhaul congestion [120, 126], and
is supported by a number of real data studies suggesting a high amount of demand overlap
between user requests [32,38,87].

Reducing the communication distance is taken yet a step further with the newly proposed
paradigm of device-to-device (D2D) communication [5, 65]. A device can store a (popular)
content after consuming it, and give it directly to other neighboring devices also interested in it,
offloading these requests from the main network. The connection between the two devices could
be in-band (cellular frequencies) or out of band (e.g. Bluetooth, WiFi Direct). While D2D-
based offloading normally assumes a content request will either be served immediately from a
device currently in range or the cellular network, some recent works have suggested the use of
opportunistic offloading through D2D: a device requesting some content might wait for some
amount of time until it encounters another device sharing the content [85,124,139], and go back
to the main network if not found before some set deadline.

Hence, more data could be offloaded from the main network through such D2D communica-
tion, perhaps at the expense of increased delay for some requests. Such increased delays could
sometimes be acceptable (e.g. asynchronous requests, longer start-up or buffering delays easily
amortized when considering large content). Yet, in many cases, the operator will need to provide
appropriate incentives to these users, either in the form of instantaneous price reductions [48] or
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low(er) priced plans. What is more, operators will probably need to also provide incentives to
the devices storing the content and acting as local relays on their behalf, as this raises important
battery consumption, storage, as well as privacy and security issues.

The provision of these incentives constitutes another important form of cost for the operator,
together with the costs of directly serving the content from the main (mostly macro-cell based)
network, and that of installing, maintaining, and supporting with ample backhaul capacity, new
small cells with large enough caches. It thus becomes increasingly important for an operator of
such a future Heterogeneous Network (HetNet) with caching and D2D capabilities to be able
to answer questions like: ”How much content can be offloaded by a given setup as a function of
content demand patterns?”, ”Is it worth investing in additional cell densification, or would it be
more cost-efficient to provide incentives for D2D opportunistic offloading?”.

To this end, in this chapter we propose an analytical model for studying the problem of
”offloading on the edge” in a HetNet. Although capturing all the fine details of possible setups
and technologies would be a rather daunting task, we assume two main mechanisms being
employed in the considered network, namely (i) caching on small cells and mobile devices,
collectively referred to as ”edge nodes”, and (ii) offloading requests through local, short range
communications (e.g. D2D or low power communication to local femto or pico base stations).
We first describe the ”offloading on the edge” mechanism and propose a generic model that
allows us to analytically study it (Section 6.2). We proceed by deriving useful results for the
performance of content delivery through this mechanism and the incurred costs, as a function
of key system parameters (Section 6.3). Then, we study the total offloading cost and provide
insights for content placement and dissemination strategies that minimize this cost (Section 6.4).
Finally, we validate our results through realistic simulations (Section 6.5) and discuss related
work (Section 6.6).

Summarizing, the main contributions of our work are:

• To our best knowledge, this is the first work jointly and analytically studying offloading
through small cells, opportunistic D2D, and caching at both.

• We provide closed-form analytical approximations applicable to a number of performance
metrics and network setups.

• We provide initial insights into the various design tradeoffs involved, as well as the efficient
allocation of storage space among different contents.

6.2 Offloading on the Edge

6.2.1 Network Setup

We consider a Heterogeneous Cellular Network (HetNet) [3], composed of 3 sets of nodes:

Macro-cell Base Stations (BS): They provide full coverage to subscribed mobile nodes
(MNs), but we assume their radio resources are congested.

Small Cells (SC): These are shorter range, low power base stations (e.g. femto and pico-cells,
or even WiFi access points) dispersed in the area of coverage. They provide ample capacity to
the few MNs within range, and their communication cost to/from a MN is smaller [66]. Hence,
they can be used to offload some traffic from BSs. However, the backhaul connection for these
cells will often be wireless (either to a BS or to an aggregation point) and underprovisioned [126].
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This makes a backhaul transmission to a small cell costly. To this end, each small cell is equipped
with some storage capacity, as in [120, 126], where (popular) content could be cached to avoid
duplicate backhaul accesses.

Mobile Nodes (MN ): These include smartphones, tablets, netbooks, etc. MNs can com-
municate with BSs, SCs (if in range), and even other MNs directly, if D2D communication is
allowed. D2D communication potentially offers higher rates at lower interference levels [5]. Yet,
appropriate incentives from the operator might be needed. Without loss of generality, we assume
out-of-band communication (e.g. WiFi Direct or Bluetooth) for D2D. We also assume that each
MN also has some storage capacity (normally less than that of a small cell) for caching (popular)
content.

The number of nodes in each set is

NBS = |BS| , NSC = |SC| , NMN = |MN|

where | · | denotes the cardinality of a set.

6.2.2 Offloading Mechanism

Content Requests. We assume that each MN is interested in different contents over time
(e.g. videos, web pages, software updates, etc.), and that the same content may be of interest
to multiple MNs. This interest overlap is supported by recent studies (e.g. [32, 38,87], to name
a few), where the popularity distribution of contents is shown to be highly skewed. In the
remainder, we will be assuming that the number of nodes interested in a content, the content
popularity, is known in advance or can be estimated. For a number of applications, like push
services [139], this information can be known in advance by the cellular network. Users are
subscribed to a push service they are interested in (e.g. news, series episodes, trending videos,
etc.), and when a content (of this service) is created or published, the content provider starts
distributing (pushing) it to them1. Similarly, users might subscribe to certain categories of
contents, such as personalized Internet radio stations like Pandora and Jango2. The content of
these pseudo-random streams of songs can be decided in advance, and thus the popularity of
songs belonging to different streams can be estimated.

Content Delivery. An operator can deliver a content to an interested MNs in one of the
following ways: (i) Direct transmission from a BS; (ii) Offloading through SCs and/or MNs,
where the operator transmits the content to some SCs over the backhaul and stores it there, or
instructs some MNs to store a content for some time (e.g. keeping in their cache a content they
consumed). Then, the operator can ask an interested MN within range of a SC or MN caching
that content to retrieve it directly.

Moreover, an operator can ask an MN interested in a content θ, but not currently within
range of an SC or MN with content θ in its cache, to wait for an amount of time, let TTL, until
it moves within range of such an SC or MN. If this time expires, then the operator is obliged to
deliver the content directly through the closest macro BS. While this delay-tolerant approach is
in contrast to the usual ones considered for small cell and D2D based offloading [65,120,126], it
is likely that the small cell and (D2D enabled) mobile node density will not always be enough to

1We assume that the content provider may be the cellular network operator itself or in cooperation with it
(like the Akamai and Swisscom example [1]).

2www.pandora.com , www.jango.com
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offload enough traffic. Hence, it is a valuable (and complementary) alternative, with potential
benefits (increased offloading) and costs (reduced QoE and potential monetary incentives)3.

6.2.3 Cost Model

The goal of an offloading mechanism is to minimize the cost of delivering a set of contents over
time to different nodes. Hence, we need first to define a model for the costs involved in each
phase of the ”offloading on the edge” mechanism.
− Initial Placement Costs: CBH , CBS.
The content provider, at time t0 = 0, places the content to some edge nodes (SCs and/or MNs).
A content is placed to a SC through a backhaul (wired or wireless) transmission, and we denote
this per placement cost as CBH . A (possible) content placement to some MNs takes place
through a macro-cell BS transmission. We denote this transmission cost, which mainly depends
on the load/congestion of the BSs, as CBS .

− Opportunistic Offloading Costs: CSC, CD2D.
During time t ∈ (0, TTL], the holders (which are either SCs or MNs) deliver the content to
any requester they meet. We consider different costs for a SC-MN and a MN-MN (or D2D)
transmission: CSC and CD2D. The former cost depends on the operating cost (transmission,
energy consumption) of an SC, whereas the latter might exist if a compensation (or reward) is
given by operator to MNs for each content they offload.

− Delayed Delivery Cost: C
(TTL)
BS .

At time TTL, the cellular network sends through macro-cell BSs the content to every non-served
requester. This cost relates both to the load of BS (as CBS) and to a (possible) compensation

to the MNs for a delayed delivery. We denote this (per transmission) cost as C
(TTL)
BS .

6.2.4 Content Dissemination Model and Assumptions

Let us assume a content item (e.g. a popular video file) and a set of MNs interested in it. The
content provider, at time t0 = 0, places the content to the caches of some SCs and/or MNs. If
by an expiry time TTL (if any), some of the interested MNs have not met any edge node (SC
or MN) with the content, they are served by a macro-cell BS4.

For the ease of reference, we define the following sets of ”edge nodes” that are involved in
the offloading process:

Definition 17. A requester of a content is a mobile node (MN) that (a) is interested in the
content and (b) has not received it yet. We denote the set of requesters at time t as R(t).

Definition 18. A holder of a content is an edge node (SC or MN) that stores the content and
will forward it to its requesters. We denote the set of holders at time t as H(t).

3Clearly, such delays might not be acceptable for all applications. However, many applications are inherently
delay-tolerant, e.g. software updates, file downloads, one way streaming (e.g. YouTube or Netflix). Moreover,
users might be willing to accept small or larger delays, if appropriate incentives are provided, and delayed content
delivery has already been considered in a number of contexts, e.g [48,134] .

4In the mechanism we consider, the content is cached only at the initial time, t0 = 0, and macro-cell BSs
deliver it only at its expiry time , t = TTL. Although one could place contents during time t ∈ (0, TTL) as
well, it has been shown (for similar settings) that placing contents at times t ∈ (0, TTL) leads to a sub-optimal
performance [124,139].
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We further denote the number of requesters and holders as:

R(t) = |R(t)| and H(t) = |H(t)|

where H(t) = HSC(t) ∪HMN (t) and H(t) = HSC(t) +HMN(t)
To model the level of participation of MNs in the offloading mechanism, we make the following

assumption.

Assumption 3 (Cooperation). A requester acts as a holder for a content it has received with
probability pc ∈ [0, 1]. The probability pc is equal among all nodes and contents.

The probability pc captures either the chance a node to forward the content (e.g. it has
enough resources at the time) or the percentage of nodes who are ”contracted” to help5.

Finally, since edge nodes can exchange data only when they come within transmission range,
the offloading is heavily affected by these meeting events between nodes. To this end, we assume
the the meeting/contact events between two nodes {i, j}, i ∈ MN and j ∈ MN ∪ SC, follow
the model of Def. 3.

6.3 Analysis

An operator, in order to optimize the offloading performance and cost, has to weigh its options
and take decisions about: how to deliver each content (directly or through offloading), how many
copies of a content should be placed to different edge nodes, which contents to store in the SC
and/or MN caches when their capacity is limited, etc. To this end, in this section, we provide
the analytical results that are needed when trying to answer these questions. Specifically, we
provide simple, closed form expressions for the performance of the ”offloading on the edge”
mechanism (Section 6.3.1), and the costs it incurs (Section 6.3.2).

6.3.1 Content Dissemination

The performance of the “offloading on the edge” mechanism depends on how much traffic it
can offload and/or how fast are contents delivered. To answer these questions, we calculate the
two main (and most common) performance metrics, namely the content delivery probability, and
content delivery delay.

First, we state the following Lemma, in which we use a mean field approximation and a
resulting system of ODEs to approximate the number of holders and requesters over time.

Lemma 9. The fluid-limit deterministic approximation for the expected number of holders
(H(t)) and requesters (R(t)) at time t, is

H(t)=H0 ·
(pc · R0 +H0) · eµλ·(pc·R0+H0)·t

pc · R0 +H0 · eµλ·(pc·R0+H0)·t

R(t)=R0 ·
pc · R0 +H0

pc · R0 +H0 · eµλ·(pc·R0+H0)·t

5Here, we need to stress that the above assumption implies that MNs will never become holders of a content
they are not interested in. Although there exist studies that assume that even not interested MNs might be willing
to act as holders [17,124,139,141], we believe that incentive mechanisms for these cases are difficult to implement
(e.g. a user easier accepts to forward a content it already has stored, than to retrieve, cache and forward a content
it will never use). Nevertheless, our framework could be easily extended also for such cases.
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Figure 6.1: Content dissemination modeled by a Markov Chain.

where H0 = H(0+) and R0 = R(0+).

Proof. Having assumed Poisson meeting processes, we can model the dissemination of a content
with a continuous Markov Chain, whose states correspond to the different sets of holders and
requesters {H,R}. Fig. 6.1 shows a segment of this Markov Chain; we present the different
states with equal number of holders (|H|) and requesters (|R|) under the same group, which can
be described by the tuples {|H|, |R|}. To transition between states a content delivery, which
takes place when a holder i ∈ H and a requester j ∈ R meet, is needed: (i) Content delivery to
cooperative node. The next state is {|H| = m+ 1, |R| = n− 1} and the transition rate

λ(m,n)→(m+1,n−1) = pc ·
∑

i∈H

∑

j∈R λij (6.1)

(ii) Content delivery to non-cooperative node. The next state is {|H| = m, |R| = n− 1} and the
transition rate

λ(m,n)→(m,n−1) = (1− pc) ·
∑

i∈H

∑

j∈R λij (6.2)

Statistics for the content dissemination process over time (e.g. distribution of |H(t)| or
|R(t)|), can be computed using the transition matrix of the Markov Chain of Fig. 6.1. However,
this would render the problem analytically (and numerically, for large networks) intractable.
To this end, we approach the problem with a mean field approximation of stochastic reaction
models [75].

We first form the drift equation [75, Theorem 1.4.1] for the expected number of holders,
E [|H(t)|] ≡ E [H(t)], as:

dE [H(t)]

dt
= E

[

λ(m,n)→(m+1,n−1)

]

= pc · E





∑

i∈H

∑

j∈R

λij
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The expectation in the right side of the drift equation is difficult to compute, as it requires
the computation of the probabilities over the whole state space {H,R}. To this end, one can
approximate E[H(t)] with its deterministic equivalent h(t). This approximation comes after
neglecting the variability of H(t) around its mean value and becomes more accurate for larger
systems [75, Section 1.5].

Based on the deterministic approximation and since (a) the rates λij are drawn independently
from a distribution fλ(λ) with mean value µλ (E[λij ] = µλ), and (b) the sum

∑

i∈H

∑

j∈R λij

consists of |H| · |R| terms, we can write

E
[

∑

i∈H

∑

j∈R λij

]

≈ h(t) · r(t) · µλ (6.3)

The higher the number of terms in the above sum, and the less the heterogeneity of the meeting
rates (i.e. the variance of fλ(λ)), the more accurate the approximation in Eq. (6.3) is.

