Performance Analysis and FTF Version of the Generalized Sliding
Window Recursive Least-Squares (GSWRLS) Algorithm

Karim Maouche and Dirk T. M. Slock
Institut EURECOM, 2229 route des Crétes,
B.P. 193, 06904, Sophia Antipolis Cedex, FRANCE

Abstract

In this paper, we derive a new RLS algorithn: the
Generalized Sliding Window RLS (GSW RLS) algo-
rithm and its fast numerically stabilized version: the
GSW SFTF algorithm. The generalized window used
consists of an ezponential decay with base A for the
first L lags, a decrease by a factor 1—a at lag L,
and a further ezponential decay with base X beyond lag
L. The ezponential and rectangular windows are spe-
cial cases of the generalized window. We analyze the
steady-state Ezcess Mean Squared Error components
due to estimation noise and lag noise with different
models for the time-varying optimal filter coefficients.
This analysis shows that the ezponential window per-
forms better than the rectangular window, but also that
the optimal generalized window performs even better.

1 Introduction

Tracking ability is a desired feature in adaptive fil-
tering, especially when the system to be identified can
vary quickly (relative to the duration of the FIR fil-
ter impulse response) as in the case of acoustic echo
channels. The current state of the art in Recur-
sive Least-Squares (RLS) adaptive filtering algorithms
gives a choice of two possible windows: the expo-
nential window (WRLS) and the rectangular window
(SWC RLS). Though SWC RLS is twice as complex as
WRLS, simulation experience leads one to believe that
the rectangular window allows for better tracking of
sudden changes. One element that helps explain this
is that the SWC RLS algorithm has a strictly finite
memory that forgets the past completely after a finite
time. The SWC RLS algorithm solves recursively an
overdetermined system of linear equations. More re-
cently, the Affine Projection (AP) algorithm has been
introduced. The AP algorithm can be seen to be re-
lated to the RLS family in that it provides recursively
the minimum modification solution to an underdeter-
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mined set of linear equations. The criterion that the
AP algorithm minimizes is related to the criterion of
SWC RLS in the sense that the window length would
be taken shorter than the FIR filter length. The AP
algorithm has been found in simulations to show ex-
cellent tracking behavior, better than any of the exist-
ing RLS algorithms. This can be intuitively explained
on the basis of the short window length: due to the
short window length, there is only an averaging op-
eration over a short time period and hence the lag is
small. However, besides this window issue, there is
also a convergence issue. Indeed, on the basis of the
abover reasoning, the Normalized LMS (NLMS) algo-
rithm, which corresponds to the AP algorithm with a
window length equal to one, should have the fastest
tracking capability. But we know that this is nor-
mally not true because the convergence of the NLMS
algorithm is hampered by its dependence on the eigen-
value spread of the input covariance matrix. So the
best tracking is obtained by the AP algorithm with
some intermediate window length that depends on a
number of parameters. In this paper, we propose the
GSW RLS algorithm, a new RLS algorithm that gen-
eralizes the WRLS and SWC RLS algorithms. This
algorithm uses a generalized window (see Fig.1) which
consists of the superposition of an exponential window
for the L most recent data and the same but attenu-
ated exponential window for the rest of the data. The
tracking improvement w.r.t. SWC RLS comes from the
fact that the length L of the first part of the window
can be smaller than the filter length. So it is possi-
ble to emphasize the L most recent data and hence
to approach the situation of the AP algorithm. On
the other hand, the GSW RLS algorithm solves an
overdetermined system of equations and hence enjoys
the fast convergence properties of RLS algorithms. In
particular, in the noise-free perfect modeling case, per-
fect convergence will occur in a finite amount of time.
The AP algorithm, though faster than the NLMS al-
gorithm, will have to go through an infinite number of
adaptations for perfect convergence to occur.
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Figure 1: The generalized window.

