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Abstract— The Colonel Blotto game, proposed by Borel in
1921, is a fundamental model of strategic resource allocation.
Two players allocate an exogenously given amount of resources
to a fixed number of battlefields with given values. Each battle-
field is then won by the player who allocated more resources to
it, and each player maximizes the aggregate value of battlefields
he wins. This game allows modeling many practical problems
of resource allocation in various strategic settings ranging
from international war to competition for attention in social
networks; it is particularly useful in security to model the
allocation of defense resources on different potential targets.
The scope of applications, however, has been limited by the
lack of solutions of the game in realistic scenarios. Indeed,
despite its apparent simplicity, the Colonel Blotto game is very
intricate and it remains unsolved in the case with asymmetric
players (i.e., with different resources) and with an arbitrary
number of battlefields that can have different values.

In this paper, we propose a solution of the heterogeneous
Colonel Blotto game with asymmetric players and heteroge-
neous battlefield values, under the assumption that there is a
sufficient number of battlefields of each possible value relative to
the players’ resources asymmetry. In particular, our assumption
implies that there must be at least three battlefields of each
possible value. Then, we characterize the unique equilibrium
payoffs and univariate marginal distributions, along with the
proof that there exist n-variate joint distributions with such
marginals. Our results expand the scope of potential applica-
tions of the Colonel Blotto game, and mark a new step towards
a complete solution of the game.

I. INTRODUCTION

The Colonel Blotto game was introduced in 1921, by
Borel to model “the art of war or of economic and financial
speculation”, [1]. There exist many versions of this classical
game, which were developed overtime by various research
communities to target different applications ranging from
modeling international conflicts to studying social interac-
tions on Facebook. The Colonel Blotto games (or ‘Blotto
games” for short) model scenarios where strategic players
with exogenously given resource levels compete for multiple
battlefields with given values.

In its basic variant, the Colonel Blotto game is a game
between two players who simultaneously allocate their ex-
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ogenously given resources across a finite number of battle-
fields with given values. Players’ resources are assumed to
have no outside value. A player wins a battlefield when the
amount of resources allocated to this battlefield is higher than
the said amount for his opponent. Each player’s objective is
to maximize his cumulative winnings, i.e., the total value
of the won battlefields. Players strategies and payoffs are
common knowledge. Despite its deceptive simplicity, this
Blotto game is intricate. It stood unresolved for several
decades even for the simple case of symmetric players with
identical resources and a fixed number of identical (i.e., of
equal value) battlefields.

A. Literature review

The original 1921 Colonel Blotto game [1] was solved in
1938 for the case of two players with symmetric resources
and three battlefields by Borel and Ville, [2]. In 1950, Gross
and Wagner [3] extended [2] to the game with identical
player resources and an arbitrary number of battlefields;
they also derived an equilibrium for the case with two
battlefields and asymmetric (unequal) player resources. The
case of asymmetric player resources and an arbitrary number
of battlefields remained unsolved until 2006. Only then,
Roberson [4] completely characterized the equilibria of a
two-player Blotto game with any given number of identical
battlefields and asymmetric player resources. The latter paper
builds on the results for all-pay auctions established in [5],
[6], and uses the results of Sklar [7] and Schweizer and
Sklar [8] on copulas to demonstrate the existence of an n-
variate distribution corresponding to the equilibrium set of n
univariate marginal distribution functions.

The literature considers numerous versions of Blotto-type
games. These games could differ by procedures according to
which the winner of each specific battlefield is determined,
by the objective of the entire contest, and by the timing of
the game. The most well studied objective is the plurality
objective (i.e., maximizing the aggregate value of battlefields
won); in this paper we assume exactly that. Another popular
objective is the majority objective – in this case, each player
maximizes the probability of winning a majority of the
component contests.1 The original Blotto model assumes that
the players move simultaneously. A number of recent papers
considered consider a simplified model, with sequential
players moves, see for example [9], [10]. A comprehensive
recent review of Blotto-type allocation games is provided in
[11].

1US presidential elections is an example of such a contest.



