Model the System from Adversary Viewpoint:
Threats Identification & Modeling

Muhammad Sabir Idrees', Yves Roudier?, and Ludovic Apvrille?

! Telecom Bretagne, France, muhammad.idrees@telecom-bretagne.eu,
2 EURECOM, France, yves.rouider@eurecom.fr
3 Telecom ParisTech, France, ludovic.apvrille@telecom-paristech.fr

Abstract. Security attacks are hard to understand, often expressed
with unfriendly and limited details, making it difficult for security experts
and for security analysts to create intelligible security specifications. For
instance, to explain "Why” (attack objective), "What” (i.e., system as-
sets, goals, etc.), and "How” (attack method), adversary achieved his at-
tack goals. We introduce in this paper a security attack meta-model for
our SysML-Sec framework [I7], developed to improve the threat iden-
tification and modeling through the explicit representation of security
concerns with knowledge representation techniques. Our proposed meta-
model enables the specification of these concerns through ontological con-
cepts which define the semantics of the security artifacts and introduced
using SysML-Sec diagrams. This meta-model also enables representing
the relationships that tie several such concepts together. This representa-
tion is then used for reasoning about the knowledge introduced by system
designers as well as security experts through the graphical environment
of the SysML-Sec framework.

1 Introduction

Security attack, whatever objective it has, is deontology that derives the wrong-
ness of one’s conduct which compromise the security objectives. Frequent reports
about security vulnerabilities show that still many deficits exist in the develop-
ment of secure software systems. The problem is even more pressing as the
adversary activity and the destructiveness of attacks have increased over the
last years. It is generally agreed that a central problem in the design of secure
systems and the security analysis of existing systems is the danger of overlooking
the system from particular standpoints [23]. This corresponds to situations in
which security of the system is analyzed and described in terms of making the
system secure by preventing weak links. In such a context, it is not sufficient to
discover security attacks only at overlooked weak point of the system; there is
also a need to analyze the information flow control issues, especially when the
underlying platforms and infrastructures are also made of services themselves.
Security analysts also need to consider threats to these underlying infrastruc-
ture and middleware for a particular security realization, as the assets to be
protected originate both from the horizontal (i.e., between different entities and
components) and vertical (i.e., multiple layers) compositions.

2 Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

A related problem is that it is easier to analyze the protection level at each

separate layer in the system architecture stack, but become vulnerable to various
security exploits and flaws in a coordinated manner [SII822]. Because of their
complexity and of the varying degrees in which system assets are deployed and
executed, it is often the case that a system is compromised through a path its
developers never have thought of. What is worse, a local security attack and vul-
nerability or a mismatch between the security mechanisms adopted at different
locations can have dire consequences, potentially putting the security of large
system at stake. Most of such security attacks stem from the limited knowledge
shared between various security-engineering activities that collaborate with each
other and the expression of their interdependencies.
One thing is that it is not easy to discover all parts of a system that are rel-
evant for its security. In mainstream practice, this knowledge is often spread
across different architecture layers, and correspond to various system develop-
ment activities such as system architecture design, goal specification, In general,
for a thorough security evaluation, one needs to take into account these different
knowledge perspectives. In this context, in this paper, we aim at proposing a
security analysis model derived from the conceptual constructs of security on-
tologies that will serve as the common knowledge repository for discovering,
analyzing, and sharing attack knowledge with other system development activ-
ities. Thus, it will offer means to analyze the security of the system in such a
way that it is possible to discover simple and complex security attacks and vul-
nerabilities at different levels of system abstraction. Furthermore, the concept
of attack tree, modeled in SysML Attack Tree Diagrams, is brought in as the
foundational graphical representation for modeling and embedding the collected
security attacks knowledge into the security attack ontology. In this manner, the
attack trees are completely parameterized by the ontological concepts so that
it is possible to handle simultaneously several knowledge bases associated with
security attacks and vulnerabilities. In particular, the knowledge based attack
trees ease the process of keeping security attack specifications clear and under-
standable, minimizing the inconsistencies and helping to achieve maintainability
— even when security attacks are drafted cooperatively by several entities as well
as at different system development stages.

