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Summary:
In this article, we present a new approach to modeling speaker-dependent systems. The
approach was inspired by the eigenfaces techniques used in face recognition. We build a
linear vector space of low dimensionality, called eigenspace, in which speakers are
located. The basis vectors of this space are called  eigenvoices. Each eigenvoice models a
direction of inter-speaker variability. The eigenspace is built during the training phase.
Then, any speaker model can be expressed as a linear combination of eigenvoices.
The benefits of this technique as set forth in this article reside in the reduction of the
number of parameters that describe a model. Thereby we are able to reduce the number of
parameters to estimate, as well as computation and/or storage costs. We apply the
approach to speaker adaptation and speaker recognition. Some experimental results are
supplied.

Résumé:
Cet article présente une nouvelle approche inspirée de la reconnaissance d’images,
adaptée et appliquée à la parole. Nous construisons un espace vectoriel de dimension
réduite, appelé espace propre (eigenspace), dans lequel les locuteurs se trouvent confinés.
Cet espace est constitué de vecteurs caractéristiques appelés voix propres (eigenvoices).
Chaque voix propre modélise une composante de variabilité inter-locuteur. L’espace
propre est construit lors de la phase d’apprentissage classique pour des systèmes liés à la
parole. Un modèle du locuteur est par la suite associé à une combinaison linéaire des
vecteurs de l’espace réduit des locuteurs.
L’avantage de cette méthode, mis en avant dans l’article, est la réduction du nombre de
paramètres caractéristiques d’un modèle. De ce fait nous réduisons le nombre de
paramètres à estimer, ainsi que le temps de calcul et/ou de stockage. Cette technique est
ici appliquée à l’adaptation du locuteur pour un système de reconnaissance automatique
du locuteur et à la reconnaissance automatique du locuteur. Quelques résultats
expérimentaux sont présentés à cette occasion.
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1 Introduction

This paper describes the concept called eigenvoices in the context of coding. The

eigenvoices technique, which is relatively new, is known best in the speaker adaptation

community [KNJ99]. However, as it was first invented, the concept has broader

ambitions and is potentially applicable to a wide variety of tasks. It can be viewed as the

compression of models in a system that has to accommodate a large number of speaker-

dependent subsystems.

The remainder of this section introduces Eigenfaces. Then we continue with a general

overview of the eigenvoices approach.
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1.1 Inspiration: eigenfaces

The initial inspiration as well as the name of the technique stem from the inventive

brilliance of the image recognition community. Here, we briefly depict the technique

invented by Turk and Pentland [TUP91] and provide the framework for later discussion.

Simply put, the task of recognizing a face consists in selecting the most similar face in a

database, given that faces are 2D pixel images. If we apply classical signal processing

techniques, the problem rapidly becomes computationally intractable. Researchers soon

understood that the problem of recognizing faces was in nature a lot more confined than

that of recognizing arbitrary photographs. This simple observation leads us to apply a

mechanism well known in statistical social sciences or biology, where the useful factors

are hidden in a mass of data: we can make use of the Principal Component Analysis

(PCA, [JOL86]).

Instead of working with the array of pixels itself, we work on a representation of the data

that is much simpler, that is, much smaller in size. One approximates the 2D image of a

face as a linear combination of base face images (eigenfaces). Eigenfaces are obtained by

taking the components associated with the largest energy that result from a singular value

decomposition of the autocorrelation of the face database, hence their name. Let X be the

database, i.e., a matrix formed with faces as columns, and as many columns as faces. A

face is a D dimensional vector, where D=m x n, if the image is a black and white m x n

photograph. Let N be an orthogonal DxD matrix containing the eigenfaces, and S be a

diagonal matrix representing variational energies associated with each eigenvector. By

definition, we have



4

SNNXX TT =

where T)(⋅  denotes transposition. We truncate N to yield M (take the first E vectors). E is

said to be the dimensionality of the eigenspace. Each face y can hence be approximated

with

yMMy T≅

The sub-dimensional representation of y is thus yMw T= , an E-dimensional vector.

