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dans les réseaux sans-fils en présence
d’informations limitées sur le canal
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Président du jury
Professeur Dirk SLOCK EURECOM

Rapporteurs
Professeur Eduard JORSWIECK TU Dresden
Professeur Abdellatif ZAIDI Université Paris-Est Marne la Vallée
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Abstract

Having multiple terminals access simultaneously the wireless medium en-
hances the capacity of cellular networks, whereas inevitably introduces mul-
tiuser interference, which in turn limits spectral e�ciency. Hence, interference
management constitutes a major means to improve spectral e�ciency. Cru-
cially, the spectral e�ciency improvement by most interference management
techniques usually stems from the assumption of the availability of channel
state information at the transmitters (CSIT) obtained through feedback.
The inaccuracy and/or latency of channel knowledge via feedback are major
sources of channel uncertainty that a↵ect network performance to a great
extent. This is particularly true of methods relying on multiple-antenna
precoding.

This thesis focuses on interference management with channel uncertainty
in multiuser multiple-input multiple-output (MIMO) networks, where the
channel uncertainty comes from feedback delays as well as the strictly limited
capacity of feedback links. As such, in the extreme cases, the transmitters
may either possess su�ciently precise CSI but with large latency or have
access instantaneously to a coarse channel information (e.g., topological
feedback, with one bit indicating whether the channel is strong or weak).
The former renders the available CSI feedback obsolete under a fast fading
channel, and the latter makes the transmitters almost blind to the exception
of the binary indicator of channel strength. This thesis focuses on di↵erent
regimes of CSIT availability, trying to address two fundamental problems:
(1) How to best exploit delayed feedback? (2) How to best exploit drastically
reduced feedback (e.g., such a topology-related feedback)?

Regarding delayed feedback, a recent breakthrough has shown that even
completely outdated channel feedback is still useful. This surprising finding
results from the idea of retrospective interference alignment, which achieves
substantial degrees of freedom (DoF) in the infinite signal-to-noise-ratio (SNR)
regime, even if the channel is independent and identically distributed (i.i.d.)
across time. Although inspiring and fascinating from a conceptual point of
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Abstract

view, this result is subject to improvement. It can be seen as optimistic in
that it intrinsically focuses on the asymptotic SNR behavior, leaving aside
in particular the question of how shall precoding be done practically using
stale CSIT at finite SNR. But it can also be seen as pessimistic in that
it assumes the channel is i.i.d. across time, where delayed CSIT bears no
correlation with current channel realizations. In this regard, we will address
two problems under delayed feedback settings: (1) How does delayed CSIT
improve sum rate performance at finite SNR? (2) Can we do better if the
channel exists correlation across time in multiuser MIMO networks such that
an estimate of current CSIT is also available?

When it comes to topological feedback, at first glance, a limitation to sole
topological information is like a drop in a CSIT ocean, making it di�cult
for the transmitters to extract substantial DoF gain, seemingly useless in
the sense of DoF. Recently, interference networks with no CSIT except
for the network connectivity graph have been studied under the so-called
topological interference management (TIM) framework. A surprising fact
was revealed that the network performance can be significantly improved
with this sole topological information, provided that the network is partially
connected. Remarkably, interference alignment was shown to be beneficial
over orthogonal access schemes under TIM settings. Nevertheless, there
are still many interesting open problems: (1) When orthogonal access is
optimal under TIM settings? (2) Is topological feedback beneficial in the
context of an interference network where a message exchange mechanism
between transmitters pre-exists (e.g., like in cellular networks enabled with a
coordinated multipoint mechanism)?

In this thesis, above questions are addressed mainly from the information
theoretic perspective, but also from signal processing and communication
theoretic ones, from which some new interference management techniques
are proposed to combat channel uncertainty and improve spectral e�ciency,
whereas the fundamental limitations of some existing interference manage-
ment techniques are also revealed.
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Abrégé

L’ accès simultané de multiples terminaux au réseau sans fil améliore la
capacité des réseaux cellulaires, tandis qu’il introduit inévitablement des
interférences entre utilisateurs, ce qui peut à son tour limiter l’e�cacité
spectrale. Par conséquent, la gestion des interférences constitue un des
principaux moyens d’améliorer l’e�cacité spectrale. Fondamentalement,
l’amélioration de l’e�cacité spectrale par la plupart des techniques de gestion
d’interférence repose généralement sur la disponibilité de l’informations
de canal aux émetteurs obtenues grâce à un « feedback » de la part des
utilisateurs. L’inexactitude et/ou le délai dans l’acquisition de la connaissance
du canal sont les principales sources d’incertitude sur l’état du canal qui
a↵ectent les performances du réseau. Cela est particulièrement vrai pour des
méthodes à entrées multiples et sorties multiples (MIMO) reposant sur des
méthodes de précodage au niveau des antennes.

Cette thèse porte sur la contrôlé des interférences en présence d’incertitude
de canal dans les réseaux MIMO multi-utilisateurs, dans le cas où l’incertitude
de canal provient de retards de rétroaction ainsi que de la capacité limitée
des systèmes de feedback. Ainsi, dans les cas extrêmes, les émetteurs peuvent
posséder soit des estimées su�samment précises mais avec une grande latence,
soit avoir accès instantanément à une information de canal grossière (par
exemple, le feedback topologique, avec un bit indiquant si le canal est fort
ou faible). Le premier rend les estimées disponibles obsolètes dans un canal
changeant rapidement, et le second revient à considérer des émetteurs presque
aveugle à l’exception de l’indicateur binaire sur l’amplitude du canal. Cette
thèse porte sur les di↵érents régimes de la disponibilité de l’information de
canal, en essayant de répondre à deux problèmes fondamentaux: (1) Comment
exploiter d’une manière optimale une information de canal retardée? (2)
Comment exploiter au mieux une information fortement réduite (comme par
exemple un feedback topologique)?

Dans cette thèse, les questions ci-dessus sont adressées principalement
avec la perspective de la théorie de l’information ainsi que de la théorie
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du traitement du signal et des communications. À partir de celles-ci, de
nouvelles techniques de gestion des interférences sont proposées pour lutter
contre l’incertitude de canal et améliorer l’e�cacité spectrale, tandis que
les limites fondamentales de certaines techniques existantes de gestion des
interférences sont également révélés.
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1.2 Gestion des interférences avec l’incertitude de canal . . . . . . 4

1.2.1 L’incertitude de canal . . . . . . . . . . . . . . . . . . 4
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Chapter 1

Résumé [Français]

Les demandes croissantes récent à haut débit de streaming multimédia et
des services de réseautage social sur les applications mobiles (tels que les
smartphones et les tablettes omniprésents) nécessitent des techniques de
débits plus élevés pour les réseaux cellulaires sans fil. La rareté du spectre
de fréquences radio dans moins de 10 GHz, qui sont le plus approprié pour
les communications sans fil, entrave les progrès. Avec rares spectre, une
utilisation plus e�cace du spectre devient de plus en plus importante.

Le principal défi pour améliorer l’e�cacité spectrale est de compenser les
dégradations de signaux qui sont causées par la nature de la propagation sans
fil. Le signal transmis dans les réseaux cellulaires sans fil sou↵re d’une variété
de dégradations de canal radio, tels que la propagation perte de trajet, de
retarder la propagation, l’étalement Doppler, observation locale, décoloration
macroscopique/microscopique, et surtout les interférences [1]. En raison de
la propriété de radiodi↵usion de support sans fil, des signaux à un utilisateur
interfèrent tous les voisins qui fonctionnent à la même fréquence. Pareille
ingérence limite la réutilisation des ressources spectrales (temps, fréquence,
code, etc.) et est considéré comme l’un des principaux goulets d’étranglement
qui limitent le débit global dans les réseaux sans fil.

