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Abstract—The Interfering Broadcast Channel (IBC) applies to
the downlink of multi-cell networks, which are limited by multi-
user (MU) interference. The interference alignment (IA) concept
has shown that interference does not need to be inevitable. In
particular spatial IA in the MIMO IBC allows for low latency.
However, IA requires perfect and typically global Channel State
Information at the Transmitter(s) (CSIT), whose acquisition does
not scale well with network size. Also, the design of transmitters
(Txs) and receivers (Rxs) is coupled and hence needs to be
centralized (cloud) or duplicated (distributed approach). CSIT,
which is crucial in multi-user systems, is always imperfect in
practice, especially for the intercell links. We consider mean
and covariance Gaussian partial CSIT, and the special case
of a (possibly location based) MIMO Ricean channel model.
In this paper we focus on the optimization of beamformers
for the expected weighted sum rate (EWSR) under per BS
power constraints. We apply a perfect CSI technique, based
on a difference of convex functions approach, to a number of
deterministic approximations of the EWSR, involving the Massive
MIMO (MaMIMO) limit (large number of transmit antennas),
and the large MIMO limit (both large transmit and receive
antenna numbers). We then focus on distributed techniques that
exploit local CSIT, feedback of a limited number of scalars, and
only one or few iterations.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless transmis-
sion. Base stations (BSs) disposing of multiple antennas are
able to serve multiple Mobile Terminals (MTs) simultaneously,
which is called Spatial Division Multiple Access (SDMA) or
Multi-User (MU) MIMO. However, MU systems have precise
requirements for Channel State Information at the Tx (CSIT)
which is more difficult to acquire than CSI at the Rx (CSIR).
Hence we focus here on the more challenging downlink (DL).

The main difficulty in realizing linear IA for MIMO I(B)C
is that the design of any BS Tx filter depends on all Rx filters
whereas in turn each Rx filter depends on all Tx filters [1].
As a result, all Tx/Rx filters are globally coupled and their
design requires global CSIT. To carry out this Tx/Rx design
in a distributed fashion, global CSIT is required at all BS
[2]. The overhead required for this global distributed CSIT
is substantial, even if done optimally, leading to substantially
reduced Net Degrees of Freedom (DoF) [3].

The recent development of Massive MIMO (MaMIMO)
[4] opens new possibilities for increased system capacity
while at the same time simplifying system design. From a
DoF point of view it may seem like a suboptimal use of

antennas. However, as shown in [5], section V, Fig. 6, the
(MaMIMO asymptotics based analytical expression for the)
optimal number of users decreases below the DoF as the
SNR decreases. Furthermore, Net DoF considerations and CSI
acquisition make the optimal number of users decrease further.
In [6], [7], MISO was considered in a single cell. Statistical
CSIT between user groups was considered and instantaneous
CSIT within user groups. The hypothesis is that some users
overlap strongly in terms of covariance subspaces but not in
terms of instantaneous CSIT. In [8] a hierarchical approach
is considered.MISO is considered and (high SNR based) user
selection also. Intercell zero-forcing (ZF) beamforming (BF)
is considered based on statistical CSIT, treating interfering
links in a binary fashion (either ZF or ignore). Intracell BF
is based on instantaneous CSIT and performs Regularized-
ZF, which is claimed to be asymptotically optimal (which is
only true for uniform user power profile). In [9], following
up on work in [10], beamspace processing is proposed, which
is the basic form of hierarchical BF. As argued in [7] also,
mmWave communications, which we target here also, facilitate
MaMIMO, and lead to a limited number of dominant paths as
they approach optics.

What is known as MaMIMO is more appropriately called
MU Massive MISO whereas here we consider actual MU
MC MaMIMO. In this paper the objective is to find the set
of beamforming (BF) vectors that maximize the Weighted
Sum Rate (WSR) of the IBC network. In [11] the alternative
problem formulation of SINR balancing is considered.

