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Abstract—In ISIT 2012 Brahma, Özgür and Fragouli conjec-
tured that in a half-duplex diamond relay network (a Gaussian
noise network without a direct source-destination link and with N
non-interfering relays) an approximately optimal relay schedul-
ing (achieving the cut-set upper bound to within a constant gap
uniformly over all channel gains) exists with at most N + 1
active states (only N + 1 out of the 2N possible relay listen-
transmit configurations have a strictly positive probability). Such
relay scheduling policies are said to be simple. In ITW 2013 we
conjectured that simple relay policies are optimal for any half-
duplex Gaussian multi-relay network, that is, simple schedules
are not a consequence of the diamond network’s sparse topology.
In this paper we formally prove the conjecture beyond Gaussian
networks. In particular, for any memoryless half-duplex N -relay
network for which the cut-set bound is approximately optimal
to within a constant gap under some conditions (satisfied for
example by Gaussian networks), an optimal schedule exists with
at most N + 1 active states. The key step of our proof is to
write the minimum of a submodular function by means of its
Lovász extension and use the greedy algorithm for submodular
polyhedra to highlight structural properties of the optimal
solution. This, together with the saddle-point property of min-
max problems and the existence of optimal basic feasible solutions
in linear programs, proves the claim.

I. INTRODUCTION

Adding relaying stations to today’s cellular infrastructure
promises to boost both coverage and network throughput.
Although higher performances could be attained with Full-
Duplex (FD) relays, due to practical restrictions, such as the
inability to perfectly cancel the self-interference, currently
employed relays operate in Half-Duplex (HD).

This paper studies a general memoryless multi-relay net-
work, where the communication between a source and a
destination is assisted by N relays operating in HD mode. The
capacity of this network is not known in general. In [1] we
showed that Noisy Network Coding (NNC) [2] achieves the
cut-set upper bound [3] to within 1.96 (N + 2) bits per chan-
nel use for a general Gaussian noise multi-relay network, uni-
versally over all channel gains, thus improving on previously
known constant gap results. In general, finding the capacity
of a HD multi-relay network is a combinatorial problem since
the cut-set upper bound is the minimum between 2N bounds
(one for each possible cut in the network), each of which
is a linear combination of 2N relay states (since each relay
can either transmit or receive). Thus, as the number of relays
increases, optimizing the cut-set bound becomes prohibitively
complex. Identifying structural properties of the cut-set upper
bound, or of a constant gap approximation of the cut-set upper

bound, is therefore critical for efficient numerical evaluations
and can have important practical consequences for the design
of reduced complexity / simple relaying policies.

In [4], the authors analyzed the Gaussian HD diamond
relay network, a multi-relay network without a direct source-
destination link, with N = 2 non-interfering relays and
proved that at most N + 1 = 3 states, out of the 2N = 4
possible ones, suffice to characterize the capacity to within
a constant gap. We say that these N + 1 states are active
and form an (approximately optimal) simple schedule. In [5],
Brahma et al verified through extensive numerical evaluations
that in Gaussian HD diamond networks with N ≤ 7 relays
an optimal (to within a constant gap) schedule has at most
N + 1 active states and conjectured this to be true for
any N . In [6], Brahma et al’s conjecture was proved for
Gaussian HD diamond networks with N ≤ 6 relays; the
proof is based on certain properties of submodularity and
on linear programming duality; the proof technique does not
appear to easily generalize to an arbitrary N . Our numerical
experiments in [1] showed that Brahma et al’s conjecture
on the existence of optimal simple schedules for diamond
HD relay networks extends to any Gaussian HD multi-relay
network (i.e., not necessarily with a diamond topology) with
N ≤ 8; we conjectured that the same holds for any N . Should
our more general version of Brahma et al’s conjecture be true,
then Gaussian HD multi-relay networks have optimal simple
schedules irrespectively of their topology. In [1] we also
discussed polynomial time algorithms to determine the optimal
simple schedule and extensions beyond relay networks.

