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Abstract—Nowadays, with the continual development of digital
capture technologies and social media services, a vast number
of media documents are captured and shared online to help
attendees record their experience during events. In this paper, we
present a method combining semantic inference and multimodal
analysis for automatically finding media content to illustrate
events using an adaptive probabilistic hypergraph model. In
this model, media items are taken as vertices in the weighted
hypergraph and the task of enriching media to illustrate events is
formulated as a ranking problem. In our method, each hyperedge
is constructed using the K-nearest neighbors of a given media
document. We also employ a probabilistic representation, which
assigns each vertex to a hyperedge in a probabilistic way, to
further exploit the correlation among media data. Furthermore,
we optimize the hypergraph weights in a regularization frame-
work, which is solved as a second-order cone problem. The
approach is initiated by seed media and then used to rank the
media documents using a transductive inference process. The
results obtained from validating the approach on an event dataset
collected from EventMedia demonstrate the effectiveness of the
proposed approach.

Index Terms—Event enrichment, hypergraph, transductive
learning.

I. INTRODUCTION

In recent years, we have witnessed a growth in the pop-
ularity of social media websites, such as Flickr, YouTube,
and Facebook. These social media sites provide an interactive
sharing platform where vast amounts of unstructured data are
uploaded every minute. How we can benefit from such rich
media is still an open and challenging problem.

Events are a natural way of referring to any observable
occurrence grouping persons, places, times, and activities that
can be described [37]. Events are also observable experiences
that are more and more frequently documented by people
through different media (e.g., videos and photos). To help
users grasp events effectively, various event browsing and
searching platforms have been built, which have benefited
greatly from social media event content, e.g., eventful.com,
upcoming.org, last.fm, and Facebook.com/events, to name but
a few. These services sometimes have an explicit connection
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with media sharing platforms. Often there is overlap in terms
of coverage of upcoming events. Moreover, they provide social
network features to support users in sharing and deciding
upon attending events. However, in these Web services, less
attention is paid to improving the end-user experience when
searching and browsing content, while the functionality of
finding target media content to provide vivid information on
given events is still missing.

In fact, automatically associating social media content with
known events is a challenging problem owing to the heteroge-
neous and noisy nature of the data. In recent years, several
works have been proposed to investigate searching event
related media data. For example, Trad et al. [31] proposed a
visual-based method for retrieving events in photo collections,
although textual feature, which is very useful in describing
media content, has not been investigated. Liu et al. [18]
developed a framework to associate social media documents
with events in two steps: first, time, location, and textual
features are extracted via a query of the media candidates
on a given event, and then to improve the performance, a
visual filter is created to remove noisy data. Obviously, it
is not sufficient to model only the relations among images
and events. The social media content could be represented by
multimodal features, such as title, description, capture time,
location, and so on. Most existing methods explore these
multimodal features of media data separately or sequentially.
Moreover, owing to the lack of comprehensive analysis on
multi-facets of social data, these methods have a marginal
effect on modeling the relation between social multimedia and
events.

In machine learning, employing hypergraph model is a
natural way of formulating this kind of complex relation and
fully exploiting the multimodal features among social media
documents [11], [42]. Hypergraph is a generalization of the
graph model in which an edge can connect a number of
vertices. Each social media document, represented by spatial,
temporal, visual, and textual features, is a vertex in a hyper-
graph. The hypergraph is then constructed using the K-nearest
neighbor method. In other words, for each vertex, its K-nearest
neighbors, measured by the similarity of multiple features, are
used to generate a hyperedge.

Although the hypergraph is promising and desirable, there
are still many challenges to overcome. First, the traditional
hypergraph model assigns a vertex to a hyperedge by binary
decision, thereby ignoring the diverse information of the
different media content. Second, it is hard to find the optimized
“K” when constructing the hypergraph model, which plays a
key role in building a robust model. Finally, it should be noted
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that the different modalities have different effects on modeling
the relation between media data and events. In addition, an
investigation of the weights of different modalities could
further improve the performance of the proposed solution.

To solve these problems, we propose an adaptive probabilis-
tic hypergraph learning method to find media content relevant
to a given event. In the proposed method, for each modality,
hyperedges are generated by the nearest neighbor method and
represented in a probabilistic way; then, all the hyperedges
are aggregated as a unified hypergraph model. In addition, we
also optimize the hypergraph weights using a regularization
framework, which further exploits the correlation among me-
dia data. An overview of our proposed approach is illustrated
in Figure 1. The contribution of this paper is twofold:
• We study the event-based media enrichment task as a

ranking problem, and solve it using hypergraph modeling.
• To find as much media content as possible for a given

event, we propose an adaptive probabilistic hypergraph
method to rank the content. In this method, a probabilistic
incidence matrix is employed to construct the hyper-
graph, while an alternative optimization method is used
to optimize the ranking scores and hypergraph weights
simultaneously.