2 Collecting Knowledge about Adversary

In IT security engineering, to be on the safe side, we must assume that each
attack scenario that is possible and promises whatsoever small benefit will def-
initely be carried out by someone. In this regard we first need to make a clear
distinguish about: what does an adversary look like in distributed systems when
different entities are involved such as when a client is a user, an owner, and a
service provider and when some or all of the entities in the system can become ad-
versaries?, Is there a hierarchy of adversaries when attacking such heterogeneous
systems?, and so on. More specifically, security attacks are hard to understand,
often expressed with unfriendly and limited details, making it difficult for secu-

Title Suppressed Due to Excessive Length 3

rity experts and for security analysts to create intelligible security specifications.
For instance, to explain "Why” (attack objective), ”"What” (i.e., system assets,
goals, etc.), and "How” (attack method), adversary achieved his attack goals. We
introduced security attack ontology by taking into account security standards
and security dictionaries and deriving the features, in terms of classes and sub-
classes that were needed in such situations. Security attack ontology has been
designed to enable the specification of security attacks in a concise, readable,
and extensible way. Following, we detail different types of knowledge that an
adversary require or use to perform an attack.

2.1 Adversary Profile

The adversary profile depicts the attack potential that is a measure of the mini-
mum effort to be expended in an attack to be successful. In ISO/IEC 15408:2009
the attack potential is defined as a "measure of the effort to be expended in at-
tacking a TOE, expressed in terms of an adversary’s expertise, resources and
motivation”. Essentially, the attack potential for an attack corresponds to the
effort required creating and carrying out the attack. The higher the adversary’s
motivation is the higher efforts they may be willing to exert. After having per-
formed a comparative analysis of several security specifications and standards,
we suggest the following abstract level taxonomy (see Figure to be considered
during an analysis of the attack potential:

Attacker Profile

\
! ! ! ! ! !

Knowledge of the
System

Window of Opportunity

Un-necessary
Limited }1— ‘ Standard
‘ Easy }4— ‘ Specialized

Bespoke/Bespoke

Public

‘ Limited

‘ Insider ‘ Layman

. :
. :

Unlimited — Expert « Moderate f«—

‘ Moderate ‘ Outsider Professional

Restricted

%
F

-

Sensitive

Multiple Expert -
Group Difficult Critical

Fig. 1: Adversary Profile Taxonomy

il

— Elasped Time: This is the total amount of time taken by an adver- sary
to identify that a particular potential vulnerability may exist, to develop an
attack method and to sustain the effort required for mounting the attack.

4

Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

Expertise: This refers to the required level of general knowledge of the
underlying principles for mounting an attack (i.e., system archi- tecture,
security components, etc.), product types or attack methods.

Location: This refers to the knowledge and the capabilities, which an at-
tacker may have, depending of his/her location; this is typically reflected by
the terminology for an Insider or Outsider attacker. For instance, insider at-
tack agents are likely to have specific attack objectives, potential, and have
legitimate knowledge and access to the system.

Window of opportunity: This concept has a relationship with the elapsed
time factor. Identification and exploitation of vulnerability may require con-
siderable amounts of accesses to a system that may increase the likelihood
of detection of the attack. In contract, some attack methods may require
considerable effort off-line, and only brief access to the target to exploit.
IT hardware/software or other equipment: This refers to the equip-
ment required to identify and exploit vulnerability.

Knowledge of the system under investigation: This refers to the spe-
cific expertise required in relation to the system under investigation. Though
it is related to general expertise, it is distinct from it.

2.2 Adversary Objectives

Attack objective suggest particular types of adversary and his capabilities, as
well as associated attack motivation. At the abstract level of specification attack
motivations can be broadly categorized as:

Individual Benefits: Personal advantages can be gained in different ways
and for different purposes. For instance, gain reputation as hacker, financial
gain fraudulent commercial transactions, etc.

Economical Benefits: These motivations and underlying objectives should
be envisaged at an organizational scale.

Political Benefits: The main goal of the attacker is to destroy the reputa-
tion of an organization or an individual system asset. For example, acquiring
system design information or for the purposes of fraud, industrial/state es-
pionage or sabotage.

Criminal Benefits: An augmentation of the attack motivation to harm
an individual for the purposes of criminal or terrorist activity, destroy or
financial harm, destructive attacks or intellectual property attacks, etc.

2.3 Attack Mode used by an Adversary

The attack mode refers to the actions that an adversary takes during the exe-
cution of an attack and that can be labeled as active or passive attacks:

Active Attacks: modifying the behavior of the system.
Passive Attacks: aiming at information retrieval without modifying the
behavior.

Title Suppressed Due to Excessive Length 5

2.4 Attack Method used by an Adversary

The attack methods are related to the attack mode class. The attack method can
be classified into either functional (logical) attacks or physical attack methods:

— Physical Attacks: Attacks physically modifying the behavior of the system.

— Functional Attacks: From the functional point of view, attacks aiming at
logical manipulation of information without physically modifying the system
behavior.