Partial CSIT formulations can typically be categorized as
either bounded error / worst case (relevant for quantization
error in digital feedback) or Gaussian error (relevant for analog
feedback, prediction error, second-order statistics information
etc.). The Gaussian CSIT formulation with mean and covari-
ance information was first introduced for SDMA (a Direction
of Arrival (DoA) based historical precedent of MU MIMO),
in which the channel outer product was typically replaced by
the transmit side channel correlation matrix, and worked out
in more detail for single user (SU) MIMO, e.g. [12]. The use
of covariance CSIT has recently reappeared in the context of
MaMIMO [13], where a not so rich propagation environment
leads to subspaces (slow CSIT) for the channel vectors so that
the fast CSIT can be reduced to the smaller dimension of the
subspace. Such CSIT (feedback) reduction is especially crucial
for MaMIMO.

The contributions here are significantly better partial CSIT



approaches compared to the Expected Weighted Sum MSE
(EWSMSE) approach in [14] (which cannot even be used
in the zero channel mean case), and to present deterministic
alternatives to the stochastic approximation solution of [15].
We first treat the general Gaussian CSIT case. We also focus
on a location aided CSIT case with zero mean and identity
plus rank one Tx side covariance matrix and no Rx side
correlations. The goal here is to go beyond the extreme of
zero-forcing (ZF) and to introduce a meaningful beamforming
design at finite SNR and with partial CSIT, for e.g. a finite
Ricean factor when not much more than the (location based)
LoS information of the intercell links is available at the BS.
The other goal is to arrive at distributed approaches in which
global CSIT (channels from all BS) gets replaced by local
CSIT (channels from own BS only) plus feedback of a limited
number of scalars, as in [16], [17]. However, the design of
MIMO systems, as opposed to MISO systems, complicates
distributed designs if one wants to keep the feedback low.
Another issue is to keep the number of iterations low, for
performance and feedback considerations.

II. STREAMWISE IBC SIGNAL MODEL

In the rest of this paper we shall consider a per stream
approach (which in the perfect CSI case would be equivalent
to per user). In an IBC formulation, one stream per user can be
expected to be the usual scenario. In the development below, in
the case of more than one stream per user, treat each stream as
an individual user. So, consider again an IBC with C cells with
a total of K users. We shall consider a system-wide numbering
of the users. User k is served by BS bk. The Nk × 1 received
signal at user k in cell bk is

yk=Hk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, Hk,bk is the Nk ×Mbk channel from BS bk to user
k. BS bk serves Kbk =

∑
i:bi=bk

1 users. We considering a
noise whitened signal representation so that we get for the
noise vk ∼ CN (0, INk

). The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk. Treating interference as noise, user k
will apply a linear Rx filter fk to maximize the signal power
(diversity) while reducing any residual interference that would
not have been (sufficiently) suppressed by the BS Tx. The Rx
filter output is x̂k = fHk yk

x̂k = fHk Hk,bk gk xk +

K∑
i=1,6=k

fHk Hk,bi gi xi + fHk vk

= fHk hk,k xk +
∑
i 6=k

fHk hk,i xi + fHk vk

(2)

where hk,i = Hk,bi gi is the channel-Tx cascade vector.

III. MAX WSR WITH PERFECT CSIT

Consider as a starting point for the optimization the
weighted sum rate (WSR)

WSR = WSR(g) =

K∑
k=1

uk ln
1

ek
(3)

where g represents the collection of BFs gk, the uk are rate
weights, the ek = ek(g) are the Minimum Mean Squared
Errors (MMSEs) for estimating the xk:

1

ek
=1+gHk HH

k,bk
R−1
k

Hk,bkgk=(1−gHk HH
k,bk

R−1k Hk,bkgk)−1

Rk = Hk,bkQkH
H
k,bk

+ Rk , Qi = gig
H
i ,

Rk =
∑
i6=k

Hk,biQiH
H
k,bi + INk

.