The remainder of this paper is structured as follows. First,
we review some related work in Section II. We then explain
our approach for associating media with events in Section III
and discuss our results in Section V. Finally, our conclusions
are presented in Section VI.

II. RELATED WORK

In this section, we briefly introduce related work on social
event illustration/detection and hypergraph modeling.

A. Social Event Analysis

In recent years, research on how to better support the
end-user experience when searching and browsing multimedia
content has drawn much attention [16] [19]. It is well known
that vivid photos attract human attention more than textual
descriptions. The authors in [7] aimed to improve users’
attention when reading news articles by illustrating the story
and proposed a system to realize this. The application provides
mechanisms to select the best illustration for each scene
automatically and a set of illustrations to improve the story
sequence. In [13], an unsupervised approach was proposed
to describe stories with automatically collected pictures. In
this approach, semantic keywords are extracted from the story
and used to search an annotated image database. Then, a
novel image-ranking scheme automatically chooses the most
appropriate images. A text-to-picture system that synthesizes a
picture from natural language text without limitations, is pre-
sented in [43]. The system first identified “picturable” textual
units through natural language processing, then searched for
the most likely image parts based on the text, and finally opti-
mized the picture layout based on both the textual and image
parts. Besides the works that illustrate text with photos, some
studies have also been carried out to generate video represen-
tation from textual content. For example, the system presented

in [25] creates a visual representation of a given short text. In
this system, the authors used a variety of techniques to query
images using a given text string with the novelty being that
the final images are selected in a user-assisted process and au-
tomatically used to create a storyboard animation. All of these
approaches and systems studied ways of demonstrating textual
content using multimedia data. In [40], the authors investigated
the density-based clustering algorithm and proposed a scalable
distance-based clustering technique for Web opinion clustering
to discover ongoing topics of interest and understand how
topics evolve together with the underlying social interaction
between participants. The authors in [3] proposed a system to
detect emerging topics from social streams and illustrate the
topics with corresponding information in multiple modalities.
The authors in [4] followed a very similar approach, exploiting
the rich “context” associated with social media content and
applied clustering algorithms to identify social events. In [10],
the authors studied the problem of browsing and organiza-
tion of picture collections in a natural way, by events, and
proposed a method to classify Flickr images into different
event categories. A demonstration of categorizing photos by
events/subevents through visual content analysis is presented
in [21]. In [9], Twitter messages corresponding to large scale
media events were investigated to improve event reasoning,
visualization, and analytics, while other research has been
carried out to find events directly from Twitter posts [36], [24].
In [36], the authors studied how to employ a wavelet-based
techniques to detect events from Twitter streams. A similar
method was reported in [6] to detect events from Flickr time
series data. In [24], the authors investigated how to filter tweets
to detect seismic activity as it occurs. A new scheme was
proposed in [41] to discover and track spatiotemporal patterns
in noisy sequences, while in [31], a method was introduced to
retrieve event-related photos in collections.

Previous work suggests that fusing multimodal features
could improve system performance [14], [27], [30], [26]. The
scheme presented in this work attempts to enrich a set of
images/videos to illustrate social events by matching concert
events with photos based on different modalities, such as text
(tags), time, and geo-location, to produce an enriched photo
set that better illustrates events. A similar work, presented
in [9], proposed a strategy for extracting valuable information
from the overwhelming amount of social media content on
a variety of broadcast news. However, this work focused
on filtering noisy information and producing a summary,
whereas illustrating events with different media addresses the
problem of how to leverage vivid multimodal content to share
experiences.

B. Hypergraph Modeling
In machine learning, the graph is a fundamental tool for

modeling pairwise relationships among objects and solving
many tasks like classification [29], [35], ranking [1], [34], [28],
and clustering [14], [23]. For example, in a social network, the
relations of different people can be formulated using a graph
model, where the vertices and edges represent people and their
relations, respectively. However, graph-based models do not
handle heterogeneous data well.
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Fig. 1: Overview of the proposed method.

As a natural extension of the graph-based model, the hy-
pergraph has been employed as a useful tool for modeling
multimodal and high-order data and analyzing the structure of
a system [15], [33].

In [11], a probabilistic hypergraph learning framework for
image retrieval is presented. In this approach, images are taken
as vertices in a weighted hypergraph and the task of searching
for images is formulated as a hypergraph ranking problem.
In [38], Wong et al. proposed a hypergraph-based 3D object
description method, in which the vertices denote the surface
patches of an object in a computer-aided design system and the
hyperedges represent connections between pairs of boundary
segments. A class-specific hypergraph was proposed in [39] to
explore both scale-invariant-feature-transform (SIFT) features
and global geometric constraints for object recognition, in
which the vertices of the constructed hypergraph represent
images belonging to an object category.