2.5 Attack Consequence

Attack Consequences refers to an impact of security breach or outcomes that are
not the ones intended by a purposeful system action. The attack consequences
can be classified as:

— Usurpation: is a derogatory term used to describe either a misappropriation
or misuse of the system functionalities.

— Disruption: is an event that causes an incapacitation, corruption, obstruc-
tion, and unplanned deviation from the expected system behavior, according
to the functional and non-functional objectives.

— Deception: is defined as masquerade, falsification, and repudiation actions
taken by an adversary, to thereby causes a system to accept as true a specific
incorrect version of reality.

— Disclosure: enables an adversary to gain valuable information about a sys-
tem and its functionalities either by exposure, interception, inference, intru-
sion, etc. that tries to uncover the details of a system.

3 Security Ontology

In this section, we define the security ontology — Security Attack Ontology — for
modeling different types of adversary’s knowledge. Security ontology constitutes
a knowledge repository for capturing, classifying, and sharing security related
information. More specifically, the definition of a security attack ontology aims
at building knowledge vocabulary for security attacks that could be described
including their type, mode, consequences, and such details as described above.
Figure[2]sums up our analysis with respect to extracting different constructs and
concepts defined in well-known security standards (i.e., ISO/IEC 15408:2009,
ISO/TIEC 18045, ISO/IEC 27000: 2012, ISO/IEC 17799:2005, NIST SP-800:30,
etc.) and security dictionaries (i.e., CVE, CAPEC, OWASP, CLASP, etc.) in
order to build the security attack ontology. This has been modeled with the
Ontology Web Language [2] using OWL classes. Our security ontology use a
flexible and easily extendable structure, which makes it possible to seamlessly
add new concepts.

6 Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

Attack Objective

Attack Method
n.*1
is
Physical
(1.4
Attack Assumptions/ have
Constraints e

L —verif Attack Patterns verify—!
have targeted by

based on

=]

Fig. 2: Security Attack Ontology

4 Attack Modeling

The concept of security analysis is similar to the concept of trade-off analysis in
that there is also more than one way to attack system assets, and an adversary
may be trying them simultaneously or just a subset of them. More precisely, an
adversary can use distinct attack paths or alternative approaches until reaching
his attack objectives. This is often illustrated through the attack trees, which
form a convenient way to systematically categorize the different. Basically; at-
tack trees (the term was introduced by Schneier [19]) are multi-levelled diagrams
consisting of one-root, leaves, and children nodes. In addition, different node val-
ues can be combined with AND, OR relationship to learn even more about a
system’s security flaws and weaknesses. Specifically, the purpose of an attack
tree is to define and analyze possible attacks on a system in a structured way.
This structure is expressed in the node hierarchy as well as in the form of logical
operators (i.e., conjunctive (aggregation) or disjunctive (choice), etc.) for ex-
pressing interrelationship between different attack tree nodes. Thus, using both
logical operators and node definition retains the natural way security experts
build the attack trees or fault trees [22[I8200T27]. Actually, these two building
blocks (nodes and logical operators) of an attack tree can be modeled with the
definition of constraint block with a object functions and the part element of the
parametric diagram. Thus, at a conceptual level we can use parametric diagrams
to model attack trees. Let us present how we suggest representing attack trees
in SysML using the above-mentioned modeling constructs.

Title Suppressed Due to Excessive Length 7

4.1 Parametric Diagram

The parametric diagram is the second new type of diagram introduced to de-
scribe constraints on system properties to support engineering analysis. The
parametric diagram is a specialized variant of an internal block diagram that
restricts diagram elements to represent constraint blocks, their parameters and
the properties of block that they bind to. Parametric diagrams are made up of
one or more constraint blocks, zero or more part, and one or more connectors
[6]. The constraint block is used to show which constraints are being used. The
SysML specification describes constraint blocks in terms of conditions that are
represented by mathematical equations. More precisely, the constraints block
contains an equation, expression or rule that relates together the parameters
given in the parameters block. The concepts behind constraints can be extended
to cover general rules that constrain system properties and behavior such as au-
thentication should be performed BEFORE authorizing entity to access system
resources, etc. The use of a constraint block is called a constraint property and
is depicted on a parametric diagram. The interconnection between constraint
blocks and part or constraint blocks is shown on a parametric diagram using
zero or more binding connectors. Binding connectors depict an equality rela-
tionship between the two connected parameters or between a parameter and a
value property. In the parametric diagrams, a standard part element includes
properties to specify its unique identifier and text description.