Another effect of the exponential tail of the GSW is
regularization. The finite window sample covariance
matrices appearing in the SWC RLS and AP algo-
rithms can be particularly ill-conditioned compared to
a sample covariance matrix based on an exponential
window with compatible time constant. So the expo-
nential tail in the GSW RLS algorithm should reduce
the noise enhancement phenomenon occurring in the
AP algorithm. The GSW RLS algorithm turns out to
have the same structure and computational complex-
ity as the SWC RLS algorithm. The shift-invariance
property inherent in adaptive filtering allows for the
derivation of a fast version, the GSW FTF algorithm,
that follows as a straightforward generalization of the
SWC SFTF algorithm. We analyze the performance of
the GSW algorithm for tracking time-varying optimal
filter coeflicients that vary according to different mod-
els that are the random walk, an AR(1) process and
an MA(M) process. We compute the estimation noise
and lag noise components of the steady-state excess
MSE and prove for these parameter variations that
the generalized window performs best. We also prove
that the exponential window behaves better than the
rectangular window which is an unexpected and pre-
sumably a new result.

2 The GSW RLS algorithm

An adaptive (FIR) filter Wy ; combines linearly N
consecutive input samples {z(i—n),n=10,...,N-1}
to approximate (the negative of) the desired-response
signal d(7). The resulting error signal is given by

N-1
en(ilk) = d(i) + D> Witla(i-n), (1)
n=0
where Xy(3) = [o#(i) a#(i-1) - 2H (i-N+1))7 is
the input data vector and superscript ¥ denotes Her-
mitian (complex conjugate) transpose. In the WRLS
algorithm, the set of N transversal filter coefficients
Wni = WJ{r,k . W,{}’yk] are adapted so as to mini-
mize recursively the LS criterion

k
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where A € (0,1} is the exponential weighting factor,
llollz = vAvf, |||l = ||.l;. On the other hand, the
SWC RLS algorithm minimizes recursively the follow-
ing criterion:

k

eve®) = D llenGIR®

i=k—L+1

3)

where L, the length of the sliding window, must be
greater than the filter length: L > N, in which case,
the associated covariance matrix is invertible. Now,
consider the criterion associated with the generalized
window:

k /\l‘
en, () =D e lew (B2, wf={(1_a)x'

i=1

0<i<L
1>L"°
(4)
The new criterion generalizes the WRLS and SWC
RLS criteria since the WRLS criterion (2) is obtained
from (4) by setting « = 0 and the SWC RLS criterion
(4) is the one given by the generalized criterion when
a =1and A = 1. Let Wy 1 be the adaptive RLS
filter provided by such a window, the minimization of
(4) leads to the following
Wi,k =—PHo, Rﬁ}L,k ) (5)
where Ry i = Ele w,XN(z)va{(z) and Pyri =
Zf___l w; Xy (1)dH(5). The use of the same forgetting
factor for the two windows allows the following recur-
sions for the sample second order moments

RN 41k = ARN,L k-1 + Xn(k)XEH (k)
= Rwpi — oXXy(k—L)X{ (kL)
: (6)
PN Ly1k APN L k-14+Xn (k)dH (k)

(Il

Py p—adEXn(k—L)dH (k~L) .

(7)
Hence, we can derive the new algorithm by applying
the strategy for the usual WRLS algorithm twice. The
first step will be devoted to the time and order update
(k—1,L) — (k,L+1), which is analogous to the up-
date of the usual WRLS algorithm while the second
step will be the order downdate (k,L+1) — (k,L).
The downdate scheme is obtained as follows: By us-
ing (7), one has

—Pf 1k = Wr 41k Ry L1 p—aX b d(k— L) XF (k—L).