These works have demonstrated the effectiveness of the
hypergraph model in formulating higher-order relationships.
Inspired by the probabilistic hypergraph [11], we propose
the adaptive probabilistic hypergraph to model multimodal
features among social images and events. In our work, we im-
prove the model in [11] by simultaneously learning the ranking
scores of image samples and the weights of hyperedges, so that
the relations among social images can be deeply exploited.

III. HYPERGRAPH LEARNING

A. Problem Formulation

In machine learning, graphs are a fundamental tool for
modeling pairwise relationships among objects, where the
vertices denote the objects and the relationships between two
objects are measured by edges. A learning algorithm can be
performed on such a graph to classify unlabeled samples. For
example, in a social network, the relations of different people
could be formulated as a graph model, with the vertices and
edges representing people and their relationships, respectively.
However, a graph model does not handle heterogeneous data
well. For example, in our problem, an image could be de-
scribed by multimodal features, such as title, tags, capture
time, and location, which are difficult to represent as a single

node in a graph model. A natural way of formulating complex
relational objects is the hypergraph model, where an edge
can connect more than two vertices. For convenience, some
important notations used in this paper are listed in Table I.

Mathematically, let V denote a finite set of objects, and E
be the family of subsets e of V such that

⋃
e∈E = V . Then, we

call G = (V, E ,w) a hypergraph with vertex set V , hyperedge
set E , and hyperedge weight vector w. A |V| × |E| incidence
matrix H represents G with the following elements:

H(v, e) =

{
1, if v ∈ e
0, otherwise.

(1)

Equation (1) defines the traditional hypergraph structure,
which assigns vertex v to hyperedge e by means of a binary
decision; that is, whether a vertex belongs to an edge. In this
model, all vertices on a hyperedge are treated equally, but some
information is lost, which may be harmful to hypergraph-based
applications.

Similar to [11], in this paper we employ a probabilistic
hypergraph model to overcome this limitation. The incidence
matrix H of a probabilistic hypergraph is defined as

H(v, e) =

{
Sim(v, e), if v ∈ e
0, otherwise.

(2)

Here, Sim(v, e) is defined as the similarity of v and the
“centroid” vertex of e, i.e., the vertex that generates hyperedge
e. The similarity estimation method is detailed in Section IV.

According to this formulation, vertex v is “softly” assigned
to edge e based on the similarity Sim(i, j) between v and e. In
this way, not only the local grouping information but also the
probability that a vertex belongs to a hyperedge are considered
when the graph is constructed, so that the correlation among
vertices is more accurately described.

Based on Equation (2), the vertex degree of each vertex
v ∈ V is defined as

d(v) =
∑
e∈E

w(e)H(v, e), (3)

while the edge degree of hyperedge e ∈ E is given by

δ(e) =
∑
v∈V

H(v, e). (4)
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TABLE I: Notations and definitions.

Notation Definition
X = (x1, x2, . . . , xn) X denotes the media dataset, where xi is the i-th document.

G = (V, E,w)
G denotes a hypergraph, where V , E , and w are the set of vertices,
set of edges, and weights of the hyperedges, respectively.

n Number of vertices, that is, the size of V .
W The diagonal matrix of w .
Dv The diagonal matrix of the vertex degree.
De The diagonal matrix of the edge degree.
H The incidence matrix of the hypergraph.

y
The labels of media samples, in which relevant elements are set to one
and irrelevant elements are set to zero.

L The Laplacian matrix of the hypergraph.
f The ranking scores obtained by the proposed method.

We use Dv , De, and W to denote, respectively, the diagonal
matrices of the vertex and hyperedge degrees, and the weights.

In the constructed hypergraph structure, each image is
denoted by a vertex while its K-nearest neighbors are linked
via a hyperedge. In this setting, the media enrichment problem
can be solved as a ranking problem; that is, ranking the
media candidates according to their relevance to an event.
Huang [11] proposed an image ranking framework, but the
weights of different edges are directly computed from the
weights of the incidence matrix and are not well investigated
in the work. In fact, hyperedges have different effects and
performing a weighting of the hyperedges is useful to exploit
the relevance between the media items and event. In this paper,
instead of directly computing the weights from the incidence
matrix, we integrate the learning of hyperedge weights into
the formulation, with the hypergraph model formulated as a
regularization framework.

arg min
f ,w

F = arg min
f ,w
{Ω(f) + λRemp(f) + µΦ(w)} (5)

where f is the ranking score to be learned. Ω(f) is the
empirical loss defined as