Dans les réseaux cellulaires, il y a deux principales sources d’interférences:
intracellulaire et inter-cellule. L’interférence intracellulaire provient de trans-
mission simultanée de plusieurs utilisateurs qui partagent la même bande
de fréquence dans la même cellule. L’interférence inter-cellule au bord de
la cellule est causée par la coexistence de non-coopérative ou imparfaite-
ment coopéré plusieurs cellules fonctionnant à la même bande de fréquence.
L’existence de l’interférences d’intracellulaire et inter-cellule dégrade la perfor-
mance globale du réseau. Gestion globalement des interférences est devenue
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l’une des principales méthodes pour améliorer l’e�cacité spectrale dans
les réseaux cellulaires sans fil.

1.1 Gestion des interférences dans les réseaux sans
fil

Avec l’évolution des systèmes de communication sans fil, la complexité des
méthodes de gestion des interférences est passée d’élimination des inter-
férences (par exemple, la réutilisation des fréquences, l’accès orthogonale),
le rejet et l’annulation d’interférence multi-utilisateur multi-cellules [par
exemple, de forçage à zéro (ZF) précodage/décodage, multiprogrammation],
à la coordination d’interférence et de l’exploitation (par exemple, multipoint
coordonnée (CoMP) de transmission, l’alignement d’interférence (IA)).

Stratégies de réutilisation de fréquence sont déployées dans les réseaux
cellulaires classiques où la même bande de fréquences est réutilisée par les
cellules non-adjacentes seulement. En tant que tel, l’interférence intercel-
lulaire entre deux cellules adjacentes est totalement évitée. Dans chaque
cellule, un seul utilisateur est autorisé à accéder au support sans fil par
répartition dans le temps ou par répartition en fréquence orthogonale ac-
cès (TDMA/FDMA), et ainsi l’interférence intracellulaire est aussi évitée.
Néanmoins, ces techniques d’accès orthogonales conduisent généralement à la
performance globale du réseau sous-optimale, malgré qu’ils puissent réduire
la complexité de la conception du système.

L’utilisation d’antennes multiples permet à multiple-input multiple-output
(MIMO) à la transmission, o↵rant la possibilité d’amplifier la capacité du
réseau en exploitant la diversité spatiale et les gains de multiplexage [2]. La
clé de transmission MIMO dans le cas où l’utilisateur unique (SU-MIMO)
se trouve dans l’espace-temps de traitement du signal, dans lequel à la fois
du temps et de dimensions spatiales sont explorées dans l’utilisation de
plusieurs antennes réparties dans l’espace [3]. Une famille de techniques
espace-temps de traitement du signal des deux côtés émetteur et récepteur ont
été développés, comme forçage à zéro beamforming/détection et interférences
annulation, par lequel l’interférence est pré-annulé à l’émetteur et/ou rejeté
au niveau du récepteur. Communications multi-utilisateurs permettent à
plusieurs utilisateurs accèdent au même support sans fil en même temps et
la fréquence, agissant comme un rappel physique de la performance de la
couche [4]. En raison de la transformation/décodage conjoint à la station de
base et la liaison montante multi-utilisateur (généralement modélisé comme
de multiples canaux d’accès, MAC) permet la transmission simultanée de
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plusieurs utilisateurs sans interférer entre eux. La liaison descendante multi-
utilisateur est généralement modélisée comme canaux de di↵usion (BC),
dans laquelle la station de base envoie di↵érents messages à plusieurs util-
isateurs. Les informations conclusions théoriques suggèrent que la stratégie
de transmission optimale pour multi-utilisateurs MIMO (MU-MIMO) BC
se compose d’une pré-annulation technique d’interférence (dite codage sale
papier) combinée avec un ordonnancement d’utilisateur et charge de puis-
sance algorithme explicite [5]. À son tour, certaines techniques de gestion
d’interférence pratiques ont été proposées impliquant des concepts tels que
linéaire/précodage non linéaire, la sélection de l’utilisateur, et le chargement
de puissance de remplissage à l’eau, par lequel le compromis performances et
la complexité a été striken. Comparé à SU-MIMO, MU-MIMO est plus à
l’abri des limitations sans fil de propagation de canal, comme le déficit canal
de rang, le canal de corrélation, et la propagation de ligne de vue.

Quand il se agit de multicellulaires réseaux, la coopération de station de
base, aussi connu comme MIMO de réseau et de transmission CoMP, stimule
théoriquement la performance du réseau par un traitement commun dans
les stations de base avec les messages utilisateurs éventuellement partagés
ainsi que des informations d’état de canal [6]. Si les messages des utilisateurs
sont partagés par toutes les stations de base via des liens de transport de
retour, le réseau cellulaire ensemble forme une grande BC virtuel. Plus
précisément, la coordination conjointe entre toutes les stations de base à
travers une liaison de raccordement idéal, tous les signaux peuvent être
traités conjointement, de sorte que l’interférence inter-cellule est exploitée
pour transmettre des messages utiles. Techniques interférences d’annulation
et de rejet à deux émetteurs et récepteurs côtés ont été intensivement étudiés
dans multiutilisateur MIMO BC, où, par exemple les symboles sont précodés
conjointement à la station de base en les faisant coucher dans l’espace
nul engendré par les canaux des autres utilisateurs afin de ne pas gêner
la utilisateurs non intéressés. En revanche, se il n’y a pas d’échange de
messages, le traitement conjoint ne est pas possible et les réseaux cellulaires
sont traitées comme des canaux d’interférence (IC). Il est di�cile de faire les
signaux souhaités se trouvent dans l’espace nul des canaux de tous les autres
utilisateurs que le nombre d’utilisateurs augmente, compte tenu d’un nombre
limité d’antennes à chaque station de base. Il semble que le réseau est limité
par les interférences et la performance globale du réseau sera délimitée par
une valeur constante comme le nombre d’émetteurs/récepteurs augmente.

Ce point de vue communément admise a été contestée par le travail
[7] en 2008 par Cadambe et Jafar, qui a montré que le réseau ne est pas
fondamentalement limité par les interférences et de la performance du taux
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de somme de canaux d’interférence peut être réduit que le nombre de paires
d’émetteur/récepteur. Plus précisément, dans un canal d’interférence entrée
unique sortie unique (SISO), chaque utilisateur peut réaliser la moitié de sa ca-
pacité de canal sans interférences, qui est quel que soit le nombre d’utilisateurs.
Ce résultat surprenant est dû à l’idée d’alignement d’interférence, par lequel
les signaux transmis sont coordonnés par l’intermédiaire de précodage linéaire
de telle sorte que les signaux parasites se trouvent dans un sous-espace de
dimension réduite et sont séparables de l’une souhaitée au niveau de chaque
récepteur. L’alignement d’interférence a attiré beaucoup d’attentions de la
théorie de l’information, la communication, et les communautés de traitement
du signal au cours des six dernières années [8]. D’autres preuves montrant
la force de l’alignement d’interférence ont été trouvés dans les réseaux sans
fil d’interférence [9-11], les réseaux de X [12,13], les réseaux cellulaires [14
à 16], et les réseaux multi-flux multi-hop [17, 18], pour ne en nommer que
quelques-uns.

Du côté du récepteur, le traitement de interférence comme bruit (TIN)
est une technique de gestion d’interférence populaire en raison de sa faible
complexité et la robustesse de canaliser l’incertitude. Le régime de TIN a
été montré dans [19-21] pour avoir une capacité de somme optimale dans les
canaux d’interférence lorsque l’interférence est assez faible. Plus récemment,
la condition su�sante de l’optimalité du régime de TIN dans les canaux
d’interférence K-utilisateur a été créé en [22]. Remarquablement, si la
puissance du signal désiré (en échelle dB) de chaque utilisateur n’est pas
inférieure à la somme de la force (en échelle dB) de l’interférence la plus forte
depuis et vers cet utilisateur, système de TIN atteint la région des capacités
au sein d’un intervalle constant.