Recognition of a new face, say y, now consists of selecting the index of XM T  which is

the closest in terms of Euclidean distance of yM T , i.e. if S is the number of speakers in

the database, then this yields S inner products of size E ( DSE <<<< ). The

straightforward, canonical approach would consist in computing T inner products of size

D. Note that a useful corollary of the reduction of dimension is an embedded process of

noise reduction. In the context of face recognition, the approximation discards such

unimportant features as (say) background landscape. Not only does PCA reduce costs in

computation, it also cancels irrelevant features. Also, semantics can be associated with

eigenfaces, for instance the presence or absence of a beard (or glasses, etc.) might be

associated with a particular eigenface dimension.

How is this interpreted in the context of model reduction? As a pattern matching task, our

face recognition problem can be viewed as

1. enrollment of people

2. pattern matching (selecting the most similar person)

With the addition of PCA, it becomes:

1. enrollment
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2. discovery of eigenfaces

3. pattern matching in the eigenspace

Models (faces) are now reduced in size and we can work in a simpler, cleaner setup.

1.2 Eigenvoices: conceptual overview

Speech recognition systems are in nature more convoluted than our previous example.

Whereas face recognition involves models that allow for simple distance measure in the

form of the canonical (possibly weighted) Euclidean distance, statistical-based speech

recognition systems make use of Hidden Markov Models (HMMs) that complicate the

process in terms of mathematical and computational tractability. In speech, there is a clear

distinction between features and models.

Figure 1 represents components of a speech recognition system. First, speech is recorded

through a microphone. The waveform is then transformed into a sequence of feature

vectors. Models are a statistical explanation for the sequences of feature vectors.

The next question is: Where do we apply dimensionality reduction?

Influences of speaker characteristics occur at all points in time and therefore propagate

from the production of speech itself to models. For instance, a speaker with disorders in

the laryngeal area may tend to speak slower, knowing his disability and the implied

FFT – filter banks

waveform
Features Models

Figure 1. Block-diagram of a speech recognition system
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decrease in intelligibility, will produce sounds with a different glottal pulse,  and will be

modeled with different linear prediction filters, etc. One generally distinguishes between

three levels where it is possible to apply dimensionality reduction. We can work within

the featurization process itself, or as a post processor to features, or finally on the models:

we refer to those as subfeature, feature, or model domains respectively. Let us review

these domains briefly.

The subfeature domain largely depends on the type of feature vectors in use: each feature

vector system implies different assumptions or approximations. Features can be such

entities as energies in certain frequency bands, representing speech at a certain point in

time as supposedly heard by a human ear as opposed to a microphone. Popular features

include Mel-Frequency Cepstral Coefficients (MFCCs) or Perceptual Linear Prediction

(PLP [HER90]). A source for inter-speaker variability, for instance, is known to be length

of the vocal tract. One can compensate for it using frequency warping. Subfeature

transformations can take almost any analytical or parametric form and any number of

parameters (but typically from 1 to 5).

Feature transformations have also been investigated. In fact, a large set of speaker

recognition techniques make use of features only and discard linguistic information

(which is coded by models). Bi-linear transformation of the feature vectors is a good

example of a non-linear normalization for speaker variability. A typical dimensionality of

the feature space ranges from 10 to 50.

Lastly, models are HMMs in statistical-based speech recognition. They have an

intrinsically large number of parameters (typically 2k-400k). Maximum-likelihood linear

regression (MLLR [LEW95]) is a paramount example of model-based transformation.
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The eigenvoices approach operates in the model domain. Given the dimensionality of the

domains, it is where we can achieve the most drastic gain in dimensionality. Surprisingly,

previous research on the application of dimensionality reduction techniques to speech

recognition focused on dimensionality reduction in the feature space rather than model

space, even though much greater cardinality of model space offers much more scope for

dimensionality reduction. The cardinality and topology of the true speaker space is

unknown.