4.2 Attack Trees in Parametric Diagram

Let us first focus on the extension of the parametric metamodel (see Figure |3))
that is necessary for modeling attack trees. Following the extension mechanism
suggested in the SysML specification where the stereotype mechanism is defined
to extend the existing SysML classes, we create a new stereotype to represent
security attacks: the "attack tree” This is illustrated in Figure [3] As mentioned
earlier, we mainly focus in this paper on expressing security knowledge to be
shared and reused throughout the system development process to design a secure
system. In order to integrate attack related knowledge, we extend the parametric
diagram’s "part” element with ontological concepts and properties from the at-
tack tree ontology, presented in Section [3] We argue that such a representation is
indispensable to precisely understand how attack trees can be manipulated dur-
ing their construction and analysis. More details are given in Section[5labout the
introduction of security reasoning into SysML models. We use the “constraint
block” element for the definition of set of constraints such as mathematical ex-
pressions (i.e., AND, OR, etc.) among the pieces of the security attack nodes.
The objective of these operators is to show the relationship among difference at-
tack nodes. More precisely, we use OR operator to represent alternatives ways an
adversary tries to achieve his attack objectives. For instance, an adversary has to
perform either one of the attacks ”hijack authenticated session” OR ”disconnect
client” to accomplish his attack goal. AND relationship represent different steps
toward achieving the same goal, for example, by assuming an adversary can gain

8 Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

root access of vehicle Communication Unit (CU) if and only if he can tamper
the on-board communication unit. In our attack tree modeling approach, rather
than considering only these two types of logical operators, we also consider tem-
poral operators (i.e., AFTER, BEFORE, SEQUENCE, etc.). We in particular
allow security experts to capture temporal dependencies between attack nodes
and sequences in an attack. For instance, in order to install the bogus authority
keys an adversary first have to switch an ECU into a re-programming mode.
Furthermore, we can represent the ordering between attacks by using the SE-
QUENCE relationship. We use a "connector” element to link zero or more ”part”
with constraint block. The use of a ”constraint block”, ”part”, and ”connector”
element for building attack trees is shown in Figure

Attack Tree
-1D
-Text
-Method
-Mode
-Kind
-Adversary
-Reference element -------------=-=------

Parametric Diagram

Heuristic

—

Mathematical Operator

may use different mathematical and temporal operators

Temporal Operators|

Fig. 3: Metamodel for the SysML attack tree diagram

4.3 Knowledge-Centric Attack Tree Modeling
An overall procedure for attack tree modeling looks like this:

1. Build attack tree rooted (Level 0) on an abstract "attack objective”. We use
the ”part” element to model each attack tree node.

2. Its child nodes (Level 1) represent different ”attack goals” that could satisfy
this attack objective. Attack goals and attack objectives are linked via a
binding ”connector”.

3. For each attack goal node:

Title Suppressed Due to Excessive Length 9

— Decompose into a number of 7attack methods” (Level 3) that could be
employed to achieve the attack objective.

— Specify the logical relationships (Level 2) between different attack meth-
ods, if there are. We use the "constraint block” to specify these logical
expressions. At this stage, we also consider intermediate steps that rep-
resent attack method at a certain level of abstraction.

4. The attack tree terminates when leaf conditions (basic operations are de-
scribed that gives all details of the attack) are reached that meet the adver-
sary’s capabilities.

The attack tree modeling approach that we advocate provides a bridge between
the typical attack trees modeling approaches [20], and the anti-goal models ap-
proaches [25]. More precisely, the first two steps of our attack tree modeling
approach are equivalent to the KAOS anti-goal model [25], which provides the
top down approach for modeling attacks. The next two steps correspond to the
standard attack tree modeling approach, where attacks are identified from bot-
tom up perspective. Figure El sums up these two approaches.

Attack
Objective Level O: Attack Objective
P partelement /,7_\
A
Attack Goal 1 Attack Goal 2 Attack Goal 3 Attack Goal 4

Level 1: Attack Goal &
subgoals
Attack
SubGoals

¥

Ordered
Attacks

PD constraipt block

PD connector
element

Level 2: Ordered
or Logical operators

Logical operators

(OR, AND, etc.)