(8)
Using (6) for Ry r4+1,1 in term of Ry Lk, we get

Wnik = Wrrirk +eXvyp1(K)Dn i > (9)



where vy £4+1(k) = d(k— L) + Wn,L+1,8Xn(k—L) and
Dn Llk = —XN (k- L) N, L & are the a posteriori er-
ror signal and the a priori Kalman gam of the down-
date part. Applying the MIL to (6) gives

RI_V,IL,k = RI-\.I,lL+1,k"DII\§,L+1,k61-\.',lL+1(k)DN.L-i-l,lzl’O)
DNptrp = =X§(k=L)R3p 1, and 6nz41(k) =
a2\l — Dy 115 XN(k—L) are respectively the
a posteriori Kalman gain and the likelihood vari-
able associated with the downdate part. Now,
it is straigthtforward to find that Dyiryrx =

—1,\-L5N L+1(F)DN,L 41,1 and that the a priori er-
ror is v ;. (k) = d(k—L) + Wy pXn(k—L) =
a‘1/\‘L61'\',’1L+1(k)1/~,1;+1(k). By associating the up-
date part to the downdate part, we find the GSW
RLS algorithm

Oy = =AUXF(RYRYY, 4

Tn,1 (k) 1-Cn e Xn (k)

Ep(k) = d(k)+ W1 Xn(k)

enc(k) = ffv,L(k)‘YN,L(k)
Wrhisrk = Wnrk-1+Cnrreno(k)
Ry'peik AR 1 =CH LN, L (K)C Lk
Dy 141,k “Xifwll(k_l‘)R;’,lL+1,k (11)
énre1(k) = o AL~ Dy Xn(k=L)
vnr+i(k) = d(k-L) + Wy 1,6 Xn(k=L)
VI';I,L+1(k) = a_l)‘_Léﬁ,lLH(k)VN.LH(k)

Wh,Lk Wn,L41,k + oA Dy Ly iy o1 (K)

Ry = Ri'pe1i=DRrs1a83'so())DyLess .

The algorithm is initialized with Ry, 1,0 = I where g
1s a small scalar quantity. The GSW RLS algorithm
has the same structure as the SWC RLS algorithm.
It shows a computational complexity of O(N?) oper-
ations.

3 The GSW SFTF algorithm

In (1], a fast numerically stabilized version of the
SWC RLS algorithm is given. Using the same tech-
nique, it is straightforward to derive the fast numer-
ically stabilized version of the GSW RLS algorithm

that is the GSW SFTF algorithm

(A, a5t (k) Cnes ot 7.0 () =

o (Awaenes Xty (), [0 G| vty (B), X (8))
(BN,L,kYﬁN.L(k)» [5N.L,k "] y‘/Xr,’L(k)) =

fo (BN,L',k',AﬂN,L' (k')’5N+1,L,k,YEil,L(k)yXNH(k))
(AN,L',k,a;fL:(k), Dnyipp, —— 31"v+1,L(k)) =

fu (AN,L,k,U;r?L(k): 0 ﬁN+1,L,k'] »-’6\}'\l,L(k):XN+1(kL))
(BN,L',k,ﬂN,L'(k)a ﬁN,L.k 0] ,—gfv,l,(k)) =

fo (BN,L,k,ﬂN,L(k),ﬁN-(-l,L,k,“3fv+1,L(k):XN+1(kL))
k even: ™, (k) = az\N+L_13}’v,L(k)ﬁN.L'(k)a;}L'(k)

5N1,(k) = 631 (k)

Onip(k) = aANFE=Iyze (i )Bw,Li(k)ay' L (k)
'7N,L(k) = 'YN,J (k)

k odd:

WLk, ez (k)= fs (WN,L,,y O v,z (K), d(k), XN(k))

(WN.L'.k, —ax vy (k))
=fs (WN,L,k, Dy, — — g;‘lL(k),d(kL), XN(kL))

(12)
where ¥’ = k-1, L' == L—1, kr = k—L+1, DNLk—
M- LDN’L’k et 6N,L(‘”) = A~AL- 1)51\/‘[,(16). AN,L,k
and By are the forward and backward prediction
filters. ap,(k) and By (k) are the corresponding
prediction error energies. fy,fp and f; are linear
transformations and are given in {2]. The numerical
complexity of the GSW SFTF algorithm is 16N op-
erations, which is the complexity of the SWC SFTF
algorithm.

