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Abstract—In opportunistic networks, direct communication between mobile devices is used to extend the set of services accessible

through cellular or WiFi networks. Mobility patterns and their impact in such networks have been extensively studied. In contrast, this

has not been the case with communication traffic patterns, where homogeneous traffic between all nodes is usually assumed. This

assumption is generally not true, as node mobility and social characteristics can significantly affect the end-to-end traffic demand

between them. To this end, in this paper we explore the joint effect of traffic patterns and node mobility on the performance of popular

forwarding mechanisms, both analytically and through simulations. Among the different insights stemming from our analysis, we identify

conditions under which heterogeneity renders the added value of using extra relays more/less useful. Furthermore, we confirm the

intuition that an increasing amount of heterogeneity closes the performance gap between different forwarding policies, making end-

to-end routing more challenging in some cases, or less necessary in others. To our best knowledge, this is the first effort to model,

analyze, and quantify effects of traffic heterogeneity. We believe this is an important step towards better protocol design and evaluation

of the feasibility of applications in opportunistic networks.

Index Terms—opportunistic networks, delay tolerant networks, performance analysis, heterogeneous mobility, heterogeneous traffic
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1 INTRODUCTION

O
PPORTUNISTIC or Delay Tolerant Networks (DTNs) [1]

were initially envisioned to support communication in

challenging environments, where infrastructure is limited or

absent (e.g. emergency situations after disasters, mobile sensor

networks). Lately, it has been suggested that they could also

support or enhance existing networking infrastructure, e.g. by

offloading traffic from cellular networks, enabling novel social

and location-based applications, or introducing peer-to-peer

collaborative computing [2], [3].

Opportunistic networks consist of mobile nodes (e.g. smart-

phones, laptops) that exchange data directly when they are in

contact (i.e. within transmission range). Due to the limited

range of direct communication (e.g. Bluetooth), communica-

tion is not continuous, and maintaining end-to-end paths is

problematic. If nodes are not willing to relay 3rd party traffic,

a message can only be transferred from a source node to a des-

tination node when they come in contact (direct transmission

routing [4]). If other nodes are willing to collaborate, they

could copy the message from the source (or another relay),

store and carry it and, finally, forward it when they encounter

the destination node. Such replication and relaying schemes

could improve performance (relay-assisted routing, e.g. [5],

[6], [7]), albeit at increased complexity and resource overhead.

Since message exchanges take place only during contacts

between nodes, mobility plays a major role both in the

performance and the design of protocols and applications. As a

result, sophisticated utility-based schemes have been proposed

that select relays based on their mobility patterns and/or social

characteristics [8]. Furthermore, a lot of effort has been made

recently to capture the mobility patterns of real networks [9],

• P. Sermpezis and T. Spyropoulos are with the Department of Mobile

Communications, EURECOM, France.

E-mail: firstname.lastname@eurecom.fr

[10], [11], [12]. These mobility patterns can often greatly

affect the performance of different schemes.

Somewhat surprisingly, the communication traffic patterns

used in studies of opportunistic networks have not received

an equal amount of attention. It is usually assumed, implicitly

or explicitly, that all traffic is uniform: each pair of nodes

exchanges the same amount of messages. However, intuition

suggests that traffic between nodes, just like contacts, cannot

be expected to be homogeneous either. This is also supported

by empirical studies on social networks [13], [14], where the

frequency of message exchanges might widely vary among

pairs of nodes. Further, nodes that have a social relation

or reside/move in the same areas, often tend to exchange

more messages than others. Therefore, a number of interesting

questions arise: How should one model the heterogeneity in

communication traffic? Do heterogeneous traffic patterns af-

fect the performance of information dissemination mechanisms

and to what extent?

Towards answering this question, in this paper we investi-

gate if, when and how traffic patterns affect the communication

performance in opportunistic networks. Specifically:

• We examine what characteristics of traffic heterogeneity

can have an effect on performance, and show that only when

(end-to-end) traffic demand is correlated with pairwise contact

rates performance is affected. Based on these findings, we

propose an analytically tractable model that can describe a

large range of non-uniform traffic patterns (Section 2).

• We derive analytical expressions for calculating the joint

effect of traffic and mobility heterogeneity in the performance

of basic forwarding mechanisms (Section 3).

• We use these expressions to show that the common

understanding about these mechanisms, e.g. the gains from

having additional replicas, might radically change when traffic

is heterogeneous (Sections 3.2 and 3.3).
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• We validate our analytical findings through simulations

(Section 4.1) and, by applying them to datasets of real-world

networks that contain information about the mobility and

communication patterns of participating nodes (Section 4.2).

• Finally, we present possible extensions of our study

(Section 5), and discuss related work (Section 6) and further

research directions on traffic patterns for opportunistic net-

working (Section 7).

To our best knowledge, this is the first attempt to model

end-to-end traffic heterogeneity and analytically study its

(quantitative and qualitative) effects on the performance of

opportunistic communications. Our analytical findings, as well

as simulation results, reveal important aspects of opportunistic

networking that have not been explored or have not been taken

into account in previous studies:

−When frequently meeting node pairs tend to exchange (on

average) more/less traffic than other nodes, the communication

performance can considerably differ from the homogeneous

case. Taking into consideration such traffic patterns allows to

better design or tune routing protocols.

− The effects on some forwarding mechanisms, like Direct

Transmission [4], can be significant, while at the same time

flooding (e.g. Epidemic [15]) or routing (e.g. Spray and

Wait [5], EBR [16]) protocols are less affected. In particular,

an increasing amount of heterogeneity closes the performance

gap between the best (Epidemic) and the worst (Direct Trans-

mission) forwarding.

− Under certain conditions, the impact of traffic heterogene-

ity can be so important, that it can lead to a reconsideration

of the employed communication mechanisms, and even the

feasibility of applications (e.g. online social messaging, file

sharing, service composition) over opportunistic networking.

2 NETWORK MODEL

2.1 Mobility

We consider a network N , where N nodes move in an

area, much larger than their transmission range. Data packet

exchanges between a pair of nodes can take place only when

they are in proximity (in contact). Hence, the dissemination

of a message is subject to nodes mobility and the resulting

contact events. To model this sequence of contact events,

we will assume the following class of heterogeneous contact

models.

Definition 1 (Heterogeneous Contact Network).

Assumption 1. Contact events between a pair of nodes {i, j}
follow a Poisson process with rate λij , i.e. inter-contact times

are independent and exponentially distributed with rate λij .

Assumption 2. Contact rates λij are independently drawn

from an arbitrary distribution with probability density function

fλ(x) (with finite mean µλ and variance σ2
λ).

Assumption 3. Contact duration is negligible compared to the

time between contacts events, though sufficient for all data

transfers to take place.

The assumption of Poisson contacts is common in the

majority of previous studies in Opportunistic / Delay Tolerant

Networks [9], [11], [12], [17], [18], and allows one to use a

Markovian framework for analyzing dissemination processes.

In addition, analyses of real-world contact traces provide

some support, suggesting that the observed inter-contact time

distributions (or, at least, their tails) can often be approximated

by exponential distributions [19], [20]. While this assumption

can sometimes be relaxed, to our best knowledge this only

applies to asymptotic analysis [21], [22].

The second assumption introduces some heterogeneity in

the standard model [5], [18], [23], which normally assumes

homogeneous contact rates (i.e. λij = λ for all pairs)1, in

an attempt to better align the model with the findings of

real-world trace analyses showing that the contact rates (or

frequencies) of different pairs are largely heterogeneous [10],

[17], [19]. Moreover, by allowing rates to be drawn from an

arbitrary distribution fλ, we can (i) emulate a very diverse

set of contact (and thus mobility) scenarios, and (ii) fit this

distribution to match the rates observed in a real trace.

The third assumption is equivalent to saying that there are

no bandwidth concerns in our framework. Although this is not

always true [8], it is orthogonal to the main topic of our study.

Summarizing, our main motivation for this model is to

maintain the analytical tractability properties of standard mod-

els, while also integrating some mobility heterogeneity, whose

joint effect with traffic heterogeneity we want to investigate. To

ensure that our assumptions do not confound the conclusions

drawn from our analysis, we will validate our results against

real measurement traces, where many of these assumptions are

known to not hold.

2.2 Communication Traffic

In addition to who contacts whom and how often, another

major question that should be raised in opportunistic networks

(but rarely is) is who wants to communicate with whom and

how much traffic do they exchange?

Intuition suggests that every pair of nodes will not exchange

the same amount of traffic. To support intuition, studies from

fields related to technological and social networks [13], [14],

[25] have demonstrated the existence of heterogeneous traffic

patterns. The same studies further suggest that this hetero-

geneity depends on the spatial and social characteristics of

these networks. Since location-based services [26] and social

networking [27] are considered among the major applications

supported by opportunistic networks, such traffic dependencies

on social and/or spatial factors are very probable to appear.

What is more, mobility characteristics have also been found

to depend on spatial and social characteristics [10], [28], [29].

This clearly seems to argue for a non-homogeneous traffic

model. Moreover, traffic and mobility in such networks are

expected to exhibit some correlations [13], [14].