Ω(f) =
1

2

∑
e∈E

∑
u,v∈V

w(e)H(u, e)H(v, e)

δ(e)

×

(
f(u)√
d(u)

− f(v)√
d(v)

)2

. (6)

Letting Θ = D
− 1

2
v HWD−1e HTD

− 1
2

v and ∆ = I − Θ, the
normalized cost function can be rewritten as

Ω(f) = fT∆f , (7)

where ∆ is a positive semi-definite matrix, known as the
Laplacian of the hypergraph. Remp(f) is the loss function
defined as

Remp(f) = ‖f − y‖2 =
∑
v∈V

(f(v)− y(v))2, (8)

where y is the initial label vector, which is computed based
on pseudo-relevant samples in the hypergraph learning algo-
rithm. The selection of pseudo-relevant samples is detailed in
Section IV.

The last part in model, Φ(w), is a regularizer designed to
avoid over-fitting. As we already know, in hypergraph models,

all the hyperedges are initialized with a weight. Obviously,
different hyperedges have different effects on modeling the
relations in different media. As shown in previous work [8],
an optimized weighting is helpful to improve system perfor-
mance. In machine learning, a natural approach for optimizing
the weights, w, is regularization, which can be formulated as

Φ(w) = ‖w‖q, (9)

where q = 2 denotes L2 regularization. L2 regularization,
which is widely used in machine learning algorithms, de-
creases the model’s non-linearity and makes the model robust
by penalizing certain parameter configurations. This is the
regularization method used in our proposed approach.

With L2 regularization, the optimization function is formu-
lated as

arg min
f ,w

F = arg min
f ,w

{
fT ∆f + λ‖f − y‖2 + µ

Ne∑
i=1

‖wi‖2

}

s.t.

Ne∑
i=1

wi = 1. (10)

The two parameters λ > 0 and µ in Equation (5) are trade-
off parameters that balance empirical loss and regularization
term.

B. Solution

The objective function (10) is not jointly convex with
respect to f and w. However, it is convex with respect to f if
w is fixed, and vice versa. Thus, an alternative optimization
method can be used to approximate the optimal parameters.

First, if we fix w, the learning task is to minimize the sum
of the two terms [11]:

arg min
f ,w

F = arg min
f ,w

{
fT ∆f + λ‖f − y‖2

}
. (11)

From
∂F

∂f
= 0

we have that

f(I−Θ) + λ(f − y) = 0

=⇒ f =
λ

1 + λ

(
I− Θ

1 + λ

)−1
y, (12)

where Θ = D
−1/2
v HWD−1e HTD

−1/2
v , as defined previously.
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Then, with a fixed f , we can optimize parameter w. Now
the optimization becomes

arg min
w

F = arg min
w

{
Ω(f) + µ

Ne∑
i=1

‖wi‖2

}

s.t.

Ne∑
i=1

wi = 1. (13)

Letting

γ(e) =
1

2

∑
u,v∈V

H(u, e)H(v, e)

δ(e)

×

(
f(u)√
d(u)

− f(v)√
d(v)

)2

, (14)

Equation (13) can be rewritten as

arg min
w

F = arg min
w

{
wT γ + µ

Ne∑
i=1

‖wi‖2

}

s.t.

Ne∑
i=1

wi = 1, (15)

which could be cast as the following second-order cone
problem and solved by the inner-point method [5]:

arg min
w,t

{
wT γ + µt

}
s.t.

Ne∑
i=1

wi = 1, ‖wi‖2 <= ti. (16)

It is worth noting that the computation of γ requires the
value of d, which is related to w. However, the minimization
of the cost function in Equation (13) is iteratively solved in
the global alternative optimization, and w converges in the
iteration.

The alternative optimization implementation is summarized
in Algorithm 1.

Algorithm 1 Proposed adaptive probabilistic hypergraph
model method

1: Compute similarity matrix Simt based on various fea-
tures.

2: Construct the probabilistic hypergraph G. For each vertex,
find its K-nearest neighbors to build a hyperedge.

3: Compute the hypergraph incidence matrix H, and hyper-
graph Laplacian L.

4: Optimize f according to Equation (12).
5: Optimize w from function (16) by the inner point method.
6: Update hypergraph Laplacian ∆ according to the new w.
7: Go to step 4 until max loops have been completed.

C. Computational Cost

From the above solution process, we can see that there are
two steps in the alternative optimization framework, while
most of the computation is spent on optimizing the hyper-
graph weight w, especially solving the objective function in

Equation (16). The function could be optimized by a primal-
dual interior-point algorithm with computational complexity
O(N3) [22], where N is the dimension of w. Hence, the
computational complexity of our proposal is (KlO(N3)),
where Kl is the number of iterations of the global alternative
optimization. In practice, the hypergraph incidence matrix is
typically sparse, which implies the problem can be solved
much faster when the sparsity is exploited and can scale well
with larger datasets.