Related works on determining the optimal relay scheduling,
but not focused on characterizing the minimum number of
active states, are available in the literature. For example [7]
studied an iterative algorithm to determine the optimal sched-
ule when the relays use decode-and-forward. In [8] the au-
thors proposed a ‘grouping’ technique to compute the relay
schedule that maximizes the approximate capacity of certain
Gaussian HD relay networks; because finding a good node
grouping is computationally complex, the authors proposed a
heuristic approach based on tree decomposition which results
in polynomial time algorithms; as for diamond networks in [5],
the low-complexity algorithm of [8] relies on the ‘simplified’
topology of certain networks. As opposed to these works, we
prove that a linear number of states is sufficient to determine
an optimal schedule regardless of the network topology. We
also note that in [9], FD relay networks were studied and that



“under the assumption of independent inputs and noises, the
cut-set bound is submodular” [9, Theorem 1], a result that
we shall use in the derivation of our main result.

The main result of this paper is a formal proof of Brahma et
al’s conjecture beyond the Gaussian noise case. In particular,
we prove that for any HD network with N relays for which the
cut-set bound is approximately optimal to within a constant
gap under some conditions (precisely stated in Theorem 1)
the optimal relay policy is simple. The key idea is to use the
Lovász extension and the greedy algorithm for submodular
polyhedra to highlight structural properties of the minimum
of a submodular function. Then, by using the saddle-point
property of min-max problems and the existence of optimal
basic feasible solutions for Linear Programs (LPs), an (ap-
proximately) optimal relay policy with the claimed number of
active states can be shown. A polynomial time algorithm to
find the optimal simple relay schedule is also discussed.

The rest of the paper is organized as follows. Section II
describes the general memoryless HD multi-relay network.
Section III summarizes some known results for submodular
functions and LPs and then proves the main result. Finally,
Section IV concludes the paper.

II. SYSTEM MODEL

A memoryless relay network has one source (node 0), one
destination (node N+1), and N relays (indexed from 1 to N ).
It consists of N+1 input alphabets (X1, · · · ,XN ,XN+1) (here
Xi is the input alphabet of node i except for the source / node 0
where, for notation convenience, we use XN+1 rather than X0),
N + 1 output alphabets (Y1, · · · ,YN ,YN+1) (here Yi is the
output alphabet of node i), and a memoryless channel transi-
tion probability PY[1:N+1]|X[1:N+1]

. Codes, achievable rates and
capacity are defined in the usual way (see for example [1]).

In this general memoryless framework, each relay can listen
and transmit at the same time, i.e., it is a FD node. HD
channels are a special case of the memoryless FD framework
in the following sense [10]. With a slight abuse of notation
compared to the previous paragraph, we let the channel input
of the k-th relay, k ∈ [1 : N ], be the pair (Xk, Sk),
where Xk ∈ Xk as before and Sk ∈ [0 : 1] is the state
random variable that indicates whether the k-th relay is in
receive-mode (Sk = 0) or in transmit-mode (Sk = 1). In
the HD case the channel transition probability is specified
as PY[1:N+1]|X[1:N+1],S[1:N]

. In particular, when the k-th relay,
k ∈ [1 : N ], is listening (Sk = 0) the outputs are independent
of Xk, while when the k-th relay is transmitting (Sk = 1) its
output Yk is independent of all other random variables.

The capacity C of the HD multi-relay network is not known
in general, but can be upper bounded by the cut-set bound 1

C ≤ max
PX[1:N+1],S[1:N]

min
A⊆[1:N ]

I
(rand)
A , where (1)

I
(rand)
A := I (XN+1, XAc , SAc ;YN+1, YA|XA, SA) (2)

1For notation convenience, we refer to A as the set that contains the relays
which are in the cut of the destination / node N + 1.

≤ H(SAc) + I
(fix)
A , (3)

I
(fix)
A := I

(
XN+1, XAc ;YN+1, YA|XA, S[1:N ]

)
(4)

=
∑

s∈[0:1]N
λs fs(A), for λs := P[S[1:N ] = s] and (5)

fs(A) := I
(
XN+1, XAc ;YN+1, YA|XA, S[1:N ] = s

)
. (6)

In the following, we use interchangeably the notation s ∈ [0 :
1]N to index all possible binary vectors of length N , as well
as, s ∈ [0 : 2N − 1] to indicate the decimal representation
of a binary vector of length N . I(rand)

A in (2) is the mutual
information across the network cut A ⊆ [1 : N ] when a
random schedule is employed, i.e., information is conveyed
from the relays to the destination by switching between listen
and transmit modes of operation at random times [10] (see
the term H(SAc) ≤ |Ac| ≤ N in (3), which implies that
a fixed schedule is optimal to within N bits). I(fix)

A in (4)
is the mutual information with a fixed schedule, i.e., the time
instants at which a relay transitions between listen and transmit
modes of operation are fixed and known to all nodes in the
network [10] (see the term S[1:N ] in the conditioning in (4)).