1.2 Gestion des interférences avec l’incertitude de
canal

1.2.1 L’incertitude de canal

Fondamentalement, les avantages de la plupart des techniques de gestion
des interférences viennent généralement de l’hypothèse de la disponibilité
des connaissances de canal aux émetteurs. Avec la connaissance de canal,
les émetteurs sont en mesure d’allouer adaptative puissance selon la force
de canal, d’e↵ectuer une pré-annuler interférences multi-utilisateur selon les
instructions de canal, pour planifier les utilis/d’exploiter la diversité multi-
utilisateur, et/ou de coordonner les signaux transmis de manière à aligner

4



CHAPTER 1. RÉSUMÉ [FRANÇAIS]
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Figure 1.1: réseau cellulaire sans fil avec l’incertitude de canal causé par des retours
d’imprécision et de retard.

les interférences au récepteurs. Surtout, la disponibilité des connaissances
de canal global à chaque émetteur/récepteur est habituellement exigée par
les techniques d’alignement d’interférence et MIMO réseau classiques. Néan-
moins, ce gain substantiel sur le cas lorsque l’émetteur n’a pas connaissance
de canal est au détriment des énormes ressources de rétroaction sur la liaison
montante. En e↵et, la connaissance de canal à des émetteurs est généralement
obtenue grâce à la rétroaction. Les utilisateurs premiers estimation des états
de canaux dans la phase de formation, puis nourrissent l’estimation retournée
à sa station de base de desserte via les liens capacité de rétroaction limitée.
L’inexactitude et/ou la latence de la connaissance de canal (c’est à dire, le
canal incertitude) a↵ecte largement les performances du réseau. L’impact de
l’incertitude de canal à la performance du système grâce à la rétroaction à
taux limité a été intensivement étudiée dans la dernière décennie (voir [23,
24] et les références incluses). Dans les systèmes de communication pratiques,
l’incertitude de canal provient principalement de deux contraintes de liens
de rétroaction capacité limitée.
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• Commentaires imprécision: En raison de la capacité limitée des liens de
rétroaction, les coe�cients de canal/vecteurs doivent être quantifiées au
récepteurs avant d’être renvoyée à des émetteurs selon la capacité de la
liaison. L’erreur de quantification est la principale source d’imprécision
de la rétroaction.

• Retard de la rétroaction: Si le retour arrive à émetteurs dans le temps de
cohérence, puis les rétroactions de canal o↵re une certaine connaissance
liée à l’état actuel du canal. Le niveau de corrélation est directement
lié au retard exprimé en fraction du temps de cohérence de canal.
Toutefois, si la latence de rétroaction dépasse le temps de cohérence
du canal, les rétroactions de canal devient indépendante de l’état de
canal actuel.

Sans doute, la rétroaction de canal avec une formation de pilote limité au
niveau des récepteurs va encore dégrader la précision de rétroaction et à son
tour la performance du réseau. Ce point n’est pas abordé dans cette thèse où
la rétroaction de canal parfaite à récepteurs est assumée. Un réseau cellulaire
sans fil illustrative est illustré à la figure 1.1, où la rétroaction imprécision et
le retard sont deux principales sources d’incertitude de canal, et le partage de
données et l’échange CSI sont également des principaux moyens de gestion
des interférences à surmonter l’incertitude de canal.

1.2.2 Figures de mérite: Réalisable Taux et degrés de liberté

Parce que nous concentrons principalement sur les performances du réseau
dans le régime rapport signal sur bruit (SNR), degrés de liberté (DOF,
également connu comme un gain de multiplexage) métrique seront employés
dans cette thèse que le principal critère de mérite. Par exception, dans le
chapitre 3, nous considérons la performance de SNR fini et prenons taux
réalisables comme mesure de performance.

1.2.3 Taux réalisables

Le taux réalisables sur un canal point-à-point peut être généralement calculée,
en supposant que la signalisation gaussien sur l’émetteur et le traitement des
interférences que le bruit au niveau du récepteur, par

R = log(1 + SINR) (1.1)

où SINR est le rapport entre la puissance du signal désiré et la puissance de
la somme des interférences et du bruit.
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1.2.4 Degrés de Liberté

Comme la mesure de la performance des chapitres suivants, DoF carac-
térisation sert de la capacité de premier ordre rapprochement des réseaux
sans fil, à partir de laquelle émergent des techniques et des idées de gestion
d’interférence nouveaux. Le nombre de DoF représente la pente avec laquelle
les taux augmentent avec le logarithme du SNR. A noter que lors de la
prise limitations du système supplémentaires en compte comme matériel
imparfait, niveaux de modulation finis, et le coût de formation de canal
dans un environnement variant dans le temps, le taux de somme sature in-
évitablement dans la très grande limite de SNR [25]. Cependant, la DoF peut
être démontré significative dans un intervalle raisonnable de SNR pratiques
pour les systèmes bien conçus, et il se est avéré utile pour comprendre les
limites fondamentales de plusieurs protocoles de communication, telles que
l’alignement d’interférence (IA) [8] et multicellulaire MIMO [6], entre autres.
Mathématiquement, la valeur réalisable DoF est définie comme

d = lim
P!1

R

logP
(1.2)

où P est la puissance d’émission et R est le taux réalisables. Notez que les
définitions plus précises du DoF seront données plus tard en cas de besoin.

1.2.5 Network Performance avec l’incertitude de canal

Pour le canal MIMO point à point, des informations d’état de canal (CSI)
à l’émetteur (CSIT) est habituellement utilisé pour allouer la puissance à
l’émetteur, et donc l’incertitude canal ne est pas important en termes de
DoF pour SU-MIMO. Bien que la somme DoF de liaison montante multi-
utilisateurs MAC n’est pas a↵ectée par l’absence partielle ou de la CSIT,
l’incertitude de canal pourrait sérieusement dégrader les performances de
liaison descendante BC et IC dans le sens de DoF. Dans suit, les performances
en termes de DoF est décrite à l’égard de diverses disponibilité de rétroaction
de canal.

La rétroaction parfaite

Lorsque la connaissance de canal avec une précision infinie et sans latence
est disponible à l’émetteur (appelé «parfaite CSIT”), la valeur DoF optimale
de K-utilisateur M émission antenne MISO BC est min{M,K} réalisé par
des stratégies linéaires comme ZF formation de faisceau. Quand il s’agit de
K-utilisateur MIMO BC avec M antennes à l’émetteur et les antennes Nk au
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récepteur ke, la somme optimale DoF min{M,
PK

k=1

Nk} peut également être
obtenue par ZF précodage aux deux émetteurs et récepteurs [26]. Bien que la
somme optimale DoF de K-utilisateur canaux d’interférence SISO ont été mon-
trés pour être K

2

[7], la caractérisation DoF de l’a↵aire MIMO générale avec
des configurations d’antenne arbitraires est ouvert et encore attirer l’attention
[11, 27]. En particulier, pour le mode MIMO à deux IC, où les émetteurs et
les récepteurs sont équipés de M

1

,M
2

, N
1

, N
2

antennes, respectivement, la
somme est DoF min{M

1

+M
2

, N
1

+N
2

,max{M
1

, N
2

},max{M
1

, N
2

}} avec
une parfaite CSIT [28]. Néanmoins, la performance promise par CSIT par-
faite est déprimé par les dures contraintes de précision infinie et la rétroaction
latence zéro, ce qui n’est pas pratique.