IV. EVENT-BASED MEDIA ENRICHMENT

In this section, we apply the proposed adaptive hypergraph
learning to media enrichment problem. First, different features,
such as visual, textual, spatial, and temporal features, are
extracted from social images. Second, for each kind of feature,
a set of hyperedges is generated from each sample and its
corresponding neighbors, and the hypergraph is constructed
based on these hyperedges. After collecting some pseudo
samples to initiate the learning, the ranking score of each
sample and the weights of the hyperedges are simultaneously
optimized through an alternating optimization. Finally, we
obtain the enrichment list according to the ranking scores.

A. Hypergraph Construction

The media content used in this study is a set of images
downloaded from Flickr. To model the images using a hy-
pergraph model, we create a hyperedge for each image in
the dataset by taking each image as the “centroid” vertex
and forming a hyperedge with the center image and its K-
nearest neighbors. To formulate the hyperedges of the con-
structed hypergraph, we consider visual, textual, spatial, and
temporal features, which are often used in social event analysis
tasks [17], [2].
• Textual feature We use the tags and title of each image

as the textual source to compute the textual feature. At
first, we utilize the Google Translate API to translate
non-English words into English. Then, the textual meta-
data are cleaned by removing stopwords, HTML tags,
and some noise terms. Finally, we employ the Boolean
weighting scheme to measure the term’s frequency of
tags [20], and represent each document as a textual vector,
while each dimension in the vector corresponds to a
separate term. If a term occurs in the document, its value
in the vector is one, otherwise it is zero. The dimension
of the textual feature is equal to the size of the word
dictionary nw.

• Visual feature The content of an image is represented as
a bag-of-visual words feature. The generation of visual
words comprises three steps: First, we apply a difference-
of-Gaussian filter on the grayscale image to detect the
salient points. Then, we calculate the SIFT features over
the detected salient points, and finally, we employ the K-
means clustering algorithm to quantize the SIFT descrip-
tor as a visual feature vector. We employ the K-means
clustering algorithm to quantize the SIFT descriptor as a
nv-dimensional visual feature vector.
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• Temporal feature Time is one of the key components of
an event. The temporal source used in this paper is the
photo capture time. In our work, we segment the time
span of the images in the dataset every nt days, and each
image xi is represented by an nt feature vector t, where
ti = 1 indicates that xi falls within the i-th interval.

• Location feature To create the location feature, we first
extract the GPS metadata, that is, the latitude and lon-
gitude coordinates. Then we use the K-means clustering
algorithm to cluster the data into nl clusters, the GPS
data for each image is projected onto the cluster, and each
image pi is represented by an nl feature vector l, where
li = 1 indicates that pi is closed within the i-th clustering
center. GPS information is not required in photo metadata
and for this reason, the feature vector is filled with zeros
if a value is missing.

For each of the above four features, we use Euclidean
distance to calculate the distances Distt(i, j), and then we
compute the similarity matrix between two images as

Simt(i, j) = exp(−Distt(i, j)
Dt

), (17)

where Dt is the mean value of distances calculated by the t-th
feature.

The hyperedges are constructed based on similarity matrix
Simt: we take each media document as the “centroid” vertex
and form a hyperedge with the center image and its K-
nearest neighbors. That is, for each vertex, its K-nearest
neighbors measured by similarity in the feature space generate
a hyperedge. All the hyperedges generated based on different
features are aggregated and the final hypergraph is constructed
accordingly.

B. Seed Sample Collection
Note that we use a set of pseudo-relevant samples for

hypergraph learning. In this section, we introduce the pseudo-
relevant sample selection method. As is known, title, time, and
location are three key factors identifying an event. The corre-
sponding photo metadata are the textual description, capture
time, and place. Since the three factors are independent, we
can measure the relevance of a given photo P to event E by

R(P,E) = R(P.text, E.title)R(P.time,E.time)R(P.geo, E.geo),
(18)

where the first item measures the similarity of the photo textual
description and event title. As they are short and sparse, the
most straightforward way to measure them is

R(Text1, T ext2) =
|Text1 ∩ Text2|
|Text2|

, (19)

where function | · | is the total number of words in a textual
vector.

The second item in Equation (18) measures the span be-
tween the photo capture time and the event time as

R(Time1, T ime2) = e−|
date(Time2−Time1)

Nt
|, (20)

where function date(·) calculates the day of the given time
span.