III. MAIN RESULT

We next consider networks for which the following holds:
there exists a product input distribution

PX[1:N+1]|S[1:N]
=

∏
i∈[1:N+1]

PXi|S[1:N]
(7a)

for which we can evaluate the set function I(fix)
A in (4) for all

A ⊆ [1 : N ] and bound the capacity as

C′ − G1 ≤ C ≤ C′ + G2, : C′ := max
PS[1:N]

min
A⊆[1:N ]

I
(fix)
A , (7b)

with G1 and G2 being non-negative constants that may depend
on N but not on the channel transition probability. In other
words, we concentrate on networks for which using indepen-
dent inputs and a fixed relay schedule in the cut-set bound
provides both an upper bound, to within G2 bits, and a lower
bound, to within G1 bits, on the (unknown) capacity C.

For example, for a general Gaussian multi-relay network
with independent noises, fixed schedules and independent
Gaussian inputs are optimal to within G1 + G2 ≤ 1.96(N +
2) bits universally over all channel gains [1]. In [1] we
conjectured that the optimal schedule in this case would be a
simple one, i.e., the optimal probability mass function PS[1:N]

in (7b) is such that at most N+1 entries have a strictly positive
probability. This paper proves that not only is the conjecture
true for the Gaussian noise case, but it also holds in more
generality. The main result of the paper is:

Theorem 1. Under the assumptions in (7) and of

PY[1:N+1]|X[1:N+1],S[1:N]
=

∏
i∈[1:N+1]

PYi|X[1:N+1],S[1:N]
, (7c)

i.e., “independent noises”, and if the functions in (6) are not
a function of

{
λs, s ∈ [0 : 1]N

}
, i.e., they can depend on the

state s but not on the λs, then simple relay policies are optimal



in (7b), i.e., the optimal probability mass function PS[1:N]
has

at most N + 1 non-zero entries / active states.

We first summarize some properties of submodular func-
tions and LPs in Section III-A, we then prove Theorem 1
in Section III-B, we discuss the computational complexity of
finding optimal simple schedules in Section III-C and conclude
with an example of a network with N = 2 relays in order to
illustrate some of the steps in the proof in Section III-D.

A. Submodular Functions, LPs and Saddle-point Property

The following are standard results in submodular function
optimization [11] and LPs [12].

Definition 1 (Submodular function, Lovász extension and
greedy solution for submodular polyhedra). A set-function
f : 2N → R is submodular if and only if, for all subsets
A1,A2 ⊆ [1 : N ], we have f (A1)+f (A2) ≥ f (A1 ∪ A2)+
f (A1 ∩ A2)

2. Note that submodular functions are closed
under non-negative linear combinations.

For a submodular function f such that f(∅) = 0, the Lovász
extension is a function defined as

f̂ (w) := max
x∈P (f)

wTx, ∀w ∈ RN+ , (8)

where P (f) is the submodular polyhedron defined as

P (f) :=

{
x ∈ RN :

∑
i∈A

xi ≤ f(A), ∀A ⊆ [1 : N ]

}
.

The optimal x in (8) can be found by the greedy algorithm
for submodular polyhedra and has components

xπi = f ({π1, . . . , πi})− f ({π1, . . . , πi−1}) ,∀i ∈ [1 : N ],

where π is a permutation of [1 : N ] such that the weights
w ∈ RN+ are ordered as wπ1

≥ wπ2
≥ . . . ≥ wπN . Note that

the Lovász extension is a piecewise linear convex function.

Proposition 2 (Minimum of submodular functions). Let f be
a submodular function such that f(∅) = 0 and f̂ its Lovász
extension. The minimum of the submodular function satisfies

min
A⊆[1:N ]

f (A) = min
w∈[0:1]N

f̂ (w) = min
w∈[0,1]N

f̂ (w) ,

i.e., f̂ (w) attains its minimum at a vertex of [0, 1]N .