Pas de rétroaction

D’autre part, en l’absence de connaissance des réalisations de canal à
l’émetteur (dénommé “pas CSIT”), un e↵ondrement du DoF a été prédit par
l’information des études théoriques. Plus précisément, certains travaux an-
térieurs avec aucun réglage de la CSIT ont observé cet e↵ondrement du DoF,
sous l’hypothèse supplémentaire d’homogénéité, comme i.i.d décoloration
isotrope, canal dégradation ou l’équivalence statistique des récepteurs [29-32].
Par exemple, dans un deux utilisateurs MISO BC avec générique (c’est à dire,
des coe�cients de canal sont tirées d’une distribution continue) et constante
ou variable dans le temps canaux, si l’émetteur est aveugle aux Etats canal
deux utilisateurs de, la somme la plus connue DoF externe lié est 4

3

alors la
limite intérieure plus connu est toujours 1. Remarquable, un résultat par
Jafar [33] étonnamment montré que, sous un modèle de bloc fondu hétérogène,
la connaissance des intervalles de cohérence de canal peut améliorer somme
DoF. Jetez un deux utilisateurs MISO BC à titre d’exemple, supposons qu’un
utilisateur éprouve temps évanouissement sélectif tandis que l’autre éprouve
évanouissements sélectifs en fréquence, le DoF optimal 4

3

peut être atteint.
Néanmoins, si la borne extérieure ou intérieure est serrée en général aucun
réglage de la CSIT n’est encore inconnu. Il a en outre revendiqué dans [34]
que l’e↵ondrement DoF avec imprécision fixe de la CSIT dont l’erreur ne se
adaptent pas avec SNR, et la valeur d’un DoF deux utilisateurs MISO BC
est supérieure délimitée par 4

3

. Ce DoF limite supérieure a été prouvé à être
serré par Gou, Jafar et Wang dans [35], et par Maddah-Ali dans [36] sous
le paramètre composé d’état fini, dans lequel DoF sont présentés pour être
robuste pour canaliser l’incertitude et l’optimale 4

3

DoF sont réalisables pour
le composé à états finis MISO BC, quel que soit le nombre d’états. D’autre
part, il a été conjecturé que la somme d’un DoF deux utilisateurs MISO BC
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doit se e↵ondrer à 1 sous le n� réglage général de la CSIT sans hypothèses
supplémentaires. Pour prouver ou réfuter cette conjecture a été un problème
de longue date ouverte, jusqu’à ce qu’une récente percée par Davoodi et Jafar
[37], qui a montré que la limite intérieure est serré tel que DoF e↵ondrement
de l’unité que conjecture. Remarquablement, c’est le premier résultat de
montrer l’e↵ondrement total de DoF dans l’incertitude de canal.

La rétroaction avec précision finie

Il est bien connu que la pleine DoF en BC peut être maintenu sous CSIT
imparfaite si l’erreur dans CSIT diminue à O(P�1) as P grandit [38, 39].
L’interprétation est qu’une telle stratégie de quantification maintient le bruit
de quantification à un niveau ne dépassant pas le bruit thermique, évitant
ainsi de faire quantification un goulot d’étranglement de la transmission que
le SNR se développe. En outre, pour le cas de la corrélation dans le temps de
telle sorte que le canal émetteur peut prédire l’état actuel de décomposition
erreur comme O(P�↵) pour une constante d’évanouissement ↵ 2 [0, 1], ZF ne
peut atteindre une fraction optimale de la ↵ DoF par utilisateur [38, 39]. Ce
résultat révèle le goulot d’étranglement d’une famille de précodage régimes
s’appuyant uniquement sur la précision de rétroaction instantanée CSIT que
la corrélation temporelle diminue.

Commentaires avec précision finie a également été considéré dans les
canaux d’interférence en liaison avec l’alignement d’interférence. Parmi
beaucoup d’autres, dans [40], le nombre de bits de rétroaction nécessaires
via di↵usion liens de rétroaction a été caractérisée de maintenir le plein DoF
avec une parfaite CSIT mondiale. Le nombre minimum de radiodi↵usion
bits de rétroaction devrait échelle que le nombre d’utilisateurs et logP , ce
qui signifie que l’incertitude du canal diminue à O(P�1) en tant que P se
développe, ce qui concorde avec le cas de la BC.

La rétroaction avec délai

Quand il s’agit du retard de rétroaction, la sagesse conventionnelle suggère
de prévoir le canal actuel de la rétroaction retardée en exploitant le temps de
canal corrélation. L’état de canal prédit est ensuite utilisé pour précodage
comme si c’est l’état du canal vrai. Il fonctionne (mais pas nécessairement
optimale) lorsque le temps de cohérence est plus grande que le délai global
de rétroaction. Sinon, le retour retardé ne porte aucune information sur le
canal vrai courant et le précodage construit sur cette prédiction n’o↵re aucun
gain de multiplexage du tout. Lorsque les évaluations CSI est entièrement
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obsolète (c’est à dire, pas corrélés avec le canal vrai actuelle, dénommée
pleinement ”retardé CSIT”), il semblerait telles informations de canal est
non exploitable en vue d’améliorer les gains de multiplexage. Récemment, ce
point de vue a été contestée par une information intéressante travail théorique
[41], dans lequel Maddah- Ali et Tse ont montré un résultat surprenant que
même complètement dépassée CSIT peut être très utile en termes de degrés
de liberté, tant qu’il décrit exactement passé réalisations de canal, ce est à
dire, l’erreur dans la description des états de canaux dernières doivent se
dégrader au moins aussi vite que O(P�1). Pour les deux utilisateurs MISO
BC, le schéma proposé dans [41] (dénommé «MAT») réalise la DoF de 2

3

par utilisateur - indépendamment de la corrélation temporelle - la réalisation
de meilleures DoF strictement que ce qui est obtenu sans CSIT, même dans
des situations extrêmes, lorsque les évaluations de canal retardée est fait
totalement obsolète par un retard de rétroaction dépassement du temps de
cohérence du canal. Le rôle de la parfaite CSIT retardé peut être réinterprété
comme un retour d’informations caractérisant le passé de signal/interférences
entendu par les récepteurs. Cette information côté permet au transmetteur
de procéder à l’alignement d’interférence «rétrospective» dans le domaine
de l’espace et du temps, comme l’a démontré dans di↵érents systèmes de
réseau multi-utilisateur [42-47]. Malgré son optimalité DoF, ces régimes MAT
inspiration sont conçus en supposant le pire des cas où les évaluations de
canal retardée ne fournissent aucune information sur l’état actuel du canal.
Le complément d’enquête sur le canal incertitude dans cette voie comprend
la soi-disant «alternatif CSIT» [48], dans lequel les utilisateurs rencontrent
des temps variables disponibilité de CSI, par exemple, l’incertitude de canal
varie selon les réglages parfaits, retardée et ne CSIT, et beaucoup d’autres.
Cette rétroaction retardée est la forme de l’incertitude de canal considéré
dans les chapitres 3 et 4.

La rétroaction topologique

Dans les réseaux partiellement connectés, la connaissance de la connectivité
réseau peut être assez facile à acquérir par les émetteurs via une rétroac-
tion (dénommé «rétroaction topologique»), que le long terme connectivité
(statistique) de canal varie souvent plus lent que les réalisations de canal, et
réaction de tête de cette information topologique (avec une valeur binaire
indiquant si le canal est forte ou faible) est négligeable. Plus précisément, la
seule connaissance de la connectivité réseau aux émetteurs via une rétroaction
topologique se est avérée bénéfique pour améliorer les performances du réseau
dans les réseaux d’interférence partiellement connectés, si le canal est lent
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fondu [49] ou évanouissement rapide [50, 51]. Remarquablement, les canaux
d’interférence avec aucune CSIT delà de l’information topologique ont été
formulés dans le cadre de la gestion des interférences topologique, dans lequel
ce problème de rétroaction topologique a été montré pour être équivalent à
l’index de codage problème bien défini [52] sous solutions linéaires. Cette
rétroaction topologique est la configuration envisagée dans les chapitres 5 et
6.