Substituting Eq. (6.3) in the drift equation (where H(t) → h(t)), gives the ordinary differ-
ential equation (ODE) for h(t)6

dh(t)

dt
= pc · h(t) · r(t) · µλ (6.4)

Proceeding similarly, the ODE for the deterministic approximation of the number of re-
questers (R(t)→ r(t)), is

dr(t)

dt
= −h(t) · r(t) · µλ (6.5)

Finally, solving the system of the ODEs of Eq. (6.4) and Eq. (6.5), gives the expressions of
Lemma 9.

Based on Lemma 9 we, now, proceed to the calculation of the performance metrics. Let
us consider a requester i ∈ R(0+), and denote as Ti the time it receives the content. The
probability this (random) requester to receive the content by a time t, i.e. P{Ti ≤ t}, is equal
to the percentage of offloaded contents by time t. Hence, we can write

P{Ti ≤ t} = R0 −R(t)

R0
= 1− R(t)

R0
(6.6)

Substituting the expression of Lemma 9 in Eq. (6.6), gives the following Result for the content
delivery probability

Result 16 (Delivery Probability). The probability a content to be delivered to a requester by
time t is given by

P{Td ≤ t} = 1− pc ·R0 +H0

pc · R0 +H0 · eµλ·(pc·R0+H0)·t

where H0 = H(0+) and R0 = R(0+).

With respect to the average delay a requester experiences till it receives the content, we
state the following Result (the proof is technical and can be found in Section 6.8.1). We derive
expressions for two cases: (a) the content does not expire (i.e. TTL→∞), and (b) a macro-cell
BS serves undelivered contents at time t = TTL. .

6Note the differences between H(t) and h(t): (a) H(t) is integer, whereas h(t) is a real number; (b) the drift
equation for H(t) contains expectations, while the respective ODE for h(t) does not.
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Result 17 (Delivery Delay). The expected content delivery delay, under an expiry time TTL ∈
[0,∞), is given by
− for pc > 0:

E[Td|TTL] =
ln

(

1 +
pc ·R0 − e−µλ·(pc·R0+H0)·TTL

H0 + pc ·R0 · e−µλ·(pc·R0+H0)·TTL

)

µλ · pc · R0

− for pc = 0:

E[Td|TTL] =
1− e−µλ·H0·TTL

µλ ·H0

where H0 = H(0+) and R0 = R(0+).

6.3.2 Content Delivery Cost

Incorporating the offloading costs (Section 6.2.3) in our content dissemination model, and using
the analytical results of Section 6.3.1, we calculate the cost of a single content delivery in Re-
sult 18. The expression we derive, gives the cost as a (simple) function of the system parameters
(e.g. R0, µλ) and the operator selected parameters (e.g. HSC(0), HMN (0)), providing, thus, the
necessary information for the evaluation and tuning of the “offloading on the edge” mechanism.

Result 18. The cost of “offloading on the edge” a content is given by

C =CBH ·HSC(0) + CBS ·HMN (0)

+ (CSC · q + CD2D · (1− q)) ·R0 · P{Td ≤ TTL}
+ C

(TTL)
BS · R0 · (1− P{Td ≤ TTL})

where q =
HSC(0)·ln

(

H(TTL)
H0

)

pc·(R0−R(TTL)) , and P{Td ≤ TTL}, H(TTL) and R(TTL) are given in Lemma 9
and Result 16.

Proof.
− Initial Placement. The first two terms correspond to the initial placement phase: The cellu-
lar network operator, at time t = 0, places the content to HSC(0) SCs and HMN (0) MNs; in
total (H0 = HSC(0) +HMN (0)) holders. The costs per content placement are CBH and CBS ,
respectively.

− Opportunistic Offloading. During the opportunistic offloading phase, i.e. t ∈ (0, TTL), the
average number of requesters that receive the content by an edge node is R0 · P{Td ≤ TTL}. If
we denote with q the percentage of requesters that receive the content by a SC, it is easy to see
that the costs due to SC-MN and MN-MN content deliveries are

CSC · q · R0 · P{Td ≤ TTL} (6.7)

CD2D · (1− q) · R0 · P{Td ≤ TTL} (6.8)

respectively.

To calculate the percentage q we proceed as following:
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At first, the total number of requesters that receive the content by time TTL is

#Rtot = R0 −R(t) (6.9)

Second, the total number of requesters that receive the content in the interval (t, t + dt],
t ∈ (0, TTL) is

R(t)−R(t, t+ dt) = −dR(t) (6.10)

The probability that a content delivery that takes place in the interval in the interval (t, t+ dt]
is due to a SC is equal to

HSC(0)

H(t)
∈ [0, 1] (6.11)

where HSC(0) is the number of SC holders (which does not change over time), and H(t) the
total number of holders at time t.

Therefore, the number of requesters that receive the content by an SC holder in the interval
(t, t+dt] is given by −dR(t) · HSC(0)

H(t) , and the total number of requesters that receive the content
by an SC holder by time TTL is

#RSC =
∫ TTL
0 −dR(t) · HSC(0)

H(t) =
∫ TTL
0 −dR(t)

dt ·
HSC(0)
H(t) · dt

Eq. (6.5)
=

∫ TTL
0 H(t) ·R(t) · µλ · HSC(0)

H(t) · dt
= µλ ·HSC(0)

∫ TTL
0 R(t) · dt (6.12)

Using the expression of Lemma 9 for R(t) to calculate the above integral, we get

#RSC =
HSC(0)

pc
· ln
(

(pc · R0 +H0) · eµλ·(pc·R0+H0)·TTL

pc · R0 +H0 · eµλ·(pc·R0+H0)·TTL

)

=
HSC(0)

pc
· ln
(

H(TTL)

H0

)

(6.13)

where the last equality follows from the expression for H(t) given in Lemma 9.
Now, q easily follows from Eq. (6.9) and Eq. (6.13)

q =
#RSC

#Rtot
=

HSC(0)

pc
·
ln
(

H(TTL)
H0

)

R0 −R(TTL)
(6.14)

− Delayed Delivery. Finally, the average number of requesters that do not receive the content
before its expiry time, is given by R0 · (1− P{Td ≤ TTL}). Since, the cost of each content

transmission at time t = TTL is C
(TTL)
BS , the total cost of delayed delivery phase (last line of

the expression in Result 18) follows easily.

6.4 Applications: Cost Optimization

In a real scenario, the network operator would have to offload simultaneously many different
contents. Using the results of the previous section, the average performance or the total cost
over all the contents can be calculated easily, by evaluating them for each content separately and
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then averaging or summing them, respectively. However, since some of the system parameters
are controlled by the operator (e.g. H0), they can be selected such that they lead to optimal
performance. To this end, in this section, as an application of our analytical results, we study
how offloading and caching can be designed in order to minimize the total cost.

Let us assume that the content provider has to deliver M ≥ 1 contents to their requesters.
We denote the set of the contents asM (M = |M|). Since in a real scenario, not all contents are
expected to be equally popular [32, 38, 87], nor tolerate equal delays, we denote the popularity
(i.e. the number of initial requesters) and the expiry time of each content θ ∈ M as Rθ

0 and
TTLθ, respectively.

Under a given setting (i.e. with certain mobility, cooperation, traffic, etc., characteristics),
what the cellular network can select, is the initial placement (caching) for each content θ ∈ M;
namely, the number of SC and MN initial holders, Hθ

SC(0) and Hθ
MN (0), respectively (note that

Hθ
0 (0) ≡ Hθ

SC(0)+Hθ
MN (0)). Additionally, it might be possible that the delay-tolerance of each

content, TTLθ, can be selected as well.
Therefore, if we denote as Cθ is the delivery cost of a content θ ∈ M (which is given by

Result 18), we can express the total cost optimization problem as

Problem 1.
minHSC , HMN , TTL

{
∑

θ∈MCθ
}

s.t. ∀θ ∈M : 0 ≤ Hθ
SC(0) ≤ NSC

0 ≤ Hθ
MN (0) ≤ Rθ(0)

Tmin ≤ TTLθ ≤ Tmax

and
∑

θ∈M

Hθ
SC(0) ≤

∑

i∈SC

Q(i)

where HSC , HMN and TTL denote the vectors with components Hθ
SC(0), H

θ
MN (0) and TTLθ

(θ ∈M), respectively, and Q(i) is the caching capacity (in number of contents) of a SC node i.

Remark: Since MNs cache only contents in which they are interested in, we assume that their
storage capacity is enough for all the contents of interest. Hence, storage capacity constraints
for MN are not considered in Problem 1.

Since the costs Cθ are expressed as a function of the optimization variables (Result 18),
well known numerical methods can be employed to solve Problem 1. Under certain scenarios,
analytical solutions for Problem 1 can be found as well. In the remainder, we focus on two
characteristics cases, which are analytically solvable, and provide useful insights for the system.

6.4.1 Offloading through SCs

We first consider the case where contents are offloaded only through SCs (i.e. when pc = 0 and
Hθ

MN (0) = 0, or equivalently, Hθ
0 = Hθ

SC(0)). This is the most common and feasible scenario
considered in previous literature, since MNs are not required to share their contents, and thus

incentive mechanisms are easier to implement. In this case and for7 CSC < C
(TTL)
BS it can be

proved that Problem 1 is convex and we compute the analytical solution in Result 19. For

7The “offloading on the edge” mechanism is meaningful if CSC < C
(TTL)
BS , as in the opposite case, offloading

would cost more than directly delivering from the macro-cell BSs.
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notation simplicity, we consider equal expiry times TTLθ = TTL, ∀θ ∈ M, and cache sizes
Q(i) = Q, ∀i ∈ SC. However, Result 19 can be easily modified for different8 TTLθ and Q(i)
values.

Result 19. Under a base scenario (pc = 0, HMN (0) = 0), the initial allocation HSC that
minimizes the total cost, is given by

Hθ
SC(0) =











NSC , Rθ(0) > U
1
γ · ln

(

1
L · Rθ(0)

)

, L ≤ Rθ(0) ≤ U

0 , Rθ(0) < L

with γ = µλ · TTL, L = 1
γ·Φ ·

(

1 + λ0
CBH

)

, U = L · eγ·NSC , Φ =
C

(TTL)
BS −CSC

CBH
, and

λ0 = inf

{

λ0 ≥ 0 :
∑

θ∈M

Hθ
SC(0) ≤

∑

i∈SC

Q(i)

}

Proof. Applying the method of Lagrange multipliers [4] to Problem 1, gives (for brevity we use
the notation Hθ

0 ≡ Hθ
SC(0

+) = Hθ
SC(0) and Rθ

0 ≡ Rθ(0+) = Rθ(0)):

∇
(

∑

θ∈M

Cθ

)

= ∇λ0

(

∑

i∈SC

Q(i)−
∑

θ∈M

Hθ
0

)

+∇
∑

θ∈M

λθ ·Hθ
0 +∇

∑

θ∈M

µθ · (NSC −Hθ
0 ) (6.15)

where λ0 ≥ 0 and λθ, µθ ≥ 0,∀θ ∈ M are the lagrangian multipliers.

Using the expression of Result 16 for the delivery probability, the offloading cost (Result 18)
of a content θ, in a base scenario, can be written as

Cθ = CBH ·Hθ
0 + CSC ·Rθ

0 + (C
(TTL)
BS − CSC) · Rθ

0 · e−µλ·H
θ
0 ·TTL (6.16)

Substituting Cθ from Eq. (6.16) to Eq. (6.15), the differentiation over Hθ
0 gives

Hθ
0 =

1

γ
·
[

ln
(

Φ · γ ·Rθ
0

)

− ln

(

1 +
λ0 − λθ + µθ

CBH

)]

(6.17)

The conditions for the lagrangian multipliers, i.e.

λθ ·Hθ
0 = 0, and µθ · (NSC −Hθ

0 ) = 0 ,∀θ ∈M

imply that Hθ
0 either

(a) is given by Eq. (6.17) and λθ = µθ = 0, or

(b) is equal to NSC and λθ = 0, µθ > 0, or

(c) is equal to 0 and λθ > 0, µθ = 0

8In particular, one has to substitute γ with γθ = µλ · TTLθ for each content. The expressions for Hθ
SC(0)

remain the same, and only the expressions of L and U need to be modified.

143



CHAPTER 6. OFFLOADING ON THE EDGE: ANALYSIS AND OPTIMIZATION OF
LOCAL DATA STORAGE AND OFFLOADING IN HETNETS

From condition (a), we calculate the limits of the interval within which the optimal Hθ
0 is

given by Eq. (6.17). To find the lower limit, L, we set Hθ
0 (Eq. (6.17) with λθ = µθ = 0) equal

to 0 and for the upper limit, U , equal to NSC , which give

L =
1

γ · Φ ·
(

1 +
λ0

CBH

)

(6.18a)

U =
1

γ · Φ · e
γ·NSC ·

(

1 +
λ0

CBH

)

= L · eγ·NSC (6.18b)

Combining Eq. (6.17) and Eqs. (6.18), we can express the optimal placement as

Hθ ∗
0 =















NSC , Rθ
0 > U

ln(γ·Φ·Rθ
0)−ln

(

1+
λ0

CBH

)

γ , L ≤ Rθ
0 ≤ U

0 , Rθ
0 < L

(6.19)

The only unknown parameter in Eq. (6.19) is λ0 (since we expressed L and U as func-
tions of λ0). Lemma 10, which we state and prove in Appendix 6.8.2, suggests that the total
cost,

∑

θ∈MCθ, is monotonically increasing with λ0. Therefore, the optimal placement pol-
icy corresponds to the smaller non-negative value of λ0 that satisfies the storage constraint,
∑

θ∈MHθ
0 ≤

∑

i∈SC Q(i), and this proves the Result.

In general, the value of the parameter λ0 can be found (within some precision) with e.g. a
binary search. Nevertheless, for a large number of contents, and given their popularity distri-
bution, its value can be directly calculated using the Corollary 4, which follows after substitut-
ing the expression of Result 19 and the popularity density function in the storage constraint
∑

θ∈MHθ
SC(0) =

∑

i∈SC Q(i).