 We have discussed eigenvoices mainly for speech recognition. However, speech coding

systems could also benefit from a dimensionality reduction. For instance, if we can

transmit reference glottal pulses in a Code Excited Linear Prediction (CELP) vocoder

prior to communication we can improve on the quality of the system.

2 Eigenvoices

This section is devoted to a more detailed description of the so-called eigenvoices

approach. First, we describe the general eigenvoices concept for any speech system. Then,

we show two applications of the idea, namely speaker adaptation and speaker recognition.

We develop the mathematical specialization of eigenvoices in those contexts.

Experimental results are also provided.

2.1 Speech systems

As with face recognition systems, we have two separate steps when working with speech
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recognition systems. First, we gather information to construct HMM models and prior

information. This is referred to as the training phase. Work accomplished here is said to

be offline, because it is done once, and not when the system is deployed. Second, we use

the system with the goal of recognizing either speech or a person. Reduction of the

dimensionality of the system is performed during the first step, so that the second step

becomes easier. Reduction of the number of parameters not only saves space and time, it

also improves on the quality of their estimation, given a finite (and small) amount of data.

The eigenvoices approach consists of conjecturing that the space spanned by speaker

models is a simple vector space. If λ is the model of a speaker, then we have

Eeeew
E

e

,...,1          ,)()(
1

== ∑
=
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where λ  is the eigenvoice, and )(ew  is a value specific to our speaker in that direction.

The speaker space M is thence given by the set of λ 's and each speaker is depicted by a

vector of characteristics [ ]TEwwww )(),...,2(),1(= . The eigenvoice assumption is

therefore equivalent to stating that any speaker model can be written as a linear

combination of eigenvoices.

Let us now quickly review the process of applying eigenvoices. As stated previously, we

proceed in two phases:

1. Train the system: build speaker-independent systems and the eigenspace. For reasons

that will become obvious later the eigenspace is a subset of what is called prior

information or set of hyperparameters.

2. Deployment of the system: this corresponds to the test adaptation phase of a

recognition system. Here, we use our prior knowledge to ease or improve the
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execution of our task.

In the training phase, we observe the distribution of speakers in the model space, Dℜ : we

observe a large number of speakers (typically 100-500), each of whom is associated with

a  vector of dimension D describing the model for that speaker. If we consider means

adaptation, the vector is the concatenation of all means of all gaussians of the set of

HMM models of that speaker. As D increases the speaker-dependent system has more and

more degrees of freedom, and can thus model speech more accurately. D ranges between

about 2k-400k. Thus, we see a collection of points scattered in a D-dimensional space,

but which we contend are confined in a small space.

Before we apply such an algorithm as PCA, in most cases it is useful to apply a so-called

whitener. This procedure pre-processes our data to remove mean and inter-correlations of

parameters under the Gaussian assumption, and hence produces data that are as close as

possible to being white noise, hence its name. Since PCA works with Euclidean

distances, this serves intuitively as a renormalization of features. After this step we could

possibly apply an algorithm for detecting and removing outliers.

Then, we apply a dimension reduction algorithm, such as PCA, ICA (Independent

Component Analysis [COM94]), or LDA (Linear Disciminant Analysis [FUK72]) to

obtain the basis vectors of our linear subspace. ICA yields a possibly non-orthogonal

basis (with the canonical inner product) for which eigenvalues are not correlated. In other

words, the information that we have given one eigenvalue gives absolutely no

information or constraint on any other eigenvalue. It is regarded as a very good theoretical

solution albeit computationally heavy and sensitive to pre-processing in practice. LDA
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returns the set of eigenvoices that has the best discriminative properties, that is,

eigenvoices for which we can differentiate cleary from each speaker. ICA finds a space

optimal in the sense of mutual information, and LDA in the sense of discrimination.