Attack Attack Attack Attack Attack

Method Method Method Method Method Level 3: Attack Method

Fig. 4: Generic knowledge-centric attack tree structure

4.4 Tooling

The aforementioned approach has been applied with TTool [12]. TTool is an
open-source toolkit that supports several UML/SysML profiles, including TUR-
TLE [3] , DIPLODOCUS [4], and AVATAR [27,18]. TTool includes diagram-
ming facilities, formal and non-formal code generators, model simulators, model-
checkers and analysis tools. DIPLODOCUS is focused on the design space explo-
ration of complex embedded systems. TURTLE is now deprecated and replaced
with AVATAR. the latter targets the design of embedded applications. The main

10 Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

strength of TTool is to hide knowledge of the underlying simulation or formal
proofs techniques, thus offering a press-button approach to perform safety or
security proofs. We have used the SysML-Sec profile as a part of the AVATAR
profile to build attack trees.

5 Integrating Knowledge Bases and Reasoning into
SysML

Syntactically, SysML and ontology languages (i.e., OWL, OIL, etc.) have a lot
of similarities. While SysML makes use of a graphical formalism, it also aims
at defining the semantics of a system with constructs like blocks, associations,
part properties, and relationships between models and sets of model elements.
Ontology languages use classes, properties, relationships, and individuals as basic
knowledge constructs. For instance, OWL defines classes by appropriate and
implicit logical constraints on properties of their subclasses and concepts. The
integration of both approaches enables engineers to add reasoning arguments
to the explicit documentation of system models, and to define more precise
relationships in the course of a typical model-based development process. We
discuss in the following how ontologies and inferences on ontologies are used to
enrich the SysML-Sec framework.

5.1 Annotating SysML Diagrams with Ontological concepts

In this section, we focus on annotating security concepts and terms defined in
the security attack ontology (cf. Section [2) with attack tree diagrams. Figure
Bl presents an overview of an integration approach for embedding ontological
concepts and terms into SysMLsec models. As previously stated in section [4 we
can add the ontological concepts and terms into SysML models by extending
the SysML metamodel by including the user defined stereotypes or properties
and tagged values. Let us first consider the Attack Tree diagram (presented in
section , and map adversary related ontological classes (cf. section [3]) to the
Attack Tree diagram. We build the integration approach based on three core
ideas:

— We have defined the ”Attack” stereotypes (see Figure @ to represent the
security attack ontology in the SysML Attack Tree diagram.

— We integrate high-level ontology classes (see Level-1 in Figure @b) as a
SysML Attack Tree diagram properties (i.e., type, kind, etc.) as shown in
Figure [6la.

— We use ontology subclasses (see Level-2/n Figure [6]b), as tag values of the
SysML attack tree diagram property element. This is illustrated in Figure
[Bla. These values constitute a controlled vocabulary. Thus, it provides a
canonical set of mapping mechanism in order to deal with integration of
ontological concepts into the SysML.

Title Suppressed Due to Excessive Length 11

Ontology SysMLsec

controlled vocabul
ontrolled vocabulary integration | £, o1 dod sysML Metamodel

(SysMLsec Profile)

SreRuEsUl

E in
specific applications

SysMLsec models

v

Facts about specific
applications

axepumsuy

v

Feedback provided to
Security Knowledge Security Engineers
and Reasonin g SysMLsec Model Instance
System

Transformation Engine
(SysMLsec instance

translating SysMLsec models

~to-
Ontology instance)
into ontology instances

Fig. 5: Integration of ontology reasoning on security with SysML

According to these rules, every Attack Tree diagram extended with an ”At-
tack” stereotype is also associated with ontology concepts and terms as shown
in Figure [6la. The diagram consists of two parts; standard SysML parametric
properties (e.g., id, text) and extended ontological properties (e.g., kind, type,
classification, etc.). The discussion here will be limited to the extended attack’s
property constructions that can be directly translated to ontology classes. It can
be seen that, for each high-level class of the security attack ontology (see Figure
@b.) we basically define a new property element in the attack diagram. This is
illustrated in the Figure [6la. These properties are then populated with the sub-
classes and concepts defined in the security attack ontology as its tagged values.
In particular, the properties and tagged values are specified in the same manner
as the classes and subclasses concept described in the security attack ontology.
For example the ”"Adversary” class takes Layman, Expert, and Professional as
its tagged value. Accordingly, we map all other concepts and terms defined in
the security attack ontology into the ”part” element.