Before we proceed to choose a traffic model, one should

consider the following questions: Would the mere heterogene-

ity of traffic suffice to affect performance? Is it necessary to

consider traffic and mobility correlations?

As stated earlier, information dissemination is determined

by the sequence of contact events. Hence, if traffic character-

1. Some notable exceptions include [9], [11], [12], [17], [24].
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Fig. 1. Mean delivery delay of 4 routing protocols, namely

Direct Transmission, Spray and Wait (SnW ), 2-hop, and
SimBet, on the (a) Gowalla and (b) Strathclyde datasets.

istics are independent of node mobility, one might expect a

limited impact on performance.

Towards examining the validity of the above argument, we

decided to compare the performance of some well-known

opportunistic protocols (direct transmission [4], spray and

wait [5], 2-hop routing [18], and SimBet [7]) through simula-

tions on two real traces (we discuss the traces in more detail,

later, in Section 4), for three traffic scenarios: (i) homogeneous

traffic: every pair of nodes has the same chance of being

chosen as the source-destination pair for the next message;

(ii) heterogeneous traffic that is mobility independent: we

assign randomly to each pair a different end-to-end traffic

demand (with the normalized message generation rate for a

pair drawn uniformly in [1, 1000]); (iii) heterogeneous traffic
that is mobility dependent: end-to-end traffic between two

nodes is proportional to their contact rate. We generated an

equal (sufficiently large) number of messages for all scenarios.

Results for the mean message delivery delay are shown

in Fig. 1. As is evident from these results, when traffic

heterogeneity is independent of mobility (middle bar), the

average delay is practically the same to the homogeneous case

(left bar), for all protocols, and across all scenarios (including

additional ones we have tried). In contrast, when traffic is

heterogeneous and correlated with the contact rates (rightmost

bar), Fig. 1 shows a clear difference in average delay for all

scenarios and protocols. These results provide an initial answer

to the above questions:

It is not traffic heterogeneity itself that affects performance,

but rather the joint effect of mobility and traffic (hetero-

geneity).

In other words, unless differences in traffic demand correspond

also to differences in contact frequency (e.g. frequently meet-

ing pairs tend to also consistently generate more/less traffic for

each other), end-to-end performance will not be affected. This

statement is also formally proven in in Lemma 1 (Section 8.4).

The above observation, together with the initial insight com-

ing from real datasets, motivates us to propose the following

simple, yet quite generic, model for end-to-end traffic.

Definition 2 (Heterogeneous Communication Traffic). The

end-to-end traffic demand (per time unit) between a pair of

nodes {i, j}, is a random variable τij , such that E[τij ] =
τ(λij), where τ(·) is a continuous function from R

+ to R
+.

Hence, traffic demand between node pairs can differ and is

on average correlated with the nodes’ contact rate. However,

τij itself is still random, allowing some node pairs to have

little traffic demand even if they meet often (e.g. “familiar

strangers”). Furthermore, through the function τ(·) one can

introduce a number of different types and amounts of (positive

or negative) correlations between traffic and mobility. While

real mobility and traffic patterns are clearly expected to have a

number of additional nuances and details, not captured by the

models of Def. 1 and Def. 2, it turns out that these abstractions

are still “rich” enough to allow us to draw useful conclusions.

3 ANALYSIS

Consider now an opportunistic network with mobility and

traffic according to the definitions of Section 2. To calculate a

performance metric for this network, e.g. the expected delay,

one would consider a large number of messages generated be-

tween various source-destination pairs. Therefore, one would

further need to know the contact rates between the sources

and destinations of these messages. If a message was equally

likely to be generated between any pairs of nodes, then the

contact rate between the source and destination of this message

should be distributed as fλ (Def. 1). However, if messages are

more like to come from a frequently meeting pair rather than

an “average” pair, then the source-destination contact rate (we

refer to it as the effective contact rate) would be biased towards

higher values.

To this end, we derive the following basic proposition

(whose proof is given in Section 8.1) for the probability distri-

bution of the effective contact rates between source destination

node pairs.

Proposition 1. The probability density function fτ of the

contact rate between the source and the destination {s, d}
of a random message, in a network following Definitions 1

and 2, converges as follows:

fτ (x)
p→ 1

C · τ(x) · fλ(x) (1)

where fτ (x)dx = P{λsd ∈ [x, x + dx)}, p→ denotes conver-

gence in probability, and C = E[τ(λ)] =
∫∞

0 τ(x)fλ(x)dx is

a normalizing constant.

As Proposition 1 shows, the source-destination contact rate

distribution depends both on the contact rate distribution fλ(λ)
and the traffic patterns τ(λ) (i.e. joint effect of mobility and

traffic). Specifically, the probability that the contact rate of a

selected node pair takes a certain value, e.g. λsd ∈ [x, x+dx),
is proportional to the number of pairs that contact with rate

λij ∈ [x, x+dx) (i.e. ∝ fλ(x)) and the average traffic demand

between them (i.e. ∝ τ(x)).

3.1 End-to-end Delivery Performance

An opportunistic routing protocol tries to deliver the end-to-

end traffic demand τij , and we would like to consider the

effects of different contact patterns fλ and traffic patterns τ(λ)
on its performance. There exists a very large abundance of

proposed schemes [8] and it would not be possible, nor would
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it provide any intuition, to analyze the effect of heterogeneity

on each and every one. Instead, we focus here on some basic

mechanisms to gain intuition.

The approach with the minimum overhead and complexity

is Direct Transmission (“DT”): nodes wishing to exchange

data or information with each other, may do so, only when

they are in direct contact, without involving any relays. For

instance, DT is often assumed in content-centric applications,

where a node interested in some content will query directly

encountered nodes for content of interest, and retrieve it only

if it is available there. Furthermore, it is the only feasible

approach if nodes do not have incentives to relay traffic they

are not personally interested in, e.g. due to privacy or resource-

related concerns [30]. Nevertheless, DT is known to suffer

from long delays and low throughput [31].

To improve the performance of direct transmission, repli-

cation or relay-assisted schemes can be used. Extra copies

can be handed over to encountered nodes, and the destination

can receive the message from either the source or any of

the relays, reducing thus the expected delivery delay. Taken

to the extreme, schemes like epidemic routing [15] forward

the message at every possible encounter (deterministically,

probabilistically, or based on some utility-function). Yet these

do not usually scale well beyond networks with few tens of

nodes, due to large resource usage. Instead, few relays are

normally used, in an attempt to strike a good tradeoff.

In networks with homogeneous mobility and traffic, it is

known that using just a few extra copies leads to signifi-

cant performance gains. For example, in a network of 1000
nodes, simply distributing 10 extra copies to the first 10
nodes encountered provides an almost 10-fold improvement

in delay compared to direct transmission [5]. Although this

also comes with a 10-fold increase in the amount of (storage

and bandwidth) resources needed, it presents a very useful

tradeoff to DTN protocol designers.

However, when it comes to heterogeneous mobility and

traffic, Proposition 1 suggests that, unlike the above example,

the source is no longer equivalent with other random relays, in

terms of their probability of contacting an intended destination

soon. It is thus of particular interest to examine whether the

above trade-off still holds, if one considers the joint effect of

realistic mobility and communication traffic patterns.

We thus consider, in the following, Relay-assisted routing,

which is a simple abstraction of schemes that use extra

randomly chosen relays2. To compare the performance of

Relay-assisted routing and Direct Transmission, in terms of

delivery delay and delivery probability (the two main metrics

considered in related work), we first define the following

metrics:

(a) Delay Ratio, R: the ratio of the expected delivery delay

of Relay-Assisted routing, E[TR], over the expected delivery

delay of Direct Transmission routing, E[TDT ], i.e.

R =
E[TR]

E[TDT ]

(b) Source Delivery Probability, P(src.): the probability that

2. We will briefly consider mobility-aware schemes in Section 5.

a message is delivered to the destination by the source node,

rather than by any of the relays.

Both metrics contain information about the performance

gain of Relay-assisted routing compared to Direct Transmis-

sion. Specifically, R shows how faster (on average) a message

can be delivered under Relay-assisted routing, whereas P(src.)

gives the probability that any of the relays will actually

contribute in the delivery process. It is easy to see that (i)

R and P(src.) always take values in the interval [0, 1], and (ii)

the higher their values are, the less the gain due to relay nodes

is.

For instance, when R = 0.1 Relay-assisted routing delivers

(on average) a message 10 times faster than Direct Trans-

mission, while a value R = 0.5 denotes that Relay-assisted

routing is only 2 times faster. Respectively, when P(src.) = 0.1
the probability that the source node s meets the destination d,
before any other relay node meets d, is 10%, and P(src.) = 0.5
means that this probability is 50%. In the limiting cases, when

R,P(src.) → 1 the message is delivered to the destination by

the source node itself, while when R,P(src.) → 0 delivery

takes place (entirely) due to the relays.

In Result 1, we derive analytical expressions for these two

metrics, R and P(src.). The proof is given in Section 8.2.