Another popular optimality criterion in speech recognition is that of Maximum-

Likelihood (ML). This leads to the algorithm called MLES that will be described further

down. Once we have performed that reduction, we are left with E eigenvoices that form

the eigenspace. The eigenspace M is a matrix of the form D x E. The eigendimension E is

set in practice to about 10 to 50. This is a heursitic compromise dictated by complexity

and performance. As we increase the number of degrees of freedom, we increase

computational complexity. Additional degrees of freedom allow for more precision and

therefore better recognition results, to the expense of an increase in requirements of

adaptation data.

Now that we have constructed our prior knowledge, we can proceed to deploy our system

and recognize speakers. In this phase, we are now reduced to the localization of a speaker

in eigenvoice space, that is, estimating the eigenvalues vector w, which has only E

parameters. If so desired, we can create the corresponding D-dimensional model.

Figure 2 summarizes the steps involved in eigenvoices.
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In the next subsection we apply the concept to speaker adaptation and HMM-based

speaker recognition.

2.2 Adaptation

The first and foremost application of the eigenvoices approach is speaker adaptation. We

will explore the benefits and drawbacks of the eigenvoices approach in depth. Remember

that the goal of eigenvoices is to build speaker-dependent models with as few parameters

as possible. In the previous sections we have talked about how to recognize a speaker

amongst other speakers in the database. Adaptation can be regarded as a speaker

recognition task where we have no discriminative constraint.

2.2.1 What is speaker adaptation?

As stated previously there are different stages in a speech recognition system where we

can apply adaptation. In this paper, we will only deal with adaptation of models.

…

PCA

observation
sequence

Train: build
eigenspace

Test: localize in
eigenspace

build speaker-dependent
models Find

eigenspace

Figure 2. Overview of eigenvoices
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Basically, speaker adaptation of model consists of modifying HMM parameters given a

speaker-specific utterance so that future or current utterances of the speaker will be

recognized more accurately.

There are four types of parameters that we can alter in an HMM model: mean vectors,

covariance matrices, mixture weights, and transition probabilities. Other parameters

regarding topology are supposed to be fixed in advance. In this paper we only deal with

adaptation of the means. These parameters are believed to have the most important

impact on the performance of the recognition task. Variances are second in importance

after means but due to mathematical tractability we will suppose that they are known and

constant throught the adaptation process.

If the text is known, then the adaptation is said to be supervised. When we have a very

small amount of adaptation data, we designate the modification process as fast adaptation.

The most difficult (and also most useful) case is unsupervised fast adaptation.

2.2.2 Prior art

Roughly stated, there are two kinds of adaptation techniques: smoothing techniques and

constrained estimation. Smoothing techniques include variations of the deleted (linear)

interpolation or Maximum A Posteriori (MAP [GAL92]). In such techniques,

programmatically, we are reduced to combine statistics of the Baum-Welch algorithm for

each parameter. Generally, they converge. Constrained adaptation makes use of indirect

parameters: we estimate a smaller set of parameters (for instance coefficients of a linear

transformation), and apply it to HMM parameters in an additional step. Such methods are

typically more complex and do not converge, but require less adaptation data. Maximum
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likelihood linear regression and its bayesian variants (MLLR [LEW95] and

MAPLR[CHO99, GOK99]), speaker clustering [AHA96, SAM98], Reference Speaker

Weighting (RSW, [HAZ98]) and Eigenvoices are paramount examples of such

techniques. Best results are usually obtained by using smoothing after constrained

estimation. The resulting algorithm gets quickly to a reasonable estimate and is further

ameliorated by smoothing.

2.2.3 Optimal estimators for eigenvoices

As noted earlier, in the eigenfaces approach we use simple Euclidean distances to

perform pattern matching. Due to the mathematical expression of HMMs in speech

recognition, our optimality criterion is no longer the minimum distance but the

maximum-likelihood (ML) or maximum a posteriori (MAP).For that purpose, we will

enhance the discovery of the eigenspace and localization in the eigenspace. PCA and

canonical projection perform these tasks using Euclidean distances. In the following

subsection we develop ML versions, named MLES and MLED respectively. Discovery of

the eigenspace takes places during training. MLED is performed during testing.