1.3 Objectifs et méthodologie

1.3.1 Objectifs

En général, cette thèse se concentre sur l’étude de la gestion des interférences
avec le canal d’incertitude dans les réseaux multi-MIMO. Comme indiqué
précédemment, une caractéristique commune derrière une grande partie de
l’analyse des techniques de gestion d’interférence a été la disponibilité de
la CSIT parfaite instantanée, avec des exceptions face à soi-disant régimes
de rétroaction limitées [23, 24, 34, 39]. En pratique, toutefois, l’acquisition
de parfaite (ou même su�samment précise) CSI aux émetteurs est di�cile,
si possible, notamment pour les châınes évanouissement rapide. Les com-
mentaires de canal sou↵rent de retards ainsi que la capacité strictement
limité de liens de rétroaction. Ainsi, dans les cas extrêmes, on peut soit
considérer une CSI su�samment précise mais avec une grande latence ou
accéder instantanément à une information de canal grossier (par exemple, un
bit indiquant si le canal est forte ou faible), dans laquelle le premier rend les
disponibles évaluations CSI totalement obsolètes sous le canal évanouissement
rapide, et celui-ci fait l’émetteur presque aveugle, sauf l’indicateur binaire
de la force du canal. Cette thèse porte sur di↵érents régimes à l’égard de
la disponibilité de la CSIT, en essayant de répondre aux deux problèmes
fondamentaux suivants:

• Comment exploiter au mieux la rétroaction retardée?

• Comment exploiter au mieux la rétroaction topologique?

1.3.2 Méthodologie

Pour ces deux problèmes, nous regardons essentiellement sur eux à partir
d’un point de vue théorique informations, dont nous tirons l’information
limites extérieures théoriques et les systèmes de conception de faisabilité
d’approcher les limites extérieures. L’optimalité s’a�che lorsque la faisabilité
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cöıncide avec les limites extérieures. L’exception est le chapitre 3, dans
lequel nous nous concentrons sur l’aspect de traitement du signal telles que
la conception précodeur en minimisant l’erreur quadratique moyenne et de
maximiser l’information mutuelle.

Les techniques utilisées dans le chapitre 3 comprennent l’optimisation,
algorithme itératif, et les équations di↵érentielles de la matrice. Dans le
chapitre 4, les limites extérieures sont obtenus en utilisant les techniques
de génie-aide de la limite, l’inégalité extrémal, et la capacité ergodique
des canaux MIMO avec l’incertitude, alors que la faisabilité est construit
sur le codage bloc-Markov et de décodage arrière, ainsi que le concept de
roman quantification de l’interférence. Le chapitre 5 présente quelques outils
en théorie des graphes et combinatoire, et le problème de la gestion des
interférences avec retour topologique sont connecté à certains problèmes bien
définis dans la théorie des graphes. Outre les informations techniques de la
limite théorique, chapitre 6 se appuie également lien entre les problèmes de
gestion des interférences et des problèmes de coloration de graphe ainsi que
l’indice de codage problèmes.

1.3.3 Hypothèses

Afin de rendre plus docile problèmes concernés, nous faisons les hypothèses
suivantes dans cette thèse.

• Haute SNR: En prenant DoF comme la principale mesure de la
performance, les problèmes di�ciles tels que la conception de précodeur
optimale et la répartition de puissance sont sensiblement simplifiées,
SNR tend vers l’infini. Comme telle analyse, plus docile peut être fait
pour avoir un aperçu sur la façon de concevoir des schémas. Cette
hypothèse s’applique aux chapitres 4,5 et 6, tandis que dans le chapitre
3, nous prenons la performance de vitesse finie SNR réalisables en
compte.

• Parfait CSI au niveau des récepteurs (CSIR): Tout au long
de cette thèse, nous supposons estimation de canal est parfaitement
e↵ectuée au niveau des récepteurs au cours de la phase de formation,
et CSI est parfaitement connue par les récepteurs.

• la mobilité de l’utilisateur: En raison de la mobilité de l’utilisateur,
des coe�cients de canal varient au fil du temps. Dans les chapitres 3,
le canal d’intérêt varie de l’emplacement à la fente, comme rétroaction
retard dépasse canal temps de cohérence tels que la rétroaction de canal
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est vulnérable à être dépassée. En revanche, le chapitre 4 prend canal
corrélation temporelle en compte, où la rétroaction retard est dans le
temps de cohérence du canal. Dans les chapitres 5 et 6, les canaux
garder constante pendant canal temps de cohérence et varient lorsqu’il
dépasse.

• signalisation Gaussien: Lorsque nous calculons le taux réalisables
(au chapitre 3) et les systèmes de conception de faisabilité (chapitre 4),
la signalisation Gaussienne est généralement supposée.

• filtres linéaires: Quand nous nous concentrons sur les performances
de haute SNR, l’utilisation de filtre linéaire ou non linéaire ne fait
aucune di↵érence à DoF métrique. Pour simplifier, nous employons
habituellement filtres linéaires à deux côtés émetteur et récepteur.

• Traiter les interférences que le bruit: Mis à part le décodage
conjoint dans le chapitre 4, nous traitons habituellement interférence
bruit à récepteurs.

1.4 Contributions de cette thèse

Cette thèse est composée d’un membre des contributions sur la façon de gérer
l’interférence avec la rétroaction retardée ou topologique. Dans ce qui suit,
nous présentons toutes les contributions de cette thèse avec des publications.

1.4.1 Gestion des interférences avec rétroaction di↵éré

Lorsque les évaluations CSI est entièrement pas à jour (c’est à dire, re-
tardé CSIT), une percée récente [41] a montré que même les évaluations
de canal complètement dépassée est toujours utile. Ce résultat surprenant
est basé sur l’idée de l’alignement d’interférence rétrospective (aussi connu
comme“l’alignement de MAT”) qui permet à la reconstruire de l’émetteur et
retransmettre l’interférence entendu au récepteurs dans le passé par rétrospec-
tion la CSIT retardé, de sorte que les récepteurs peuvent aligner l’ingérence
parfaitement et récupérer souhaité symboles avec succès, ce qui en fait un
régime optimal en termes de DoF dans le régime de SNR infinie. Bien
inspirant et fascinant d’un point de vue conceptuel, ce résultat est sujet à
amélioration. Il peut être considéré comme optimiste en ce qu’il met l’accent
sur le comportement intrinsèque de SNR asymptotique, en laissant de côté
en particulier la question de savoir comment serait précodage être fait en
utilisant pratiquement CSIT vicié au SNR finie. Mais il peut aussi être
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considéré qu’il assume le canal est indépendant et identiquement distribuées
(i.i.d) dans le temps, où retardée CSIT porte aucune corrélation avec les
réalisations de canaux actuels. La thèse étudiera les deux problèmes suivants
basés sur un tel cadre de rétroaction retardé:

• Pouvons-nous faire mieux au SNR finie? Comment retardé CSIT peux
améliorer la performance de taux de somme?

• Pouvons-nous faire mieux si le canal présente une corrélation dans le
temps? Comment ne corrélation temporelle a↵ecte la région DoF du
cas général MIMO?

Précodage avec CSIT di↵éré: le cas fini SNR

Dans le chapitre 3, nous formulerons un problème similaire avec le réglage de
la CSIT retardé, mais au SNR finie. Nous proposons une première construc-
tion pour le précodeur qui correspond aux résultats précédents au infinie
SNR encore atteint un bon compromis entre l’alignement d’interférence
et l’amélioration du signal au finie SNR, permettant l’amélioration sig-
nificative des performances dans des contextes pratiques. Nous allons
présenter deux méthodes de précodage générales avec nombre arbitraire
d’utilisateurs au moyen de MMSE virtuelle et l’optimisation de l’information
mutuelle, parvenir à un bon compromis entre l’amélioration du signal et
l’alignement d’interférence. En particulier, en optimisant le rapprochement de
l’information mutuelle, nous arrivons à une solution de forme fermée pratique,
qui o↵re un remarquable bon compromis entre l’alignement d’interférence et
l’amélioration du signal. Ces résultats présentés dans le chapitre 3 ont été
publiés dans

• Xinping Yi and David Gesbert, “Precoding methods for the MISO
broadcast channel with delayed CSIT,” IEEE Transactions on Wireless
Communications, vol. 12, no. 5, pp. 2344–2354, May 2013.