Result 1. When Relay-assisted routing with L extra copies is

considered, then

R =
1

E
[

τ(λ)
λ

] ·
∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy

P(src.) =
1

E[τ(λ)]
·
∫ ∞

0

∫ ∞

0

x · τ(x)
x+ y

· fλ(x)dx · fR(y)dy

where the expectations are taken over fλ and fR = f
(∗L)
λ is

the L-fold convolution of fλ.

In addition to the main metrics considered in this paper

(Result 1), and for the reader’s ease of reference, in Table 1

we provide expressions for the absolute performance (message

delivery delay and delivery probability) of Direct Transmission

and Relay-Assisted routing. The expressions follow straight

from the proof of Result 1 or through similar analysis, and,

thus, we omit the detailed derivations.

3.2 Insights for Real Opportunistic Networks

The expressions we derived in Result 1 are generic and can

be used under any mobility and traffic pattern (i.e. for any

fλ and τ(·)). However, they do not give a good feel as to

how exactly these metrics are affected by mobility and traffic

heterogeneity. To obtain some further insights, in this section,

we consider specific classes of mobility and traffic patterns that

capture commonly observed characteristics of real networks.

For these classes, we derive simple closed form expressions

that bound the performance metrics R and P(src.).

Mobility

We will assume the contact rates to be gamma distributed, i.e.

fλ(x) ∼ Γ(x;α, β) = βα

Γ(α)x
α−1e−βx.

Our choice is initially motivated by the findings of Pas-

sarella et al. [10], who have shown, through statistical analysis
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TABLE 1
Expected delivery delay and delivery probability of Direct Transmission and Relay-Assisted routing.

Direct Transmission Relay-Assisted

Generic Case:

E[TDT ] =
1

E[τ(λ)]
·E

[

τ(λ)

λ

]

E[TR] =
1

E[τ(λ)]
·

∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy

P{TDT ≤ t} = 1−
E[τ(λ) · e−λ·t]

E[τ(λ)]
P{TR ≤ t} = 1−

E[τ(λ) · e−λ·t]

E[τ(λ)]
·

∫ ∞

0
e−y·t · fR(y)dy

Mobility fλ(x) ∼ Γ(x;α, β), Traffic τ(x) = c · xk:

E[TDT ] =
1

µλ

·
1

1 + (k − 1) · CV 2
λ

E[TR] ≥
1

µλ

·
1

1 + k · CV 2
λ
+ L

P{TDT ≤ t} = 1−
(

1 + µλ · CV 2
λ · t

)

−
1+k·CV 2

λ

CV 2
λ P{TR ≤ t} = 1−

(

1 + µλ · CV 2
λ · t

)

−
1+k·CV 2

λ
+L

CV 2
λ

of pervasive social networks’ datasets, that the Gamma distri-

bution matches well the observed contact rates. In addition, the

analytical findings of [10], further suggest that the choice of

a Gamma distribution can be supported in real opportunistic

networks and can explain many of the observed properties

(e.g. distribution of aggregate inter-contact times). Finally, by

selecting appropriately the parameters α and β of a Gamma

distribution, we can assign any desired value to the mean value

µλ and the variance σ2
λ of the contact rates3. This allows us

to describe (or fit up to the first two moments) a large range

of scenarios with different mobility heterogeneities captured

by CVλ = σλ

µλ
.

Traffic

We further describe the traffic using a polynomial function of

the form τ(x) = c · xk , c > 0.
As in the case of mobility, the reasons for our choice are as

following. Observations of real networks have shown that the

nodes with high contact frequencies tend to exchange more

traffic [13], [14], which is consistent with the above choice

when k > 0. Second, the exact traffic patterns (i.e. τ(x)) in

a real scenario are difficult (if not impossible) to determine,

and, hence, it is more probable that simple methods will be

used. For example, one might get some traffic samples and

perform linear regression on the measured data. This would

result in a linear τ(x) (i.e. k = 1). Our model extends this

logic by going beyond linear fitting and allowing as well sub-

and super-linear fitted traffic patterns. In general, the values

of k capture the amount of traffic heterogeneity. Furthermore,

by choosing 0 < k < 1 (or k > 1) one can emulate concave

(or convex) functions and, thus, approximate different traffic

patterns. Finally, one can also consider negative correlations,

by choosing k < 0. Although less common, these could arise,

for example, in applications where users want to communicate

more when they do not meet frequently (e.g. messaging).

Under the above assumptions, the following result for the

relative performance of the information dissemination mecha-

nisms we consider in this paper, holds. The proof of Result 2

is given in Section 8.3. The corresponding expressions for the

absolute performance metrics are given in Table 1.

3. The mean value and variance of a gamma distribution are given by µλ =
α
β

and σ2
λ
= α

β2 , respectively.

Result 2. In a Heterogeneous Contact Network where fλ ∼
Γ(α, β) with mean value µλ and variance σ2

λ (coefficient of

variation CVλ = σλ

µλ
) and τ(x) = c · xk, it holds:

1 ≥ R ≥ Rmin =
1 + (k − 1) · CV 2

λ

1 + k · CV 2
λ + L

(2)

for k > kmin = 1− 1
CV 2

λ

, and

1 ≥ P(src.) ≥ Pmin =
1 + k · CV 2

λ

1 + (k + 1) · CV 2
λ + L

(3)

for k > kmin = − 1
CV 2

λ

.

The expressions of Result 2 depend only on 3 parameters

(CVλ, k, L) and, thus, could be used to tune Relay-Assisted

schemes: At first, since mobility (CVλ) and traffic (k) pa-

rameters are characteristics of the network, they either remain

constant or change slowly over a long time period. Hence, we

can assume that nodes know their values, or can estimate them

(e.g. with a distributed mechanism, locally, etc.) [32], [33].

Then, the required number of relays L to achieve a certain

expected delay, could be easily estimated.

Practical Example: If the measured network characteristics

are CVλ = 2 and k = 2, then from Result 2 we get

R = 5
9+L

. Therefore, to achieve delivery delay two times

faster than Direct Transmission, one extra copy should be

used (L = 1 → R = 0.5), while to achieve 4 times

faster delivery, L = 11 relay nodes are needed. In the latter

case, if traffic/mobility heterogeneity has not been taken into

account [5], the prediction would be L = 3 and this would lead
only to 2.5 (instead of 4) times faster delivery (i.e. R = 5

12 ).

3.3 Implications

It is evident from the above example that traffic heterogeneity

can have a major impact on performance and thus protocol

design. Table 2 formalizes this impact, by considering how

Rmin and Pmin (Eq. (2) and Eq. (3)) behave:

The middle column shows their monotonicity as mobility

heterogeneity (CVλ), traffic heterogeneity (k), and amount of

extra copies (L) increase. For instance, when k increases (ր),

Rmin and Pmin increase (ր) too.
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TABLE 2
Rmin, Pmin: Monotonicity and Asymptotic Limits

Parameter Monotonicity as Limits for
x parameter x increases ր x → min{x} x → max{x}

mobility
heterogeneity:
CVλ ∈ [0,∞)

Rmin
increases ր , if k > 1 + 1

L
decreases ց , otherwise

Pmin
increases ր , if k > 1

L
decreases ց , otherwise

lim
CVλ→0

Rmin =
1

1+L

lim
CVλ→0

Pmin =
1

1+L

lim
CVλ→∞

Rmin = 1-
1

k

lim
CVλ→∞

Pmin = 1-
1

k+1

traffic
heterogeneity:
k ∈ (kmin,∞)

Rmin, Pmin increase ր lim
k→kmin

Rmin, Pmin = 0 lim
k→∞

Rmin, Pmin = 1

extra copies:
L (L ≪ N)

Rmin, Pmin decrease ց -

The right column gives their values in the limit for large/small

k or CVλ; e.g.

lim
CVλ→0

Rmin = lim
CVλ→0

1 + (k − 1) · CV 2
λ

1 + k · CV 2
λ + L

=
1

1 + L

and

lim
CVλ→∞

Pmin = lim
CVλ→∞

1 + k · CV 2
λ

1 + (k + 1) · CV 2
λ + L

= 1− 1

k + 1

In this section, we elaborate on some important implications

that follow from Table 2.

Gain of Extra Copies

A strong positive correlation (large k) between traffic and

mobility reduces the added value of extra copies (i.e. Rmin,

Pmin ր as k ր). This indicates that, as correlation (k) in-
creases, one needs to distribute message copies to more relays

nodes in order to achieve a certain performance improvement

compared to the baseline, Direct Transmission.

In contrast, a negative (or weak positive) correlation renders

each extra copy more useful (i.e. Rmin, Pmin → 0 as

k → kmin
4). The fact that a weak positive correlation, e.g.

k ∈ (0, 1
L
), actually makes extra copies more useful might be a

bit surprising. However, it is explained as following: Mobility

heterogeneity (when traffic is homogeneous or uncorrelated

with mobility) affects negatively the message delivery delay

(of random protocols and Direct Transmission) [9], [11],

whereas positively-correlated traffic has an opposite effect (i.e.

decreases delay). The counterbalancing effects of these two

factors determine a threshold (e.g. 1 + 1
L

for Rmin or 1
L

for

Pmin) under which the negative effects of heterogeneity affect

more the message delivery process. Our framework, not only

reveals this inherent trade-off, but also provides the tools for

quantifying such thresholds.