2.2.3.1 An optimal estimator for the location in the eigenspace: MLED

In this section, we derive the optimal estimator for eigenvoices with regards to the

maximum-likelihood criterion. This estimator is called MLED, for Maximum-Likelihood

Eigen Decomposition [KNJ99]. For that purpose we can use the well-known theory of

HMMs. Due to the hidden nature of HMM parameters, we have to apply the Expectation-



14

Maximization (EM, [DLR77]). Our goal is to maximize the likelihood of the observation

sequence O given our model parameters θ:

)|(maxargˆ θθ
θ

OL=

with L(.) the likelihood function. The EM algorithm tells us to maximize the auxiliary

function, which is the expectation of the likelihood from our current estimate θ0

[ ]00 ,|)|,( logE),( θθζθθ OOLQ =

and ζ the hidden data estimated with θ0. It can be shown that, for the adaptation of the

means, this is equivalent to optimizing

[ ]∑∑ −−−= −

m t
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T
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with the following definitions:

µm mean parameters

ot observation vector at time t

1−
mC inverse covariance (precision) matrix

γm(t) posterior probability of seeing ot at that time with that mixture

And m denotes a Gaussian component.

By definition, the central conjecture of eigenvoices leads us to express model means µ as

a linear combination of eigenvoices )(eµ ,

∑
=

=
E

e
mem ew

1

)(µµ

There are E eigenvoices. Thus, we need to maximize the auxiliary function Q with our
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eigenvalues w. Replacing into the auxiliary function and differentiating with each

eigenvalue, one obtains the following system of equations

EejCewtoCet
m t

E

j
mm

T
mjm

m t
tm

T
mm ,...,1        ,)()()()()(

1

11 == ∑∑ ∑∑∑
=

−− µµγµγ

to solve for the eigenvalues we. It is a linear system of equations that one can solve with

Singular Value Decomposition or Gaussian elimination.

2.2.3.2 An optimal estimator for the eigenvoices: MLES

In the previous developments, we assumed that eigenvoices were derived with PCA.

However, this approach is suboptimal. PCA minimizes the Euclidean distance between

two models, and therefore does not maximize likelihood and requires gaussians to be

aligned, i.e. Gaussian 1 of gaussian mixture of state 1 of model 1 is aligned with its peer

in the other model. In the terminology of estimation theory, PCA yields the least squares

estimator whereas we would need a maximum-likelihood estimator. Also, applying PCA

to a large set of speakers requires large amounts of memory. Lastly, we would like to

integrate a priori knowledge that we have about the database into our estimation. This

arises in particular when properties of the training database do not match with those of

the deployment conditions.

The Maximum-Likelihood EigenSpace or MLES [NWJ99] for short overcomes these

limitations. Again, we use EM, but this time extend the hidden data ζ with w. The

parameters θ that we need to estimate are the eigenvoices. Let the eigenspace M be

[ ]TTT EM )(),...,1( µµ= , a D x E matrix. Replacing into the EM formulation we get:
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where q is an index that denotes the speaker. P0(.) is a weighting function that accounts

for a priori information about the speaker given his characteristics. For instance, if there

is a large bias in the favor of the number of male speakers in the database as is often the

case, we would tend to model males better. In the deployment phase we would need the

same proportion of male vs female speakers. With this probability we can cancel the bias.