4 Performance analysis

For the purpose of analysis, we consider the follow-
ing classical identification model for the desired signal

d(k) = W 1 Xn (k) + n(k) | (13)

where n(L) is a centered Gaussian i.i.d. sequence with
variance o (n(k) ~ N(0,02)) and W5, is the un-
known ﬂlter that is time-varying accordlng to a cer-
tain model of variation. Considering a general window
whose coefficients are denoted by w;, one can show
from (5) that the deviation filter Wy 1 = Wi i +WN %
is given by

Wi = (Z w; (Ag,iXk-i + ne-i) Xe—i) Ry

i=0

» (1)

Let COV: be the
COVy =

where Ag; = Wg, — Wg, . ;.
covariance matrix of the deviation filter:
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EWI{,{ kWN,k. Now, assume that k is big enough so

that: Ry =~ ERn = (E w;)R = 77'R. By using
i=0

the fact that EWkHWk = ExEn,z‘foWk, one find

easily that

COVi = TR~ (a2 Z w!R + Z wyw;C; j)TR™!

i=0 i,j=0
(15)
with Cij = EXpiX{L A6 7)Xe-jX{L; and
Al j) = EAiI;,-Ak,j. In the case where X} is a real
Gaussian vector, one has

Cij=RA(, ])R’*‘Tt—.i A(E, j)Ti-J"i'Ti'-J'tr (T;—l'A(i: )

(16)
where T;—; = EX;—;X{_;. Assuming statistical in-
dependence between Xj_; and Wy i, one can express
the variance of the a priori error signal as

var(eb, (k)) = 02 + tr (RCOVi—1) (1n
= ‘772:+N“3| Zlﬂ]z-{— Z w;wjtr (C,')jR_l) .

j=0 i,§=0
with w; = 7w;. It clearly appears that there

are two contributions in the MSE: the first one
& = (L+ NY2,W;) a2 is the contribution due
to estimation noise while the second one & =

o0

Z&)}ﬁjtr (Ci’jR—l) is due to lag noise and origi-
i,5=0
nates from the variation of the echo path response.
We can compute the EMSE due to estimation noise

for the WRLS, SWC RLS and GSW RLS algorithms:

GSWRLS : o2 1+N%%1+c;~gc;—,\2)),\;’*)
WRLS ¢ ok (1+N3) (18)
SWCRLS : o2 (1+X) .

The EMSE of WRLS can be recovered from the EMSE
of the GSW RLS by letting & = 0. The same thing
holds for the SWC RLS algorithm for ¢ =1 and A —1.
Now, if one considers the case where the input signal is
a white noise with variance ¢2 and A(i, §) is 2 diagonal
matrix, then

Ew =02 Y @l (1+ (N +1)& )tr (AG, 7)) . (19)

i,j=0

The value of A(%, j) depends on the optimal filter vari-
ation. For instance, we begin the analysis by consid-
ering an AR(1) variation.
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Figure 2: Misadjustment curves for an AR(1) varia-
tion (N = 50, 02 = ¢2 = 0.01, 02 = 0.1 and p = 0.99).

4.1 AR(1) variation of the optimal filter

When the optimal filter varies acording to an AR(1)
process, one has

Wik = pWRao1 + Zk  Zx ~ N(0,(1-p*) 071)
(20
and AG,j) = 125 (14 =1 — g+ = pi*1) I It fol-
lows from (19) that the EMSE du to lag noise for the
WRLS and SWCRLS algorithms are

WRLS : Neiol (1+1;A_ (1—p(ﬁa>+zmlt%12-p>))