(4)
Rk, Rk are the total and interference plus noise Rx covariance
matrices resp. and ek is the MMSE obtained at the output
x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = R−1k Hk,bkgk = R−1k hk,k . (5)

The WSR cost function needs to be augmented with the power
constraints ∑

k:bk=j

tr{Qk} ≤ Pj . (6)

In a classical difference of convex functions (DC program-
ming) approach, Kim and Giannakis [18] propose to keep the
concave signal terms and to replace the convex interference
terms by the linear (and hence concave) tangent approxima-
tion. More specifically, consider the dependence of WSR on
Qk alone. Then

WSR = uk ln det(R−1
k

Rk) +WSRk ,

WSRk =
∑K
i=1,6=k ui ln det(R−1

i
Ri)

(7)

where ln det(R−1
k

Rk) is concave in Qk and WSRk is convex
in Qk. Since a linear function is simultaneously convex and
concave, consider the first order Taylor series expansion in Qk

around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = −
∂WSRk(Qk, Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑
i 6=k

uiH
H
i,bk

(R̂−1
i
−R̂−1i )Hi,bk

(8)
Note that the linearized (tangent) expression for WSRk
constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Qk = gkg

H
k , performing this

linearization for all users, and augmenting the WSR cost
function with the constraints, we get the Lagrangian

WSR(g, ĝ, λ) =

C∑
j=1

λjPj+

K∑
k=1

uk ln(1 + gHk B̂kgk)− gHk (Âk + λbkI)gk

(9)



where
B̂k = HH

k,bk
R̂−1
k

Hk,bk . (10)

The gradient (w.r.t. gk) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!
And it allows an interpretation as a generalized eigenvector
condition

B̂k gk =
1 + gHk B̂kgk

uk
(Âk + λbkI)gk (11)

or hence g
′

k = Vmax(B̂k, Âk + λbkI) is the (normalized)
”max” generalized eigenvector of the two indicated matrices,
with max eigenvalue σk = σmax(B̂k, Âk +λbkI). Let σ(1)

k =

g
′H
k B̂kg

′

k, σ(2)
k = g

′H
k Âkg

′

k. The advantage of formulation
(9) is that it allows straightforward power adaptation: intro-
ducing stream powers pk ≥ 0 and substituting gk =

√
pk g

′

k

in (9) yields

WSR=

C∑
j

λjPj +

K∑
k=1

{uk ln(1 + pkσ
(1)
k )− pk(σ

(2)
k +λbk)}

(12)
which leads to the following interference leakage aware water
filling

pk =

(
uk

σ
(2)
k + λbk

− 1

σ
(1)
k

)+

(13)

where the Lagrange multipliers are adjusted to satisfy the
power constraints

∑
k:bk=j

pk = Pj . This can be done by
bisection and gets executed per BS. Note that some Lagrange
multipliers could be zero. Note also that as with any alternating
optimization procedure, there are many updating schedules
possible, with different impact on convergence speed. The
quantities to be updated are the g

′

k, the pk and the λl.

IV. MEAN AND COVARIANCE GAUSSIAN CSIT

In this section we drop the user index k for simplicity. The
separable correlation model is

H = H + C1/2
r H̃C

1/2
t (14)

where H = EH, and C
1/2
r , C1/2

t are Hermitian square-roots
of the Rx and Tx side covariance matrices

E(H−H)(H−H)H = tr{Ct} Cr

E(H−H)H(H−H) = tr{Cr} Ct
(15)

and the elements of H̃ are i.i.d. ∼ CN (0, 1). It is also of
interest to consider the total Tx side correlation matrix

Rt = EHHH = H
H
H + tr{Cr}Ct . (16)

A. Location Aided Partial CSIT LoS Channel Model

Assuming that for certain (e.g. intercell) links a BS disposes
of not much more than the LoS component information,
consider the following MIMO channel model

H = hr h
H
t (θ) + H̃

′
(17)

where θ is the LoS Angle of Departure (AoD) and the BS side
array response is normalized: ||ht(θ)||2 = 1. We shall model

the unknown Rx side LoS array response hr as a vector of
i.i.d. complex Gaussian variables

hr i.i.d. ∼ CN (0, µ
µ+1 ) and

H̃
′

i.i.d. ∼ CN (0, 1
µ+1

1
M ) , independent of hr,

(18)

where the matrix H̃ represents the aggregate NLoS com-
ponents. Note that ( E||hr hTt (θ)||2F )/( E||H̃′ ||2F ) = µ can
be considered as a Rice factor. In fact the only parameter
additional to the LoS AoD θ assumed in (17) is µ. So, this is
a case of zero mean CSIT and Tx side covariance CSIT