Following the fundamental paper [4], many interesting
theoretical extensions were proposed, and numerous papers
targeting specific application domains emerged; see for ex-
ample [12], [13], [14], [15], [16], [17], [18] among many
others. In computer security for instance, the Blotto game can
be applied to model the allocation of monitoring resources
to different domains of a system. There have also been
experimental studies for various applications domains, such
as [19], [20], [21]. One of the first experimental studies
that looked into network infrastructures is [22]. Another
interesting experimental paper is [23] where the authors
study social interactions using a Facebook application called
“Project Waterloo”, which allows users to invite both friends
and strangers to play Colonel Blotto against them.

The applications of the Colonel Blotto game, however,
have been restricted by the lack of a solution for the case
of asymmetric players and heterogeneous battlefields. This
heterogeneous Blotto game was solved in [3] for the case of
two battlefields. It was recently approached for more than
two battlefields in [24]. There, the authors consider a more
general nonzero-sum case where players could have asym-
metric battlefield valuations. They address only, however, the
cases where a pure Nash equilibrium exists. They construct
an algorithm to find such equilibria, and characterize the
situations in which heterogeneous nonzero-sum Blotto games
have a pure strategy equilibria. That paper represents a
growing literature that extends a standard zero-sum Blotto
setup to the case of players with heterogeneous preferences,
and thus non zero-sum games. Our paper is complementary
to [24]. Our primary focus is on solving the heterogeneous
zero-sum Blotto games in cases where no pure strategy
equilibria exists, which happens when players resources are
not too asymmetric. Then, under a condition on the number
of battlefields of each specific value relative to the players
resources asymmetry, we fully characterize mixed strategy
equilibria of such heterogeneous Blotto games.

B. Contributions

The Colonel Blotto game is a canonical model of strategic
resource allocation for players with multi-dimensional objec-
tives. In this paper, we provide a solution of this fundamental
problem for the case in which the battlefields could differ in
value, and players could differ in the amount of available
resources. We work under the assumption that there is a suf-
ficient number of battlefields of each possible value relative
to the players’ resources asymmetry (see condition (1) in
Theorem 1). In particular, our assumption implies that there
must be at least three battlefields of each possible value.
Then, our results completely characterize the equilibrium.
We present the unique equilibrium payoffs and the unique
equilibrium univariate marginal distributions, along with the
proof that there exist n-variate joint distributions with such
marginals. This solution of the heterogeneous Blotto game
opens up many potentially applications where battlefields
naturally have different values. We identify novel practical
applications where our results are useful. In addition, we
anticipate that our solution of heterogeneous Blotto game is a

necessary component in modeling Blotto-type interactions in
networked environments with heterogeneous network nodes
(battlefields).

More specifically, Theorem 1 establishes unique marginal
distributions with which any equilibrium resource allocation
has to comply. The existence of some n-variate distribution
that satisfies these marginals and also player resource con-
straints is merely hypothesized. The result of Theorem 1 im-
portantly relies on constructing a one-to-one correspondence
between the solution of our Blotto game and the solution of
n independent all-pay auctions, with the latter being already
established in the literature [5], [6].

Next, in Theorem 3 we establish the existence of an
n-variate distribution that was assumed to exist for the
proof of Theorem 1. The existence of such an n-variate
distribution with the required properties is proven by a
construction in two steps. First, each group of battlefields
with the same value is deterministically allocated an amount
of resources proportional to its aggregate value. Second,
within each group, the allocation to battlefields is done with
randomization as in Roberson [4]. The latter step is possible
thanks to our imposition of having at least three battlefields
with the same value.

C. Outline of the paper

The reminder of the paper is organized as follows. In
Section II, we introduce the notation and define the hetero-
geneous Colonel Blotto game. In Section III, we formulate
our main results, discuss them and briefly outline the main
steps of the proof. The technical details of the longer proofs
are presented in Sections IV and V. Lastly, in Section VI we
discuss the results and outline the plans for extensions.

II. PROBLEM FORMULATION

We consider a Colonel Blotto game between two players,
each of whom has a fixed amount of resources to allocate
between a given number of battlefields. Each battlefield has a
specific value. Players simultaneously allocate their resources
between the battlefields. We assume that player resources
have no outside value. The parameters of the game (players’
resources, number and values of the battlefields), players’
actions spaces and payoffs are common knowledge. A player
who allocated a higher amount of resources to a specific
battlefield wins this battlefield. The payoff of each player is
equal to the sum of the values of the battlefields that he won.
Each player’s objective is to maximize his payoff.