The last item in Equation (18) measures the distance be-
tween the photo geotag and the event location. Because of the
many photos without geotags, as well as the limited accuracy
of GPS data in the Flickr dataset, we only use the city/venue
description to measure the location feature. The method is the
same as that defined in Equation (19).

All the media documents are ranked by their similarity to
a given event and the top Ns samples are selected as seed
samples.

V. EXPERIMENTS

To demonstrate the effectiveness of the proposed approach,
we conducted experiments on a dataset collected from Event-
Media [32], and used the method proposed in [18] to find
media candidates illustrating events. We compared the per-
formance of the proposed adaptive probabilistic hypergraph
learning approach with the latest ranking approaches, in-
cluding K-nearest neighbor-based ranking, graph ranking [1],
probabilistic hypergraph ranking, and SVMrank [12].

A. Dataset

To evaluate the proposed approach, we collected an event
dataset originating from EventMedia, which was created by
Troncy et al. [32] using linking data techniques. There are
about 100,000 events in this corpus, illustrated by 1.7M
photos. Since we need sufficient examples for training and
testing, we randomly selected 60 events with at least 50
relevant photos each. In total, there are 4560 images with
machine tags in the dataset.

In the dataset, the explicit relationships between these
events and photos hosted on Flickr can be looked up using
special machine tags such as lastfm:event=XXX or upcom-
ing:event=XXX. These tags are usually manually generated
by photo uploaders. Hence, media items labeled with relevant
machine tags can be used as positive samples of events.

Besides the media items with machine tags, we also col-
lected a set of illustrative candidates potentially taken at an
event, according to the method proposed in [18]. In this
method, the event metadata, such as title and capture place and
time are completely extracted from the event dataset, while an
online query with geographical, temporal, and textual param-
eters is performed to collect the social media data potentially
taken at the event. In total, for the 60 events, 13510, and 5218
images were collected by querying Flickr based on “title” and
“location”, respectively, with time constraints. Therefore, our
dataset contains 28,288 images in total. Then, for each event,
the seed sample collection method was performed to collect
pseudo-relevant samples. Some photo samples are illustrated
in Figure 2.

B. Experimental configuration

For our event-illustrating task, we compared the proposed
adaptive probability hypergraph ranking method with the fol-
lowing methods.

1) Proposed adaptive probabilistic hypergraph ranking. Pa-
rameters λ and µ are selected by 5-fold cross validation.
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Algorithm 2 Probabilistic hypergraph ranking approach [11],
empirically compared with our approach

1: Compute similarity matrix Simt based on various fea-
tures.

2: Construct the probabilistic hypergraph G. For each vertex,
find the K-nearest neighbors to build a hyperedge.

3: Compute the hypergraph incidence matrix H, and hyper-
graph Laplacian ∆.

4: Compute w by w(ei) =
∑

vj∈ei A(i, j)
5: Optimize f according to Equation (12).

Algorithm 3 Pairwise graph-based ranking approach, empiri-
cally compared with our approach

1: Compute similarity matrix Sim based on various features:
Sim(i, j) = exp(− 1

4

∑4
k=1

Distk(i,j)
Dk

)
2: Construct the simple graph Gs according to the similarity

matrix. For each vertex, connect the K-nearest neighbors.
3: Compute the simple graph affinity matrix Ag: Ag(i, j) =
Sim(i, j) if the i-th and j-th vertices are connected,
otherwise Ag(i, j) = 0.

4: Compute the vertex degree matrix D =
∑

j Ag(i, j)
5: Compute the simple graph Laplacian ∆g = I − Θg =
I −D−1/2AgD

−1/2

6: Optimize f according to Equation (12).

The neighborhood size varies in 5, 10, 15, 20 for
the hyperedge generation process and the number of
iterations for the alternative optimization process is set
to 20.

2) Adaptive hypergraph ranking [42]. The normal 0-1 rep-
resentation is used to indicate whether a vertex belongs
to an edge. The parameter settings are the same as those
for the adaptive probability hypergraph ranking.

3) Probability hypergraph ranking as detailed in Algorithm
3. This method does not learn the weights of the
hyperedges, but instead, computes them directly from
the similarity matrix. Parameter λ is selected by five-
fold cross validation, while the neighborhood size also
varies from five to 20 in steps of five, with the best result
reported.

4) K-nearest neighbor-based ranking. In pattern recogni-
tion, the K-nearest neighbors algorithm (k-NN) is an
instance-based method for classification and regression.
It can also be employed to solve the ranking problem,
that is, ranking an object using the average Euclidean
distance to its K-nearest neighbors in the training set.
Parameter K is set to ten experimentally.