• Xinping Yi and David Gesbert, “Precoding on the broadcast MIMO
channel with delayed CSIT: The finite SNR case,” in Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’12), Kyoto, Japan, March 2012.

Les réseaux MIMO avec CSIT di↵éré: Le cas corrélé Temps

En raison du comportement d’étalement Doppler fini de canaux à évanouisse-
ment, c’est le cas dans de nombreuses situations de la vie réelle que les
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réalisations de canal dernières peuvent fournir des informations sur les actuels.
Avec retard CSIT, le bénéfice de courant imparfaite tels CSIT a été exploitée
d’abord dans [53] pour la MISO BC lequel un schéma de transmission roman
a été proposé qui améliore l’alignement sur MAT pur dans la construction
précodeurs basé sur retardée et estimée CSIT actuelle. La caractérisation
complète de la DoF optimale pour cette CSIT mixte a été rapporté plus tard
dans [54, 55] pour MISO avant BC sous ce paramètre.

Malheureusement, l’extension au cas MIMO avec des configurations
d’antenne arbitraires n’est pas une étape triviale, même avec la courante
hypothèse de la qualité de la CSIT symétrique. Les principaux défis sont
de deux ordres: (a) la dimension spatiale supplémentaire au côté récepteur
introduit un compromis non négligeable entre le signal utile et les interférences
mutuelles, et (b) l’asymétrie de recevoir des configurations d’antenne résultats
de l’écart de commune message capacité de décodage à di↵érents récepteurs.
En particulier, le nombre total de flux qui peuvent être livrés sous forme de
messages communs aux deux récepteurs est inévitablement limitée par la
faible une (c’est à dire, avec moins d’antennes).

Dans le chapitre 4, nous allons considérer les réseaux MIMO corrélées
dans le temps (la BC et IC) où l’émetteur (s) a/ont une) retardé CSI obtenu
à partir d’un canal de rétroaction de latence sujettes ainsi que 2) imparfaite
actuelle CSIT, obtenu, par exemple, à partir de prédiction sur la base de ces
derniers échantillons de canaux selon l’une corrélation temporelle. Les régions
DoF pour la di↵usion et l’interférence des réseaux MIMO-deux utilisateurs
avec des configurations d’antenne générale dans de telles conditions sont
entièrement caractérisées, en fonction de l’indicateur de qualité de prédiction.
Plus précisément, un cadre unifié simple est proposée, ce qui nous permet
d’atteindre la région optimale DoF pour les configurations d’antenne générales
et qualités actuelles de la CSIT. Ce cadre se appuie sur le codage bloc-
Markov avec une interférence quantification, combinant de manière optimale
l’utilisation des deux CSIT jour et instantanée. Une caractéristique frappante
de notre travail est que, en faisant varier la répartition du pouvoir, chaque
point dans la région DoF peut être réalisé avec un seul système.

Nous établissons aussi des limites extérieures de la région DoF MIMO
BC et IC en fonction de l’exposant courant de la qualité de la CSIT. En
introduisant un signal virtuel reçu pour l’IC, nous relions le bien externe lié à
celui de la BC, arrivé à un résultat consolidé externe similaire pour les deux
cas. En plus des techniques de délimitation génie-assistée et l’application de
l’inégalité extrémal, nous développons un ensemble de limites supérieure et
inférieure de la capacité ergodique pour les canaux MIMO, qui est essentiel
pour le cas MIMO mais pas extensible de MISO. Dans la suite, nous proposons
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une nouvelle façon systématique pour prouver la faisabilité, au lieu de vérifier
la faisabilité de chaque point de la région borne extérieure de coin, comme
cela se fait habituellement dans la littérature. Cela contraste avec la plupart
des preuves existantes dans la littérature où la faisabilité de chaque point
d’angle est cochée. Ces résultats présentés au chapitre 4 ont été publiés dans

• Xinping Yi, Sheng Yang, David Gesbert, and Mari Kobayashi, “The
degrees of freedom region of temporally-correlated MIMO networks
with delayed CSIT,” IEEE Transactions on Information Theory, vol.
60, no. 1, pp. 594-614, January 2014.

• Xinping Yi, David Gesbert, Sheng Yang, and Mari Kobayashi, “Degrees
of freedom of time-correlated broadcast channels with delayed CSIT:
The MIMO case,” in Proc. of IEEE International Symposium on
Information Theory (ISIT’13), Istanbul, Turkey, July 2013.

• Xinping Yi, David Gesbert, Sheng Yang, and Mari Kobayashi, “On the
DoF of the multiple-antenna time correlated interference channel with
delayed CSIT,” in Proc. Asilomar Conference on Signals and Systems
(Invited Paper), Pacific Grove, CA, USA, November 2012. (long version
arXiv: 1204.3046)

Les articles ci-dessus constituent des généralisations de certains de nos
travaux précédents portant sur MISO seulement les résultats, qui ne sont
pas présentés dans cette thèse.

• Sheng Yang, Mari Kobayashi, David Gesbert, and Xinping Yi, “Degrees
of freedom of time correlated MISO broadcast channels with delayed
CSIT,” IEEE Transactions on Information Theory, vol. 59, no. 1, pp.
315-328, January 2013.

• Sheng Yang, Mari Kobayashi, David Gesbert, and Xinping Yi, “De-
grees of Freedom of MISO broadcast channel with perfect delayed and
imperfect current CSIT,” in Proc. IEEE Information Theory Workshop
(ITW’12), Lausanne, Switzerland, September 2012.

• Mari Kobayashi, Sheng Yang, David Gesbert, and Xinping Yi, “On the
Degrees of freedom of time correlated MISO broadcast channel with
delayed CSIT,” in Proc. of IEEE Intern. Symposium on Information
Theory (ISIT’12), Cambridge, MA, USA, July 2012.

16



CHAPTER 1. RÉSUMÉ [FRANÇAIS]

1.4.2 Gestion des interférences avec rétroaction topologique

À première vue, une limitation à un bit évaluations de la CSIT est comme une
goutte dans un océan, ce qui rend di�cile pour les émetteurs d’extraire le gain
DoF substantielle de la coopération, semble inutile dans le sens de DoF. Il a
été rapporté dans [29, 30] que DoF substantielle ne peut être réalisé dans l’IC
ou le scénario de la BC sans CSIT. Un examen approfondi de ces résultats
pessimistes révèle que la plupart des réseaux sont entièrement connecté,
dans lequel ne importe quel émetteur peut interférer avec ne importe quel
récepteur non conforme dans le réseau.

Grâce à placement aléatoire des nœuds, le fait que le pouvoir se désintègre
rapidement avec la distance, l’existence d’obstacles, et les e↵ets d’ombrage
locales, nous pouvons soutenons que certains liens d’interférence sont in-
évitablement beaucoup plus faible que les autres, suggérant l’utilisation d’un
graphe partiellement connecté à modéliser, au moins approximativement,
la topologie du réseau. Une question intéressante a ensuite soulevé, si la
connectivité partielle pourrait être mise à profit pour permettre l’utilisation
d’une certaine forme détendue de la CSIT tout en réalisant une performance
DoF substantielle. En particulier, l’exploitation de l’information topologique,
indiquant simplement que des liens interférents sont su�samment faibles
pour être approchée par zéro interférence et qui les liens sont trop fort, est
d’un grand intérêt pratique.

Récemment, réseaux d’ingérence sans CSIT sauf pour le graphe de con-
nectivité réseau ont été étudiés dans le cadre de la gestion dite d’interférence
topologique (TIM) [49]. Un e↵et surprenant a révélé que la performance
du réseau peut être sensiblement améliorée sous les seules informations de
topologie, à condition que le réseau soit partiellement connecté. Remar-
quablement, l’alignement d’interférence a été prouvé pour être bénéfique sur
les schémas d’accès orthogonaux, même à l’insu de la voie à la réalisation
émetteurs.