We now introduce the notation and formally define the
game. Whenever possible, our notation follows the notation
from Roberson [4], which we extend by allowing battlefields
of different values. When all battlefields have equal value,
our setting reverts to [4].

We denote by A and B the two players and by XA ∈ R+

and XB ∈ R+ their respective resources. Without loss
of generality, we assume that XA ≤ XB . Let n be an
integer denoting the number of battlefields. Each battlefield
j ∈ {1, · · · , n} is endowed with a value vj ∈ R+. We denote



by v = (v1, · · · , vn) the vector of battlefield values, and by
V =

∑n
j=1 v

j the aggregate value of all battlefields.
Players choose how to allocate their resources between

the battlefields, i.e., each player chooses how to distribute
his (given) resources between the battlefields. Formally, a
pure strategy of player p ∈ {A,B} is a vector xp =
(xjp)j∈{1,··· ,n} ∈ Rn

+ satisfying the budget constraint∑n
j=1 x

j
p ≤ Xp, where xjp ∈ R+ denotes the amount of

resources allocated to battlefield j by player p. We let Sp

denote the set of pure strategies for player p:

Sp =

xp ∈ Rn
+ :

n∑
j=1

xjp ≤ Xp

 , (p ∈ {A,B}).

For each battlefield j ∈ {1, · · · , n}, the player who
dedicates the highest amount of resources wins this entire
battlefield. Without loss of generality, we assume that in case
of a tie, player B (the player with higher total amount of
resources) wins the battlefield. Hence, for each battlefield
j ∈ {1, · · · , n}, if xjA > xjB then player A the battlefield,
and if xjA ≤ x

j
B then player B wins it. For each player, the

payoff in the game equals to the sum of the values of the
battlefields that he wins.

Let B(XA, XB ,v) denote the above presented Blotto
game. The game B is a one-shot game in which players
A and B simultaneously choose their allocation of forces to
the battlefields to maximize the total value of the battlefields
they win. The game B is a complete information game. The
parameters of the game (XA, XB , n and v), players’ action
spaces and objectives are common knowledge.

In most cases of interest, that is when for each player the
expected payoff is strictly positive, no pure strategy Nash
equilibrium exists. We therefore will focus on mixed strategy
equilibria. A mixed strategy for player p ∈ {A,B} is an
n-variate distribution Pp : Rn

+ → [0, 1] whose support is
contained in Sp. For a given n-variate distribution, we denote
by F j

p : R+ → [0, 1] univariate marginal distribution of
resources allocated by player p to battlefield j.

This problem was solved by Roberson [4] for the case
of identical battlefields. He proved the existence of a Nash
equilibrium by constructing a mixed-strategy equilibrium
and characterized equilibrium marginals and payoffs, which
turned out to be unique. In this paper, we solve a gener-
alization of that problem to the case where the battlefields
may have different values. As we will demonstrate in the
next section, there exists a plethora of equilibria (in terms
of the n-variate joint distributions), but all these equilibria
have identical marginals and payoffs.

To prove our results, we will need to assume that, for
each battlefield, there is at least two other battlefields with
the same value, i.e., we can make groups of battlefields
of the same value with at least three battlefield in each
group. Moreover, we will also assume that each group of
equal-value battlefields has “enough” battlefields compared
to the players’ resources asymmetry (see Theorem 1 be-
low). To precisely state these conditions and establish our
framework, we introduce the following formal definitions.

Let k denote the number of different battlefield values, and
let {w1, · · · , wk} denote the corresponding set of unique
battlefield values. Formally we have wi1 6= wi2 for all i1 6=
i2 and, for all j ∈ {1, · · · , n} there exists i ∈ {1, · · · , k}
such that vj = wi. Note that n ≥ 3k since we assume that
there are more than two battlefields of each unique value.
For i ∈ {1, · · · , k}, define C(i) as the set of battlefields
with value wi, i.e., C(i) =

{
j ∈ {1, · · · , n} : vj = wi

}
.