5) Pairwise graph-based ranking as detailed in Algorithm 3.
A simple graph is constructed according to the similarity
matrix of the object, and then the graph Laplacian is
computed based on the affinity and vertex degree matrix.
Finally, the ranking score is optimized according to
Equation (12).

6) Support Vector Machine(SVM) ranking [12]. The basic
idea of the ranking SVM is to formalize learning to
rank as a binary classification problem on instance pairs,

(A) event: “Indietracks Festival 2012”, taken on 6-8 
July 2012, Butterley Hill, United Kingdom. 

(B) event: “Pukkelpop 2013”, taken on 15-17 Aug 2013, 
Kempische Steenweg Hasselt 

Fig. 2: Some samples and illustrative candidates for two
events.

and then solving the problem using SVMs. The original
multiple features are exploited to train the SVM ranking
model. Since it is hard to label the relevance of all
images in our dataset, for simplicity we set the relevance
score of images with an event machine tag to one, and
those without machine tags to zero.

Two measures are employed to evaluate the performance of
the ranking methods discussed above: (1) precision vs. recall
(PR) curve; and (2) mean average precision (MAP). In pattern
recognition, the PR curve measures the relation between the
fraction of retrieved instances that are relevant (Precision), and
the fraction of relevant instances that are retrieved (Recall).
The area under the curve is the average precision (AP), which
is one of the most popular criteria for evaluating classification
and information retrieval tasks.

C. Experimental Results

1) Comparative Results: First, we evaluated the effective-
ness of our adaptive probabilistic hypergraph method com-
pared with other state-of-the-art methods. For each event, we
built a ranking model with the collected image documents.
In this experiment, we randomly selected the top Ns image
samples according to the pseudo-sample selection method
as the initial relevance for each event, and used all the
samples with machine tags for testing purposes. For all the
methods evaluated in this paper, we independently repeated the
experiments ten times with randomly selected training samples
and report the average results in Figure 3. Our method, which
not only takes advantage of probabilistic hypergraph ranking,
but also optimizes the hyperedge weight by L2 regularization,
achieves the best performance of the four methods (AP: 0.950).
From the results, we see that both learning the weights of
the hyperedges and representing the incidence matrix in a
probabilistic way further exploit the relation among the media
documents and achieve better performance. This demonstrates
the effectiveness and feasibility of our approach.
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Fig. 3: Performance comparison between our approach
and other ranking methods. APHG: the proposed adaptive
probabilistic hypergraph ranking; KNNRanking: K-nearest
neighbor-based ranking; GraphRanking: simple graph-based
ranking; Prob HG: probabilistic hypergraph ranking; SVM-
Rank: SVM ranking method.

In addition, the statistical importance of the different rank-
ing methods was examined by T-test. For each event, we
evaluated the performance of different ranking approaches
under the MAP criterion. The p-values of the T-test comparing
the proposed method with all the other methods, are shown
in Table (II). From the results, we can see that the proposed
method yields statistically significant improvement.

TABLE II: The p-values of the significance tests.

Comparison p-value
APHG vs. GraphRanking 5.71× e−12

APHG vs. HG L2 2.71× e−9

APHG vs. KNNRanking 5.20× e−13

APHG vs. Prob HG 9.66× e−16

APHG vs. SVMRank 4.41× e−15

D. Results of Exploiting Different Modalities

To further investigate the performance of our proposed
method using different multimodal features, we compared the
performance of hypergraph learning with different modalities.
It should be noted that there are many missing values in
the location modality, which is featured as a zero vector
in the preprocessing. However, having zero columns in the
hypergraph index matrix leads to unpredictable ranking results
in the hypergraph. We avoided this problem by concatenating
the time and location features when constructing the hyper-
graph. From the results reported in Figure 4, we conclude
the following. (1) The hypergraph model is able to combine
different modalities well and achieves the best performance.
(2) Among the single features, textual features are the most
representative since they directly show the event content. (3)
Visual feature is not so robust in representing events, as images
from the same types of events have a similar visualization.

0.0 0.2 0.4 0.6 0.8 1.0
Recall
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0.4

0.6

0.8

1.0

P
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ci
si

o
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All(AP:0.950)
Text(AP:0.897)
Loc & Time(AP:0.616)
Visual(AP:0.463)

Fig. 4: The top results obtained by adaptive probabilistic hy-
pergraph learning with (a) the integration of all modalities; (b)
only textual modality; (c) only time and location modalities;
and (d) only visual modality. From the results we can see that
the proposed method integrating multiple modalities obtains
much more relevant results.
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Fig. 5: The AP performance variation using different neigh-
borhood sizes to construct the hypergraph.