Bien que le problème TIM soit avérée équivalent au problème de codage
de l’indice sous solutions linéaires [49], il y a encore de nombreux problèmes
ouverts intéressants dans paramètre TIM. Par exemple, deux problèmes sont
énumérés comme suit:

• En l’absence de la CSIT, l’accès orthogonal est optimal dans les
réseaux d’interférence entièrement connectés, tandis que l’alignement
d’interférence o↵re plus de gains sous Paramètres TIM. Une question
intéressante se pose alors quant à l’accès orthogonale est optimale dans
les paramètres TIM.
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• Compte tenu de l’avantage de la rétroaction topologique dans les réseaux
d’interférence, une question logique est de savoir si les évaluations
topologique est bénéfique dans le contexte d’un réseau d’interférence
où un mécanisme d’échange de messages entre les émetteurs pré-
existe. C’est, quel est l’avantage de la coopération de l’émetteur sous
Paramètres TIM?

Topologique gestion des interférences: l’optimalité de l’accès Or-
thogonal

Dans le chapitre 5, la DoF optimale des multiples problèmes TIM unicast sont
entièrement caractérisés par l’intermédiaire de systèmes d’accès orthogonaux
simples pour une sous-classe de topologies de réseaux cellulaires. En partic-
ulier, il sera montré que l’accès orthogonale atteint le optimale symétrique
DoF, résumer DoF, et la région DoF du unidimensionnel (où les deux les
émetteurs et les récepteurs sont placés le long d’une ligne droite) réseaux
cellulaires convexes [où la couverture cellulaire est convexe telle que chaque
émetteur (ou récepteur) se connecte à récepteurs consécutifs (ou émetteurs)]
avec des ensembles de messages arbitraires (c’est à dire, le réglage unicast
multiples général). Remarquablement, la convexité physique se avère être
la limitation fondamentale dans tous les réseaux cellulaires convexes unidi-
mensionnelles. Ces résultats présentés au chapitre 5 ont été soumis pour
publication.

• Xinping Yi, Hua Sun, Syed Ali Jafar, and David Gesbert, “Topological
interference management: The optimality of orthogonal access,” to be
submitted, 2014.

Gestion des interférences topologique avec la Coopération émet-
teur

Dans futurs LTE-A réseaux cellulaires par exemple, un mécanisme transport
de retour de routage assure que les stations de base, qui a été sélectionné
à coopérer dans le cadre de CoMP, de recevoir une copie des messages à
transmettre. Pourtant, l’échange de CSI en temps opportun est di�cile
en raison de l’obsolescence rapide des instantanée CSI et la latence de
signalisation transport de retour liens. Dans ce cas, un canal de di↵usion
sur les émetteurs distribués s’ensuit avec le manque de CSIT instantanée.
Dans le chapitre 6, nous considérons la mise TIM où la coopération de
l’émetteur typique est activée. Nous allons montrer que la seule information
topologique peut être exploitée dans ce cas d’améliorer strictement DoF
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lorsque le réseau ne est pas entièrement connecté. C’est une hypothèse
raisonnable dans la pratique. Plusieurs limites internes basés sur la graphique
coloration, revêtement de hypergraphe, et l’alignement d’interférence de sous-
espace seront proposées, avec quelques limites extérieures construites sur
la séquence du générateur, les paramètres composés et codage de l’indice,
pour caractériser la DoF symétrique pour les réseaux réguliers ainsi que pour
identifier le des conditions pour parvenir à une certaine quantité de DoF
pour les topologies de réseau arbitraires. Ces résultats présentés au chapitre
6 ont été publiés dans

• Xinping Yi and David Gesbert, “Topological interference management
with transmitter cooperation,” in Proc. of IEEE International Sympo-
sium on Information Theory (ISIT’14), Hawaii, USA, July 2014.

• Xinping Yi and David Gesbert, “Topological interference management
with transmitter cooperation,” IEEE Transactions on Information
Theory, July 2014, under revision.

1.5 Autres contributions

Autres contributions généralisant également certains des résultats ci-dessus
au cours de thèse de doctorat ne sont pas présentés dans cette thèse.

Châınes MISO di↵usion avec CSIT di↵éré: Le K-utilisateur de cas

L’extension à un K-utilisateur MISO BC a également été étudiée lorsque
l’émetteur a accès à CSI retardé en plus imparfaite CSIT actuelle. Nous
avons contribué à la caractérisation de la région de DoF dans un tel cadre
en dérivant une borne extérieure et en fournissant un système réalisable.
Remarquablement, la DoF réalisables est obtenu par l’élaboration d’un
nouveau système d’alignement d’interférence rétrospective, qui se appuie à la
fois sur le principe de l’alignement de MAT et ZF précodage pour atteindre
un plus grand DoF. Cette contribution a été publiée dans:

• Paul de Kerret, Xinping Yi, and David Gesbert, “On the degrees of
freedom of the K-User time-correlated broadcast channel with delayed
CSIT”, in Proc. of IEEE International Symposium on Information
Theory (ISIT’13), Istanbul, Turkey, July 2013. (long version arXiv:
1301.3138)

19



CHAPTER 1. RÉSUMÉ [FRANÇAIS]

MIMO réseau avec retards transport de retour

Une application intéressante de la CSIT retardée dans les réseaux cellu-
laires a également été étudiée. Nous avons considéré le problème de la
liaison descendante précodage pour les réseaux MIMO multi-cellulaires où
les émetteurs sont fournis avec CSI imparfaite. Plus précisément, chaque
émetteur reçoit une estimation de canal retardé avec le retard étant spécifique
à chaque composante de canal. Ce modèle est particulièrement adapté pour
les scénarios où un utilisateur Feeds Retour son CSI à sa base de desserte
seulement comme il est prévu dans les futurs réseaux LTE. Nous avons
analysé l’impact du retard lors de l’échange de CSI basée transport de retour
sur la performance de taux par MIMO réseau. Nous avons souligné combien
retard peut considérablement dégrader les performances du système si les
méthodes de précodage existants sont utilisés. Une stratégie de formation de
faisceau robuste solution de rechange a été proposée, atteindre la performance
maximale, au sens DoF. Cette contribution a été publiée dans:

• Xinping Yi, Paul de Kerret, and David Gesbert, “The DoF of network
MIMO with backhaul delays,” in Proc. of IEEE International Con-
ference on Communications (ICC’13), Budapest, Hungry, June 2013.
(long version, arXiv: 1210.5470.)
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Chapter 2

Introduction

The recent growing demands for high-rate multimedia streaming and so-
cial networking services on mobile applications (such as the omnipresent
smartphones and tablets) require the development of dramatically higher
throughput techniques for wireless cellular networks. Radio spectrum scarcity
in frequencies below 10 GHz, which are most suitable to wireless communi-
cations, impedes the progress in this regard. With scarce spectrum, a more
e�cient utilization of spectrum becomes more and more crucial.

The main challenge to improve spectral e�ciency is to compensate for
signal degradations caused by the nature of wireless propagation. The signal
transmitted in wireless cellular networks su↵ers from a variety of radio channel
degradations, such as propagation path loss, delay spread, doppler spread,
local shadowing, and macroscopic/microscopic fading, and most importantly
interference [1]. Due to the broadcasting nature of wireless medium, signals
to one user will interfere all neighboring users that are operating at the same
frequency. As such, interference restricts the reusability of spectral resources
(time, frequency, code, etc.) and is regarded as one of the major bottlenecks
limiting the overall throughput in wireless networks.