From the above discussion it becomes evident that it is

crucial to identify whether a traffic-mobility correlation exists

in a given scenario, and what its nature is, as this could

decide whether the overhead of using few or more extra

copies is justified or would just waste a lot of valuable

resources. In practice, this means that a relay-assisted protocol

should be complemented with an online estimation algorithm,

4. The values of kmin are given in Result 2.

collaborative or local. Such schemes have been proposed [32],

[33] to collect contact related information for forwarding

algorithms, but would now need to maintain also traffic-related

information and correlate it with the information about the

node contact rates, in an efficient manner.

Routing for Unicast Applications

For high heterogeneity (traffic and mobility), our results imply

that a unicast message is likely to arrive to its destination at

the time the source and destination come in contact (i.e. Rmin,

Pmin → 1 as k, CVλ → ∞). This raises questions about the

usefulness of opportunistic networking for unicast applications

in which end-to-end traffic is expected to be highly correlated

with contact frequency (e.g. Facebook messaging) [13], [14].

On the other hand, our results suggest that potential unicast

applications with an end-to-end traffic demand between nodes

with non-frequent meetings, i.e. scenarios with small or neg-

ative k, (e.g. social peers residing in different communities)

could benefit a lot (more than normally assumed).

Although these observations might appear somewhat self-

evident at first glance (note however the case described in the

previous subsection), the question of how to tune protocols

and choose the right number of replicas stills remains. To

our best knowledge, our results are the first to provide closed

form, quantitative insights into the tradeoffs involved in real

scenarios with both mobility and traffic heterogeneity.

Moreover, one could raise a point about their applicability

for sophisticated protocols that choose relays intelligently (e.g.

based on contact rates, social graphs). In this case, a source

node could try to wait and select better relays than giving the

copies to the first randomly encountered peers, thus improving

the impact per replica. Nevertheless, in a highly heterogeneous

scenario, a source might need to wait a long time until it

encounters such good relays (“spray” phase) and this could

counter-balance the effect of better relays. In Section 5, we

prove that the qualitative implications of our results hold

also for such mobility-aware protocols, which exploit mobility

heterogeneity in order to select better relays. A complementary

explanation for this qualitative result is given in the end of this

section (see Fig. 2 and the corresponding commentary).



7

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

k

D
e

la
y

 

 

direct transmission
spray and wait
epidemic routing

(a) CVλ = 1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

k

D
e

la
y

 

 

direct transmission
spray and wait
epidemic routing

(b) CVλ = 2

Fig. 2. Message delay under Direct Transmission, Spray
and Wait (L = 5), and Epidemic routing in scenarios

with varying traffic heterogeneity; mobility parameters are

µλ = 1 and (a) CVλ = 1 and (b) CVλ = 2.

Content-Centric Communication

While our results are somewhat pessimistic when it comes to

the usefulness of opportunistic networking for unicast appli-

cations, the opposite holds when it comes to modern, content-

centric applications (e.g. file sharing, D2D-based offloading,

service composition). In such applications nodes are looking,

for example, for some content of interest [3] or service [2],

which they can access directly from any encountered node that

offers it. If the interests of nodes are heterogeneous (which is

known to be the case [34]) and nodes with similar mobility

patterns tend to have some similarity in their interests too

(evidence for this does exist [35]), then our results suggest: (i)

that there is a better chance to find a content or service “soon”

from a directly encountered node than one would expect in

homogeneous scenarios, and (ii) coming up with complex,

resource-costly mechanisms, e.g. multi-hop query-response,

directories, etc., might not be necessary. We plan to look into

such content-centric scenarios in more detail in future work.

To put some extra evidence on our arguments and further

demonstrate how and why traffic heterogeneity affects the

relative performance, in Fig. 2 we compare the message delay

of (i) Direct Transmission (i.e. the protocol with the highest

delay), (ii) Relay-assisted routing (Spray and Wait, SnW, [5]

with L = 5 copies) and (iii) Epidemic routing [15] (i.e. the

protocol with the lowest delay), in two scenarios, for varying

traffic heterogeneity (k). Two main observations, with respect

to the previous implications, can be made in Fig. 2.

At first, an increasing amount of traffic heterogene-

ity/correlation closes the performance gap between the best

(Epidemic) and the worst (Direct Transmission) forwarding

policies. Hence, it becomes evident that the possible gain one

could achieve by using any routing protocol and any number

of extra copies, diminishes. As a result, routing schemes,

whose design is crucial in homogeneous scenarios (since the

improvement gap is large; see Fig. 2 for regions with low

k), become less important in heterogeneous scenarios with

highly correlated traffic (since the improvement cannot be

large; see Fig. 2 for regions with high k) and/or less necessary
(since comparable performance can be achieved with Direct

Transmission; e.g. Fig. 2(b) for k = 4).

Second, the delay of Direct Transmission decreases radi-

cally as traffic heterogeneity increases5. Although the delay

of Relay-assisted routing decreases with traffic heterogeneity

k too, the effect is less significant. Specifically, an observation

of the delay curves for Direct Transmission and Relay-assisted

routing in Fig. 2(a), shows that the delay ratio R = E[TR]
E[TDT ]

increases as traffic becomes more heterogeneous. However,

this increase is mainly due to the improved performance of

Direct Transmission rather than this of Relay-assisted routing.

4 MODEL VALIDATION

To validate our model and analysis, in this section we compare

the theoretical results against Monte Carlo simulations on

various synthetic scenarios, and on datasets of real networks.

4.1 Synthetic Simulations

We generate synthetic networks, conforming to the mobility

and traffic models of Section 2, as following:

(i) We assign to each pair {i, j} a contact rate λij , which

we draw randomly from fλ, and create a sequence of contact

events (Poisson process with rate λij ).

(ii) Since E[τij ] = τ(λij) (from Def. 2), we draw the traffic

rate for each pair {i, j} as τij ∼ Uniform[0, 2 · τ(λij)].
(iii) Then, we simulate a large number of message exchanges,

choosing randomly for each message the source-destination

pair according to the weights τij .
We created different scenarios (N,L, fλ, τ(·)) to verify

our analysis under various network parameters. Here, we

present the simulation results for scenarios with N = 500
nodes6. As Relay-assisted routing, we used the Spray and

Wait protocol [5] with L = 5 copies. To be consistent with

the analysis of Section 3.2, we used the Gamma distribution

as the contact rates distribution fλ and traffic functions of

polynomial form, τ(x) = c · xk.

In Fig. 3 and Fig. 4 we present simulation results for the

ratiosR and probabilities P(src.), along with the corresponding

theoretical results (exact predictions of Result 1 and lower

bounds of Result 2), in scenarios with varying mobility and

traffic heterogeneity.

Fig. 3 shows the delay ratio R: (a) in three scenarios

with different traffic functions τ(x) (namely7: c · √x, c · x2,

and c · x4), under varying mobility heterogeneity; and (b)

in three mobility scenarios with CVλ = {0.5, 1, 2}, under
varying traffic heterogeneity. A first observation is that the

exact expressions of Result 1 (continuous lines) can accurately

predict the metric R (simulation results are denoted with

circles). Additionally, the lower bounds are always below the

simulation curves (as expected), and in many scenarios are

quite tight.

Under the same mobility (CVλ) and traffic (k) simulation

scenarios, similar observations can be made for the source

5. The convergence is faster for scenarios where node mobility is more
heterogeneous (Fig. 2(b)), suggesting, thus, that the effects of traffic hetero-
geneity are even more important when coupled with highly heterogeneous
node mobility.

6. The simulations we ran for networks with N ∈ [100, 1000] nodes, gave
us similar results.

7. The value of c does not affect the performance (see also Result 2).
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Fig. 3. R in scenarios with varying (a) mobility and

(b) traffic heterogeneity. Simulation results are denoted
with circles; the theoretical predictions of Result 1 (exact

predictions) with continuous lines; and the lower bounds

Rmin (Result 2) with dashed lines.

delivery probability P(src.) in Fig. 4, where the exact expres-

sions of Result 1 accurately match the simulation results and

the bounds of Result 2 are tight in most scenarios.

In general, for both the metrics R and P(src.), the theoretical

lower bounds are less tight for scenarios where mobility is

quite heterogeneous. Specifically, in Fig. 3(a) and 4(a), the

bounds are less close to the simulation curves in the regimes

where CVλ becomes larger than 2. Also, in the scenarios with

varying traffic heterogeneity (Fig. 3(b) and 4(b)), the bounds

are tight for scenarios with small and moderate mobility

heterogeneity, and become less tight only in the scenarios with

CVλ = 2 (bottom plots of Fig. 3(b) and 4(b)).