5.2 Reasoning with SysMLsec Models

In this section, we describe the extent to which we can use the capabilities of on-
tologies to reason about these different security concepts defined in Attack Tree
diagram. In particular, our objective is to enable the security engineers to have
access to various ontological concepts and terms, and to reason on these models.
Although, with integration of ontology classes and subclasses into the SysML
Attack Tree diagram, we already provided the partial reasoning capabilities to
reason about different security concept within the SysML models. More pre-

12 Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

800 Setting attributes of Security Attack DenialOfServiceAttack

(@)-TTool AT diagram view Setting unformal text information on Security Attacks ~ Other attributes:
= 1D: ATsa
—Ataces, O
] k ysical -
DenialOfServiceAttack &
D=0 Actack
Text = Properties view
Method = %
Type = 3 __.—-)
Mode = .2 =
Classification =" IR C —
Adversary =" " LR
y %
ES
(™) save and ci
(b). SA Ontology view
. . subclass;mapping
[@ming | high-level lass mapping /
] / level-0
[@atak | ; i :
_hasSubclass hasSubelass hasStbclass hasSubclass hasSubclass i S ¥
- ; \ 7 hasSubclass ; L—
Fo ArConcequence | [f@ Agwesay | [F@ATMoge | [F@ ATMemnod | AT-Classificati AT-Fype level-1
on ; -

hasSubglass’” hasSubclass

3 -_ __Vul bil
Threat inerability level-2

hasSdbelass hasSubelass

Generic @ pomainspeciic |

level-n

Fig. 6: Mapping of the security attack ontology concepts into the SysML Attack
Tree diagram

cisely, when security engineer select a particular concept in the SysML diagram,
for instance, Attack is a "Domain specific” threat, we annotate the structure of
the sub-classification with the tagged values that belong to the domain specific
class such as an application specific, middleware specific, etc, as shown in the
property view of Figure [6} In a similar way, for each ontology class we apply
the same approach and limit the knowledge space for security engineers to spec-
ify only those concepts and terms that belong to the super class or the parent
class. Thus, provide means to reason about security concepts within the SysML
models, which brings additional power to the development of security models
like consistency checking (i), concept satisfiability (ii), and concept classifica-
tion. The shortcoming is that we cannot specify the reasoner calls in relation to
one another or in relation with other security models such as security goals, at-
tack, system architecture, etc., which is our core objective. In order to fulfil this
design objective, we have implemented the ”SysMLsec-to-Ontology” translation
engine as shown in the Figure [7] The translation engine, we have implemented
for mapping from SysMLsec models to the OWL description, contains a set of
rules that match security constructs and transform them into equivalent instance
of ontology.

The primary purpose of this translation engine is to make the security engi-
neers able to reason about their security models using well known and efficient
reasoning engines such as SPARQL [16], OWL-QL [4], RACER [5], SQWRL [I5],
etc. Engineers can directly make use of reasoning capabilities of these engines

Title Suppressed Due to Excessive Length 13

TTool -- SysMLSec Models _ _ Pro[égé -- OWL _

security reasoning

exportiSysMLsec
mébdels

. input.

SysMLSec-2-Ontology Translation Engine Integration with any other

ontology based applications

Fig. 7: Integration of ontology reasoning on security with SysML

within the context of current engineering practice and tools without building and
using some separate ontological models. In particular, our objective is to give
the security engineering a more precise way to employ reasoning in the course of
a typical model-based development process. On the other hand, since we obtain
an OWL described document, we can integrate our SysMLsec models with any
other ontology based applications such as integrating the security requirement
knowledge with security resource annotating approaches like [I1], or providing
input to the ontology based risk analysis approaches [3] in order to compute risk
metrics.

In this paper, we refer to SQWRL (Semantic Query Web Language) [15]
as a query language because of its concise, readable, and semantically robust
semantic. SQWRL is a SWRL-based [7] query language that can be used to
query OWL ontologies and provided in Protégé 4.2 beta version [24]. To retrieve
knowledge from OWL ontology, SQWRL provide SQL-like operation. The form
of rule is

antecedent — consequent

In this rule an antecedent part is referred to as the body, and a consequent part is
referred to as the head. Both the body and head consist of positive conjunctions
of atoms:

Atom AN Atom — Atom N Atom

This rule can be read as if all the atoms in the antecedent are true then the
consequent must also be true. Here, an atom is an expression of the form P(arg;,
args, ...arg,), where p is a predicate symbol and argy, args, ..., arg,, are the terms
or arguments of the expression. In our approach, the predicate symbols can
include security ontology classes (i.e., asset, goal, attack, security requirement,
etc.), properties (i.e., hasFunction, hasSequence, hasAvoidGoal, etc.) or data
types. Arguments can be class individuals (i.e., type, classification, adversary,

14 Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

etc.) or data values, or variables referring to them. In the further course of this
thesis, we will use the above-mentioned SQWRL query expression to retrieve,
manipulate, and reason about different security-related information.