Define, for each i ∈ {1, · · · , k}, ni = #C(i) the number
of battlefields of value wi (again, ni ≥ 2 for all i) and Vi =∑

j∈C(i) v
j = niwi the aggregate value of all battlefields of

value wi. Note that
∑k

i=1 Vi = V .
Throughout the paper, quantities with exponent j refer

to battlefield j (e.g., vj the value of battlefield j); whereas
quantities with index i refer to the group of battlefield i (e.g.,
wi the value of battlefields in group i and ni the number of
battlefields in group i).

III. MAIN RESULTS

We start by characterizing the unique equilibrium marginal
distributions for the game B(XA, XB ,v):

Theorem 1: Assume that, for all groups of battlefields
i ∈ {1, · · · , k}, we have

2

ni
<
XA

XB
≤ 1. (1)

Then, in equilibrium, each player allocates resources with the
following unique univariate marginal distribution functions
∀j ∈ {1, · · · , n}:
(i) For player A:

F j
A(x) =

(
1− XA

XB

)
+

x
2vj

V XB

(
XA

XB

)
, x ∈ [0,

2vj

V
XB ];

(2a)

(ii) For player B:

F j
B(x) =

x
2vj

V XB

, x ∈ [0,
2vj

V
XB ]. (2b)

To improve the exposition, the detailed proof is relegated
to Section IV. Below we briefly summarize the steps of
the proof. The proof works by establishing a one-to-one
correspondence between the solution of the Blotto game and
the solution of n independent all-pay auctions, with the later
established in [5], [6].

Theorem 1 (and the subsequent results) requires that
condition (1) holds. First note that it implies that ni ≥ 3, i.e.,
each group of battlefields has at least three battlefields of the
same value. This ensures that we will be able to construct an
n-variate distribution with the marginals in Theorem 1 (see
Theorem 3 below and the discussion that follows); which is
necessary to prove Theorem 1. Condition (1) also restricts
the disparity of players resources. However, even for a large
asymmetry, this condition will be satisfied as soon as the
number of battlefields is large enough in each group. We
note that such an assumption is often made in the literature
to restrict the complexity of the analysis, for instance in [25].
The cases in which condition (1) is not met can be studied
separately but are of limited practical interest.



Under the condition of Theorem 1, we have unique equi-
librium marginals. These marginals are uniform, as in the
game with identical battlefield values, but now the marginal’s
support is proportional to the battlefields value. Theorem 1
allows us to obtain the equilibrium player payoffs:

Corollary 2: Under condition (1) of Theorem 1, in equi-
librium, player A and B expected payoffs are V XA

2XB
and

V
(
1− XA

2XB

)
, respectively.

Proof: By direct computation, the expected payoff of
player A with the equilibrium marginals of Theorem 1 is

V

∫ 2vj

V XB

0

F j
B(x)dF

j
A

= V ·
∫ 2vj

V XB

0

x
2vj

V XB

· 1
2vj

V XB

(
XA

XB

)
dx

= V · XA

XB
· 1
2
= V

XA

2XB
.

The computation of expected payoff for player B is similar.
Alternatively, his payoff can be inferred from the fact that
the sum of player payoffs is V .

Remarkably, Corollary 2 yields equilibrium payoffs iden-
tical the payoffs in the game with equal battlefield values.

Theorem 1 describes only the marginal distributions. So
far, we merely hypothesized the existence of some n-variate
distribution with such marginals that respects player resource
constraints. Next, we will establish the existence of such n-
variate distribution.

Theorem 3: Under condition (1) of Theorem 1, for each
player p ∈ {A,B}, there exists an n-variate distribution with
support contained in Sp such that the marginals are given by
(2a) - (2b) for all battlefields j ∈ {1, · · · , n}.

The proof of Theorem 3 is presented in Section V.
The proof is done by constructing an n-variate distribution
with the correct marginals that respects the players budget
constraints. Roughly speaking, the construction consists of
two steps. First, we make a deterministic allocation to each
group of battlefields with the same value. The amount of
allocated resources is proportional to the aggregate value
of the group. Second, within each group the randomization
is done as in Roberson [4]. This is possible because, by
our assumption, each group has at least three battlefields.
Our construction allows to obtain an equilibrium n-variate
distribution with the correct marginals respecting the budget
constraints. Still, there may exist other solutions that ran-
domize the global resource allocation between the different
groups of battlefields with a common value.