Definition 2 (Basic feasible solution). Consider the LP

maximize cTx
subject to Ax ≤ b x ≥ 0,

where x ∈ Rn is the vector of unknowns, b ∈ Rm and c ∈ Rn
are vectors of known coefficients, and A ∈ Rm×n is a known
matrix of coefficients. If m < n, a solution for the LP with at
most m non-zero values is called a basic feasible solution.

Proposition 3 (Optimality of basic feasible solutions). If
a LP is feasible, then an optimal solution is at a ver-
tex of the (non-empty and convex) feasible set S =

2A set-function f is supermodular if and only if −f is submodular, and it
is modular if it is both submodular and supermodular.

{x ∈ Rn : Ax ≤ b,x ≥ 0}. Moreover, if there is an optimal
solution, then an optimal basic feasible solution exists as well.

Proposition 4 (Saddle-point property). Let φ(x, y) be a func-
tion of two vector variables x ∈ X and y ∈ Y . By the minimax
inequality we have

d? := max
y∈Y

min
x∈X

φ (x, y) ≤ min
x∈X

max
y∈Y

φ (x, y) := p?,

and equality holds, i.e., p? = d?, if the following holds: (i) X
and Y are both convex and one of them is compact; (ii) φ (x, y)
is convex in x and concave in y; (iii) φ (x, y) is continuous.

B. Proof of Theorem 1

The objective is to show that simple relay policies are
optimal in (7b). The proof consists of the following steps:

1) We first show that the function I
(fix)
A defined in (4) is

submodular under the assumptions in (7).
2) By using Proposition 2, we show that the problem in (7b)

can be recast into an equivalent max-min problem.
3) With Proposition 4 we show that the max-min problem

is equivalent to solve a min-max problem. The min-
max problem is then shown to be equivalent to solve
N ! max-min problems, for each of which we obtain an
optimal basic feasible solution by Proposition 3 with the
claimed maximum number of non-zero entries.

STEP 1: We show that I(fix)
A in (4) is submodular. The

result in [9, Theorem 1] showed that fs(A) in (6) is submod-
ular for each relay state s ∈ [0 : 1]N under the assumption
of independent inputs and independent noises (the same work
provided an example of a diamond network with correlated
inputs, and showed that in this case the cut-set bound is neither
submodular nor supermodular). Since submodular functions
are closed under non-negative linear combinations (see Def-
inition 1), this implies that I(fix)

A =
∑
s∈[0:1]N λs fs(A) is

submodular under the assumptions of Theorem 1.
STEP 2: Given that I(fix)

A in (4) is submodular, we would
like to use Proposition 2 to ‘replace’ the minimization over
the subsets of [1 : N ] in (7b) with a minimization over the
cube [0 : 1]N . Since I(fix)

∅ = I
(
X[1:N+1];YN+1|S[1:N ]

)
≥ 0

in general, we define a new submodular function g (A) :=

I
(fix)
A − I(fix)

∅ and proceed as in (9) at the top of the next page
to show that the problem in (7b) is equivalent to

C′ = max
λvect

min
w∈[0,1]N

{
[1,wT ] Hπ,fλvect

}
, (14)

where λvect is the probability mass function of S[1:N ] (in par-
ticular, λvect := [λs] ∈ R2N×1

+ where λs := P[S[1:N ] = s] ∈
[0, 1], for s ∈ [0 : 1]N such that

∑
s∈[0:1]Nλs = 1), Hπ,f ∈

R(N+1)×2N and Fπ ∈ R(N+1)×2N are defined in (10) at the
top of the next page, Pπ ∈ R(N+1)×(N+1) is the permutation
matrix that maps [1, w1, . . . , wN ] into [1, wπ1 , . . . , wπN ], and
fs (A) was defined in (6). We thus express our original
optimization problem as the max-min problem in (14).



min
A⊆[1:N ]

I
(fix)
A = I

(fix)
∅ + min

A⊆[1:N ]
g (A)

= I
(fix)
∅ + min

w∈[0,1]N

[
wπ1

wπ2
. . . wπN

]  g ({π1})− g (∅)
...