6 Related Work

In the following we will introduce different threat modelling profiles. These mod-
elling profiles capture a certain types of information and results in different types
of threats and vulnerability models and security design solutions. A number of
extensions of UML (i.e., UMLsec [10], Anti-Goal [25], Misuse cases [21], Abuse
cases [I3], etc.), allow to express security relevant information within the dia-
grams in a system specification have been proposed. For instance, Abuse Frames
are based on the Jackson’s problem frames approach [9] and is intended to ana-
lyze security problems in order to determine security vulnerabilities and to derive
security requirements. This approach introduces the notion of anti-requirement
(similar to the concept of an anti-goal [25]) to describe the behavior of a mali-
cious user that can subvert an existing requirement. The basic idea behind the
definition of abuse frames is to bind the scope of a security problem with anti-
requirements in order to derive security requirements. Such explicit and precise
descriptions facilitate the identification and analysis of threats, which in turn
drive the elicitation and elaboration of security requirements. Possible ways of
misusing system functionality can be specified by an extension of UML. Mis-
use case diagrams not only shows regular actor/use case relations but also can
model threats that threaten use cases, and countermeasures that mitigate these
threats. Misuse cases extend the traditional use case approach to also consider
misuse cases, which represent behavior not wanted in the system to be devel-
oped. A misuse case diagram contains both, use cases and actors, as well as
misuse cases and misusers. Development of misuse cases allows the identifica-
tion of security attacks and associate security requirements during application
development. In [28], misuse cases are further analyzed and author’s presents a
formal representation of misuse cases and provide an intuitive way to executable
misuse case model. Although misuses cases are not entirely problem-oriented as
they represent aspect of both problems and solutions, they have become popu-
lar as a means of representing security concerns in the early stages of software
development. Yet, to best of our knowledge, none of them provides the expres-
sivity required to deal effectively with system-wide security attacks. Another
major group of contributions to the conceptual modeling of security attacks like
KAOS [26] and Secure Tropos [I4], etc., have defined their own graphical for-
malism each of which allows to express security relevant information (i.e., goal,
anti-goals, requirements, obstacles, etc.). However, security issues involve special
concerns that these traditional software engineering languages do not consider.
Consider, for example, a general behavior modeling notation that expresses in-
teractions of entities in the system without considering the harmful behavior
of an adversary. Thus, the models do not convey the impacts of the malicious

Title Suppressed Due to Excessive Length 15

behavior of the adversary on requirements, design, and architecture to the next
phases of system development lifecycle.

7 Conclusion

Given an input for our knowledge centric design methodology, the security anal-
ysis process helps to both classify identified attacks, but also to think about
new ones, given a category. Knowledge centric attack tree is a combination of
both top-down and bottom-up approach to provide a support tool to security
analysts. The purpose of developing the ontology driven attack trees is to iden-
tify possible security threats and to allow aspects such as the desirability (to
the adversary), opportunity, probability and severity of attacks to be assessed in
order to share knowledge among various system development activities (i.e., se-
curity requirements engineering, protocol design, testing, etc.). We believe that,
on the one hand, ontology based security analysis is expressive enough to de-
scribe several real-world security attacks with a multi faceted approach; at the
same time, it provides constructs to map and relate security attacks with other
system development activities.

References

1. S. A. Camtepe and B. Yener. Modeling and Detection of Complex Attacks. In 3rd
International Conference on Security and Privacy in Communications Networks,
SecureComm, September 2007.

2. M. Dean, G. S. (eds.), F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness,
P. Patel-Schneider, and L. Stein. OWL Web Ontology Language Reference. 2003.

3. A. Ekelhart, S. Fenz, M. Klemen, and E. Weippl. Security Ontologies: Improving
Quantitative Risk Analysis. In 40th Annual Hawaii International Conference on
System Sciences, HICSS’07, page 156a, Jan 2007.

4. R. Fikes, P. Hayes, and I. Horrocks. OWL-QL- A language for deductive query
answering on the Semantic Web. Journal Web Semantics: Science, Services and
Agents on the World Wide Web, pages 19-29, December 2004.

5. V. Haarslev and R. Moller. RACER: An OWL Reasoning Agent for the Semantic
Web. In Ist International Workkshop on Applications, Products and Services of
Web-based Support Systems, WCC’03, pages 91-95, 2003.

6. J. Holt and S. Perry. SysML for System Engineering (Professional Applications of
Computing), volume 7. IET, 2007.

7. 1. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available
at http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, May
2004.