Corollary 4. Under a content popularity distribution ρ(x), the parameter λ0 in Result 19 is

given by λ0 = max
{

0, λ̂0

}

, where λ̂0 is the (minimum) solution of

∫ U

L
ln (γ · Φ · x) · ρ(x)dx− ln

(

1 +
λ0

CBH

)

·
∫ U

L
ρ(x)dx+ γ ·NSC ·

∫ ∞

U
ρ(x)dx =

γ ·NSC ·Q
M

Result 19 reveals how resources should be allocated: (i) The optimal allocation is logarithmic
in popularity, with either large or small caches. (ii) When capacity is limited, an extra factor (λ0)
is introduced, so that the relative allocation remains logarithmic, but the absolute allocation is
reduced (normalized) as the number of contents increase, or total capacity decreases. (iii) Some
low popularity contents might get no allocation, either because it does not help the offloading
cost, or because there is not enough capacity for them.

Practical Example: Assume an urban area covered by NBS = 4 macro-cell BSs and
NSC = 100 SCs. On average, in this area reside NMN = 10000 users9 with an average meeting
rate µλ = 3.3 · 10−5 meetings/sec (equal to this of the real mobility trace [58]). The cellular
network has to deliver M contents (e.g. YouTube video files of an average size 10MB [38]) with

9Vodafone Germany reported an average number of 1700 users per cell (http://mobilesociety.typepad.com/
mobile_life/2009/06/base-station-numbers.html). In an urban environment, users density is expected to be
higher.
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expiry time TTL ≈ 5min and popularity given by a bounded Pareto distribution in the interval

R0 ∈ [10, 1000] with shape parameter α = 0.5 [38]. The costs are10 C
(TTL)
BS = 10 · CBH and

CSC ≪ CBH , C
(TTL)
BS .

Substituting the given values, and taking the expectation over the popularity distribution,
it follows that the necessary buffer size of a SC, Q = E[H0]

NSC
·M · L, is approximately 1MB per

content. This means that, even under very high traffic demand, the caching capacity of the SCs
would be adequate such that the last constraint of Problem 1 is not violated; e.g. forM = 100000
(i.e. each user requests 10 videos per 5 minutes!), the needed capacity is Q = 100GB (which is
a feasible and relatively cheap investment).

6.4.2 Offloading through MNs

We now consider the case where offloading takes place only through MN-MN communication
(pc > 0) and without content storing on SCs (i.e. HSC(0) = 0). A content is initially sent by
the BSs to HMN (0) (out of R(0)) of its requesters, which start disseminating it to the other
requesters. However, not all nodes might be willing to participate by acting as holders, which in
our framework means that each node (including the initial nodes in which the content is placed)
cooperates with probability pc. Therefore, we can write

H0 ≡ HMN (0+) = pc ·HMN (0)

Also, as defined in Lemma 9,

R0 ≡ R(0+) = R(0)−HMN (0)

As in the previous case, we assume equal expiry times TTLθ = TTL, ∀θ ∈ M.

Result 20. Under an opportunistic MN-MN scenario (pc > 0, HSC(0) = 0), the initial alloca-
tion HMN that minimizes the total cost, is given by

Hθ
MN(0) =











Rθ(0) , Rθ(0) ≤ OPT θ

OPT θ , 0 ≤ OPT θ < Rθ(0)

0 , OPT θ < 0

where OPT θ =
Rθ(0) ·

(√
Φ′ · e 1

2
γ·pc·Rθ(0) − 1

)

eγ·pc·R
θ(0) − 1

, and Φ
′

=
C

(TTL)
BS −CD2D

CBS−CD2D
and γ = µλ · TTL.

Proof. The cost for offloading a content θ under an opportunistic MN-MN scenario, where
Hθ

0 = pc ·Hθ
MN (0) and Rθ

0 = R(0)θ −Hθ
MN (0), is (see Result 18)

Cθ = CBS ·Hθ
MN(0) +

(

CD2D − C
(TTL)
BS

)

· (Rθ(0) −Hθ
MN(0)) · P{Td ≤ TTL}

+ C
(TTL)
BS · (Rθ(0)−Hθ

MN (0)) (6.20)

10In general, the offloading costs incurred in each phase, might differ between areas, time periods and operators.
Their absolute values are not available and/or are difficult to estimate. To this end, in this example, as well as in
other numerical results, we use relative values inferred by some average values proposed in [66].
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Similarly, for Hθ
0 = pc · Hθ

MN(0) and Rθ
0 = Rθ(0) − Hθ

MN(0), the delivery probability P{Td ≤
TTL} can be written as

P{Td ≤ TTL} = 1− Rθ(0)

Rθ(0)+Hθ
MN (0)·

(

eγ·pc·R
θ(0)−1

) (6.21)

where γ = µλ · TTL.
Substituting Eq. (6.21) in Eq. (6.20), and taking the derivative over the initial number of

transmissions Hθ
MN (0), gives

dCθ

dHθ
MN (0)

= (C
(TTL)
BS − CD2D) +

(CD2D − CBS) · (Rθ(0))2 · eγ·pc·Rθ(0)

(

Rθ(0) +Hθ
MN (0) · (eγ·pc·Rθ(0) − 1)

)2 (6.22)

From Eq. (6.22) it follows that

dCθ

dHθ
MN (0)

=

{

< 0 ,Hθ
MN (0) < OPT θ

> 0 ,Hθ
MN (0) > OPT θ

where

OPT θ =
Rθ(0) ·

(√
Φ′ · e 1

2
γ·pc·Rθ(0) − 1

)

eγ·pc·Rθ(0) − 1
(6.23)

Therefore, when OPT θ ∈ [0, Rθ(0)], the minimum cost is achieved for Hθ
MN (0) = OPT θ. Oth-

erwise, for OPT θ /∈ [0, Rθ(0)], and since it must hold that Hθ
MN(0) ∈ [0, Rθ(0)], the minimum

cost is achieved for the largest or lowest possible values of Hθ
MN (0).

Result 20 reveals how content storage should be delivered when offloading only through MNs
is considered. As it can be seen, the initial allocation is much different than in the offloading
through SCs case (see Result 19), and this is mainly due to the fact that some of the requesters
get the content at the beginning.

6.5 Simulation Results

To validate our analysis, we compare the theoretical predictions against Monte Carlo simulations
(Section 6.5.1). Then, we evaluate the cost efficiency of ”offloading on the edge” in scenarios
with realistic traffic demand patterns (Section 6.5.2).

6.5.1 Model Validation

6.5.1.1 Synthetic Scenarios

We first compare the theoretical results against Monte Carlo simulations on various synthetic
scenarios. Synthetic simulations allow us to create a number of different scenarios with varying
parameters.

We generate synthetic networks, conforming to the model of Section 6.2.4, as following:
(i) We choose a probability distribution fλ(λ) and for each pair {i, j} we draw randomly a
meeting rate λij.
(ii) We create a sequence of contact events for every pair in the network with rate (Poisson
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Figure 6.2: (a) Expected number of holders, H(t), and requesters, R(t), over time for generic scenarios with
R0 = 100, HSC = 0; (b) shows the corresponding results for the delivery probability, i.e. P{Td ≤ TTL}, where
TTL is the x-axis variable.

processes with rates λij).
(iii) We select the content traffic parameters (R0, H0, pc, HSC(0), HMN (0), NSC), and we
simulate a large number of content disseminations, choosing randomly each time the set of
requesters and the set of holders (note, however, that the set of holders depends also on the
parameters HSC(0), HMN(0) and NSC).

We have created many scenarios with different combinations of mobility (fλ(λ)) and traffic
(R0, H0, pc, HSC(0), HMN (0), NSC) characteristics. We present here a representative subset
of them, which allow us demonstrate the accuracy of our predictions and their sensitivity when
varying certain parameters. In the presented scenarios we create nodes mobility according to a
gamma distribution fλ(λ) with mean value µλ = 1 (i.e. normalized value) and variance σ2

λ (or,
equivalently, coefficient of variation CVλ = σλ

µλ
) [109]. Gamma distributions allow us to capture

different levels of mobility heterogeneity by varying the value of CVλ.

Content Dissemination. In Fig. 6.2 we compare simulation results (average values over
the different runs) of expected number of holders (H(t)) / requesters (R(t)) and content delivery
probability P{Td ≤ TTL} with the respective theoretical predictions (Lemma 9 and Result 16,
respectively). Considering the same content traffic parameters, we simulated scenarios with
moderate (CVλ = 1) and high (CVλ = 2) mobility variance, in order to show how mobility
heterogeneity affects the accuracy of our predictions. It can be seen that our predictions become
more accurate for lower mobility heterogeneity (CVλ = 1). This is due to the mean field
approximation of the transitions rates we used in the analysis (see Section 6.3.1). For scenarios
with even lower mobility heterogeneity (e.g. CVλ = 0.5 - not shown in the plots) the accuracy
is even better. Additionally, we need to highlight that these results correspond to an initial
allocation of only one holder (H0 = 1), which is the worst case scenario (i.e. lowest accuracy of
the mean field approximation, and, thus our predictions) among the ones with the given mobility
and traffic (other than H0) characteristics. In the same scenarios, when considering a few more
initial holders, e.g. H0 = 10, theoretical results achieve an almost exact prediction.
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Figure 6.3: Expected delivery delay, E[Td], for various generic scenarios with R0 = 100, HSC = 0 and (a) pc = 0.5,
(b) pc = 1.

Similar observations can be made in Fig. 6.3, where we compare the theoretically predicted
delivery delays with the respective simulation results. The results in Fig. 6.3 are in accordance
with the above observations, i.e. the predictions’ accuracy increases for (a) lower CVλ, and (b)
higher number of initial holders H0.

Offloading Cost. We finally present results that validate the cost optimization analysis of
Section 6.4. Fig. 6.4 shows the incurred cost for the cellular network (y-axis) under different
number of initial holders H0 (x-axis) for various generic traffic scenarios. Different cooperation
policies (top plots: pc = 1, middle plots: pc = 0.5, and bottom plots: pc = 0) and expiry times
TTL (or, equivalently, γ = µλ · TTL) are considered. It can be seen that our results accurately
predict the content dissemination cost.

Some remarkable observations about the optimal initial allocation of holders that can be
made in Fig. 6.4 (as well as in other scenarios we investigated) are the following: (i) In many
cases, offloading on the edge can significantly reduce the cost of a content dissemination. For
instance, in the scenario shown in Fig. 6.4 (bottom plot - bottom curve / black color), even
without node cooperation (pc = 0), offloading on the edge can reduce the cost 10 times, compared
to the corresponding scenario without offloading (i.e. C = 100). (ii) An optimal initial allocation
requires only a small number of (initial) storage resources, which in most of the cases we present
is equal or less than 20% of the content requesters. (iii) The higher the allowed delay (i.e. expiry
time TTL or parameter γ) is, the larger the gain the cellular network can have is. For example,
consider the red line (γ = 0.05) in the bottom plot. Increasing ×10 the value of TTL (black line
- γ = 0.5) can reduce the cost (e.g. for H0 = 5 which is close to the optimal allocation) almost
8 times.

6.5.1.2 Mobility Traces

Results of synthetic simulations demonstrate a significant accuracy of our predictions and verify
the arguments used in the derivation of our results. In this section, we present results in more
challenging scenarios, where node mobility characteristics depart from our model assumptions.
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Figure 6.4: Single content offloading cost C (Lemma 18) under different number of initial holders (H0, x-axis) for

a synthetic mobility scenario with R0 = 100, HSC = H0, and CBH = C
(TTL)
BS = 50 ·CSC . Dashed lines correspond

to theoretical predictions and markers to simulation results. We denote γ = µλ · TTL.

Specifically, we use the TVCM [57] and SLAW [77] mobility models, which have been shown
to capture well real mobility patterns, like power-law flights [77], community structure [57], etc.
The generated scenarios we present are
TVCM scenario: Mobile nodes move in a square area 1000m × 1000m, which contains three
areas of interest (communities). Nodes move mainly inside their community (60% of the time)
and leave it for a few short periods. Macro-cell BSs provide full coverage of the whole area, while
25 non-overlapping (placed on a grid) small-cell base stations (SCs), with a communication range
of 100m, provide further connectivity. Mobile nodes are equipped with D2D communication
interfaces, for which we assume a range of 30m.
SLAW scenario: A square area of edge length 2000m is simulated, where mobile nodes either
move or remain static for a maximum time of 20min (the other mobility parameters are set as
in the source code provided by [77]). Macro-cell BSs cover the whole area and coexist with 100
non-overlapping small-cells. Communication ranges are set as above.

In Fig. 6.5 we present the delivery probability P{Td ≤ TTL}, along with the theoretical
prediction, for two content traffic scenarios in the TVCM (Fig. 6.5(a)) and SLAW (Fig. 6.5(b))
traces. Contents with popularity R(0) = 50 are initially cached to H(0) edge nodes (half of
which are MNs). The MNs’ participation in offloading is set to pc = 0.5. In the TVCM trace
(Fig. 6.5(a)) it can be seen that the accuracy of our results is significant, despite the community
structure of the network (which cannot be captured explicitly by our mobility assumptions). In
the SLAW scenario (Fig. 6.5(b)), our results overestimate the delivery probability. However, note
here that the number of holders in the SLAW scenario is smaller, and, thus, our approximation
is expected to be less accurate. For scenarios with more initial holders the accuracy of the
predictions increase (see e.g. Fig. 6.6(b), where the accuracy is higher for higher H0 values).

Although in some points the theoretical performance metrics deviate considerably from sim-
ulations (e.g. 20%), the accuracy of the cost metrics (Lemma 18) is less affected. Fig. 6.6 shows
the incurred cost for delivering a content to R(0) = 30 requesters (y-axis) under different number
of initial holders H0 (x-axis). Different initial placement policies (HSC(0),HMN (0)), levels of
MNs participation (pc), and expiry times TTL are considered. In the majority of scenarios our
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Figure 6.5: Delivery probability P{Td ≤ TTL} over time TTL (x-axis), for the (a) TVCM and (b) SLAW scenarios

with pc = 0.5 and HSC(0) = HMN(0) = H(0)
2

.

results accurately predict the offloading cost. Yet, even in the case where the predictions are
less accurate (e.g. in Fig. 6.6(b) for µλ · TTL = 0.05), they can still capture the actual optimal
initial allocation regimes.

6.5.2 Performance Evaluation

After validating our analysis, we now investigate the cost efficiency of the ”offloading on the
edge” mechanism in a realistic traffic scenario. We present results that demonstrate the effect
of different system factors, and provide useful conclusions for cellular network operators.