g ({π1, . . . , πN})− g ({π1, . . . , πN−1})



= I
(fix)
∅ + min

w∈[0,1]N

[
wπ1 wπ2 . . . wπN

] 
I
(fix)
{π1} − I

(fix)
∅

...
I
(fix)
{π1,...,πN} − I

(fix)
{π1,...,πN−1}



= min
w∈[0,1]N

[
1 wπ1 wπ2 . . . wπN

]


I
(fix)
∅

I
(fix)
{π1} − I

(fix)
∅

...
I
(fix)
{π1,...,πN} − I

(fix)
{π1,...,πN−1}

 := min
w∈[0,1]N

{
[1,wT ] Hπ,f

}
; (9)

Hπ,f := Pπ


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...
0 0 . . . −1 1


︸ ︷︷ ︸

(N+1)×(N+1)

Fπ where Fπ :=


f0(∅) . . . f2N−1(∅)

f0({π1}) . . . f2N−1({π1})
f0({π1, π2}) . . . f2N−1({π1, π2})

. . .
f0({π1, . . . , πN}) . . . f2N−1({π1, . . . , πN})

 ; (10)

g (A) = I
(fix)
A − I(fix)

∅ ,A ⊆ [1 : 2] : ĝ(w1, w2) =

{
w1g ({1}) + w2 [g ({1, 2})− g ({1})] if w1 ≥ w2

w2g ({2}) + w1 [g ({1, 2})− g ({2})] if w2 ≥ w1
; (11)

P1 : max
λvect

min
0≤w2≤w1≤1

[
1 w1 w2

]1 0 0
0 1 0
0 0 1

 1 0 0
−1 1 0
0 −1 1


︸ ︷︷ ︸

=
[
1− w1 w1 − w2 w2

]

 f0(∅) f1(∅) f2(∅) f3(∅)
f0({1}) f1({1}) f2({1}) f3({1})
f0({1, 2}) f1({1, 2}) f2({1, 2}) f3({1, 2})


︸ ︷︷ ︸

FπI


λ0
λ1
λ2
λ3

 ; (12)

P2 : maximize τ
subject to τ ≤ f0(∅)λ0 + f1(∅)λ1 + f2(∅)λ2 + f3(∅)λ3,

τ ≤ f0({1})λ0 + f1({1})λ1 + f2({1})λ2 + f3({1})λ3,
τ ≤ f0({1, 2})λ0 + f1({1, 2})λ1 + f2({1, 2})λ2 + f3({1, 2})λ3,
λ0 + λ1 + λ2 + λ3 = 1, λi ≥ 0 i ∈ [0 : 3]

; (13)

STEP 3: In order to solve (14) we would like to re-
verse the order of min and max. We note that the function
φ (λvect,w) := [1,wT ] Hπ,fλvect satisfies the properties in
Proposition 4 (it is continuous, convex in w by the convexity
of the Lovász extension and linear, thus concave, in λvect;
moreover the optimization domain in both variables is com-
pact). Thus, we now focus on the problem

C′ = min
w∈[0,1]N

max
λvect

{
[1,wT ] Hπ,fλvect

}
, (15)

which can be equivalently rewritten as

C′ = min
π∈PN

min
wπ∈[0:1]N

max
λvect

{
[1,wT

π ] Hπ,fλvect

}
(16)

= min
π∈PN

max
λvect

min
wπ∈[0:1]N

{
[1,wT

π ] Hπ,fλvect

}
, (17)

where PN is the set of all the N ! permutations of [1 : N ].
In (16), for each permutation π ∈ PN , we first find the optimal
λvect, and then find the optimal wπ : wπ1

≥ wπ2
≥ . . . wπN .

This is equivalent to (17), where again by Proposition 4, for
each permutation π ∈ PN , we first find the optimal wπ :
wπ1 ≥ wπ2 ≥ . . . wπN , and then find the optimal λvect.