Ct = EHHH =
µN

µ+ 1
ht(θ)h

H
t (θ) +

N

µ+ 1

1

M
IM . (19)

V. EXPECTED WSR (EWSR)

For the WSR criterion, we have assumed so far that the
channel H is known. The scenario of interest however is that
of partial CSIT, e.g. perfect or good partial intracell CSIT but
very partial (zero mean, e.g. LoS) CSIT of the intercell links.
Once the CSIT is imperfect, various optimization criteria could
be considered, such as outage capacity. Here we shall consider
the expected weighted sum rate EHWSR(g,H) =

EWSR(g) = EH

∑
k

uk ln(1 + gHk HH
k,bk

R−1
k

Hk,bkgk)

(20)
where we now underlign the dependence of various quantities
on H. The EWSR in (20) corresponds to perfect CSIR
since the optimal Rx filters fk as a function of the ag-
gregate H have been substituted, namely WSR(g,H) =
maxf

∑
k uk(− ln(ek(fk,g))). At high SNR, max EWSR at-

tempts ZF.
In [15] a stochastic approximation approach for maximiz-

ing the EWSR was introduced. In this approach the statistical
average gets replaced by a sample average (samples of H
get generated according to its Gaussian CSIT distribution in a
Monte Carlo fashion), and one iteration of the min WSMSE
(Weighted Sum MSE) approach gets executed per term added
in the sample average.

Some issues with this approach are that in this case the
number of iterations may get dictated by a sufficient size for
the sample average rather than by a convergence requirement
for the iterative approach. Another issue is that this approach
converges to a local maximum of the EWSR. It is not
immediately clear how to combine this stochastic approxi-
mation approach with deterministic annealing. Deterministic
annealing can be used as in [1] for a deterministic algorithm
as in Section III to track the global optimum from SNR ≈ 0
(where the solution is clear analytically) to the desired SNR.
This is essentially a homotopy method in which the problem
gets resolved for an SNR that increases in small steps. At
each higher SNR, the global optimum will be in the region of
attraction of the global optimum at the lower SNR.

In the rest of this paper we discuss various deterministic
approximations for the EWSR, which can then be optimized
as in the full CSI case.



VI. MAMIMO LIMIT

If the number of Tx antennas M becomes very large, then
quantities of the form HR−1HH converge to their mean (by
the LLN). Hence in the MaMIMO limit, the WSR converges
to a deterministic limit that depends on the distribution of the
channels. The actual statistical distribution of the channel is
one thing. The CSIT distribution as in Section IV is another.
The Txs have no choice but to design their BFs according to
their partial CSIT. Then to get the actual resulting WSR, the
BFs designed with the partial CSIT need to be evaluated with
the actual channel distribution.

Now, for the design with partial CSIT, the WSR will also
converge to a deterministic limit in the MaMIMO regime. We
get a convergence for any term of the form

HQHH M→∞−→ EH HQHH = HQH
H

+ tr{QCt}Cr . (21)

In what follows we shall go one step further in the separable
channel correlation model and assume Cr,k,bi = Cr,k, ∀bi.
This leads us to introduce

Hk = [Hk,1 · · ·Hk,C ] = Hk + C
1/2
r,k H̃kC

1/2
t,k

Q=


∑
i:bi=1

Qi

. . . ∑
i:bi=C

Qi

=

C∑
j=1

∑
i:bi=j

IjQiI
H
j

Qk = Q− IbiQiI
H
bi

(22)

where Ct,k = blockdiag{Ct,k,1, . . . ,Ct,k,C}, and Ij is an all
zero block vector except for an identity matrix in block j.
Then we get for the WSR (= EWSR), using (21),

WSR =

K∑
k=1

uk ln det(R̆−1
k

R̆k) (23)

where

R̆k = INk
+ HkQH

H

k + tr{QCt,k}Cr,k

R̆k = INk
+ HkQkH

H

k + tr{QkCt,k}Cr,k

(24)

This leads to

WSR = uk ln det(I + R̆−1
k

(
Hk,bkgkg

H
k H

H

k,bk

+tr{gkgHk Ct,k,bk}Cr,k

)
) +WSRk .