Our results are consistent with the recent paper by
Kovenock and Roberson [25] on coalitional Blotto games.
In [25], one player (A), is fighting two simultaneous disjoint
Blotto games, B1 and B2, and each of the games has
identical battlefields. Nominally, these games are completely
separate; still, they are related because player A has to
allocate the common resources between them. In contrast
with player A, each of his opponents i ∈ {1, 2} in the games
Bi is engaged in a single Blotto game only. The authors of

[25] consider a two-stage game, in which at the first stage
(ex-ante), players 1 and 2 can form an alliance and transfer
resources to each other. At the second stage of the game, each
player i confronts player A in the game Bi with resources
updated via ex-ante transfer.

The primary focus of [25] is on non-cooperative case in
the absence of commitment (no ex-post transfers between
the players could be enforced); and the authors demonstrate
that for a range of parameters, a positive ex-ante transfer
occurs in equilibrium even with no commitment. However,
in Section 5, they also present a benchmark case of fully
committed alliances. In that case, players 1 and 2 can make
binding commitments about the ex post payoff allocation.
With commitment, in equilibrium, players 1 and 2 maximize
cumulative payoff – the payoff of a social planner fighting
against player A. Note that the objective of such a social
planner corresponds to player objective(s) in a heterogeneous
Blotto game with the battlefields that combine the ones of
B1 and B2. The authors of [25] show that the optimal ex-
ante transfer gives players 1 and 2 resources proportional
to the total values of B1 and B2 respectively, which is
consistent with our Theorem 1 and Corollary 2. Yet our
results significantly differ from [25]. Firstly, we consider a
simultaneous game rather than a two-stage game. Secondly,
we demonstrate uniqueness, which cannot be derived from
[25]. Lastly, our setting is more general, as it covers an
arbitrary number of differently valued battlefields instead of
two only.

IV. PROOF OF THEOREM 1

Our proof follows the same internal logic as the proof of
Theorem 2 in [4],2 which we revisit and extend to the case
where battlefield values may differ. The proof of Theorem 1
is based on the results for all-pay auctions established in
[5], [6], where the uniqueness of the equilibrium marginals
is demonstrated. For completeness, below we briefly recall
the relevant results.

The proof of Theorem 1 is done under an assumption that
Theorem 3 holds, i.e., that it will be possible to construct a
joint distribution with the aforementioned marginals. Theo-
rem 3 is proved independently in Section V.

A. Preliminaries: results from the all-pay auctions literature

Consider a two-bidders all-pay auction with complete
information. Let {A,B} denote the set of bidders, and vp
denote the value of the object for bidder p ∈ {A,B}. By
the rules of all-pay auctions, both bidders pay their bids
regardless of the outcome, and upon winning the auction,
the winning bidder receives the object which he values at
vp. Let Fp denote the distribution of bids of bidder p, and
let xp denote the bid chosen by bidder p. We will use the
subscript −p to indicate his opponent. The probability for
bidder p to win the auction is Pr(xp ≥ x−p) = F−p(xp).

2See also [26] and [27] for errata to [4].



Then, we can state that in equilibrium, each bidder must
choose his distribution Fp to solve

max
Fp

∫ ∞
0

(vpF−p(x)− x) dFp.

By applying the equilibrium characterization from [5], [6] to
our setting, we infer that there exists a unique equilibrium,
and it is given by
(i) if vp ≥ v−p, then

Fp(x) =
x

v−p
, x ∈ [0, v−p]; (3a)

(ii) if vp ≤ v−p, then

Fp(x) =

(
v−p − vp
v−p

)
+

x

v−p
, x ∈ [0, vp]. (3b)

Next, let us consider n independent two-bidders all-pay
auctions with complete information. Let each auction j ∈
{1, · · · , n} has a value vjp for bidder p ∈ {A,B}. Let F j

p

denote the distribution of bids of bidder p in auction j. Each
bidder chooses his distributions of bids to solve

max
{F jp}j∈{1,··· ,n}

n∑
j=1

∫ ∞
0

(
vjpF

j
−p(x)− x

)
dF j

p . (4)

Since the auctions are independent, in equilibrium the
marginals are uniquely determined for each auction j by (3a)
- (3b), with vp and v−p replaced respectively by vjp and vj−p.