Since EM is an iterative algorithm, we need to have an initial estimate. It can be obtained

with PCA, ICA or LDA. When eigenvalues are not fully set by a priori knowledge, we

can use MLED to estimate the most likely values. The mathematical derivation of the

eigenvoices is very similar to the derivation of Baum-Welch formulae and yields

[ ]
∑∑

∑ ∑ −
=

t mq qq

q t
q

mtmqq
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with ),())(|( 0
)( qwPewOLL q

q
q = the posterior probability of the speech utterances of the

speaker. We define the complement of the eigenvoice with respect to the observation

∑
≠=
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E

ekk
mq

q
m ekwe

,1
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Intuitively, it represents the residual error not modelled by other dimensions. Retraining

of the eigenvoices is similar to a Baum-Welch training pass, but we need E accumulators

instead of one, and for each observation sequence we have an embedded EM step for

MLED. Practically, MLES needs approximately twice as many iterations as training a

speaker-independent model.
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2.2.4 Experiments

In our experiments we have used the TIMIT database. It is divided into two sets: a

training set and a test set. The training set comprises of 462 speakers. For each of the

speakers, we have recordings of 8 sentences. The approximate duration of a sentence is

about 2-7 seconds. We used 30 speakers for the adaptation experiments. The eigenspace

was built using all 462 speakers of the training set and tested on the 30 speakers of the

test set, using one supervised adaptation sentence and recognition on the 7 remaining

sentences.

The speech recognition system uses 18 features (9 static PLP parameters including energy

and 9 delta) for phoneme recognition. The sampling rate was set to 16 kHz. There were

48 context-independent models of phonemes, with 3 states each and 16 gaussians per

mixture. The baseline recognition score is 60.94% accuracy. The next table summarizes

the results.  We have tested several eigenspaces: PCA, and MLES trained with different

dimensions (E=10, 20, 50).  Increasing E beyond 50 yields only marginal improvements

in performance. These spaces were tested with different dimensions (E=5, 10, 20, 50).

Understandably, the number of dimensions with which an eigenspace is tested cannot

exceed the number of dimensions for which was trained. The more dimensions we allow

eigenvoices to use, the more precision we have and the better the recognition scores.

Moreover, to obtain best performance with MLES, we must know the dimensionality of

the eigenspace in advance.

A dimension of the eigenspace of about 10 yields decent results.
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Method E=5 E=10 E=20 E=50

PCA 60.67 60.58 61.29 61.56

MLES (E=10) 62.53 65.10 - -

MLES (E=20) 63.06 65.01 65.37 -

MLES (E=50) 61.74 63.77 64.84 66.96

Note that in that range of amount of adaptation data (2-7 seconds), MLLR followed by

MAP performs badly: it yields a decrease in performance (59.64%). The reason is that we

do not have enough data to estimate MLLR parameters reliably. To the best of our

knowledge eigenvoices is the most rapid adaptation technique to date. In our problem,

MLLR was used with a full matrix shared amongst all phonemes, and has 18x19

parameters. Eigenvoices has E=5, ... 50 parameters. MAP has the same dimensionality as

ML, which is the number of parameters of the system (about 40k). As a result, MLLR

needs about 3-4 sentences before it can be used efficiently whereas MAP by itself would

require a minute or more.

2.2.5 Summary

In this section, we have presented how eigenvoices enabled improvements in speaker

adaptation. In particular, dimensionality reduction involves the following benefits:

• Reliable parameters: since we have fewer parameters to estimate, we have

more data per parameter
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• Reduction of noise: when reducing the degrees of freedom of the system, we

also delete noisy dimensions (i.e. dimension associated with intra-speaker

variability as opposed to inter-speaker variability)

• Correct adaptation to unseen data: ML methods do not update unseen

parameters. However we observe indirect parameters and can therefore see all

parameters of the model.

• The eigenvoices store the mapping from low- to high-dimensional problems,

and thereby model the internal consistency of the speaker. Since an eigenvoice

can be associated with a characteristic, it means that if we have models for the

phoneme ‘aa’ and ‘ae’, hearing an ‘aa’ from a female, we can update ‘ae’ with

female characteristics.