The parameters of the scenario we consider are the following:
− Popularity: Content popularity has been shown to follow a power-law distribution [32,38,87].
Thus, we draw the popularity of each content from a bounded-Pareto distribution (R0 ∈ [1, 100])
with shape parameter α = 0.5 [38].
− Traffic Intensity: Mobile operators do not release real mobile traffic data. To this end, and
since traffic demand is directly related to the number of mobile users that reside in an area, we
infer traffic patterns from an available dataset of the Gowalla location-based social network. The
Gowalla dataset [54] contains information (logs of position and time) of user checkins (through
their mobile devices) in different venues. In the scenarios we present, we create different number
of contents during a 24h time interval. The number of contents M is proportional to the number
of mobile users that checked-in a certain area (we selected the most popular venue) at the same
time. The maximum number of concurrent contents is M = 200.
− Delay Tolerance: We set equal expiry times TTL for each content, and we consider different
sets of scenarios with low (TTL = 5min), moderate (TTL = 25min), and high (TTL = 60min)
delay tolerance.

− Costs: The relative costs are set CBS = C
(TTL)
BS = 10 · CBH = 20 · CSC = 20 · CD2D, values

selected based on some data presented in [66].
− Node Mobility: We use the TVCM mobility scenario presented in the previous section.
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Figure 6.6: Offloading cost (y-axis) vs number of initial holders (H0, x-axis). Dashed lines correspond to theoretical

predictions and markers to simulation results. Transmission costs are: (a) C
(TTL)
BS = 10 · CBH = 10 · CBS = 20 ·

CSC = 20·CD2D (top plot) and C
(TTL)
BS = CBH = CBS = 10·CSC (bottom plot); (b) C

(TTL)
BS = 2·CBS = 10·CD2D.

Offloading through SCs

We first consider the case of offloading through SCs. We simulate two sets of scenarios with small
(Q = 5) or large (Q = 200) caches. We choose the optimal initial caching policy of Result 19.

In Fig. 6.7 we present the total offloading cost (marked lines) incurred for the cellular network
operator over different times of the day. The gray area shows the intensity of mobile users that
reside in the considered area. The dashed line denotes traffic demand over time, or equivalently,
the cost when content delivery without offloading is considered.

Some interesting observations that follow from Fig. 6.7 are:
(i) Under the optimal caching policy, ”offloading on the edge” can significantly reduce the cost
of content delivery, up to an order of magnitude, or even more in some cases.
(ii) The ”offloading on the edge” cost changes over time much smoother than traffic demand. In
particular, for large caches (cross/red line), the offloading cost curve is almost flat, despite the
large peaks in traffic demand. In cellular networks, such temporal variations of the traffic inten-
sity is an important issue, since operators are required to over-provision the network capacity
(high CAPEX costs) [48]. As we show, ”offloading on the edge” can amortize these costs. Even
under higher transmission costs CBH , CSC than these we assumed, although the operating cost
(OPEX) increases, the cost curve remains smooth, reducing thus a need for over-provisioning.
(iii) Large caching capacity has as a result a smoother cost curve (cross/red vs circle/blue
curves). This is a positive message for operators, because to equip SCs with large enough caches
is both feasible and inexpensive, as discussed in the example scenario of Section 6.4.1.
(iv) Comparing Fig. 6.7(a) and Fig. 6.7(b), we see that the tolerated delay has also a signifi-
cant effect on the smoothness of the cost curve (higher TTL values lead to smaller variations).
This implies that an alternative way of avoiding the over-provision cost (CAPEX), is to give
incentives (OPEX) to users for accepting delayed content. Such solutions have been previously
considered, e.g. [48], however, our framework allows an easy investigation of their effects (due
to the closed-form results) and an analytic approach of pricing policies, etc.
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Figure 6.7: Traffic demand and offloading cost over a 24h period.

Offloading through MNs

Now, we evaluate the performance of offloading through MNs. We simulate scenarios with
different levels of node cooperation pc. We choose the optimal initial content placement policy
of Result 20.

In Fig. 6.8(a) we present the total offloading cost (marked lines) incurred for the cellular
network operator over different times of the day. We simulate three scenarios with low, moderate
and high delay tolerance (TTL = 5, 25, 60min), and 10% of user cooperation in offloading
(pc = 0.1). Similarly to the offloading through SCs case (see e.g. Fig. 6.7), for higher TTL values,
the cost decreases and its variations are smoother. However, it can be seen that improvement
between the scenarios with TTL = 25min and TTL = 60min is not significant. This has
an important implication for the system: Although increasing the delay tolerance is beneficial
for the operator, after a point or gradually (depending on the scenario), the effects of this
improvement become negligible. Bearing in mind that user satisfaction decreases with TTL
indicates that there is a tradeoff, which should be carefully assessed by the system designer or
considered for further optimization.

In Fig. 6.8(a) we show how the total offloading cost over a day period (normalized to the
respective cost without offloading) changes with pc. It is evident that varying user cooperation
does not have the same effects for different scenarios, and that the minimum total cost is achieved
at different values of pc. This introduces one extra dimension, which can be used for system
optimization as well. Such optimization options (with respect to TTL, pc, etc.) could lead to
interesting conclusions, and we believe it would be useful to consider them in future research.

6.6 Related Work

In this section we discuss works that are closer to ours, rather than studies which do not con-
sider caching and/or delay tolerant delivery, and which are mainly based on pure infrastructure
architectures, e.g. with WiFi access points [78] or small-cell base stations [3,21], or on the D2D
paradigm [5].

Mobile data offloading through MSNs and epidemic content dissemination is studied in [17,
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Figure 6.8: (a) Traffic demand and offloading cost over a 24h period. User cooperation is 10%. (b) Total offloading
cost over a 24h period, normalized to the total cost without offloading.

124,139,141]. In the setting of [141], copies of a content are distributed through the infrastructure
to a subset of mobile nodes, which then start propagating them epidemically. The performance of
different content “pushing” techniques (e.g. slow/fast start) is investigated through simulations
on a real vehicular mobility trace. Analytical approaches for pushing techniques can be found
in [124,139], which study the optimal selection of the number of initial and final content pushes.
[124] models the content dissemination as a control system and proposes an adaptive algorithm,
HYPE, which aims to minimize the load of the cellular network by using real time measurements.
On the other hand, [139] uses a fluid limit approximation and focuses on the cost optimization
problem. Finally, [17] takes into account fairness among different contents/nodes, and derives
schedulers that maximize the throughput, under given mobility and wireless channel conditions.
These studies, in contrast to our framework, assume that every user is willing to offload contents,
even if they are not of her interest. Difficulties in devising incentive mechanisms or limitations
of device capabilities, might render such settings unrealistic.

To this end, [85] considers a limited number of (designated) holders. [85] proposes centralized
algorithms for selecting the best set of available holders, in order to minimize the traffic load
served by the infrastructure. Our paper extends this work, by introducing generic offloading
costs and policies, and deriving insightful, closed-form results for the optimal caching.

Finally, [39] proposes caching in femto-cells and user devices, in a different setting than ours,
where users communicate with several holders simultaneously. D2D communication is controlled
by a macro-cell BS, which is aware of the status of caches, location of users, and channel state
information between them. The objective of the paper is to decide which files should be stored
and on which helper node, a problem that is shown to be NP-hard. This problem is formally
presented, studied in more detail, and extended for coded contents in [126].
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6.7 Conclusion

In this work we studied “offloading on the edge”, a mechanism that employs edge nodes (SCs
and/or MNs) to opportunistically offload popular content. We built a model that can cap-
ture heterogeneous traffic demand, user cooperation and mobility characteristics, and describe
generic caching and offloading policies. Based on our model, we derived closed-form expres-
sions for predicting the offloading performance. These allowed us to analytically study the cost
optimization problem, and provide results that shed light on how caching policies should be
designed. Realistic simulations verified the insights that stem from our analysis, and led to
useful conclusions.

Our closed-form expressions reveal how and to what extent each system parameter affects
performance and cost. Thus, they could be easily applied to sensitivity analysis, network plan-
ning and dimensioning, or design of pricing strategies; issues that have recently attracted a lot of
attention from network operators, who seek novel solutions to alleviate the effects of the rapidly
growing traffic demand.

6.8 Appendix: Supplementary Theoretical Results and Proofs

6.8.1 Proof of Result 17

Proof. The probability a content to be delivered in the time interval [t, t+ dt) is given by

P{Td ∈ [t, t+ dt)} = dP{Td ≤ t}
dt

· dt (6.24)

Since a requester gets the content at time t = TTL from a BS, if it has not received it earlier,
we can write for the expected delay

E[Ti|TTL] = TTL · (1− P{Td ≤ TTL}) +
∫ TTL

0
t · P{Td ∈ [t, t+ dt)}

= TTL · (1− P{Td ≤ TTL}) +
∫ TTL

0
t · dP{Td ≤ t}

dt
· dt (6.25)

where the last equality follows from Eq. (6.24).

Using the expression of Result 16, we first compute the derivative dP{Td≤t}
dt , and, then, the

integral in Eq. (6.25), and we get

E[Ti|TTL] = TTL·(1−P{Td ≤ TTL})+ 1

pc ·R0
·
(

TTL ·H0 · (pc ·R0 +H0) · eµλ·(pc·R0+H0)·TTL

pc ·R0 +H0 · eµλ·(pc·R0+H0)·TTL

)

+
1

µλ · pc ·R0
· ln
(

pc ·R0 +H0

pc ·R0 +H0 · eµλ·(pc·R0+H0)·TTL

)

Substituting the value of P{Td ≤ TTL} from Result 16 in the above equation, after some

154



CHAPTER 6. OFFLOADING ON THE EDGE: ANALYSIS AND OPTIMIZATION OF
LOCAL DATA STORAGE AND OFFLOADING IN HETNETS

algebraic manipulations, we can successively get

E[Ti|TTL] =
TTL · (pc ·R0 +H0)

pc · R0
+

1

µλ · pc · R0
· ln
(

pc · R0 +H0

pc · R0 +H0 · eµλ·(pc·R0+H0)·TTL

)

=
1

µλ · pc ·R0
· ln
(

(pc · R0 +H0) · eµλ·(pc·R0+H0)·TTL

pc · R0 +H0 · eµλ·(pc·R0+H0)·TTL

)

=
1

µλ · pc ·R0
· ln
(

1 +
pc ·R0 − e−µλ·(pc·R0+H0)·TTL

H0 + pc ·R0 · e−µλ·(pc·R0+H0)·TTL

)

which is the expression of Result 17 for pc > 0. The expression for pc = 0 follows after taking
the limit (pc → 0) of the above expression.

6.8.2 Lemma 10: Cost Monotonicity with λ0

Lemma 10. Under a content placement policy given by Eq. (6.19), the derivative of the total
cost,

∑

θ∈M Cθ, with respect to λ0 is

d

dλ0

[

∑

θ∈M

Cθ

]

=
1

γ
·
(

1− 1

1 + λ0
Φ1

)

· |A| ≥ 0

where A = {θ ∈ M : L ≤ Rθ
0 ≤ U}.

Proof. From the conditions (b) and (c) (see, proof of Result 19), and similarly to Eqs. (6.18),
we can express the multipliers λθ and µθ as a function of λ0, as

λθ =

{

λ0 + CBH

(

1− γ · Φ ·Rθ
0

)

, Rθ
0 < L

0 , Rθ
0 ≥ L

(6.26a)

µθ =

{

−λ0 − CBH

(

1− γ · Φ · e−γ·NSCRθ
0

)

, Rθ
0 > U

0 , Rθ
0 ≤ U

(6.26b)

The cost of a single content dissemination, Eq. (6.16), under the content placement policy
of Eq. (6.19), can be written as

Cθ =
Φ1

γ
·
[

ln
(

γ · Φ · Rθ
0

)

− ln

(

1 +
λ0 − λθ + µθ

Φ1

)]

+Φ2 ·Rθ
0 + (Φ3 − Φ2) ·

Rθ
0 ·
(

1 + λ0−λθ+µθ

Φ1

)

γ · Φ · Rθ
0

=
Φ1

γ
·
[

ln
(

γ · Φ · Rθ
0

)

− ln

(

1 +
λ0 − λθ + µθ

Φ1

)]

+Φ2 ·Rθ
0 +

Φ1

γ
·
(

1 +
λ0 − λθ + µθ

Φ1

)

(6.27)

Taking its derivative, with respect to λ0, gives

d

dλ0

[

∑

θ∈M

Cθ

]

= −Φ1

γ
· d

dλ0

[

∑

θ∈M

ln

(

1 +
λ0 − λθ + µθ

Φ1

)

]

+
1

γ
· d

dλ0

[

∑

θ∈M

(λ0 − λθ + µθ)

]

(6.28)
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because the terms including only the scenario parameters (Rθ
0, γ, and costs) do not depend on

the selected resource allocation and, thus, on the parameter λ0.