B. Proof of Theorem 1

Armed with the results of previous section on all-pay auc-
tions, we now proceed to proving Theorem 1. First, we show
in the next lemma that the marginals in Theorem 1, together
with the joint distributions in Theorem 3, indeed constitute
a Nash equilibrium, i.e., that they are best responses to each
other.

Lemma 4: Under the assumptions of Theorem 1, the n-
variate distributions from Theorem 3 (that have the marginals
given by (2a)-(2b)) form an equilibrium of B(XA, XB ,v).

Proof: Suppose that player B’s strategy has marginals
(2b). Let (xjA)j∈{1,··· ,n} ∈ SA be a pure strategy of player
A. Then, his expected payoff is

n∑
j=1

vj · F j
B(x

j
A) ≤

n∑
j=1

vj ·
xjA

2vj

V XB

≤ V · XA

2XB
; (5)

where the first inequality uses the fact that

F j
B(x

j
A) =

xjA
2vj

V XB

if xjA ≤
2vj

V
XB ,

and

F j
B(x

j
A) = 1 <

xjA
2vj

V XB

if xjA >
2vj

V
XB ,

and the second inequality in (5) uses the fact that
∑n

j=1 x
j
A ≤

XA by definition of SA.
From direct computation (similar to the computation in the

proof of Corollary 2), we obtain that V XA
2XB

is the payoff
achieved with marginals (2a) against marginals (2b). We

infer that playing with the marginals (2a) for player A is
a best response to the marginals (2b) for player B. A similar
reasoning provides that playing with the marginals (2b) for
player B is a best response to the marginals (2a) for player
A. Hence, the marginals in (2a)-(2b) in Theorem 1 constitute
a Nash equilibrium.

In the rest of the proof, we show that, if a profile is an
equilibrium, it must have the form as given by Theorem 1.
Let p ∈ {A,B} denote a player in the game B(XA, XB ,v).
For a given strategy P−p of his opponent, with marginals
{F j
−p}j∈{1,··· ,n}, player p select Pp to solve

max
Pp

n∑
j=1

∫ ∞
0

vjF j
−p(x)dF

j
p , (6)

subject to the constraint that the support of Pp is contained
in Sp. This is equivalent to solving the following constrained
optimization problem:

max
{F jp}j∈{1,··· ,n}

n∑
j=1

∫ ∞
0

vjF j
−p(x)dF

j
p , (7)

subject to constraints (C1) and (C2):
(C1) there exists an n-variate distribution with marginals

{F j
p}j∈{1,··· ,n} that puts positive weight only on alloca-

tions whose sum is below the sum of expected allocation
on each battlefield, i.e.,

Support(Pp) ⊆

xp ∈ Rn
+ :

n∑
j=1

xjp ≤
n∑

j=1

∫ ∞
0

xdF j
p

 ,

and
(C2) the sum of expected allocations on each battlefield is

below Xp, i.e.,
n∑

j=1

∫ ∞
0

xdF j
p ≤ Xp.

Integrating condition (C2) through a Lagrange multiplier λp,
player p’s problem becomes

max
{F jp}j∈{1,··· ,n}

n∑
j=1

∫ ∞
0

(
vjF j
−p(x)− λpx

)
dF j

p + λpXp,

(8)
subject to λp ≥ 0 and (C1).

From now on, we assume that we are at a Nash equilib-
rium. First observe that, at equilibrium, both players use their
resource budget entirely, hence λp > 0 for each p ∈ {A,B}.
Indeed, suppose that there exists an equilibrium such that
player −p does not use all of his resources. By Lemma 4,
player p has payoff strictly larger than the one in Corollary 2.
Indeed, if player −p does not use all the resources, player
p could obtain the payoff strictly higher than the one in
Corollary 2 by playing the strategy of Theorem 3 that has the
marginals of Theorem 1. Since the sum of expected payoffs
of both players is a constant (it is equal to V ), player’s −p
payoff is strictly smaller than the one in Corollary 2. This
contradicts the fact that we are at equilibrium because by
Lemma 4, player −p could obtain a payoff at least equal



to the one in Corollary 2 against any player p strategy by
employing the strategy from Theorem 3 with marginals from
Theorem 1. We conclude that, in equilibrium, both players
use all of their resource.