• The simple linear formulate yields simpler (computationally easier) update

formulae than MLLR

• The softness of the approach allows us to choose from an infinite set of

speakers, as opposed to speaker clustering

• An intuitive interpretation of eigenvoices as directions of variability modeling

speaker characteristics can be useful. For instance, the first eigenvoice has

been identified as modeling gender

2.3 Speaker Recognition

The most obvious task to which the eigenvoices is speaker identification. Basically,

speaker identification consists of finding the identity of a speaker given some utterance. It
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can be viewed as a discretized adaptation process. It is a subset of problems that are

classified under the name of speaker recognition. For instance, we may postulate some

speaker identity and the system has to find out (given first and second order probabilities)

whether the speaker corresponds to that identity or not. This is called speaker verification.

A somewhat hybrid problem occurs when we must identify a speaker in an open set of

speakers: the person may or may not be in the database, we must identify him correctly or

reject as unknown. There are a number of names designating speakers given the reaction

of the system, such as goat, sheeps, etc. They may fool the system unintentionally, or may

get rejected for no apparent reasons, etc.

Applications of speaker recognition include biometric authentification or speaker

segmentation. Speaker recognition may depend on a specific text or not, in which case it

is said to be text-dependent or text-independent.

As with speaker adaptation, there are a number of stages where differences between

speakers have an impact: by looking at features [BMM95], or by using statistical models

such as HMMs. An HMM is called a Gaussian Mixture Model (GMM) when there is just

one state. GMMs are popular [REY95] in speaker verification. HMMs [FOR95, RLS90]

have also been used for speaker recognition but tend to be text-dependent.

In this paper we choose an HMM-based approach in a text-dependent context.

2.3.1 How do we measure performance?

In speaker identification, performance can be measured in a simple way: we count the

percentage of speaker who are correctly recognized. Speaker verification, however, is a
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hypothesis testing problem and as such is associated with two error probabilities: the false

acceptance (FA) and false rejection (FR) rates. FA occurs when a speaker is wrongfully

accepted into the system, FR occurs when the speaker corresponds to his claimed ID but

gets rejected by the system. A high FA means that the system is too permissive, i.e.,

would let anybody enter. On the other hand, a high FR has a tendency to reject legitimate

attempts too often. To combine the two in one single performance figure, the equal error

rate (EER) is defined in the litterature (e.g. [FOR95]), which is the error rate for which

FA equals FR. FA and FR are monotonically decreasing functions of each other.

2.3.2 Prior art

Rose and Reynolds [ROR90] introduced GMMs for speaker identification. They build a

GMM sλ  for each speaker. Speaker identification is then equivalent to selecting the

speaker model with highest likelihood:

)|(maxargˆ ss
OLs λ=

This operation requires the computation of the likelihood for all speakers in the database

(exhaustive search), which can be prohibitive in certain contexts.

For speaker verification, we face the problem of normalizing likelihoods. We introduce

the concept of background speakers [REY95] or cohort [RLJ92]. While identifying a

speaker, we compute the self match score against the cohort match score:

likelihood ratio = P(X is the claimed speaker) / P(X is not the claimed speaker)

Choosing the set of speakers that will form the cohort is difficult. The size of that set is

user-defined, but again we have to perform a direct match with a set of speakers.
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HMM-based systems are essentially similar to what we just described. They also require

the introduction of likelihood ratios to normalize scores. Discriminative Observation

Probabilities (DOPs) [FOR95] are an interesting alternative to likelihood ratios: we use

an explicitly discriminative measure instead of a ratio. Also note that speaker selection

(or cluster selection), that was presented before as an adaptation technique, is also a

speaker identification technique. Interestingly, we build a cluster tree when building

clusters. Thus, it might be desirable to apply hierarchical classifier theory to reduce

computation [SAM98]. Instead of computing the match with each and every other

speaker in the database, we search down the tree. Unfortunately, this approach is

suboptimal.