In every scenario, the simulation curves R and P(src.) have

the monotonicity we predicted in Table 2 (middle column)

for the theoretical bounds Rmin and Pmin. For instance,

when traffic heterogeneity (k) increases, R and P(src.) always

increase as well (Fig. 3(b) and 4(b)). Also, in the regimes

that k ≤ kmin
8 the simulation values of the considered

metrics become almost zero, and for large k (especially in

the bottom plots of Fig. 3(b) and 4(b), where mobility is also

very heterogeneous) they get close to 1, thus validating the

qualitative predictions of Table 2 (right column).

The simulation results in Fig. 3(a) and 4(a), where we

present scenarios with varying mobility heterogeneity (CVλ),

validate our predictions for the monotonicity and limiting

behavior as well. For example, in Fig. 3(a) for k = 0.5, where
the traffic-mobility correlation is small (the same holds also for

negative correlations), R and Rmin decrease as the mobility

heterogeneity increases (as suggested in Table 2). In the rest

of the plots, the bounds and the corresponding simulated

values increase, demonstrating that the gain of the extra copies

diminishes under such conditions, and, thus, confirming our

qualitative results (Section 3.3). For example, in the bottom

plot (k = 4) of Fig. 3(a), we can see that the improvement

offered by the extra relays is at most 6× (since R = 1
1+L

= 1
6 )

for homogeneous network (CVλ = 0), while for CVλ > 2 the

extra gain is at most 1.25× (since R > 0.8); that is, even using

8. (i) kmin = 0 and kmin = 0.75 for the middle (CVλ = 1) and
bottom (CVλ = 2) plots in Fig. 3(b), respectively; and (ii) kmin = −1
and kmin = −0.25 for the middle (CVλ = 1) and bottom (CVλ = 2) plots
in Fig. 4(b), respectively.
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Fig. 4. P(src.) in scenarios with varying (a) mobility and
(b) traffic heterogeneity. Simulation results are denoted

with circles; the theoretical predictions of Result 1 (exact
predictions) with continuous lines; and the lower bounds

Pmin (Result 2) with dashed lines.

TABLE 3

Datasets Information

Dataset Nb of Nodes Contacts Traffic

Gowalla/Twitter (AU) 1004 Check-ins Tweets
(SF) 479

Strathclyde 24 Bluetooth Proximity Calls/SMS

5 relays will only marginally improve the delay. Similarly,

from Fig. 4(b) and for CVλ = 2, we can see that, while for

almost homogeneous traffic (k < 0.5) the probability of the

message being delivered through direct transmission, P(src.),

gets less than 40%, when traffic becomes very heterogeneous

(k ≥ 4), this probability is around 80%.

4.2 Real-World Networks

To further investigate the applicability of our results in

real-world networks, we conduct simulations on datasets

collected from online social networks (Gowalla / Twitter

dataset [13]) and a mobile phone usage experiment (Strath-

clyde dataset [36]). In the following discussion we present the

datasets, whose main features can be found also in Table 3.9

Gowalla / Twitter dataset

Gowalla was a location-based social network, where users

were able to check-in at ”spots” (bars, shops etc.) through their

mobile phones. In addition, a user could connect her Gowalla

account to her Twitter account. Hence, from this dataset, we

could retrieve information related both to nodes’ mobility

(Gowalla check-ins) and communication traffic (tweets).

Mobility: In this dataset, we consider as a contact event

the time when two users reside in the same ”spot” simulta-

neously10. The contact rates λij can be computed from the

9. Here, we need to stress that the selected datasets are not necessarily
characteristic examples of opportunistic networking; e.g., Gowalla is a very
sparse dataset in terms of node contacts, and phone calls (Strathclyde) is
not considered among the main opportunistic applications. However, they are
some of the few available datasets containing the type of data we needed (i.e.
both mobility and traffic information), and, thus, this was our best option for
a realistic validation.

10. Since Gowalla users only check in and do not check out, we cannot
infer directly this information. Therefore, following the methodology of [13],
we assumed that each user remains at a spot she visited for 1 hour.
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number of the contact events and the inter-contact time inter-

vals. Then, to incorporate this information in our model, we

fit the contact rates distribution fλ with a known probability

distribution f̂λ. Specifically, in the two cities, Austin (AU)

and San Francisco (SF), for which we have the most user

records (1004 and 479 nodes, respectively), the experimental

CCDF (complementary cumulative distribution function) of the

contact rates λij can be approximated by a straight line on a

log-log plot. This implies that fλ could be fitted with a Pareto

distribution, instead of the Gamma distribution assumed in

Section 3.2 and often observed in traces. Therefore, we use

here the expressions of Result 1, instead of Result 2.

Communication Traffic: As an indication for the commu-

nication traffic that two nodes would exchange in an oppor-

tunistic network, we use the number of tweets in which they

are both involved. Hence, for each pair {i, j} we set its traffic

rate τij equal to the number of tweets posted by i to j or

by j to i, i.e. τij = #tweetsij . Then, we approximate the

observed relation between traffic and contact rates (τij ∼ λij )

with a function τ̂ (x), in order to use it in our theoretical

expressions. We also investigate more possible correlations

between the opportunistic traffic (τij) and the Twitter traffic

(#tweets), by creating two additional scenarios where we set

τij =
√

#tweetsij and τij = (#tweetsij)
2. The approxima-

tive functions τ̂ (x) for each scenario are presented in Table 4,

where we can see τ̂ (x) being of type c · xk with k < 1.

Strathclyde dataset

The Strathclyde dataset was collected in an experiment, in

which 24 high school students were selected and given mod-

ified smartphones, which recorded proximity events (through

Bluetooth), calls and sms exchanged between the phone user

and the other participants.

Mobility: In this dataset the contact events were already

recorded and, thus, we did not have to preprocess the data as

in the Gowalla dataset. We followed the same methodology to

calculate the contact rates λij and fit their distribution with a

Gamma distribution, denoted as f̂λ.
Communication Traffic:We consider three scenarios, in each

of which we use a different communication traffic metric: (i)

total number of calls and sms, τij = #callsij +#smsij , (ii)
total duration of calls, τij = callT imeij, and (iii) total length

of sms (in characters), τij = smsLengthij . For each scenario,

we fit function τ̂ (x) as before, through the relation τij ∼ λij .

Simulations

In both datasets and for each traffic scenario, we generate

10000 messages at random time points, choosing each time

the source - destination pair according to the weights τij . We

TABLE 4

Fitting traffic functions for the Gowalla dataset

Scenarios: S1 S2 S3

τij
√

#tweetsij #tweetsij (#tweetsij)
2

τ̂(x) (AU) c · x0.6 c · x0.83 c · x0.79

τ̂(x) (SF) c · x0.31 c · x0.35 c · x0.37
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Fig. 5. Simulation results for R and P(src.) and theoreti-

cal predictions for homogeneous and heterogeneous (∗)
traffic scenarios on the datasets.

consider Direct Transmission and Spray and Wait routing [5]

with L = 2, 5, 10, 20 copies per message. In the analytical

expressions we use the fitted functions f̂λ(x) and τ̂ (x).

In Fig. 5 we present the simulation values for the ratio R and

the probability P(src.) (green/left bars), and the corresponding

theoretical predictions (yellow/right bars). We consider homo-

geneous and heterogenous (denoted with ∗) traffic scenarios in
the Gowalla/Twitter (AU and SF) and Strathclyde (St) datasets.

The first observation is that in all scenarios, for heterogeneous

traffic (i.e. scenarios denoted with ∗), the values of the

metrics R and P(src.) increase, compared to the corresponding

homogeneous scenarios. This shows that the relative gains of

relay-assisted schemes decrease with traffic heterogeneity, as

our theoretical results predict. Moreover, larger performance

differences predicted by our theory, are matched by larger per-

formance differences in the respective simulation scenarios as

well. For example, in the SF scenarios (middle bars in Fig. 5(a)

and Fig. 5(b)), the theoretical predictions for heterogeneous

traffic are slightly higher than for the homogeneous case; the

same holds also for the simulation results, where it can be seen

that R and P(src.) do not significantly increase with traffic

heterogeneity. On the other hand, in the St scenarios (right

bars in Fig. 5(a) and Fig. 5(b)), our results predict a higher

difference (between heterogeneous and homogeneous cases)

than before, which is also confirmed by the simulation results

where the performance effects are not negligible.

To further demonstrate to what extent our results can capture

the effect of traffic heterogeneity in real scenarios, in Table 5

we focus on the qualitative predictions of our theory, by

comparing a number of scenarios with different amounts of

heterogeneity to each other, for the Gowalla/Twitter dataset11.

Specifically, if the simulated performance improves from one

scenario to another, and so is the theoretical prediction, the

prediction is assumed to be correct and denoted with X.