(25)

Whereas the generalized eigenvector condition for the BF gk
can be worked out from here, the adaptation of the stream
power pk gets a bit complex for this case of general Gaussian
CSIT. So, for what follows, consider the simplified case of
a ”Ricean factor” µ in the Gaussian partial CSIT model that
behaves proportionally to the SNR, for the direct links Hk,bk

(only). This corresponds to the case of Hk,bk representing a
channel estimate, with properly organized (intracell) channel
estimation and feedback. In that case the dependence of the
user k rate on its BF in (25) can be approximated by

WSR = uk ln det(I + gHk B̆kgk) +WSRk with

B̆k = H
H

k,bk
R̆−1
k

Hk,bk + tr{Cr,kR̆
−1
k
}Ct,k,bk

(26)

which is now similar to the corresponding interpretation in (9).
Note that B̆k corresponds to a total Tx side correlation matrix
as in (16), but now for an interference plus noise whitened
channel R̆

−1/2
k

Hk,bk . The linearization of WSRk w.r.t. Qk

now involves

Ăk =

K∑
i6=k

ui

[
H
H

i,bk

(
R̆−1
i
− R̆−1i

)
Hi,bk

+tr{
(
R̆−1
i
− R̆−1i

)
Cr,i}Ct,i,bk

]
.

(27)

The rest of the development is now completely analogous to
the case of perfect CSIT. Note that for general Gaussian partial
CSIT we get e.g.

R̆−1
i
− R̆−1i = R̆−1i (R̆i − R̆i)R̆

−1
i

= R̆−1i (gHi Ct,i,bigi I + Hi,bigig
H
i H

H

i,bi)R̆
−1
i

.
(28)

VII. LARGE MIMO ASYMPTOTICS

The large MIMO asymptotics from [19], [20], in which
both M,N →∞ at constant ratio, tend to give more precise
approximations when M is not so large. For the general
case of Gaussian CSIT with separable (Kronecker) covariance
structure, [19], [20] lead to asymptotic expressions of the form

EH ln det(I + HQHH)

= max
z≥0, w≥0

{
ln det

[
I + wCr H

−QH
H

I + zQCt

]
− zw

}
.

(29)
where the maximization over z and w should be carried
out alternatingly (and not jointly: the joint optimization may
correspond to a global maximum or a saddle point; the cost
function is concave however in z or w separately). We shall
assume the same fully separable correlation Gaussian channel
model as in (22). The EWSR with large MIMO asymptotics
now becomes

EWSR =

K∑
k=1

uk

(
max
zk,wk

{ln detSk(Q, zk, wk)− zkwk}

− max
zk,wk

{
ln detSk(Qk, zk, wk)− zkwk

})
(30)

where

Sk(Q, z, w) =

[
I + wCr,k Hk

−QH
H

k I + zQCt,k

]
. (31)

Note that

ln detSk(Q, z, w)=ln det(I+wCr,k)+ln det(I+QTk(z, w))

with Tk(z, w) = zCt,k + H
H

k (I + wCr,k)−1Hk

(32)
where Tk plays the role of some kind of total Tx side channel
correlation matrix. Note that the weighting coefficients z, w
depend on the BFs also though. The EWSR expression in (30)
can be maximized alternatingly over the {gk}, the {zk, wk}
and the {zk, wk}. For the optimization of the BFs gk, for given



z, w, introduce

R̂k,k = I + Q̂kTk(zk, wk)

R̂k = I + Q̂kTk(zk, wk)

R̂k = I + Q̂kTk(zk, wk) .