To calculate the derivatives appearing in the right side of Eq. (6.28), we use the definition
of a derivative, i.e.

df(λ0)

dλ0
= lim

dλ0→0

f(λ0 + dλ0)− f(λ0)

dλ0
(6.29)

and proceed as following:

We first define the sets

A = {θ ∈ M : L ≤ Rθ
0 ≤ U} (6.30a)

B = {θ ∈ M : Rθ
0 > U} (6.30b)

C = {θ ∈ M : Rθ
0 < L} (6.30c)

and, respectively, for λ0 → λ0 + dλ0, the sets

A′

= {θ ∈M : L+∆L ≤ Rθ
0 ≤ +∆U} (6.31a)

B′

= {θ ∈M : Rθ
0 > U +∆U} (6.31b)

C′ = {θ ∈M : Rθ
0 < L+∆L} (6.31c)

where we denoted

L+∆L =
1

γ · Φ ·
(

1 +
λ0 + dλ0

CBH

)

= L+
dλ0

γ · CBH · Φ
(6.32a)

U +∆U =
1

γ · Φ · e
γ·NSC ·

(

1 +
λ0 + dλ0

CBH

)

= U +
dλ0

γ · CBH · Φ
· eγ·NSC = (L+∆L) · eγ·NSC

(6.32b)
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Regarding the first derivative term in Eq. (6.28), we proceed as following

d

dλ0

[

∑

θ∈M

ln

(

1 +
λ0 − λθ + µθ

CBH

)

]

Eqs. (6.26)
=

d

dλ0

[

∑

θ∈A

ln

(

1 +
λ0

CBH

)

]

+
d

dλ0

[

∑

θ∈B

(

ln
(

γ · Φ ·Rθ
0

)

− γ ·NSC

)

]

+
d

dλ0

[

∑

θ∈C

ln
(

γ · Φ ·Rθ
0

)

]

=
d

dλ0

[

|A| ln
(

1 +
λ0

CBH

)]

+
d

dλ0

[

∑

θ∈B

ln
(

γ · Φ · Rθ
0

)

]

− γ ·NSC ·
d|B|
dλ0

+
d

dλ0

[

∑

θ∈C

ln
(

γ · Φ ·Rθ
0

)

]

= |A| · 1

CBH
· 1

1 + λ0
CBH

+ ln

(

1 +
λ0

CBH

)

· d|A|
dλ0

+
d

dλ0

[

∑

θ∈B

ln
(

γ · Φ · Rθ
0

)

]

− γ ·NSC ·
d|B|
dλ0

+
d

dλ0

[

∑

θ∈C

ln
(

γ · Φ ·Rθ
0

)

]

(6.33)

If we define as ρ(x) the content popularity distribution, the derivatives in the above sum are
calculated as following

d|A|
dλ0

=
|A′ | − |A|

dλ0

=

∫ U+∆U
L+∆L M · ρ(x)dx−

∫ U
L M · ρ(x)dx

dλ0

= M ·
∫ U+∆U
U ρ(x)dx−

∫ L+∆L
L ρ(x)dx

dλ0

≈M · ρ(U) ·∆U − ρ(L) ·∆L

dλ0

Eqs. (6.32)
= M · ρ(U) ·∆L · eγ·NSC − ρ(L) ·∆L

dλ0

= M · ∆L

dλ0
·
(

ρ(U) · eγ·NSC − ρ(L)
)

Eqs. (6.32)
=

M

γ · CBH · Φ
·
(

ρ(U) · eγ·NSC − ρ(L)
)

(6.34a)

and, similarly,
d|B|
dλ0

≈ −M · eγ·NSC

γ · CBH · Φ
· ρ(U) (6.34b)
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and

d

dλ0

[

∑

θ∈B

ln
(

γ · Φ · Rθ
0

)

]

=

∑

θ∈B′ ln
(

γ · Φ ·Rθ
0

)

−∑θ∈B ln
(

γ · Φ · Rθ
0

)

dλ0

=
−
∫ U+∆U
U ln(γ · Φ · x) ·M · ρ(x)dx

dλ0

≈ −M · ln(γ · Φ · U) · ρ(U) ·∆U

dλ0

Eqs. (6.32)
= −M · eγ·NSC

γ · CBH · Φ
· ln(γ · Φ · U) · ρ(U)

Eqs. (6.18)
= −M · eγ·NSC

γ · CBH · Φ
· ρ(U) ·

(

γ ·NSC +

(

1 +
λ0

CBH

))

(6.34c)

and, similarly,

d

dλ0

[

∑

θ∈C

ln
(

γ · Φ ·Rθ
0

)

]

≈M · 1

γ · CBH · Φ
· ρ(L) · ln

(

1 +
λ0

CBH

)

(6.34d)

Substituting Eqs. (6.34) in Eq. (6.33), gives

d

dλ0

[

∑

θ∈M

ln

(

1 +
λ0 − λθ + µθ

Φ1

)

]

= |A| · 1

Φ1
· 1

1 + λ0
Φ1

(6.35)

Regarding the second derivative term in Eq. (6.28), we proceed as following

d

dλ0

[

∑

θ∈M

(λ0 − λθ + µθ)

]

Eqs. (6.26)
=

d

dλ0

[

∑

θ∈A

λ0

]

+
d

dλ0

[

∑

θ∈B

(λ0 + µθ)

]

+
d

dλ0

[

∑

θ∈C

(λ0 − λθ)

]

=
d

dλ0
[λ0 · |A|] +

d

dλ0

[

∑

θ∈B

(

−CBH + γ · CBH · Φ · e−γ·NSC · Rθ
0

)

]

+
d

dλ0

[

∑

θ∈C

(

−CBH + γ · CBH · Φ · Rθ
0

)

]

= |A|+ λ0 ·
d|A|
dλ0

− CBH ·
d|B|
dλ0

+ γ · CBH · Φ · e−γ·NSC · d

dλ0

[

∑

θ∈B

Rθ
0

]

− CBH ·
d|C|
dλ0

+ γ · CBH · Φ ·
d

dλ0

[

∑

θ∈C

Rθ
0

]

(6.36)

Similarly as before, we get

d|C|
dλ0
≈M · 1

γ · CBH · Φ
· ρ(L) (6.37a)
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and

d

dλ0

[

∑

θ∈B

Rθ
0

]

=
−
∫ U+∆U
U x ·M · ρ(x)dx

dλ0
≈ −M · U · ρ(U) ·∆U

dλ0

Eqs. (6.32)
= −M · ∆L

dλ0
· L · ρ(U) · e2·γ·NSC

Eqs. (6.18)
= −M · eγ·NSC

γ · CBH · Φ
· 1

γ · Φ ·
(

1 +
λ0

CBH

)

ρ(U) (6.37b)

and, similarly,

d

dλ0

[

∑

θ∈C

Rθ
0

]

≈ −M · 1

γ · CBH · Φ
· 1

γ · Φ ·
(

1 +
λ0

CBH

)

ρ(L) (6.37c)

Substituting Eqs. (6.37) in Eq. (6.36), gives

d

dλ0

[

∑

θ∈M

(λ0 − λθ + µθ)

]

= |A| (6.38)

Finally, substituting the expressions of Eq. (6.35) and Eq. (6.38) in Eq. (6.28), proves the
Lemma.
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Chapter 7

Conclusions

Social characteristics of users affect the way they move and contact each other, their relation-
ships, the way they communicate, their interests, etc. As a result, Mobile Social Networks com-
prising nodes with different social behaviors, exhibit also heterogeneity in characteristics that
relate to performance of different communication mechanisms, like the node mobility or traffic
patterns. A number of studies have studied this heterogeneity by analyzing real datasets (e.g.
from experiments or other related networking paradigms) [25, 36, 56, 108] and identifying com-
mon patterns of nodes’ mobility and relationships. Also, a lot of sophisticated communication
protocols that exploit this heterogeneity in order to facilitate communication between users and
increase the effectiveness of basic social-oblivious schemes, have been proposed, e.g. [29,59,60,98].

In general, depending on the characteristics of a network and the employed protocols, hetero-
geneity can have a positive or negative, significant or negligible impact on the communication
performance (see e.g. [76, 146]). To predict and quantify this impact, it is common to use
stochastic models and analysis. However, capturing the different social dimensions in MSNs,
increases the complexity of models, and limits the applicability of results (e.g., results that are
application-specific [20] or can be evaluated only with numerical methods [73]). Hence, it of-
ten becomes difficult to obtain intuition about how and to what extent heterogeneity affects
performance.

To that end, in this thesis, we tried to analytically understand the effects of social character-
istics under generic MSN settings. We proposed models that capture some important aspects of
social heterogeneity (namely, mobility, selfishness, traffic demand, and interest patterns), but, at
the same time, remain simple enough to allow tractable analysis and derivation of closed form
results. The expressions for performance prediction we derived, are simple and require only
the knowledge of a few network parameters. Thus, they can be easily used for fast evaluation,
design and optimization of networking protocols, as well as for providing useful insights about
the effects of social heterogeneity on performance.

Specifically, our contributions are summarized as following:

−We commenced our work with considering node mobility, due to its crucial role for commu-
nication in MSNs (Chapter 2). We defined a generic class of models that captures heterogeneity
between contacting node pairs (Heterogeneous Contact Networks), as well as individual nodes
(Poisson and Configuration Model sparse contact graphs). We derived results for the basic
epidemic step delay, which can be used as the building blocks for predicting the performance in
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a number of epidemic-based routing schemes. Our closed form expressions are direct functions
of the contact rates and node degrees heterogeneity (CVλ and CVd, respectively), showing thus
clearly the ways it affects performance.

A further utility of the Heterogeneous Contact Network model, is that it allows to incorporate
in the analysis social characteristics that (i) relate to mobility and (ii) affect performance, e.g.
as we did for social selfishness (Chapter 3) and end-to-end traffic heterogeneity (Chapter 4).

− Based on evidence for correlation between node mobility and social relationships, in Chap-
ter 3, we proposed a framework that can describe social selfishness. Our analysis led to expres-
sions that show how selfishness affects message delivery delay and delivery probability. Addi-
tionally, our model and results, can be applied to cases where node cooperation is determined
by an external policy (related to social characteristics / mobility of nodes) rather than their
willingness to relay messages. To this end, we used our framework to investigate if and how
it can be possible to improve the performance - power consumption trade-off, by choosing a
cooperation policy wisely.

− In Chapter 4, after showing that traffic patterns affect performance only jointly with
mobility, we derived results for the performance of end-to-end communication mechanisms. We
also shown how a positive correlation between pairwise traffic and mobility patterns, reduces
the gap between direct transmission and relay-assisted protocols, and discussed the important
implications this has for the design of routing protocols, as well as the feasibility of different
applications for MSNs.

We then, turned our attention to the content-centric applications, in which, although commu-
nication is based on the same principles as in end-to-end communication (i.e. direct transmission
or store-carry-forward), the interest patterns of users play a determinant role.

− We first (Chapter 5) modeled in a generic and application-independent way the interest
patterns of users, namely content popularity and availability. Based on this model, we provided
results for the performance prediction of content-centric mechanisms as a function of the con-
tent popularity and availability, and the node mobility statistics. Using our expressions (e.g. the
simple bounds/approximations), one can obtain insights about how each of the three aforemen-
tioned factors can affect performance. To demonstrate this, we used them, in an example case,
for optimizing the performance of mobile data offloading mechanisms by selecting the content
allocation (which corresponds to content availability) policy.

− Prompted by the recent, large interest in offloading overloaded cellular networks, in Chap-
ter 6, we further focused our content-centric communication analysis on the case of mobile data
offloading. We built an analytical model that can describe offloading through local data storage
on edge nodes (i.e. small-cells or users’ portable devices) and opportunistic communication. We
derived closed form expressions that predict the offloading performance and cost (for the oper-
ator), and depend only on (i) the number of users interested in a content (R0), (ii) the number
of edge nodes selected by the network to store the content (H0), (iii) the users mobility (µλ)
and cooperation (pc) average statistics, and (iv) the content’s delay tolerance (TTL). Using
these expressions, it is possible for the operator to design and optimize the offloading system,
e.g. by properly selecting the parameters H0 or TTL for each content. Towards this direction,
we provided some initial results for the optimal content placement under a given set of contents
with known popularities (R0).
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Future Research

The main goal of initial studies in MSNs was to explore the possibilities and limitations of this
new networking paradigm, where communication is opportunistic, message delivery is delay tol-
erant, relay nodes store and carry messages, etc. Later studies, as well as this thesis, investigate
the effects of social heterogeneity in the communication performance. Since, till now, large scale
MSNs have not been deployed in real world, these works consider generic settings and/or are
based on assumptions (e.g. about the network characteristics and the communication schemes)
that seem to be rational or are true in related networking environments (e.g. online social
networks, ad-hoc networks, etc.).

However, the advances in mobile technology, the increase in the density of portable devices,
the overload of cellular networks, and the emergence of new needs among consumers, betoken
that the day of real MSNs deployment and their use in a regular base (maybe as frequently
we use, e.g., mobile Internet or geo-location applications) is not far. Hence, it is expected to
become soon clearer what the main trends and applications supported by MSNs would be.

As a result, more data and knowledge about the characteristics of MSNs will be available,
and this will allow researchers to approach problems in a more realistic way. To this end, and
given this knowledge, we believe that some important future research directions in Mobile Social
Networking would (or should) be related to

• Traffic Locality. Location-based applications are very probable to become one of the ma-
jor MSN applications. A factor indicating this is the increasing popularity of the correspond-
ing location-based mobile applications. Second, the congestion of cellular networks, leads
operators to consider alternative solutions for serving mobile data demand, and MSNs can
act as a local traffic filter that will alleviate the congestion of the infrastructure. Therefore,
we deem an investigation of the traffic demand patterns generated by such location-based
applications quite important.

• Service Load. Portable devices, even phones, are rich in computing and software resources,
enabling thus collaborative computing or mobile cloud computing. However, the patterns of
the traffic generated in such applications (e.g. input/output of service jobs) might be much
different than the traffic of pure communication applications (e.g. much larger files, more
frequent data exchanges, etc.), and thus different research approaches would be needed.
For instance, contact duration, which is usually neglected in existing models, might be
determinant for the performance of applications where mainly large files are exchanged.
Also, models for communication involving many concurrent jobs/packets, would become
more accurate when incorporating queueing theoretical approaches.

• Recommended Contents. Existing content dissemination mechanisms for MSNs assume
that a user is interested only in certain contents or categories of contents (e.g. podcast-
ing, publish-subscribe applications). Nevertheless, recommendation systems (e.g. in web-
applications) have shown that people often are satisfied with similar contents. Hence, an
MSN mechanism providing also similar contents (when the requested are not available), can
expedite content delivery but maybe decrease user satisfaction. This leads to a trade-off,
which if manipulated properly, can be beneficial for the total network performance. Recom-
mendation mechanisms (correlated with node mobility), user behaviors, and performance
evaluation of such systems, compose an interesting direction in MSN research.
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Chapter 8

Résumé [Français]

L’évolution récente des communications mobiles et la large diffusion des appareils mobiles “in-
telligents” (“smartphones”) ont radicalement changé la façon dont nous communiquons. En
particulier, les appareils mobiles permettent d’accéder à Internet, d’utiliser les réseaux sociaux
en ligne et les réseaux basés sur la géolocalisation ainsi que de profiter de débits de données
rapides. Par ailleurs, les appareils portables sont devenus puissants: ils supportent de multiples
interfaces radio sans fil, utilisent de nombreux capteurs, offrent de larges espaces de stockage,
etc. Toutes ces capacités ont permis l’avènement de nouveaux paradigmes de communications,
de nouveaux services ainsi que de nouvelles applications.