E. On Parameter k

In our proposal, the nearest neighbor method is employed to
generate a hyperedge. For each vertex, the K-nearest neighbors
are found to construct the hyperedge. In our experiment, we
also evaluated the impact of neighborhood size on our adaptive
probabilistic hypergraph ranking model. Thus, we varied the
size of the neighborhood used to generate the hypergraph from
five to 20. The results, as reported in Figure 5, show that the
best score is achieved with k = 10 using the average precision
metric.

F. On Parameters λ and µ

In Equation (10), parameters λ and µ modulate the weights
of the loss and regularization term, respectively. In other
words, the value of λ determines the effect of the closeness
of f and y, while the value of µ determines the role that the
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Fig. 6: The AP Results obtained by employing textual and
visual dictionaries with different sizes.

weight of the hyperedge plays in the model. For example, if µ
= 0, the model degrades to the probability hypergraph model
in [11]. Hence, the effects of the two parameters need to be
investigated. In our experiments, we set K = 10, and varied the
values of λ from 0.005 to 50, and µ from 0.02 to 20. The AP
results, reported in Table III, show that the best performance
is obtained with λ = 0.5 and µ = 2. We can also see that the
performance of our approach does not severely degrade when
the parameters vary in a wide range.

TABLE III: The variation in average precision results when
varying λ and µ

µ=0.02 µ=0.2 µ=2 µ=20
λ=0.005 0.875 0.881 0.905 0.900
λ=0.05 0.930 0.934 0.939 0.936
λ=0.5 0.932 0.943 0.950 0.947
λ=5 0.933 0.941 0.944 0.938
λ=50 0.933 0.940 0.937 0.936

G. On the Size of Textual and Visual Dictionaries

As stated in Section IV, we used a clustering method to
generate textual and visual dictionaries to generate textual and
visual feature vectors. We compared the experimental results
with different sizes of the textual and visual word dictionaries,
that is, parameters nw and nv , respectively. The size of the two
dictionaries ranged from 200 to 1000, with the results shown
in Figure 6. It can be seen from the results that the algorithm
is stable and robust against textual and visual dictionary size
variations. When the dictionary size varies from 200 to 1000,
the AP scores obtained by using textual and visual features
changes from 0.946 to 0.950, and 0.947 to 0.950, respectively.

We also evaluated the sizes of the temporal and spatial
feature vectors, nt and nl, respectively. The results are shown
in Figure 7. We can see that as the sizes of the temporal and
spatial features increase, system performance improves. Stable
results are achieved with nl = 80 and nt = 600.

H. On Parameter Ns

In our experiment, we also evaluated the impact of the
number of pseudo-relevant samples Ns on our adaptive prob-
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(a) Location Feature size 
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(b) Temporal Feature size 

Fig. 7: The AP results obtained with different temporal and
spatial feature sizes.
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Fig. 8: The AP results obtained by using different numbers of
pseudo-relevant samples.

abilistic hypergraph ranking model. We varied the number of
pseudo-relevant samples from 10 to 60. The results reported
in Figure 8 show that system performance improves with an
increasing Ns, where the optimal score is achieved when Ns is
in the range [20,40]. However, system performance degrades
when Ns is greater than 50. This makes sense, since sufficient
samples ensure adequate diversity of the event, but employing
too many pseudo-relevant samples may involve many noisy
samples. Either way, the performance of our approach does
not severely degrade as the number of pseudo-relevant images
varies.

From the above analysis, we conclude that: 1) probabilistic
similarity is more suitable for modeling social media docu-
ments than the traditional 0-1 incidence matrix; and 2) by
optimizing the hypergraph weights, the adaptive probabilistic
hypergraph can better exploit the relations of social media data
and realize improved performance.

VI. CONCLUSION

The exponential growth in social media data available online
as witnessed over recent years has brought new challenges
for managing and organizing media efficiently and effectively.
Thanks to its multi-dimensional nature (who, what, when, and
where), events are a powerful instrument to organize media.
Hence, illustrating events using social media is timely and has
started receiving considerable attention from the multimedia
research community.
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In this paper, we proposed a ranking method for finding
photos relevant to a given event. The ranking is performed
using a hypergraph model, which is constructed according
to a probabilistic strategy. For each vertex, we find its K-
nearest neighbors to build a hyperedge based on the similarity
of the vertex pairs. In addition, we use L2 regularization
to optimize the hypergraph weights, which is considered a
second-cone problem and solved by the inner-point method.
For our event enrichment task, we collected an event dataset
from EventMedia, and downloaded a photo collection by
querying media from the social photo-sharing platform Flickr.
Temporal, spatial, textual, and visual features were extracted
to train the adaptive probabilistic hypergraph model. We
evaluated our method by comparison with three different
ranking methods. The results show that the proposed method
simultaneously models the multimodal information well and
achieves better results than the other approaches.
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