“Incorrect” predictions are denoted with ×. For example, in

the scenarios AU-S1 and SF-S3 the simulation values for the

ratios R are R(AU−S1) = 0.89 and R(SF−S3) = 0.94, i.e.
R(AU−S1) < R(SF−S3). For the theoretical predictions it

holds also that R(AU−S1) = 0.64 < R(SF−S3) = 0.68 and,

thus, the prediction is assumed to be correct. The elements

11. We denote with S1, S2 and S3 the corresponding scenarios presented
in Table 4 and with HOM the scenarios with homogeneous traffic.
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TABLE 5
Comparison of predictions for the metrics R and P(src.)

between different scenarios on the Gowalla dataset

* R AU SF
P(src.) * HOM S1 S2 HOM S1 S3

HOM * X X X X X

AU S1 X * X X X X

S2 X X * × X X

HOM X X X * X X

SF S1 X X × X * X

S3 X X × X X *

above the diagonal refer to the ratio R, whereas the lower

triangular part refers to the probability P(src.) predictions.

It is evident that in the majority of the cases we consider,

the theoretical results can capture the relative changes in

network performance, even between different environments

(i.e. between AU and SF)12. The same conclusions can be

reached by the analysis in the Starthclyde dataset, in which

all the respective comparisons were found to be correct X.

5 EXTENSIONS

We have tried to present our results in the context of simple

schemes (e.g. unicast traffic, random relay selection), to keep

analysis tractable and illustrate key principles. In this section,

we discuss how our framework could be applied in some

additional cases. Although far from complete, we believe this

set of examples, further underlines the utility of our analysis.

5.1 Mobility-Aware Protocols

Mobility-aware schemes are often used to select good relays

for the intended replicas, rather than picking random ones,

e.g. [6], [7], [16], [37]. The selection of the relays is usually

based on their social or mobility characteristics. For instance,

in encounter-based routing (EBR) [16], the more frequently a

node i encounters node d, the higher the probability to become

a relay of a message destined to d.
The relay-selection mechanism in a number of proposed

mobility-aware protocols can be described as following:

Definition 3. The probability pi a node i to be selected as

a relay for a message destined to node d, is related to their

contact rate λid and this relation is described by a function

p(λid).

As an example, we present two protocols belonging to the

above class and their p(λ) functions: (a) a modified mobility-

aware version of spray and wait [5] protocol (we refer to it as

U1), and (b) a variation of the EBR [16] protocol (we refer to

it as U2), where each relay can hold only one message copy.

U1: A node i, which would be selected as a relay by the spray

and wait mechanism, under U1 becomes a relay with a

probability pi that is proportional to its contact rate with

the destination d, i.e. pi = p(λid) = c · λid, where c a

normalizing factor such as p(λ) ∈ [0, 1].

12. Differences in simulation and theoretical results between different
heterogeneous scenarios of the same traces, are very small (due to the dataset
limitations), and that is also the main reason for some × entries in Table 5.
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Fig. 6. P(src.) of mobility-aware routing in (a) synthetic

scenarios with varying mobility (CVλ) and traffic hetero-
geneity (k), and (b) real networks with homogeneous and

heterogeneous traffic.

U2: For each message copy, the source node s selects the relay
node i with a probability pi that is computed according

to the EBR mechanism, i.e. pi = p(λid) =
λid

λid+λsd
.

In the following corollary, we prove that our Results 1

and 2 can be simply modified and capture such mobility-aware

protocols as well. Corollary 1 follows from a similar analysis

as in Section 3, whose main analytical steps are described in

Section 8.5.

Corollary 1. Under a mobility-aware Relay-Assisted protocol

conforming to Definition 3, Results 1 and 2 are modified as:

Result 1: fR is given by the L-fold convolution of fu(λ), where

fu(x) =
1

E[p(λ)]
· p(x) · fλ(x)

Result 2: The number of copies L is multiplied by cu, where

cu =
E[λ · p(λ)]

E[λ] · E[p(λ)]

For instance, applying Corollary 1, the expression for the delay

ratio R, becomes

1 ≥ R ≥ Rmin =
1 + (k − 1) · CV 2

λ

1 + k · CV 2
λ + cu · L (4)

and for the U1 protocol presented above, cu is given by the

expression13:

c(U1)
u = 1 + CV 2

λ (5)

When mobility is highly heterogeneous (i.e. high CVλ),

c
(U1)
u becomes large, and thus Rmin and Pmin decrease

compared to the random replication mechanism (e.g. random

SnW). This confirms that the performance gain is larger when

mobility-aware protocols are used. However, even in this

case, as traffic heterogeneity increases, the performance gain

diminishes, i.e. Rmin, Pmin → 1.
We further demonstrate some preliminary simulation results

suggesting that our conclusions hold also for mobility-aware

routing. We use the U2 protocol presented above. In Fig. 6(a)

we present simulation results for the delivery metric P(src.)

13. An expression for cu in the case of the U2 protocol could also be
derived, albeit with more complexity, due to the fact that the function p(λ)
involves the source destination contact rate λsd as well.
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Fig. 7. Delay ratio R in two scenarios with varying traffic

heterogeneity k. Relay-assisted routing is SimBet with (a)
L = 5 and (b) L = 10 message copies.

on synthetic scenarios with varying mobility (CVλ) and traffic

(k) heterogeneity. Similarly to the random replication case, for

increasing heterogeneity (in mobility and/or traffic) the gain of

the extra copies clearly decreases (i.e. P(src.) increases) under

mobility-aware schemes. In Fig. 6(b) we compare the probabil-

ity P(src.) of scenarios with and without traffic heterogeneity

in real networks. As before, the results are consistent with our

theory: the gain of extra copies decreases even for protocols

using more sophisticated techniques for relay selection.

Routing based on Contact Graph Structure

A number of mobility-aware routing schemes, e.g. SimBet [7],

BubbleRap [6], are based on the structure of the contact

graph (centrality, similarity, communities, etc.) rather than the

pairwise contact rates. A direct mapping to a function p(λ) for
these protocols requires a separate, and rather cumbersome

analysis for each such protocol, in most cases not leading

to a closed form expression (see, e.g. [12]). However, the

contact graphs used to make forwarding decisions by these

more sophisticated protocols, still are built based on pair-wise

contact rates [38]. We thus expect the utility of such mobility-

related information to be similarly affected by the amount of

traffic heterogeneity and its relation to mobility patterns.

To test this further, we simulated, as an example, scenar-

ios using the SimBet protocol [7]14. In Fig. 7 we present

the simulation results (continuous lines) for the ratio R =
E[TSimBet]

E[TDT ] and the theoretical predictions Rmin of Eq. (4),

for different values of the cu parameter (dashed lines). Two

main observations that confirm our intuition are: (i) simulated

and theoretical curves increase in a similar manner, and (ii)

one can find (numerically) the value cu that more accurately

predicts the performance.

Although this is clearly not conclusive for the applicability

of our result to every mobility-aware scheme, we believe it

helps to corroborate our findings for the interplay between

mobility and traffic heterogeneity on protocol performance.

5.2 Multicast Communication

We have also been assuming unicast messages between a

{s, d} pair. However, our results apply also to multicast [17]

14. For the contact graph we considered the 10% most frequently meeting
pairs following the guidelines of [38], we set the similarity and betweenness
weights α = β = 0.5 [7], and we generated multiple copies as in [39].

TABLE 6
Multicast Communication

CVλ 0.1 0.5 1 1.5 2
HOM R 0.18 0.12 0.01 0 0

P(src.) 0.01 0.01 0.01 0.01 0.01
HET R 0.18 0.26 0.39 0.52 0.61

P(src.) 0.01 0.03 0.12 0.26 0.41

or anycast (e.g. content sharing or service composition ap-

plications) [2] messages from s, with d being one of the

destinations, since similar mechanism are often used for their

dissemination. To demonstrate this, in Table 6 we present sim-

ulation results for two multicast scenarios, with homogeneous

(HOM) and heterogeneous (HET) traffic (τ(x) = c ·x4), under

varying mobility heterogeneity. A source sends messages to 5
destinations (each selected with a probability ∝ τij ) either by
Direct Transmission or by Relay-Assisted routing with L = 5
copies. As delivery delay, we consider the delay till all the

destinations get the message. It is evident that R and P(src.) (i)

increase significantly with mobility heterogeneity when traffic

is heterogeneous, and (ii) become much larger compared to the

homogeneous case (whereR decreases and P(src.) is constant),

which is in agreement with our results.

6 RELATED WORK

Useful implications for opportunistic networking have arisen

from the investigation of mobility/social ties and social

ties/communication traffic correlations, which have been stud-

ied extensively and under different disciplines, like anthro-

pology [29], sociology [28], social media [25] or pervasive

social networks [10]. For example, [25] shown that the amount

of exchanged communication traffic between users of OSNs

depends on their social relationships.

On the other hand, the communication traffic / mobility

correlation has not been given similar attention. There exist

only a few works [13], [14] studying it in a framework

relevant to opportunistic networking. In [13], Hossmann et

al. collected and analysed two datasets from online social

networks (Facebook and Gowalla / Twitter), and investigated

the relations among three dimensions: mobility, social ties,

communication traffic. With respect to our study, they found

that there is strong dependence between mobility and traffic,

and, specifically, node pairs that contact during the experi-

ments’ duration, communicate with higher probability than

the other pairs. Correspondingly, authors in [14] analysed a

massive dataset of Call Detail Records (CDRs) of 6 million

users and shown a positive correlation between the mobility

and communication traffic patterns. Not only they shown that

the higher the contact rate (λij ) of a node pair is, the higher the

probability that the nodes communicate intensively, but also

found that information inferred by the mobility patterns can

work as a good predictor for future communication events.