Note that our reasoning above relies on Lemma 4 that
demonstrates that the marginals in Theorem 1 constitute a
Nash equilibrium. Thus, it relies on condition (1): without
this condition the marginals are not well defined.3

Next, we re-write (8) as

max
{F jp}j∈{1,··· ,n}

λp

n∑
j=1

∫ ∞
0

(
vj

λp
F j
−p(x)− x

)
dF j

p + λpXp,

(9)
subject to λp > 0 and (C1). The objective function (9) is the
same as (4) (up to multiplicative and additive constants), if
we replace vp with vj/λp. By a straightforward adaptation
of Theorem 3, we know that (C1) is satisfied for the
marginals given by (3a)-(3b) for any values vp. Therefore,
the equilibrium marginals must satisfy (3a)-(3b) by replacing
vp by vj/λp, that is, for all j ∈ {1, · · · , n}:
(i) if λp ≤ λ−p, then

F j
p (x) =

xλ−p
vj

, x ∈ [0,
vj

λ−p
]; (10a)

(ii) if λp ≥ λ−p, then

F j
p (x) =

(
1− λ−p

λp

)
+
xλ−p
vj

, x ∈ [0,
vj

λp
]. (10b)

Note that it is also possible, as in [4], to obtain this
characterization by adapting straightforwardly each step from
the proofs for all-pay auctions. Here we have chosen to apply
the existing results from [5], [6] to shorten our exposition.

Knowing that there exists an n-variate distribution such
that constraint (C1) is satisfied for the marginals (3a)-(3b)
allowed us to conclude that the marginals must have the same
structure as for n independent all-pay auctions. However,
the set of n-variate distributions such that (C1) is satisfied
is clearly a strict subset of the set of equilibrium n-variate
distributions for the n all-pay auctions problem. Indeed, for
instance, the independent n-variate distribution is a solution
for the n all-pay auctions problem whereas it clearly does
not satisfy (C1).

To conclude the proof of Theorem 1, we show that:
Lemma 5: At equilibrium, Lagrange multipliers are

uniquely determined by
(i) for player A:

λA =
V

2XB
(11a)

(ii) for player B:

λB =
XA · V
2X2

B

. (11b)

Proof: The Lagrange multipliers are determined by the
resource budget constraints (in expectation computed from

3For the analysis of Blotto game with identical battlefields and highly
asymmetric player resources see Theorems 3 and 5 in [4].

the marginals). Recall that XA ≤ XB , and consider two
cases: λA ≥ λB and λA < λB .

First, assume λA ≥ λB . Then the marginal of player B is
given by (10a) and the budget constraint gives:

XB =

n∑
j=1

∫ vj

λA

0

xλA
vj

dx =

n∑
j=1

vj

2λA
,

which gives (11a). Similarly, the marginal of player A is
given by (10b) and using the budget constraint provides:

XA =

n∑
j=1

∫ vj

λA

0

xλB
vj

dx =

n∑
j=1

vjλB
2λ2A

=
2λBX

2
B

V
,

which gives (11b).
Next, assume λA < λB . Then, by the same type of

computation, we obtain λA = XB ·V
2X2

A
, and λB = V

2XA
=

λA · XAXB
which contradicts λA < λB because XA ≤ XB .

This completes the proof of Lemma 5.
We combine (11a)-(11b) with (10a)-(10b) to obtain that at

Nash equilibrium the marginals are uniquely determined by
(2a)-(2b), which completes the proof of Theorem 1.

V. PROOF OF THEOREM 3
In the proof of Theorem 4 Roberson [4] provides a

procedure to construct an n-variate distribution with the
marginals as in Theorem 1 for the case where all battlefields
have equal value, when there exists at least three battlefields.
To prove Theorem 3, we apply the same procedure separately
to each group of battlefields with equal value.