La communication entre les utilisateurs via les réseaux cellulaires ou via Internet peut main-
tenant être complétée par la communication directe entre les appareils mobiles. Les utilisa-
teurs peuvent directement échanger entre eux des données en utilisant seulement la communi-
cation sans fil locale (par exemple le Bluetooth ou le WiFi Direct), et ils peuvent former des
réseaux mobiles avec les autres utilisateurs, en parallèle à un réseau cellulaire ou WiFi, ou même
lorsque l’infrastructure est absent. Ces Réseaux Sociaux Mobiles (RSM) ont été envisagés afin
d’améliorer les communications dans des environnements où les communications sont difficiles
(e.g. zones rurales), ou bien afin d’améliorer les réseaux cellulaires, par exemple en déchargeant
le réseau primaire.

Dans un RSM, un message peut être livré directement aux destinations quand ils se ren-
contrent avec le nœud-expéditeur(s) (“single-hop”). De manière alternative, le routage assisté
de relais peut être employé : dans ce cas, les “nœuds-relais” stockent le message, le trans-
portent lors de leurs déplacements, et peuvent également le transmettre à d’autres relais. De
cette façon, le message peut finalement atteindre sa destination (“multi-hop”). Étant donné
que la communication “mobile à mobile” n’a lieu que pendant les rencontres (ou “contacts”)
entre les nœuds, les performances des communications dans un RSM dépend fortement de la
mobilité des nœuds. Aussi, la demande en terme de trafic (qui veut communiquer avec qui, ou
qui s’intéresse à quoi) peut affecter de manière significative la performance de mécanismes de
communication. En outre, de nombreuses études provenant de différentes disciplines (sociologie,
réseaux opportunistes, médias sociaux, etc.) ont montré que les profils de mobilité et de trafic
sont (a) largement hétérogènes et (b) corrélés avec les caractéristiques sociales des noeuds. En
conséquence, les différents comportements sociaux des nœuds peuvent mener à un RSM très
hétérogène.

Ainsi, l’objectif principal de cette thèse porte sur la compréhension, analytique, de l’impact
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sur les RSM de l’hétérogénéité existante dans la mobilité, le trafic ou bien les caractéristiques
sociales des nœuds. C’est donc dans cette optique que nous proposons de nouveaux modèles
prenant en compte les aspects clés des caractéristiques des utilisateurs, et que nous analysons
les performances des mécanismes de communication (e.g. protocoles de routage ou systèmes
de distribution de contenu). Nous fournissons de nouveaux résultats concernant des aspects
tels que l’égöısme social et l’hétérogénéité du trafic, qui n’avaient pas été étudiés (analytique-
ment) jusqu’à présent. Enfin, sur la base de nos résultats, nous proposons des lignes directrices
générales pour guider la conception de nouveaux protocoles et et de nouvelles applications au
sein des RSM.

Les chapitres de la thèse sont organisées selon :

Chapitre 2 - Analyse du délai des schémas épidémiques dans les réseaux de contact hétérogènes,
épars et denses

Chapitre 3 - Comprendre les effets d’égöısme social

Chapitre 4 - Modélisation et analyse de l’hétérogénéité du trafic de la communication dans
les RSM

Chapitre 5 - Effets des modes de popularité de contenu et de disponibilité de contenu

Chapitre 6 - “Offloading on the Edge”: Analyse et optimisation du stockage local des données
et de déchargement dans les HetNets

Dans la suite, nous donnons un bref résumé de chaque chapitre et soulignons nos principaux
résultats.
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8.1 Chapitre 2 – Analyse du délai de schémas épidémique au
sein de réseaux de contact hétérogènes épars et denses.

Comme souligné précédemment, des noeuds ne peuvent communiquer s’ils sont à portée les
uns des autres. Par conséquent, afin de pouvoir analyser les communications, il est nécessaire
d’obtenir un modèle décrivant la façon dont des noeuds entrent en contact. Jusqu’à présent,
afin de simplifier leur étude, les modèles de propagation épidémique se basaient sur des hy-
pothèses relativement simples (Random walk, Random waypoint) où les mobilité des noeuds
sont représentées par des processus stochastiques indépendants et identiquement distribués
(c.f. [43, 49, 143]). Cependant, plusieurs études portant sur des observations réelles de mo-
bilité [25, 36, 56, 108] ont révélé des conclusions sensiblement différentes. Deux aspects clés mis
en avant par ces études sont (i) La fréquence avec laquelle deux noeuds entrent en contact peut
varier de façon très importante en fonction des noeuds considérés. (ii) Beaucoup de paires de
noeuds ne se rencontreront jamais. Ces conclusions remettent en question la précision et l’utilité
des prédictions qui ont été faites à partir de modèles homogènes. Il est cependant importer de
noter que dès que l’on s’écarte des hypothèses faites dans les modèles homogènes de mobilité,
l’étude des communications entre noeuds mobiles devient très rapidement complexe et la zone
d’application des résultats obtenus est souvent limitée [12,36,73,76,132].

Ces observations amènent la question suivante: Est il possible d’obtenir des solutions de
forme fermée qui soient à la fois précises et utiles à l’étude des performances de schémas de
mobilité épidémique, en dépit de l’utilisation de modèle de mobilité plus génériques ?

Afin de répondre à cette question, dans ce chapitre, nous considérons une importante classes
de modèles de mobilité / contact possédant des fréquences de contact et des graphes de contact
hétérogènes.

8.1.1 Réseaux de contact hétérogènes et schémas épidémique

Dans un premier temps nous faisons l’hypothèse que chaque paire de noeuds {i, j} se rencontrent
en suivant un processus aléatoire comprenant différentes fréquence de contacts, λij , issus d’une
distribution arbitraire, fλ(λ), dont la moyenne, µλ, et la variance, σ2

λ sont connues. Afin de
décrire de tels réseaux nous utilisons les définitions suivantes:

Définition 8.1.1 (Réseau de contact).
− Un réseau de contact, N , est défini par un graphe G = {V, E} dont les sommets représentent
les noeuds du réseau et l’existence d’une arête entre deux sommets représente un contact régulier
entre les deux noeuds représentés par ces sommets.
− La séquence d’événements correspondant aux contacts entre chaque pair de noeud {i, j} dont
les sommets sont connectés par une arête ({i, j} ∈ E) est représenté par un processus de point
aléatoire avec une fréquence (taux) λij .
− La durée d’un contact entre deux noeuds est négligeable comparée à la durée entre deux
contacts. Cette durée est cependant suffisante pour que les transferts de données aient lieu.

Définition 8.1.2 (Réseau de contact hétérogène).
Un réseau de contact hétérogène est défini comme un réseau de contact (Def. 8.1.1), où
− Les occurrences d’un contact entre deux noeuds {i, j} suivent un processus de Poisson d’intensité
λij , ce qui signifie que les durées entre deux contacts sont indépendantes et distribuées de façon
exponentielle avec une fréquence λij.
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− Les fréquences de contact, λij, sont indépendants et issues d’une distribution arbitraire avec
une densité de probabilité définie par la fonction: fλ(λ), λ ∈ [λmin, λmax] ⊆ (0,∞), une moyenne
finie µλ et une variance finie σ2

λ (coefficient de variation CVλ = σλ

µλ
).

8.1.1.1 Analyse asymptotique

A travers une analyse asymptotique du processus de propagation épidémique, nous obtenons le
résultat suivant pour l’espérance du délai de propagation:

Théorème 8.1.1. Lorsque la taille du réseau N augmente, l’erreur relative REk entre l’espérance
du délai d’une étape E[Tk,k+1] et la quantité 1

k(N−k)µλ
converge vers zéro

lim
N→∞

REk = lim
N→∞

E[Tk,k+1]− 1
k(N−k)µλ

E[Tk,k+1]
= 0

En d’autres termes, il est possible d’obtenir une estimation du délai à l’étape k avec une
précision infinie de la façon suivante:

E[Tk,k+1] ≈
1

k(N − k)µλ

La Figure 8.1 présente les résultats obtenus à partir de plusieurs simulations qui démontrent la
précision atteinte, grâce au résultat que nous avons obtenu, dans différent scénarios.

8.1.1.2 Réseaux de taille finie

Pour des réseaux de taille finies, nous utilisons la Méthode Delta [27, 103] afin d’obtenir les
approximations suivantes qui nous permettent de prédire l’espérance du délai de propagation
épidémique. Nous obtenons une expression à la fois simple, à forme fermée ne faisant appel
qu’aux premier et second moments de la distribution de la fréquence de contact fλ(λ).

Résultat 8.1.1. Dans un réseau de contact hétérogène (Def. 8.1.2) une approximation de
l’espérance du délai d’étape peut être obtenue par:

E[Tk,k+1] =
1

k(N − k)µλ
·
(

1 +
CV 2

λ

k(N − k)

)

(8.1)

8.1.1.3 Espérance du délai de protocoles de routage opportunistes

Afin de montrer la façon dont notre méthode peut être utilisée en pratique, nous estimons une
expression à forme fermée pour le délai de différents protocoles. Les différentes expressions
obtenues sont présentées dans la Table 8.1.

8.1.2 Graphes de contact épars

Nous étendons la classe des modèles de mobilité considérés en considérant de façon arbitraires
des réseaux épars en autorisant une paire de nœud à ne jamais se rencontrer. Nous utilisons
deux approches différentes. L’une basée sur les graphes de Poisson, l’autre basée sur les graphes
de modèles de configuration.
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8.1.2.1 Graphe de contact de Poisson

Nous étendons notre modèle de contact hétérogène (Def. 8.1.2) de la façon suivante:

Définition 8.1.3 (Réseau de contact de Poisson hétérogène). Pour chaque paire de noeud i et
j nous pouvons observer les propriétés suivantes (i) Ces noeuds ont une probabilité 1− ps de ne
jamais se rencontrer, (ii) Ces noeuds ont une probabilité ps de se rencontrer avec une fréquence
λij , selon le processus de contact défini dans la Def. 8.1.2.

Nous prouvons, par la suite, que les prédictions de délais que nous obtenons peuvent être
utilisé pour n’importe quel réseau épar modélisé par un graphe de Poisson en utilisant le corollaire
suivant:

Corollaire 8.1.1. Dans un réseau de contact de Poisson hétérogène (Def. 8.1.3), les résultats
théoriques pour un réseau de contact hétérogène (Def. 8.1.2), sont obtenus en substituant les
différents moments de la distribution de la fréquence de contact (µλ et σ2

λ) avec les expressions

µλ(p) = ps · µλ

σ2
λ(p) = ps ·

[

σ2
λ + µ2

λ · (1− ps)
]

8.1.2.2 Graphe de modèle de configuration

L’utilisation du modèle de configuration nous permet de modéliser des caractéristiques encore
plus complexes des graphes du réseau de contact, plus particulièrement la distribution hétérogène
du degré des différents noeuds.

Définition 8.1.4 (Modèle de configuration). Étant donné une taille de réseau N , et une distri-
bution du degré de ses noeuds pd, ou bien de la séquence du degré de ses noeuds (di, i = 1, ..., N),
le modèle de configuration génère des instances aléatoires de graphes G, pour lesquels la distribu-
tion du degré de ses noeuds est pd. Les noeuds sont connectés de façon aléatoire et la probabilité
pour deux noeuds i et j d’être connectés est proportionnelle au degré des noeuds i et j.

Définition 8.1.5 (Réseau de contact de modèle de configuration hétérogène).
− Étant donné une distribution de degrés pd, avec une moyenne µd et une variance σ2

d (et
CVd =

σd

µd
), un graphe de contact G est généré par un modèle de configuration.

− Chaque paire de noeuds i et j connecté par une arête, entre en contact avec une fréquence
λ (identique pour les nœuds entrant en contact) en suivant un processus défini par la définition
Def. 8.1.2.

Sous les hypothèse du modèle précédemment présenté (et conditionnellement à des fréquences
de contact uniformes, c’est à dire λij = λ,∀{i, j}) il nous est tout de même possible d’obtenir
une approximation du délai de propagation épidémique à travers une expression de forme fermée

E [Tk,k+1] =
1

λ
· E
[

1

Dout(k)

]

≈ 1

λ ·Dout
(k)

(8.2)

où

Résultat 8.1.2. La moyenne du degré sortant à l’étape k, Dout(k), est obtenue par l’approximation:

D
out

(k) = (N − k)µd

[

(

N − k

N − 1

)CV 2
d

−
(

N − 2

N − 1

)(

N − k

N − 1

)2CV 2
d +1

]

(8.3)
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8.1.3 Publications

Le travail présenté dans ce chapitre a donné lieu aux publications suivantes:

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Delay analysis of epidemic schemes in sparse
and dense heterogeneous contact environments”, Research Report RR-12-272, Eurecom,
July 2012.

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Information diffusion in heterogeneous net-
works: The configuration model approach”, Proc. 5th IEEE International Workshop on
Network Science for Communication Networks (NetSciCom’13), co-located with IEEE IN-
FOCOM 2013, 19 April 2013, Turin, Italy.
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Figure 8.1: Erreur relative d’étape pour l’étape (a) k = 0.2 ·N (le message a été propagé dans 20% du réseau) and
(b) k = 0.7 ·N . Chaque boxplot correspond à une taille différente du réseau N (avec µλ = 1 et CVλ = 1.5). Les
box-plots montrent la distribution de l’erreur relative d’étape REk estimée à partir de 100 instances pour chaque
taille de réseau.

Table 8.1: Expressions d’estimation de l’espérance du délai pour différents protocoles de routage.

Epidemic E[T
(epid)
D ] ≈ 1

N · µλ
·
(

ln(N) + CV 2
λ ·

1.65 ·N + 2 · ln(N)

N2

)

2-hop E[T
(2−hop)
D ] = AN−1 ·

N−1
∑

k=1

k2 · (N − 1)!

(N − 1)k+1 · (N − k − 1)!
≈

√

π
2√

N · µλ

·
(

1 +
CV 2

λ

N

)

SnW, L copies E[T
(SnW )
D ] ≤ AN−1 ·

L−1
∑

k=1

k2 · (N − 1)!

(N − 1)k+1 · (N − k − 1)!

+ (L ·AN−1 +AL) ·
(N − 1)!

(N − 1)L · (N − L− 1)!

où Am =
1

mµλ
·
[

1 +
CV 2

λ

m

]
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8.2 Chapitre 3 – Comprendre les effets d’égöısme social.

Les modèles de mobilité définissent l’occurence de contacts entre les noeuds, en assumant que les
échanges données ont lieu lors de ces contacts, il est alors possible d’évaluer différents algorithmes
de routage et de transferts.