However, despite the fact that [13], [14] show clearly that

communication traffic is heterogeneous (and correlated to

mobility), to our best knowledge, its effects on communication

performance have not been studied previously.
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Finally, with respect to our results and the insights ob-

tained from them, it has already been observed [37], [40]

that realistic mobility patterns (e.g. locality, community) can

hurt the performance of Relay-Assisted routing (especially

simple, random protocols [5]). However, this is a performance

degradation that is due to the relays being too similar to the

source (e.g. all in the same community [37] or with com-

mon characteristics [40]). Instead, the relative performance

degradation here comes due to the source and relays being too

different in terms of their encounter rates with the destination.

7 CONCLUSIONS

Motivated by (i) recent findings indicating heterogeneous

traffic patterns in mobile social networks and (ii) the lack of

related studies, in this paper, we modelled traffic heterogeneity

and studied how it affects the performance in opportunistic net-

working. We found that the effects can be significant, changing

our understanding of common design principles, such as the

added value of relays. Despite the fact that some of our

qualitative conclusions seem to be rather intuitive, they have

not attracted any focus in previous studies, where performance

analysis of communication schemes is conducted assuming

homogeneous traffic. This indicates a necessity for revisiting

the evaluation of protocols in scenarios that entail diversity in

the traffic exchanged between nodes. Moreover, our results

have some interesting implications about the usefulness of

opportunistic networking for various applications.

We believe that our study provides an initial understand-

ing on the effects of traffic heterogeneity. However, traffic

patterns in real networks might have much more complex

characteristics than what can be captured by our framework,

e.g. time-dependent traffic/mobility correlations. Therefore, for

a more complete characterisation of traffic demands in oppor-

tunistic networking (either for end-to-end or content-centric

applications [2], [3]), we believe that further experimental

(e.g. measurements, recognition of traffic patterns in available

datasets, etc.) and analytical research is needed.

8 PROOFS OF THEORETICAL RESULTS

8.1 Proof of Proposition 1

Proof: Consider a network N with N nodes. Let dλ =
O
(

1
N

)

, and define the set of nodes with contact rate λij ∈
[λ, λ+ dλ):

N (λ) = {{i, j} : i, j ∈ N , λ ≤ λij < λ+ dλ},
The total number of messages generated per time unit between

pairs ∈ N (λ) is equal to

T (λ) =
∑

{i,j}∈N (λ) τij (6)

where τij in the sum are i.i.d. random variables with mean

τ(λ). Then, the probability that the contact rate λsd, between

the source and the destination of a randomly selected message,

is in [λ, λ+ dλ), is given by

P{λ ≤ λsd < λ+ dλ} =
T (λ)∑
i

∑
j τij

=

∑
{i,j}∈N (λ) τij∑

i

∑
j τij

(7)

We can express Eq. (7) as following:

P{λ ≤ λsd < λ+ dλ} =
T (λ)

‖N (λ)‖
·

‖N (λ)‖

N(N − 1)/2
·
N(N − 1)/2∑

i

∑
i
τij

where ‖ ·‖ denotes the cardinality of a set and
N(N−1)

2 is the

total number of node pairs in a network with N nodes. Let us

further denote:

X1 =
T (λ)

‖N (λ)‖ , X2 =
‖N (λ)‖

N(N − 1)/2
, X3 =

∑

i

∑

i τij
N(N − 1)/2

Applying the weak law of large numbers [41], it holds that

for a large network15

X1
p→ τ(λ) and X2

p→ fλ(λ) (8)

where
p→ denotes convergence in probability.

Also, X3 corresponds to the sample average of τij over

all disjoints sets N (λ). Thus, applying Cramér’s theorem

(Theorem 6.5 in [41])16 and using the convergence expressions

of Eq. (8), we can get

X3
p→
∫∞

0
τ(y)fλ(y)dy = E[τ(λ)] = C

Similarly, using Cramér’s theorem, it can be shown that the

expression X1 ·X2 · 1
X3

converges too, i.e.

X1 ·X2 ·
1

X3

p→ τ(λ) · fλ(λ) ·
1

C

Finally, denoting the probability density function of the source-

destination contact rate λsd as fτ (λ), i.e. P{λ ≤ λsd < λ +
dλ} = fτ (λ)dλ gives us the desired result.

8.2 Proof of Result 1

8.2.1 Delay Ratio, R

Proof: Let Isd(t) be an indicator random variable that is

equal to 1 if nodes s and d are within transmission range at

time t, and 0 otherwise. Let further Tsd denote the random

inter-contact time between node pair {s, d}:
Tsd = inf{t > 0 : Isd(0) = 1, Isd(0

+) = 0, Isd(t) = 1}.
Since we have assumed that contact duration is negligible

(Assumption 3 of Def.1), the contact process is essentially

a point process, and the above could be simplified to Tsd =
inf{t > 0 : Isd(0) = 1, Isd(t) = 1}.
Assume now that end-to-end messages between {s, d} are

generated at random times and independently from the contact

process. If TDT denotes the delay of directly transmitting a

message from s to d, and the contact rate between s and d
is λsd = x, then one can use renewal-reward theory [42] to

show that

E[TDT |λsd = x] = E[T
(e)
sd |λsd = x] =

1

x
.

That is, the expected delay of direct transmission is equal to

the mean of the residual (or excess) inter-contact time T
(e)
sd ,

which is an exponential variable with the same rate x.

15. When N → ∞, then dλ = O
(

1
N

)

→ 0, and ‖N (λ)‖ =

O
(

N(N−1)
2

dλ
)

= O (N) → ∞.

16. Equivalently, one could use here the Continuous Mapping Theorem.
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Using the property of conditional expectation and the dis-

tribution of λsd (Proposition 1) we can get:

E[TDT ] =

∫ ∞

0

E[TDT |λsd = x]fτ (x)dx =

∫ ∞

0

1

x
fτ (x)dx

=
1

C

∫ ∞

0

τ(x)

x
fλ(x)dx =

1

E[τ(λ)]
· E

[

τ(λ)

λ

]

(9)

Assume now that the same messages, between {s, d} are

routed using Relay-Assisted routing, with L message copies

given to L relays. Let T ∗
R denote the total delay to deliver

a message using Relay-Assisted routing, TR the remaining

delay after all L copies have been distributed, Tfwd the time

to distribute the L copies to the L relays, and pfwd = P (T ∗
R <

Tfwd) the probability that the message is delivered to the

destination before L relay nodes have been found.

Since relays are selected randomly (e.g. [5]), pfwd = L
N

→
0 for L ≪ N . Similarly, if L2 ≪ N ,

Tfwd

TR
→ 0 [5]. We can

thus focus only on TR, the time after L relays have received

a copy.

Denote now with L the set of selected relays. Using a

similar argument as in the direct transmission case, and

Assumption 1 of Def.1 we can easily show that,

TR ≡ min
i∈L∪{s}

Tid ∼ exp(Xr)

Xr = λsd +
∑

i∈L λid = λsd +XR

where XR =
∑

i∈L λid, and the expected value of TR will be

E[TR] =
1

Xr

=
1

λsd +XR

, (10)

where λsd ∼ fτ (Proposition 1) and XR ∼ fR = f
(∗L)
λ , the

L-fold convolution of fλ.
Then, from Eq. (10) and using the property of conditional

expectation, we find:

E[TR] =

∫ ∞

0

∫ ∞

0

E [TR|λsd = x,XR = y] fτ (x)dxfR(y)dy

=

∫ ∞

0

∫ ∞

0

1

x+ y
· fτ (x)dx · fR(y)dy

=
1

E[τ(λ)]

∫ ∞

0

∫ ∞

0

τ(x)

x+ y
· fλ(x)dx · fR(y)dy (11)

where in the last equality we substituted the expression for fτ
from Proposition 1.

Finally, dividing Eq. (11) with Eq. (9) gives the expression

of Result 1 for the delay ratio R.

8.2.2 Source Delivery Probability, P(src.)

Proof: Using similar arguments and notation as above,

the event of the message delivery by the source is equivalent

to the destination contacting the source before any other relay.

Then, P(src.) ≡ P{Tsd < Tr−d} (where Tr−d =

mini∈L{Tid}), will be given by the ratio λsd

λsd+XR
[42]. Con-

ditioning on the the rates λsd and XR, we can write

P(src.) ≡ P{Tsd < Tr−d} =

=

∫ ∞

0

∫ ∞

0

P{Tsd < Tr−d|λsd = x,XR = y}fτ(x)dxfR(y)dy

=

∫ ∞

0

∫ ∞

0

x

x+ y
· fτ (x)dx · fR(y)dy

and substituting fτ (x) from Proposition 1 gives

P(src.) =

∫ ∞

0

∫ ∞

0

x

x+ y
· τ(x)

E[τ(λ)]
· fλ(x)dx · fR(y)dy

which is equal to the expression for P(src.) in Result 1.