Let’s now consider the inner optimization in (17), that is,

P1 : max
λvect

min
wπ∈[0:1]N

{
[1,wT

π ] Hπ,fλvect

}
. (18)

From Proposition 2 we know that, for a given π ∈ PN , the
optimal wπ is a vertex of the cube [0 : 1]N . For a given π ∈
PN , there are N + 1 vertices whose coordinates are ordered
according to π. In (18), for each of the N+1 feasible vertices
of wπ , it is easy to see that the product [1,wT

π ] Hπ,f is equal
to a row of the matrix Fπ . By considering all possible N +1



feasible vertices compatible with π we obtain all the N + 1
rows of the matrix Fπ . Hence, P1 is equivalent to

P2 : maximize τ
subject to 1(N+1)τ ≤ Fπλvect
and 1T2Nλvect = 1, λvect ≥ 0.

(19)

The LP P2
3 has n = 2N+1 optimization variables (2N values

for λvect and 1 value for τ ), m = N + 2 constraints, and is
feasible (consider for example the uniform distribution of λvect
and τ = 0). Therefore, by Proposition 3, P2 has an optimal
basic feasible solution with at most m = N + 2 non-zero
values. Since τ > 0 (otherwise the channel capacity would be
zero), it means that λvect has at most N +1 non-zero entries.

Since for each π∈PN the optimal λvect in (17) has at most
N+1 non-zero values, so also for the optimal permutation the
corresponding optimal λvect has at most N+1 non-zero values.
This shows that the optimal schedule in the original problem
in (7b) is simple and concludes the proof of Theorem 1.

C. On the complexity of finding the optimal simple schedule

Our proof method seems to suggest that finding the optimal
schedule requires the solution of N ! LPs. Since log(N !) =
O(N log(N/e)), the computational complexity of this ap-
proach would be prohibitive for large N . One can envisage
that by using an iterative method that alternates between
the submodular function minimization over w (solvable in
strongly polynomial time in N by the Schrijver’s algorithm)
and the LP maximization over λvect (by the ellipsoid method,
the worst-case dual LP is solvable in polynomial time in N )
a polynomial time algorithm that converges to the optimal
solution by the saddle-point property could be designed.

D. Example

For N = 2, P1 in (18) requires an optimization over w =
[w1, w2] ∈ [0, 1]2. From Proposition 2, the optimal w is one
of the vertices (0, 0), (0, 1), (1, 0), (1, 1). We must consider
|P2| = 2! = 2 possible permutations: πI for which w1 ≥ w2,
and πII for which w2 ≥ w1. For N = 2 the Lovász extension
of a submodular function g is given in (11) at the top of the
previous page (see also eq.(9)), which results in the problem
P1 in (12) at the top of the previous page when considering
wπI (a similar reasoning holds for wπII but it is not reported
here for sake of space). The vertices compatible with πI are
[w1, w2] ∈ {(0, 0), (1, 0), (1, 1)}, which result in [1−w1, w1−
w2, w2] ∈ {(0, 0, 0), (0, 1, 0), (0, 0, 1)}. This implies that P2

in (13) at the top of the previous page is the minimum of three
functions, each given by one of the rows of FπI multiplied by
λvect = [λ0, λ1, λ2, λ3]. P2 has hence 4 constraints (3 from
the rows of FπI and 1 from λvect) and 5 unknowns (1 value
for τ and 4 entries of λvect). Thus, by Proposition 3, P2 has an
optimal basic feasible solution with at most 4 non-zero values,
of which one is τ and thus the other 3 belong to λvect. By [4]
and our generalization in [1], we know that either λ0 or λ3 is
zero, thus giving the desired optimal simple schedule.

3Note that P2 is a LP if and only if each fs, s ∈ [0 : 1N ] in Fπ does not
depend on λs, i.e., under the assumption in Theorem 1.

As mentioned earlier, the result of this paper proves the
conjecture for Gaussian SISO networks with N relays and
arbitrary topology. Our framework immediately extends to
Gaussian networks with MIMO relays and independent noises
since also in this setting independent inputs are optimal in the
cut-set upper bound to within a constant gap for all choices
of the channel matrices (see [13, Section IV]).

IV. CONCLUSIONS

In this work we studied networks with N half-duplex
relays. For such networks, the capacity achieving scheme
must be optimized over the 2N possible listen-transmit relay
configurations. This paper formally proved that, if noises are
independent and independent inputs are approximately optimal
in the cut-set bound, then the approximately optimal schedule
only uses at most N + 1 relay configurations.
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