(33)

Then the generzalized eigenvector approach and the interfer-
ence aware WF of the perfect CSI case can be applied with

B̂k = Tk(zk, wk) R̂
−1
k,k

Âk =
∑
i6=k

ui

[
Ti(zi, wi) R̂

−1
i −Ti(zi, wi) R̂

−1
i

]
.

(34)

Note that in spite of their appearance, matrices of the form
TR−1 are symmetric. Indeed, if e.g. T is invertible then
T(I + QT)−1 = (T−1 + Q)−1. For the optimization

max
z≥0,w≥0

{ln detS(Q, z, w)− zw}, we get from the extremum

conditions
w = f(Q, z, w) = tr{QCt[I + QT(z, w)]−1}
z = g(Q, z, w) = tr{Cr[I+wCrH(I+zQCt)

−1QH
H

]−1}
(35)

which can be iterated until a fixed point.
For the simpler case of zero channel means Hk = 0 and

no Rx side correlations Cr = I , and with per user Tx side
correlations Ck, the EWSR can be rewritten with large MIMO
asymptotics as

EWSR =
K∑
k=1

{
uk max

zk,wk

[ln det(I+zkQCk)+N ln(1+wk)−zkwk]

−uk max
zk,wk

[
ln det(I+zkQkCk)+N ln(1+wk)−zkwk

]}
.

(36)
This criterion can be used to evaluate the EWSR for given
Q. It can also be used to optimize Q, in which case we can
apply again the algorithm of Section III, with the following
conventions:

R̂k(z) = I + z Q̂Ck , R̂k(z) = I + z Q̂kCk

B̂k = zkCkR̂
−1
k (zk) , Âk =

∑
i 6=k

uiCi(ziR̂
−1
i (zi)− ziR̂

−1
i (zi))

(37)
where zk, zk are obtained from

max
zk,wk

g(zk, wk,Q,Ck) , max
zk,wk

g(zk, wk,Qk,C) where

g(z, w,Q,C) = ln det(I + zQC) +N ln(1 + w)− z w .
(38)

For these optimizations, we get from ∂g/∂w = 0 that z =
N/(1 + w). From this and ∂g/∂z = 0 we get

w = f(w) =
1 + w

N
tr{(1 + w

N
IM + QC)−1QC} (39)

The curves y = w and y = f(w) have a unique intersection
in the first quadrant, with y = f(w) lying initially above y =
w. Hence the optimal w can be found by iterating w(i) =
f(w(i−1)). The first time, one can initialize with w(0) = 0. In
the iterative algorithm from Section III, w can be initialized

with the value obtained in the previous iteration for g. The
corresponding optimal z is then z = N/(1 + w).

VIII. CENTRALIZED IBC DESIGN

We shall first consider centralized optimization approaches
(as in e.g. cloud RAN) in which CSIT information and BF
computation gets centralized. In this case we consider the
BSs in one cluster, and the users they serve, and one cluster
forms an IBC. In a centralized IBC design, the CSIT training
and feedback (for the FDD case) leads to a CSIT acquisition
overhead that remains linear in C, the number of BS [2]. Also
in the TDD case, though in this case only uplink training is
required. The proper partial CSIT model instance in this case
will have a strong non-zero mean H which represents the
channel estimate, and the weaker covariance part represents
estimation (and feedback) noise. In practice however, the
cluster will not be isolated, and the intercluster interference
can be handled similarly to intercell interference. However,
the intercluster CSIT may be more degraded, and is possibly
only composed of Tx side covariance information. Note that
in the MaMIMO regime, strong direct link CSIT with zero-
mean cross link CSIT induces quite some structure e.g. in the
computation of the matrices Ăk (see (28)) and leads to even
more simplification in the Interference Channel (not IBC) case.
The MaMIMO IBC with zero mean and Cr = I intercell
CSIT scenario leads to the same rate expressions as if the
intercell interference is modeled as Gaussian while preserving
the covariance matrix:

yk=Hk,bk gk xk +
∑
i:bi=bk

Hk,bk gi xi + ṽk

Cṽkṽk
= (1 +

∑
i:bi 6=bk g

H
i Ct,k,bigi) I .