We construct the allocation for an arbitrary player p ∈
{A,B}. For each group of battlefields i ∈ {1, · · · , k},
allocate an amount Vi

V Xp of resources to the battlefields
in C(i) according to the process described in the proof
of Theorem 4 of [4] (i.e., use this process replacing Xp

in [4] by Vi
V Xp). By Theorem 4 of [4], this process gives

positive weight only to allocations that respect the budget
constraint individually for each group of battlefields of the
same value, i.e., such that

∑
j∈C(i) x

j
p ≤ Vi

V Xp for all
i ∈ {1, · · · , k}. Therefore, it is clear that distribution of
the global allocation obtained satisfies the global budget
constraint, i.e., has support contained in Sp.

By Theorem 4 of [4], the marginal for a battlefield j ∈
C(i) (i ∈ {1, · · · , k}) has the form of (2a)-(2b) with 2vj

V XB

replaced by 2
ni

Vi
V XB . Since 2

ni
Vi
V = 2

ni
niwi
V = 2vj

V for all
j ∈ C(i), the marginals obtained coincide with the ones in
Theorem 1. This concludes the proof of Theorem 3.

VI. CONCLUDING REMARKS

This paper examines the heterogeneous Colonel Blotto
game: a resource allocation game between two players with
given resources who fight over a fixed number of battlefields
with arbitrary values with the objective of maximizing the
aggregate value of battlefields won. We characterize unique
equilibrium payoffs of the players, and their strategies to
achieve them.

This paper generalizes prior literature which is restricted
to either homogeneous battlefields or symmetric players.



In particular, it generalizes Roberson [4] by allowing the
battlefields to have different values (when all battlefields
have equal values, our setting reverts to [4]). Then, our
results allow extending known variants of the Blotto game to
environments where the battlefields importantly differ in their
values. For example, combining our results with [25] allows
finding equilibria of multi-player Blotto-type games. Indeed,
our results permit to model alliances between the players
engaged in heterogeneous Blotto games against the common
enemy. Also, combining our results with [14], where players
could add the battlefields at an exogenous cost, permits
to analyze heterogeneous Blotto games with exogenous di-
mensionality. In the future, we plan to extend the analysis
to a multi-player version of heterogeneous Colonel Blotto
game, and especially to allocative games of the networked
players. Our solution of heterogeneous Colonel Blotto game
is a necessary step towards solving Blotto-type problems in
network environments, where the networked battlefields have
arbitrary non-identical values.

Our results also expand the scope of potential applications
of the Blotto games to novel practical areas where battlefields
naturally have different values. In particular, we plan to
investigate in the future applications to the defense of cyber-
physical systems where different potential targets may have
different values.

In our analysis, we have assumed that the number of bat-
tlefields of each value is large enough relative to the players
asymmetry, and at least larger than three (condition (1) of
Theorem 1). This implies that each group of battlefields of
the same value is in the regime described by Theorem 2 of
[4] where the payoff is linear in the resource. This regime
is by far the most studied in the literature. Yet, we are
currently investigating the extension of our results to cases
where different groups of battlefields are in different regimes
such as the non-linear regime of Theorem 3 of [4]; as well as
to cases with possibly less than three battlefields of a given
value.

In our analysis of the Colonel Blotto game (as in most
prior formulations of this game), we have assumed that both
players have the same valuation of each battlefield. However,
players may differ in their valuation of the battlefields. For
example, consider cases of industrial espionage in which
attackers exploit vulnerabilities in computer software to gain
business advantage by learning competitor’s trade secrets or
cause disruptions in competitor’s network operations. The IT-
based attacks utilize malware and spyware to gain access to
new technologies, and the competitors’ business plans; also,
the DoDs attacks are employed to sabotage the competitors’
QoS and possibly the ability to serve users. In such cases,
defenders’ losses do not necessarily translate one to one into
attackers’ gains. Still, as long as players know each other
valuations, our results are easily modifiable to solve such
games. Indeed, our analysis extends straightforwardly to this
case by using an analogy to the all-pay auctions in which
players have different valuations of an object.
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