Cependant, la possibilité que les noeuds ne souhaite pas coopérer impacte fortement les
techniques de dissémination des messages. C’est donc dans cette optique que, dans ce chapitre,
nous étudions analytiquement l’effet de la coopération entre noeuds, ou égöısme des noeuds, sur
les MSNs.

8.2.1 Modèle d’égöısme social

Dans un premier temps, nous étendons les études précédentes qui supposent des modèles d’égöısmes
uniformes, i.e. tous les noeuds ont la même réticence à coopérer.

Intuitivement la volonté d’un noeud de coopérer peut être reliée aux liens sociaux qui existent
entre différents noeuds (i.e. des personnes qui se connaissent ont plus tendance à coopérer). De
plus, des études ont montré que les liens sociaux ont un impact sur la fréquence avec laquelle
des noeuds se rencontrent (deux personnes qui se connaissent ont plus tendance à se rencontrer
que deux inconnus).

En combinant ces relations entre (i) l’égöısme et les liens sociaux et (ii) les liens sociaux et
les modèles de mobilités, il semble raisonnable de faire l’hypothése d’un modèle égöıste social
où les noeuds utilisent l’opportunité d’un contact donné avec un probabilité pij = p(λij), liée à
la fréquence de contact entre les deux noeuds considérés {i, j} .

Afin de pouvoir capturer la plupart des comportement égoistes cités précédemment (voire
plus) d’une façon à la fois simple et générique, nous décidons de modéliser cette volonté de trans-
mettre un message (essentiellement, l’existence de contraintes associées affectant cette volonté)
de manière probabiliste.

Plus précisément, nous proposons deux modèles d’égöısme, qui correspondent aux comporte-
ments que l’on retrouve au sein d’un MSN.

Définition 8.2.1. [égöısme social: Type I] La probabilité pour un message d’être échangé lors
d’un contact entre deux noeuds i et j dépend de leur fréquence de rencontre λij et est décrite
par la relation:

pij = p(I)(λij), pij ∈ [0, 1] (8.4)

Définition 8.2.2. égöısme social: Type II] Une paire de noeud i et j peut soit échanger un
message lors de chaque rencontre avec la probabilité pij ou bien peut n’échanger aucun message
avec la probabilité 1 − pij. La probabilité pij dépend de la fréquence de rencontre de ces deux
noeuds, i.e. λij, et est décrite par la relation:

pij = p(II)(λij), pij ∈ [0, 1] (8.5)

8.2.2 Délai de livraison d’un message

En intégrant notre modèle d’égöısme social au modèle du Chapitre 2, il nous est alors possible
de combiner les effets de mobilités à ceux d’hétérogénéité égöıste. Il s’en suit donc la preuve du
résultat suivant
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Résultat 8.2.1. L’espérance du délai de livraison d’un message dans un réseau de contact
hétérogène peut être approximer par

E[TD] =
c(N,L)

µeff.
λ

, (8.6)

où µeff.
λ = E[λ · p(λ)] (p(I) ou p(II) représentant un égöısme de Type I ou de Type II, respec-

tivement) et c(N,L) est un constant définie par la taille du réseau, N , le protocol de routage P
et le nombre de copies de messages, L. Les valeurs de c(N,L) sont données dans le Tableau 8.2
pour trois protocoles de routage connus.

8.2.2.1 Validation

Afin de valider nos résultats, nous les comparons à ceux obtenus lors de simulations et, dans la
Fig. 8.2 nous présentons, pour un réseau de N = 100 noeuds, la manière dont l’hétérogénéité
mobile (i.e. CVλ = σλ

µλ
) impacte le délai de livraison des message pour les différentes politiques

d’égöısme présentées dans le Tableau 8.3.

8.2.3 Compromis entre performance et consommation énergétique

Nous examinons à présent les régions de compromis entre performance et puissance qu’il nous
est donné d’atteindre pour différentes politiques de coopération. Plus précisément, nous mon-
trons que (i) lorsque l’on considére un classe intéressante de compromis Puissance vs Délai, des
politiques “sociales” complexes ne peuvent pas atteindre de meilleures performances que celles
d’une politique plus simpliste; alors que (ii) lorsque l’on considère des le compromis Puissance vs
Probabilité de livraison les politiques de coopérations sociales peuvent, en effet, être optimisées.

8.2.3.1 Délai de livraison vs Consommation énergétique

Dans un premier temps, en utilisant un modèle simple d’injection de trafic, nous étudions le
compromis entre délai de livraison de consommation énergétique. Nous prouvons que

Résultat 8.2.2. La consommation énergétique moyenne d’un noeud est inversement propor-
tionnelle au délai de livraison d’un message et est donnée par

P = cp ·
1

E[TD]
(8.7)

où cp =
Et·Nf ·M ·ct

c .

il s’en suit donc que

Corollaire 8.2.1. Dans un réseau de contact hétérogène, quelque soit la politique d’égöısme
utilisée, les régimes d’opération puissance-délai que l’on peut atteindre sont les mêmes. En
d’autres termes, n’importe quel compromis entre puissance et délai qui peut être atteint par
certain politique sociales d’égöısme peut l’être aussi par un simple politique uniforme.

Afin d’estimer la précison d’une telle prédiction, nous opérons plus simulations de type
Monte Carlo et comparons les résultats obtenus expérimentalement avec ceux que nous obtenons
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théoriquement. Les différentes simulations utilisent une politique d’égöısme uniforme (Politique
A). Puis nous lançons des simulations avec différentes politiques d’égöısme non uniformes afin de
pouvoir examiner si, en effet, la courbe de délai-puissance est la même. Comme il apparâıt claire-
ment sur la Fig. 8.3, nos résultats sont vérifiés par les simulations, c’est à dire en changeant les
politiques d’égöısme et leurs paramètres il est uniquement possible d’atteindre un déplacement
sur la courbe théorique.

8.2.3.2 Probabilité de livraison vs Consommation énergétique

Dans un second temps, nous nous penchons sur le compromis entre probabilité de livraison
et consommation énergétique qu’il est possible d’atteindre avec un mécanisme de partage de
contenus. Nous prouvons que:

Résultat 8.2.3. Dans un réseau de contact hétérogéne avec un politique d’égöısme p(λ), si NA

noeuds possèdent le contenu A, alors la probabilité pour un autre noeud d’accéder au contenu
au bout d’un temps T est donné par

PA{T} = 1−
(

E
[

e−λ·p(λ)·T
])NA

(8.8)

où l’espérance est calculée sur fλ.

Dans ce cas, l’expression de la probabilité de livraison du contenu (Résultat 8.2.3) est liée au
modèle de mobilité et à la politique d’égöısme de manière non linéaire. Ainsi, cette non linéarité,
indique qu’il est à présent possible de changer (et donc à terme d’améliorer la région puissance
- performance que l’on peut atteindre).

Ce résultat est aussi observable sur la Fig. 8.4, où l’on compare la Politique A et C. Les
résultats montrent que la Politique C offre de meilleurs résultats, dans le cadre de l’application
de partage de contenus.

8.2.4 Publications liées à ces résultats

Le travail présent dans ce chapitre a donné lieu aux publications suivantes:

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Understanding the effects of social selfishness
on the performance of heterogeneous opportunistic networks”, Computer Communications,
Elsevier, Volume 48, April 2014.
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Figure 8.2: Délai de livraison dans un réseau de N = 100 noeuds où l’on fait varier les caractéristiques de Mobilité

(µλ = 1 et CVλ ∈ [0, 3]) pour trois politiques d’égöısme différentes en utilisant un routage épidémique. La valeur
théorique du délai de livraison pour deux paramètres (p0) pour chaque politique d’égöısme sont présentés avec des
lignes en semi pointillés alors que les moyennes pour la simulation correspondantes sont présentées en pointillés.
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Figure 8.4: (a),(c) Ratio de probabilité de livraison d’un contenu pour la politique d’égöısme A (bleu) et la
politque d’égöısme C (noir) pour différent niveaux de consommation énergétique. (b),(d) Différence relative du
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PDRA
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Table 8.2: Valeurs de c(N,L) pour trois protocoles de routage.

Epidemic c(N,L) ≈ ln(N)
N

2-hop c(N,L) =
∑N−1

k=1
k2·(N−1)!

(N−1)k+2·(N−k−1)!

SnW c(N,L) ≤∑L−1
k=1

k2·(N−1)!
(N−1)k+2·(N−k−1)!

+
(

L
N−1 + 1

L

)

(N−1)!
(N−1)L·(N−L−1)!

Table 8.3: Politiques d’égöısme social.

Politique A p(λ) = p0

Politique B p(λ) =

{

p1 : λ ≤ λ0

p2 : λ > λ0

F λ(λ0) = p0

Politique C p(λ) =







p1 : λ ≤ λ0

p2 ·
λ0

λ
: λ > λ0

F λ(λ0) = p0

Politique D p(λ) = p0 · (1− e−m·λ)
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8.3 Chapitre 4 – Modélisation et analyse de l’hétérogénéité du
trafic de la communication dans les RSM.

L’hétérogénéité de la mobilité et son impact dans les RSM ont été largement étudié à la fois
par des simulations et des analyses. Toutefois, cela n’a pas été le cas avec l’hétérogénéité du
trafic de communication. Dans la grande majorité des travaux antérieurs sur l’évaluation des
performances des protocoles de routage, le trafic est supposé homogène, c’est-à-dire que chaque
paire de noeuds est tout aussi probable d’être la source et la destination d’un message. Cette
hypothèse ne caractérise la plus part des cas où les caractéristiques sociales des noeuds peuvent
affecter de manière significative la demande de trafic entre eux. Motivé par cette absence
de travaux connexes, dans ce chapitre, nous explorons l’effet de l’hétérogénéité du trafic de
communication dans les RSM.

Nous dérivons des résultats qui montrent les effets conjoints du trafic et de la mobilité
sur les mécanismes de communication. Parmi les différentes conclusions résultant de notre
analyse, nous identifions les conditions dans lesquelles l’hétérogénéité rend la valeur ajoutée de
l’utilisation de relais supplémentaires plus ou moins utile. De plus, nous confirmons l’intuition
que l’hétérogénéité ferme l’écart de performance entre les différentes protocoles: Il rend le routage
plus difficile dans certains cas, et moins nécessaires dans d’autres. Nous croyons que ces premiers
résultats d’analyse sur les effets de l’hétérogénéité du trafic constituent une étape importante
vers une meilleure conception des protocoles et de l’évaluation de la faisabilité des applications
dans les RSM.

8.3.1 Trafic de la communication: Le modèle

En premier lieu, nous avons essayé d’identifier quelles caractéristiques de l’hétérogénéité ont un
effet sur la performance. Dans ce sens, dans la figure 8.5 nous montrons à l’aide de simulations
que la performance n’est affectée que lorsque le trafic est en corrélation avec la mobilité.

Basé sur ces résultats, nous proposons le modèle suivant capable de décrire une large gamme
de modèles de trafic non-uniformes.

Définition 8.3.1 (Trafic de la communication hétérogène). La demande de trafic entre une paire
de noeuds {i, j}, est une variable aléatoire τij, avec E[τij ] = τ(λij), où τ(·) est une fonction
continue: de R

+ à R
+.

8.3.2 Analyse

Nous montrons la proposition suivante:

Proposition 8.3.1. La densité de probabilité fτ du taux de contact entre la source et la desti-
nation {s, d} d’un message aléatoire, dans un Réseau de Contact Hétérogène (Def. 8.1.2) avec
trafic de la communication hétérogène (Def. 8.3.1), converge comme suit:

fτ (x)
p→ 1

C · τ(x) · fλ(x) (8.9)

où fτ (x)dx = P{λsd ∈ [x, x + dx)}, p→ indique la convergence en probabilité, et C = E[τ(λ)] =
∫∞
0 τ(x)fλ(x)dx est une constante de normalisation.
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A partir de la proposition 8.3.1, nous dérivons des expressions analytiques pour calculer l’effet
conjoint du trafic et de la mobilité dans les performances de la transmission directe (“DT”), et
du routage assisté de L relais (“R”). Les résultats génériques et les résultats d’une étude de
cas réaliste (avec fλ(x) ∼ Γ(x;α, β) = βα

Γ(α)x
α−1e−βx et τ(x) = c · xk, c > 0) sont donnés à la

table 8.4

8.3.3 Validation du modèle

Nous validons nos résultats analytiques par des simulations (synthétiques et sur des traces
réelles). Nous présentons quelques résultats dans la Figure 8.6 et Figure 8.7, pour le ratio des

délais R = E[TR]
E[TDT ]

et la probabilité P(src.) qui est la probabilité qu’un message soit livré à la
destination par le noeud source, et non que par l’un des relais.

8.3.4 Publications

Le travail dans ce chapitre a été publié dans:

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Modelling and analysis of communication
traffic heterogeneity in opportunistic networks”, IEEE Transactions on Mobile Computing,
pending major revision, October 2014.
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Direct  SnW  2−hop SimBet
3

3.5

4

4.5

5

5.5

6
x 10

5

D
e

la
y

 

 

Homogeneous traffic

Heterogeneous traffic 
(mobility independent)
Heterogeneous traffic
(mobility correlated)

(a) Gowalla dataset

Direct  SnW  2−hop SimBet

4

6

8

10

12

14
x 10

5

D
e

la
y

 

 

Homogeneous traffic

Heterogeneous traffic 
(mobility independent)
Heterogeneous traffic
(mobility correlated)

(b) Strathclyde dataset

Figure 8.5: Les délais des protocoles de routage:Direct Transmission, Spray and Wait (SnW ), 2-hop, and SimBet,
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Table 8.4: Les délais et les probabilités de livraison pour le transmission directe (“DT”) et le routage assisté de
L relais (“R”).