8. M. S. Idrees, Y. Roudier, L. Apvrille, and G. Pedroza. Test Results. Technical
Report D4.4.2, EVITA Project, 2011.

9. M. Jackson. Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley Professional, 2001.

10. J. Juerjens. Secure Systems Development with UML. Springer, 2003.

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

16

11

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

Muhammad Sabir Idrees, Yves Roudier, and Ludovic Apvrille

A. Kim, J. Luo, and M. Kang. Security Ontology for Annotating Resources. In
Proc. of the 2005 OTM Confederated international conference on the Move to
Meaningful Internet Systems: CooplS, COA, and ODBASE, OTM’05, pages 1483—
1499, 2005.

T. P. LabSoc. The TURTLE Toolkit - TTool. Available at http://labsoc.
comelec.enst.fr/turtle/ttool.htmll

L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing Abuse Frames
for Analysing Security Requirements. In Proc. of the 11th IEEE International
Conference on Requirements Engineering, RE’03, pages 371-372, September 2003.
H. Mouratidis, P. Giorgini, G. Manson, and I. Philp. A Natural Extension of Tropos
Methodology for Modelling Security. In Proc. of the Agent Oriented Methodologies
Workshop, OOPSLA’02, 2002.

M. J. O’Connor and A. K. Das. SQWRL: A Query Language for OWL. In Proc. of
the 5th International Workshop on OWL: Experiences and Directions, OWLED’09,
October 2009.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. Available at |http://www.w3.0rg/TR/2008/
REC-rdf-spargql-query—-20080115/} January 2008.

Y. Roudier, M. S. Idrees, and L. Apvrille. Towards the model-driven engineer-
ing of security requirements for embedded systems. In MODRE 2013, Interna-
tional Workshop on Model-Driven Requirements Engineering, 15 July 2013, Rio
de Janeiro, Brazil, Rio de Janeiro, BRAZIL, 07 2013.

A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald, T. Leimbach,
A. Fuchs, S. Giirgens, O. Henniger, R. Rieke, M. Ritscher, H. Broberg, L. Apvrille,
R. Pacalet, and G. Pedroza. Security requirements for automotive on-board net-
works based on dark-side scenarios. Technical Report Deliverable D2.3, EVITA
Project, 2009.

B. Schneier. Attack trees. Dr. Dobb’s Journal: Software Tools for the Professional
Programmer, Ebsco, (24):21-27, 1999.

B. Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21-29, 1999.

G. Sindre and A. L. Opdahl. Eliciting Security Requirements by Misuse Cases.
In Proc. of the 37th International Conference on Technology of Object-Oriented
Languages and Systems, TOOLS-Pacific’00, pages 120-131, 2000.

J. Stefan and M. Schumacher. Collaborative Attack Modeling. In Proc. of the
ACM Symposium on Applied Computing, SAC’02, pages 253259, March 2002.

J. Steffan and M. Schumacher. Collaborative attack modeling. In Proceedings of
the 2002 ACM symposium on Applied computing, SAC 02, pages 253259, New
York, NY, USA, 2002. ACM.

S. University. Protégé Ontology Editor and Knowledge-base Framework. Available
at http://protege.stanford.edu/.

A. van Lamsweerde. Engineering Requirements for System Reliability and Security.
In Software System Reliability and Security, NATO Security through Science Series
- Information and Communicarion Security, pages 196-238, 2007.

A. van Lamsweerde and E. Letier. From Object Orientation to Goal Orientation: A
Paradigm Shift for Requirements Engineering. In Radical Innovations of Software
and System Engineering, pages 4-8, 2003.

G. Vigna, S. Eckmann, and R. Kemmerer. Attack Languages. In Proc. of the IEEE
Information Survivability Workshop, ISW’00, pages 163-166, October 2000.

J. Whittle, D. Wijesekera, and M. Hartong. Executable misuse cases for model-
ing security concerns. In Proc. of the 30th international conference on Software
engineering, ICSE’08, pages 121-130, 2008.

http://labsoc.comelec.enst.fr/turtle/ttool.html
http://labsoc.comelec.enst.fr/turtle/ttool.html
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://protege.stanford.edu/

	Model the System from Adversary Viewpoint: Threats Identification & Modeling
	Introduction
	Collecting Knowledge about Adversary
	Adversary Profile
	Adversary Objectives
	Attack Mode used by an Adversary
	Attack Method used by an Adversary
	Attack Consequence

	Security Ontology
	Attack Modeling
	Parametric Diagram
	Attack Trees in Parametric Diagram
	Knowledge-Centric Attack Tree Modeling
	Tooling

	Integrating Knowledge Bases and Reasoning into SysML
	Annotating SysML Diagrams with Ontological concepts
	Reasoning with SysMLsec Models

	Related Work
	Conclusion