8.3 Proof of Result 2

8.3.1 Delay Ratio, R

Proof: The expression for the delay ratio R of Result 1

can be written as

R =
1

E
[

τ(λ)
λ

] ·
∫ ∞

0

ER

[

1

x+ y

]

· τ(x) · fλ(x)dx (12)

where the expectation ER[·] is taken over fR. Using Jensen’s

inequality17 for the function h(y) = 1
x+y

, we get:

ER

[

1

x+ y

]

≥ 1

x+ ER[y]
(13)

where ER[y] is given by (as the expectation of a sum of L
i.i.d. random variables with expectation µλ) [42]:

ER[y] = E[XR] = E

[

∑

i∈L

λid

]

= L · µλ (14)

Hence, using Eq. (13) and Eq. (14) in Eq. (12), we get

R ≥ 1

E
[

τ(λ)
λ

] ·
∫ ∞

0

τ(x)

x+ L · µλ

· fλ(x)dx

=
1

E
[

τ(λ)
λ

] · E
[

τ(λ)

λ+ L · µλ

]

(15)

Now, Eq. (15), for τ(x) = c · xk, is written as

R ≥ 1

E[λk−1]
· E

[

λk

λ+ L · µλ

]

(16)

The expectations in Eq. (16) are taken over the contact

rates’(Gamma) distribution, whose general form is [42]

fλ(x) =
βα

Γ(α)x
α−1e−βx

where α > 0 is the shape parameter, β > 0 the rate parameter.

Its mean value and variance are given by µλ = α
β
and σ2

λ =
α
β2 , respectively, and, equivalently, we can write

α = 1/CV 2
λ , β = 1/

(

µλ · CV 2
λ

)

(17)

To calculate Eq. (16), first we find an expression for E[λk−1]:

E[λk−1] =

∫ ∞

0

xk−1fλ(x)dx =

∫ ∞

0

xk−1 βα

Γ(α)
xα−1e−βxdx

=
Γ(k − 1 + α)

Γ(α)

1

βk−1

∫ ∞

0

βk−1+α

Γ(k − 1 + α)
x(k−1+α)−1e−βxdx

=
Γ(k − 1 + α)

Γ(α)

1

βk−1
(18)

where the integral in the second line is equal to 1 because

the integrated function is the pdf of a Gamma distribution with

17. Jensen’s inequality for a convex function h(x): E[h(x)] ≥ h (E[x]).
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parameters α
′

= k − 1 + α (it must hold that α
′

> 0, which
means that k > 1− α = 1− 1

CV 2
λ

) and β
′

= β.

Similarly to the derivation of Eq. (18), it can be shown that

E

[

λk

λ+ L · µλ

]

=

=
Γ(k + α)

Γ(α)

1

βk
·

∫ ∞

0

1

x+ L · µλ

βk+α

Γ(k + α)
xk+α−1e−βxdx

=
Γ(k + α)

Γ(α)

1

βk
·Eλ′

[

1

λ′ + L · µλ

]

(19)

where λ′ follows a Gamma distribution with parameters α′ =
k + α and β′ = β. Since the function g(x) = 1

x+c
is convex,

we can apply Jensen’s inequality to Eq. (19) and get

E

[

λk

λ+ L · µλ

]

≥
Γ(k + α)

Γ(α)

1

βk
·

1

E[λ′] + L · µλ

=
Γ(k + α)

Γ(α)

1

βk
·

1
k+α
β

+ L · µλ

(20)

where we substituted E[λ′] = α′

β′
= k+α

β
.

Thus, from Eq. (18) and Eq. (20), it holds for R (Eq. (16)):

R ≥ Γ(k+α)
Γ(k−1+α) · 1

β
· 1

k+α
β

+L·µλ

and because of the Gamma function’s property Γ(z + 1) =
z · Γ(z), we can write

R ≥ k−1+α
β

· 1
k+α
β

+L·µλ

(21)

and Eq. (2) follows easily by substituting α and β from

Eq. (17) to Eq. (21).

8.3.2 Source Delivery Probability, P(src.)

Proof: Using the same notation, the expression for the

delivery probability P(src.) of Result 1 can be written as

P(src.) =
1

E[τ(λ)]
·
∫ ∞

0

ER

[

x · τ(x)
x+ y

]

· fλ(x)dx (22)

and applying Jensen’s inequality as in Eq. (13), we get

P(src.) ≥
∫ ∞

0

x · τ(x)
x+ L · µλ

· fλ(x)dx

=
1

E[τ(λ)]
·E

[

λ · τ(λ)
λ+ L · µλ

]

(23)

Now, setting τ(x) = c · xk in Eq. (23), gives

P(src.) ≥
1

E[λk]
· E

[

λk+1

λ+ L · µλ

]

(24)

Using Eq. (18) - Eq. (20) (where instead of k we consider

k + 1), the result for P(src.) follows similarly as before.

8.4 Mobility Independent Heterogeneous Traffic

Heterogeneous communication traffic patterns that are inde-

pendent of the underlying mobility, can be captured by the

following definition (with respect to Def. 2).

Definition 4 (Mobility Independent Heterogeneous Traffic).

The end-to-end traffic demand (per time unit) between a pair

of nodes {i, j}, is a random variable τij , with finite mean

value E[τij ] = µτ , µτ ∈ (0,∞).

Then, under Def. 4, Lemma 1 states that the effective

contact rate between sources and destinations (λsd ∼ fτ (λ))
is not different than the contact rate between a randomly

chosen pair of nodes (λij ∼ fλ(λ)). Therefore, it follows

evidently that neither the average communication performance

will be affected by traffic heterogeneity, when it is mobility

independent.

Lemma 1. The probability density function fτ of the contact

rate between the source and the destination {s, d} of a random
message, in a network following Definitions 1 and 4, converges

in probability as follows:

fτ (x)
p→ fλ(x)

Proof: Let us consider the same notation and methodol-

ogy as in the proof of Proposition 1. The key difference is that

now (under Def. 4), the mean value of the random variables

τij is µτ (i.e. independent of mobility). Thus, it holds that for

a large network (weak law of large numbers)

X1 =
T (λ)

‖N (λ)‖
p→ µτ and X3 =

∑

i

∑

i τij
N(N − 1)/2

p→ µτ

Then, applying Cramér’s theorem, gives

X1 ·X2 ·
1

X3

p→ µτ · fλ(λ) ·
1

µτ

= fλ(λ)

which proves the Lemma.

8.5 Mobility Aware Protocols - Proof of Corollary 1

Since the relay selection is mobility dependent, the contact

rates between relays and destinations will not be distributed

with fλ. Following similar arguments as in the proof of

Proposition 1 (Section 8.1), it can be shown that for mobility-

aware protocols that follow the model presented in Section 5,

Lemma 2 holds.

Lemma 2. The contact rate between a relay and the desti-

nation of a random message, under mobility-aware routing,

converges in probability as follows:

fu(x)
p→ 1

E[p(λ)]
· p(x) · fλ(x) (25)

where E[p(λ)] =
∫∞

0 p(x)fλ(x)dx

Using Lemma 2, Results 1 and 2 are modified as following:

Result 1: The function fR used in Result 1 (see also

Eq. (10)-Eq. (11) in its proof) will be now the L-fold con-

volution of fu(λ) (rather than fλ), i.e. fR = f
(∗L)
u .

Result 2: Since fR = f
(∗L)
u , the mean value ER[y] (see

Eq. (14)) will be given now by

ER[y] = L ·Eu[y] = L ·
∫ ∞

0

y · fu(y)dy (26)

Substituting fu from Eq. (25) to Eq. (26), gives

ER[y] = L ·
∫ ∞

0

y · p(y)

E[p(λ)]
·fλ(y)dy = L ·E[λ · p(λ)]

E[p(λ)]
(27)

where the expectations are taken over fλ.
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Comparing Eq. (14) and Eq. (26), it is easy to see that one

need to replace the term L · µλ with a term L · E[λ·p(λ)]
E[p(λ)] =

cu · L · µλ, where

cu =
E[λ · p(λ)]
µλ ·E[p(λ)]

=
E[λ · p(λ)]

E[λ] ·E[p(λ)]
(28)
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exponential decay of inter contact times between mobile devices,” in
Proc. ACM MobiCom, 2007.

[21] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on the design of opportunistic forwarding
algorithms,” in Proc. IEEE INFOCOM, 2006.

[22] C. Boldrini, M. Conti, and A. Passarella, “Less is more: Long paths do
not help the convergence of social-oblivious forwarding in opportunistic
networks,” in Proc. ACM MobiOpp, 2012.

[23] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling
of epidemic routing,” Computer Networks, vol. 51, no. 10, pp. 2867–
2891, 2007.

[24] Y. Kim, K. Lee, N. B. Shroff, and I. Rhee, “Providing probabilistic
guarantees on the time of information spread in opportunistic networks,”
in IEEE INFOCOM, 2013.

[25] E. Gilbert and K. Karahalios, “Predicting tie strength with social media,”
in Proc. CHI, 2009.
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