2.3.3 Eigenvoices

Eigenvoices will enable us to reduce computations and model complexity. Following the

eigenfaces example, we consider the sets of model parameters as simple random

variables. As with speaker adaptation, we locate an unknown speaker in the eigenvoice

space. Then, eigenvoices-based speaker identification consists of selecting the closest

speaker in that low dimensional linear vector space (a simple geometrical problem). For

speaker verification we reject or accept the speaker based on how close the person is to

the claimed speaker. If we are in the hypersphere of a predefined radius, we accept. The

larger the radius, the larger the FA.

Note that proximity in the eigenspace does not imply high likelihood score. In other

words, the approach is suboptimal in the sense that choosing the closest speaker in
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eigenspace may not yield the speaker with highest likelihood score.

To get a clearer understanding of the process in use, we describe a closed-set speaker

recognition system utilizing eigenvoices.

1. Building the eigenspace

• enrollment

• dimensionality reduction

2. Speaker recognition: locate most similar speaker in database or determine if the

speaker is close enough to the reference of his claimed identity

In the test phase, the system also requires an exhaustive search though the entire database,

but the cost of computing the match is that of a simple inner product in the eigenspace.

For classic systems, the most advantageous example is GMM where we would need as

many inner products in the feature space as the number of mixtures per model times the

number of observations. For HMM systems it would be an entire Baum-Welch per

speaker.

The theoretically correct similarity measure is divergence: when we observe a model, we

want to select the model that explains the observation as closely as possible. However, for

HMMs and GMMs divergence is parametric but there exists no closed form expression.

Thence, if we have to recompute likelihoods for each model using a Viterbi or Baum-

Welch algorithm, we lose our advantage. We need to find alternative ways of computing

distances (e.g. [BMS98]). Therefore, we use simpler closed-form similarity measures in
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the eigenspace. The canonical inner product is chosen. As a first approach, we used the

Euclidean distance [OLS98] between speakers r and q:

qr wwqr −=),(δ

where || . || denotes the 2-norm, ie 2/1, >=< xxx , with >⋅⋅< ,  the inner product.

A better similarity measure happened to be the normalized correlation. Normalizing is

interesting in that we become independent of the norm of the eigenvalues vectors.
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2.3.4 Experiments

Experiments for Speaker Verification and Speaker Identification were carried out on the

speech recognition system that we have described previously in our speaker adaptation

experiments. The eigenspace was trained on all 462 speakers of the training database.

Then we used 150 speakers of the TIMIT test set to evaluate the system. Therefore, the

eigenspace was trained on one set and tested on another non-overlapping set. Thus we

need not rebuild the eigenspace when a new speaker is enrolled. The dimension of the

eigenspace was set to 20 arbitrarily. Note the reduction in storage space: the system that

does not use eigenvoices stores all HMM parameters (40k) for all speakers (150). The

eigenvoices-based system, on the other hand, stores the eigenspace (40k x 20) and an

eigenvalues vector for each speaker (20 x 150).

For speaker identification results, we obtained 100% identification score, that is, all

speakers were recognized correctly amongst a base of 150 speakers. This figure is
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attained quite frequently in the litterature, especially given our test conditions. For

speaker verification, all speakers acted as impostors: each of them claimed every 150

identities. In that experiment we obtained a 2% EER. Given that we have high-quality

speech these results are relatively modest but encouraging.

3 Conclusion

In this paper, we have explained the concept of eigenvoices as a means of representing

speakers compactly in model space. Furthermore, we describe applications to speaker

adaptation and speaker recognition with specialization of the formulae for HMMs.

Thanks to the reduction in dimensionality of speaker-dependent models, we improve

alternatively on several aspects of the process. We decrease the complexity and the

number of parameters involved. With fewer parameters, given small amount of data, we

can build more robust models, since we have fewer parameters to estimate. As with

image recognition, fewer parameters also means fewer computations and reduction of

memory requirements for speaker identification. We also believe that decomposing

parameters into speaker characteristics yields a more elegant and intuitive approach.

Speaker adaptation was the most thoroughly explored application. We hope that

researchers in the speaker recognition and speech coding will adopt the idea.
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