Direct Transmission Relay-Assisted

Cas Générique:

E[TDT ] =
1

E[τ(λ)]
·E
[

τ(λ)

λ

]

E[TR] =
1

E[τ(λ)]
·
∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy

P{TDT ≤ t} = 1− E[τ(λ) · e−λ·t]

E[τ(λ)]
P{TR ≤ t} = 1− E[τ(λ) · e−λ·t]

E[τ(λ)]
·
∫ ∞

0

e−y·t · fR(y)dy

Mobilité fλ(x) ∼ Γ(x;α, β), Trafic τ(x) = c · xk:

E[TDT ] =
1

µλ

· 1

1 + (k − 1) · CV 2
λ

E[TR] ≥
1

µλ

· 1

1 + k · CV 2
λ + L

P{TDT ≤ t} = 1−
(

1 + µλ · CV 2
λ · t

)−
1+k·CV 2

λ

CV 2
λ P{TR ≤ t} = 1−

(

1 + µλ · CV 2
λ · t

)−
1+k·CV 2

λ
+L

CV 2
λ
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8.4 Chapitre 5 – Effets des modes de popularité de contenu et
de disponibilité de contenu

Dans le Chapitre 4 nous nous sommes concentrés sur les effets de l’hétérogénéité du trafic à la
communication de bout-à-bout. Néanmoins, dans de nombreuses applications le trafic n’est pas
entre une paire de noeuds (i.e. source-destination), mais l’objectif principal est de distribuer
le contenu aux utilisateurs intéressés. Dans ce cas, l’hétérogénéité figure parmi les groupes
de noeuds participant à la distribution de différentes contenus. Plus précisément, les modèles
d’intérêt, c’est-à-dire le nombre de noeuds qui sont intéressés à chaque contenu (popularité),
ainsi que le nombre d’utilisateurs qui peuvent fournir un contenu (disponibilité), affectent les
performances des applications. Ainsi, dans ce chapitre, nous établissons un cadre analytique
pour étudier les effets de ces facteurs sur le délai et la probabilité de livraison dans le RSM.

8.4.1 Le modèle du trafic

D’abord, nous proposons un modèle analytique simple qui se applique à une gamme de motifs
de popularité de contenu vu dans les réseaux réels; à notre connaissance, ce est le premier effort
indépendante de l’application dans cette direction.

8.4.1.1 Popularité de contenu

Nous supposons un réseau avec N noeuds, et on note l’ensemble des noeuds que N . On note le
cas où un noeud i ∈ N est intéressé par un contenu M (ou, de façon équivalente, i demande
M), comme:

i→M

On note l’ensemble de tous les contenus, dans lequel les noeuds sont intéressés, comme:

M = {M : ∃i ∈ N , i→M}. |M| = M

où | · | indique la cardinalité d’un ensemble.

Définition 8.4.1 (Popularité de contenu). Nous définissons la popularité d’un contenu M
comme le nombre de noeuds N

(M)
p qui sont intéressés à lui:

N (M)
p = |C(M)

p |, où C(M)
p = {i ∈ N : i→M} (8.10)

Plus, on note le pourcentage de contenu avec une valeur de popularité n comme

Pp(n) =
1

M

∑

M∈M

I
N

(M)
p =n

, n ∈ [0, N ] (8.11)

où I
N

(M)
p =n

= 1 quand N
(M)
p = n et 0 dans un autre cas.
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8.4.1.2 Disponibilité de contenu

Nous supposons que d’une demande de contenu est terminée, quand un noeud qui détient le
contenu demandé est rencontré directement. On note le cas où un noeud i qui détient (une
copie du) le contenuM comme

i←M
et nous définissons la disponibilité d’un contenuM comme

Définition 8.4.2 (Disponibilité de contenu). Nous définissons la disponibilité d’un contenuM
comme le nombre de noeuds N

(M)
a qui détient le contenu:

N (M)
a = |C(M)

a |, où C(M)
a = {i ∈ N : i←M} (8.12)

8.4.2 Analyse

Sur la base de notre modèle, et les hypothèses suivantes

Hypothèse 8.4.1. La popularité N
(M)
p et la disponibilité N

(M)
a d’un contenu M ne changent

pas au cours du temps.

Hypothèse 8.4.2. L’ensembles des demandeurs C(M)
p et détenteurs C(M)

a d’un contenuM sont
indépendants de la mobilité.

nous pouvons prouver que

Lemme 8.4.1. La probabilité que une demande aléatoire pour un contenu de popularité égale à
n est donnée par

P req.
p (n) =

n

Ep[n]
· Pp(n)

où Ep[n] =
∑

n n · Pp(n) est la popularité moyenne.

Lemme 8.4.2. La probabilité que une demande aléatoire pour un contenu de disponibilité égale
à m est donnée par

P req.
a (m) =

Ep[n · g(m|n)]
Ep[n]

Ensuite, en utilisant les lemmes ci-dessus, nous dérivons des expressions de la performance
d’un mécanisme de distribution de contenu:

Résultat 8.4.1. Le délai moyen d’accès au contenu peut être calculée avec l’expression

E[TM] =
1

Ep[n]
· Ep

[

n ·
∑

m

Emλ

[

1

x

]

· g(m|n)
]

Résultat 8.4.2. La probabilité d’un contenu d’être accessible avant un temps TTL peut être
calculée avec l’expression

P{TM ≤ TTL} = 1− Ep

[

n ·∑mEmλ

[

e−x·TTL
]

g(m|n)
]

Ep[n]
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Nous derivons aussi des bornes pour la prédiction de la performance qui nécessitent peu de
connaissances sur les caractéristiques du réseau et des motifs d’intérêt, et ils peuvent donc être
utilisés en situations réelles, pour la conception de protocoles, l’optimisation en ligne, etc.

Théorème 8.4.1.

E[TM] ≥ 1

µλ · Ep[n]
·Ep

[

n

g(n)

]

Théorème 8.4.2.

P{TM ≤ TTL} ≤ 1− 1

Ep[n]
· Ep

[

n · e−g(n)·µλ·TTL
]

La validation de nos résultats par des simulations, montre une précision importante (voir,
par exemple, la Figure 8.8)

8.4.3 Une étude de cas: déchargement de données mobiles

Nous appliquons notre cadre au problème de déchargement de données mobile et nous fournissons
quelques idées initiales pour l’optimisation de sa performance.

Par exemple, on montre que l’ allocation optimale qui minimise le délai est donnée par

Résultat 8.4.3. Le délai minimum, sous la contrainte d’un nombre moyen de cM copies par
contenu, i.e.

min{E[TM]} s.t.
∑

M

N (M)
a = M · cM , N (M)

a ≥ 0

il peut être atteint lorsque la fonction d’allocation, g(m|n), est déterministe et égale à

ρ∗(n) =
cM

Ep[
√
n]
· √n

Ce résultat est vérifié ainsi dans les simulations, où nous avons utilisé des traces de mobilité
réelle; nous exposons le résultat dans la Figure 8.9.

8.4.4 Publications

Le travail dans ce chapitre a été publié dans:

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Not all content is created equal: Effect of
popularity and availability for content-centric opportunistic networking”, Proc. 15th ACM
International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’14),
August 11-14, 2014, Philadelphia, PA, USA.

• Pavlos Sermpezis, Thrasyvoulos Spyropoulos, ”Effects of content popularity in the perfor-
mance of content-centric opportunistic networking: An analytical approach and applica-
tions”, IEEE/ACM Transactions on Networking, submitted, September 2014.

184



CHAPTER 8. RÉSUMÉ [FRANÇAIS]
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8.5 Chapitre 6 – “Offloading on the Edge”: Analyse et opti-
misation du stockage local des données et de déchargement

dans HetNets

Basé sur l’analyse du Chapitre 5 pour les effets de la hétérogénéité du trafic, dans ce chapitre,
on se concentre sur une application de la distribution de contenu, déchargement de données
mobiles, qui a récemment attiré beaucoup d’attention, en raison de l’augmentation rapide de la
demande de trafic de données qui a surchargé les réseaux cellulaires.

8.5.1 “Offloading on the Edge ”: Le modèle

On propose un modèle analytique pour explorer comment le stockage local des données et la
communication opportuniste par “edge” noeuds (c’ est à dire les noeuds mobiles et les “small-
cells”) pourraient aider à décharger du trafic dans un réseau hétérogène (HetNet).

D’ abord, on définisse les ensembles de “edge” noeuds qui sont associés dans le processus de
déchargement:

Définition 8.5.1. Un demandeur d’un contenu est un noeud mobile (MN) qui (a) est intéressé
par le contenu et (b) ne l’a pas encore reçu. On note l’ensemble des demandeurs au temps t
comme R(t).

Définition 8.5.2. Un détenteur d’un contenu est un “edge” noeud (SC ou MN) qui stocke le
contenu et le transmettra à ses demandeurs. On note l’ensemble des détenteurs au temps t
comme H(t).

Les coûts impliqués dans chaque phase de la mécanisme “offloading on the edge” sont:
− Coûts de placement initial: CBH, CBS.

• Un contenu est placé à un SC par un transmission de backhaul (filaire ou sans fil), et on
note ce coût par placement comme CBH .

• Un placement de contenu à un MNs a lieu à une transmission de BS (macro-cell). On note
ce coût de transmission CBS .

− Les coûts de déchargement opportunistes: CSC, CD2D.

• Le coût d’une transmission SC-MN: CSC .

• Le coût d’une transmission MN-MN (ou D2D): CD2D.

− Le coût de la livraison retardée: C
(TTL)
BS .

• Le coût d’une transmission de distribution retardé est C
(TTL)
BS .
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8.5.2 Analyse

En utilisant une analyse basée sur de approximations “Mean-field” et “Fluid-model”, on peut
d’abord montrer que

Lemme 8.5.1. Le “fluid-limit” approximation déterministe pour le nombre attendu des détenteurs
(H(t)) et les demandeurs (R(t)) au moment de t, est

H(t)=H0 ·
(pc · R0 +H0) · eµλ·(pc·R0+H0)·t

pc · R0 +H0 · eµλ·(pc·R0+H0)·t

R(t)=R0 ·
pc · R0 +H0

pc · R0 +H0 · eµλ·(pc·R0+H0)·t

où H0 = H(0+) et R0 = R(0+).

Puis, basé sur le lemme 8.5.1, on peut calculer la performance du mécanisme “offloading on
the edge”

Résultat 8.5.1 (Probabilité de livraison). La probabilité pour un contenu à être livré à un
demandeur par le temps t est donnée par

P{Td ≤ t} = 1− pc ·R0 +H0

pc · R0 +H0 · eµλ·(pc·R0+H0)·t

où H0 = H(0+) et R0 = R(0+).

On peut également calculer le coût de déchargement d’un seul contenu

Résultat 8.5.2. Le coût de déchargement d’un seul contenu par le mecanisme “offloading on
the edge”, est donnée par

C =CBH ·HSC(0) + CBS ·HMN (0)

+ (CSC · q + CD2D · (1− q)) ·R0 · P{Td ≤ TTL}
+ C

(TTL)
BS · R0 · (1− P{Td ≤ TTL})

où q =
HSC(0)·ln

(

H(TTL)
H0

)

pc·(R0−R(TTL)) , et P{Td ≤ TTL}, H(TTL) et R(TTL) sont donnée par le Lemme 8.5.1
et le Résultat 8.5.1.

8.5.3 Applications: Optimisation du coût

On suppose que le fournisseur de contenu doit livrer M ≥ 1 contenus à leurs demandeurs. On
note l’ensemble des contenus comme M (M = |M|). Si on note le coût de la livraison d’un
contenu θ ∈ M (qui est donnée par le Résultat 8.5.2)) comme Cθ, on peut exprimer le problème
d’optimisation de coût totale comme

Problème 8.5.1.
minHSC , HMN , TTL

{
∑

θ∈MCθ
}

s.t. ∀θ ∈M : 0 ≤ Hθ
SC(0) ≤ NSC

0 ≤ Hθ
MN (0) ≤ Rθ(0)

Tmin ≤ TTLθ ≤ Tmax

and
∑

θ∈M

Hθ
SC(0) ≤

∑

i∈SC

Q(i)
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où HSC , HMN et TTL ils dénotent les vecteurs ayant des composantes Hθ
SC(0), Hθ

MN(0) et
TTLθ (θ ∈ M); et Q(i) est la capacité de stockage (en nombre de contenu) d’un noeud “small-
cell” i.

En utilisant des méthodes bien connues, nous pouvons résoudre le problème d’optimisation
ci-dessus. Notamment, dans certains cas, on peut également calculer des expressions analytiques
et forme fermée:

8.5.3.1 Déchargement par SCs

Résultat 8.5.3. Dans un scénario de “Déchargement par SCs” (pc = 0, HMN(0) = 0),
l’allocation initiale HSC qui minimise le coût total, est donnée par

Hθ
SC(0) =











NSC , Rθ(0) > U
1
γ · ln

(

1
L · Rθ(0)

)

, L ≤ Rθ(0) ≤ U

0 , Rθ(0) < L

où γ = µλ · TTL, L = 1
γ·Φ ·

(

1 + λ0
CBH

)

, U = L · eγ·NSC , Φ =
C

(TTL)
BS −CSC

CBH
, et

λ0 = inf

{

λ0 ≥ 0 :
∑

θ∈M

Hθ
SC(0) ≤

∑

i∈SC

Q(i)

}

8.5.3.2 Déchargement par MNs

Résultat 8.5.4. Dans un scénario de “Déchargement par MNs” (pc > 0, HSC(0) = 0),
l’allocation initiale HMN qui minimise le coût total, est donnée par

Hθ
MN(0) =











Rθ(0) , Rθ(0) ≤ OPT θ

OPT θ , 0 ≤ OPT θ < Rθ(0)

0 , OPT θ < 0

où

OPT θ =
Rθ(0) ·

(√
Φ

′ · e 1
2
γ·pc·Rθ(0) − 1

)

eγ·pc·Rθ(0) − 1

et Φ
′

=
C

(TTL)
BS −CD2D

CBS−CD2D
et γ = µλ · TTL.

8.5.4 Les résultats des simulations

On évalue l’efficacité de coût de “offloading on the edge” par des simulations à scénarios avec des
motifs de la demande de trafic réalistes. Nous présentons les résultats à Fig. 8.10 et Fig. 8.11.

8.5.5 Publications

Le travail dans ce chapitre a été publié dans:

• Pavlos Sermpezis, Luigi Vigneri, Thrasyvoulos Spyropoulos, ”Offloading on the Edge: Anal-
ysis and optimization of local data storage and offloading in HetNets”, Research Report
RR-14-297, Eurecom, December 2014.
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Figure 8.10: La demande de trafic et le coût de déchargement (par SCs) sur une période de 24h.
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Figure 8.11: (a) La demande de trafic et le coût de déchargement (par MNs, avec pc = 0.1) sur une période de
24h. (b) Le coût de déchargement total sur une période de 24h, normalisée au coût total sans déchargement.
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