1-p% 14+A 1—-pA
2_2
SWCRLS oy (LN + L+ 2)-

o (1=pPY(N4L+1 L(1—p*)—=2p(1-p"
gl M
(21)
The EMSE due to lag noise for the generalized window
is given when p # A by

a(a—2)A%L .
bw = m((2N +3) A | doart
—aAl —a L a(a——Z)! Az!l‘
11_§ - 2p1 1_(22) ) —2(N+1)p I_Pfg + 2pA
2(L—1 —_ L1
(I—Q)Az(L—l) -+ 'l_—‘lA'_i:z )"'Of(p/\)[/-l : 11‘()?/,,) )) ’
(22)

2,2(1-2)2 .
ﬁl'\?fﬁ)%"f})ﬁj' Fig.(2) shows curves that

give lag noise misadjustment vs. estimation noise mis-
adjustment for R = 021,Q = 02,02 = ¢? = .01,N =
50, and o2 = .1. The curve related to the GSW RLS
algorithm is obtained by minimizing the EMSE due to
lag noise w.r.t A and L. The value of « being the solu-
tion of a second order equation which is obtained for a
given value of the EMSE due estimation noise. These
curves show that for the same value of the estimation
noise misadjustment, the GSW RLS algorithm has a
lower lag noise misadjustment. It shows also that the

with m =



Toral EMSE

Figure 3: Total MSE of the SWC RLS algorithm for
different values of p (N = 50, ¢Z = 02 = 0.01 and
o2 =0.1).

exponential window behaves better than the rectangu-
lar window. On Fig.(4) and (3), we give for different
values of p, the total EMSE for the exponential and
rectangular windows as a function of respectively A
and L. These curves show that for a relatively fast
variation (p < 0.98), the EMSE is strictly decreasing
with A (resp. L). In this situation, the limit of the
EMSE when A—1 (resp. L—00) is the variance of
Noto?

the desired signal : var(dy) = o} + 5257*. For slower
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Figure 4: Total MSE of the WRLS algorithm for dif-
ferent valuse of p (N = 50, 02 = ¢ = 0.01 and
o =0.1).

4.3 MA(M) variation

Here the optimal filter varies according to an MA
model of order M: W@ = ZL,C_MH Zi , Iy ~
N(0,021), thus A(G, j) = 07 (M ~gj 41~ gir1+qi-j1) ],
where ¢; = (M — |If) for |i| > M—1 and 0 elsewhere.
The EMSE due to lag noise for the WRLS and the
SWC RLS are

WRLS: 2Nolo?lz2”

Zz 14

(5 + (VD)

variations(p > 0.98), one finds the classical behavior SWCRLS(L < M) : No2a2+ (2L2+(N+2)L+(N +4/3))

of adaptive filtering algorithms.
4.2 Random walk variation

In the case of a random walk variation, the optimal
filter is given by

Wie = W1+ 2Z(k) , Z(k)iid ~N(0,0%I) .

(23)
and A(%,j) = min(i+1, j+1)e?I. This gives for the
EMSE due to lag noise (19)

GSWRLS m ((N+2)a(2-tgi’:ﬁ(/\ﬁ1 _ 2u)iif;‘(>\)

L— AP(AH)—-(1—a)?A%E 1900
+2(1-a) LA (1)) 4 22 P00 U AT e )

3 2 24N(1=1)
WRLS Noio? esyarE]
SWCRLS No2g? (4 3IZ+2L+4 ,
(24)
with 8()) = LA2—L—1,P(\) = 1-LAL—14(L-1)AE

2,2
and m = (Tfo,\gL‘F The optimization of the general-

ized window shows that the GSW RLS algorithm has a
better tracking ability than the WRLS and SWC RLS
algorithms. We finf also in this case that the expo-
nential window performs better than the rectangular
window.
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(L>M): No2a?24 (L*+(2N+3)L — Y=L (3N+M+4)) ,

(25)
In [3], one can find the expression of the lag noise for
the GSW RLS algorithm. Here again, it turns out
that the generalized window tracks better and that
the exponential window is better than the rectangular
window. In [3], we give also the second order analysis
in the case where the optimal filter varies according
to an AR(1) process and the input signal is another
AR(1) process. This analysis leads us to the same
conclusions as before.
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