(40)

In general, modeling the intercell interference plus noise as a
Gaussian noise ṽk would lead to a mutual information lower
bound. Also the large MIMO formulation of Section VII can
be used.

IX. DISTRIBUTED IBC DESIGN

In this case, global intracluster CSIT can also be gathered
but it takes an overhead that evolves with C2 [2]. Hence, high
quality (high Ricean factor) intracell CSIT and Tx covariance
only intercell CSIT may be a more appropriate setting. For
what follows we shall assume the LoS Tx intercell CSIT. We
shall focus on a MaMIMO setting.

A. Initialization Phase

The approach considered here is non-iterative, or could be
taken as initialization for further iterations.

1) Iteration 0: To properly gauge the intercell interference
caused by the other BS, we shall start with a per cell design. In
the case of multiple Tx and Rx antennas, different WSR local
optima correspond at high SNR to different distributions of
the zero forcing (ZF) roles between the various Txs and Rxs.
To simplify design, we shall assume here that Rx antennas
are used to handle intracell interference. Hence all intercell
interference needs to be handled by Tx (BS) antennas. In
that case, the crosslinks (cascades of channel and Rx) can



be considered as independent from the intracell channels.
In a MaMIMO setting, the ZF by BS j towards K − Kj

crosslink channels (or LoS components in fact) will tend to
have a deterministic effect of reducing the effective number
of Tx antennas by this amount and hence of reducing the Tx
power by a factor Mj

Mj−(K−Kj)
. Hence a per BS design can

be carried out with (partial) intracell CSIT, with BS Tx power
Pj replaced by Mj

Mj−(K−Kj)
Pj , and with all intercell links

Hk,bi = 0, bi 6= bk. The power reduction factor considered
corresponds to ZF or hence a high SNR assumption. At a
finite SNR, the user k SINR reduction will be less because
the optimal BF would do some regularized ZF of intercell
interference caused, but the SINR would on the other hand be
smaller because the intercell interference is not ZF’d. We shall
assume that these two opposite effects roughly compensate
each other. This first step (which is itself an iterative design
for the scenario considered with reduced Tx power and no
intercell links) leads to BFs g(0) which, from (24), lead to

R̆k = (1 + tr{Q(0)
bk

Ct,k,bk})INk
+ Hk,bkQ

(0)
bk

H
H

k,bk
,

where Q
(0)
bk

=
∑

i:bi=bk

g
(0)
i g

(0)H
i

(41)
and similarly for R̆k.

2) Iteration 1: The idea is now to do one iteration in order
to adjust the Tx filters for the intercell interference. So, with
the initial BFs g(0), the local intercell CSIT Ct,i,bk also, the
correct power constraints, and R̆k, R̆k as in (41), we get B̆k

as in (26) and Ăk from (27) becomes

Ăk =
∑

i6=k:bi=bk

ui

[
H
H

i,bk

(
R̆−1
i
− R̆−1i

)
Hi,bk

+tr{
(
R̆−1
i
− R̆−1i

)
Cr,i}Ct,i,bk

]
+
∑

i:bi 6=bk

uitr{R̆−1i − R̆−1i }︸ ︷︷ ︸
=µi

Ct,i,bk .

(42)

Hence the only information that needs to be fed back from user
i in another cell is the positive scalar µi. This is related to the
interference pricing in game theory [17]. The normalized BFs
are then computed as g

′

k = Vmax(B̆k, Ăk + λbkI) where the
λbk are taken from the previous iteration. The stream powers
are obtained from (13).

B. Continuous Adaptation

The solution discussed above should be adequate in many
scenarios. Further refinements can be considered. For instance,
staying with covariance intercell CSIT but going beyond LoS,
the subspaces of the Ct to be accounted for in the initialization
stage would be more than one dimensional, leading to a
further power reduction in the initial per cell design. Further
iterations beyond the first iteration discussed above require
for each iteration the feedback of the scalars µi characterizing
the intercell links, and within each cell, the feedback of the
interference plus noise whitened channels R̆

−1/2
k

Hk,bk and
the scalars tr{Cr,kR̆

−1
k
}.
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