In cellular networks, there exist two major sources of interference: intracell
and intercell interference. The intracell interference comes from simultaneous
transmission of multiple users that share the same frequency band in the
same cell. The intercell interference at the cell edge is due to the coexistence
of noncooperative or imperfectly cooperated multiple cells operating at the
same frequency band. The existence of intracell and intercell interference
degrades the overall network performance. Interference management overall
has become one of the main methods to improve spectral e�ciency in wireless
cellular networks.
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2.1 Interference Management inWireless Networks

Along with the evolution of wireless communication systems, the complex-
ity of methods for interference management has been growing from inter-
ference avoidance (e.g., frequency reuse, orthogonal access), to multiuser
multicell interference rejection and cancelation [e.g., zero-forcing (ZF) pre-
coding/decoding, multiuser scheduling], to interference coordination and
exploitation (e.g., coordinated multipoint (CoMP) transmission, interference
alignment (IA)).

Frequency reuse strategies are deployed in conventional cellular networks
where the same frequency band is reused by non-adjacent cells only. As such,
the intercell interference between two adjacent cells is totally avoided. In
each cell, only one user is allowed to access the wireless medium by time-
division or frequency-division orthogonal access (TDMA/FDMA), and thus
intracell interference is avoided as well. Nevertheless, these orthogonal access
techniques usually lead to suboptimal overall network performance, although
they can reduce the complexity of system design.

The use of multiple antennas enables multiple-input multiple-output
(MIMO) transmission, o↵ering the opportunity to amplify the network ca-
pacity by exploiting spatial diversity and multiplexing gains [2]. The key of
MIMO transmission in single user case (SU-MIMO) lies in space-time signal
processing, in which both time and spatial dimensions are explored in the use
of multiple spatially distributed antennas [3]. A family of space-time signal
processing techniques at both transmitter and receiver sides were developed,
such as zero forcing beamforming/detection and interference cancelation, by
which the interference is precanceled at the transmitter and/or rejected at
the receiver.

Multiuser communications enable multiple users access the same wireless
medium at the same time and frequency, acting mainly as a physical layer
performance booster [4]. Thanks to the joint processing/decoding at the base
station, the multiuser uplink (usually modeled as multiple access channels,
MAC) allows for the simultaneous transmission of multiple users without
interfering one another. The multiuser downlink is usually modeled as broad-
cast channels (BC), in which the base station sends di↵erent messages to
multiple users. The information theoretic findings suggest that the optimal
transmission strategy for multiuser MIMO (MU-MIMO) BC consists of an
interference pre-cancelation technique (so-called dirty-paper coding) com-
bined with an explicit user scheduling and power loading algorithm [5]. In
turn, some practical interference management techniques have been proposed
involving concepts such as linear/nonlinear precoding, user selection, and
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water-filling power loading, by which the performance-complexity tradeo↵
was striken. Compared to SU-MIMO, MU-MIMO appears more immune
to wireless channel propagation limitations, such as channel rank deficiency,
channel correlation, and line-of-sight propagation.

When it comes to multicell networks, base station cooperation, also known
as network MIMO and CoMP transmission, theoretically boosts the network
performance by joint processing at base stations with possibly shared users’
messages as well as channel state information [6]. If users’ messages are shared
by all base stations via backhaul links, the overall cellular network forms a
large virtual BC. Specifically, with joint coordination among all base stations
through an ideal backhaul link, all the signals can be jointly processed,
such that intercell interference is exploited to transmit useful messages.
Interference cancelation and rejection techniques at both transmitter and
receiver sides were intensively studied in multiuser MIMO BC, where for
instance the symbols are jointly precoded at the base station making them
lie in the null space spanned by other users’ channels so as not to interfere
the non-interested users. In contrast, if there is no message sharing, joint
processing is not possible and cellular networks are treated as interference
channels (IC). It is challenging to make the desired signals lie in the null
space of all other users’ channels as the number of users increases, given a
limited number of antennas at each base station. It would seem that the
network is interference-limited and the overall network performance will be
bounded by a constant as the number of transmitters/receivers increases.

This commonly accepted viewpoint was challenged by the work [7] in 2008
by Cadambe and Jafar, who showed that the network is not fundamentally
interference-limited and the sum rate performance of interference channels can
be scaled as the number of transmitter/receiver pairs. Specifically, in a single-
input single-output (SISO) interference channel, each user can achieve half of
his interference-free channel capacity, which is irrespective of the number of
users. This surprising result is due to the idea of interference alignment, by
which the transmitted signals are coordinated via linear precoding such that
the interfering signals lie in a reduced dimensional subspace and are separable
from the desired one at each receiver. Interference alignment has attracted
plenty of attentions from the information theory, communication, and signal
processing communities over the past six years [8]. Further evidences showing
the strength of interference alignment were found in wireless interference
networks [9–11], X networks [12,13], cellular networks [14–16], and multi-hop
multi-flow networks [17,18], to name a few.

At the receiver side, treating interference as noise (TIN) is a popular
interference management technique, thanks to its low complexity and robust-
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ness to channel uncertainty. The TIN scheme was shown in [19–21] to be
sum capacity optimal in the interference channels when the interference is
weak enough. Most recently, the su�cient condition of the optimality of TIN
scheme in K-user interference channels was established in [22]. Remarkably,
if the desired signal strength (in dB scale) of each user is no less than the
sum of the strength (in dB scale) of the strongest interference from and to
this user, TIN scheme achieves the capacity region within a constant gap.

2.2 Interference Management with Channel Un-
certainty

2.2.1 Channel Uncertainty

Crucially, the benefits of most interference management techniques usually
stem from the assumption of the availability of channel knowledge at the
transmitters. With channel knowledge, the transmitters are able to adaptively
allocate power according to the channel strength, to precancel multiuser
interference according to the channel directions, to schedule users to exploit
multiuser diversity, and/or to coordinate transmitted signals so as to align
interference at receivers. Especially, the availability of global channel knowl-
edge at each transmitter/receiver is usually required by the conventional
interference alignment and network MIMO techniques. Nevertheless, such
substantial gain over the case when the transmitter totally lacks channel
knowledge is at the expense of huge feedback resources on the uplink.

Indeed, the channel knowledge at transmitters is usually obtained through
feedback, in which the users first estimate channel states in the training phase
and then feed the estimation back to its serving base station via the capacity-
limited feedback links. The inaccuracy and/or latency of channel knowledge
(i.e., channel uncertainty) a↵ects network performance to a great extent. The
impact of channel uncertainty to system performance owing to limited-rate
feedback was intensively investigated in the past decade (see [23, 24] and
the references therein). In practical communication systems, the channel
uncertainty comes mainly from two constraints of capacity-limited feedback
links.

• Feedback imprecision: Due to the limited capacity of feedback
links, the channel coe�cients/vectors should be quantized at receivers
before being fed back to transmitters according to link capacity. The
quantization error is the main source of feedback imprecision.
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feedback(delay(

data(sharing(

feedback(imprecision(

CSI(exchange(

Figure 2.1: Wireless cellular network with channel uncertainty caused by feedback
imprecision and delay.

• Feedback delay: If the feedback arrives at transmitters within the
coherence time, then the channel feedback o↵ers some knowledge,
correlated with the current channel state. The correlation level is
directly related to the delay expressed as a fraction of the channel
coherence time. However, if the feedback latency exceeds the channel
coherence time, the channel feedback becomes independent of current
channel state.

Admittedly, the channel estimation with limited pilot training at the receivers
will further degrade feedback precision and in turn the network performance.
This point is not addressed in the thesis, and perfect channel estimation at
receivers is assumed.

An illustrative wireless cellular network is shown in Fig. 2.1, where
feedback imprecision and delay are two main sources of channel uncertainty,
and data sharing and CSI exchange are also major means of interference
management to overcome channel uncertainty.
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2.2.2 Figures of Merit: Achievable Rate and Degrees of Free-
dom

Since we mainly focus on network performance in the high signal-to-noise
ratio (SNR) regime, degrees of freedom (DoF, also known as multiplexing
gain) metric will be employed in this thesis as the main figure of merit. As
an exception, in Chapter 3, we consider finite SNR performance and take
achievable rate as the performance metric.

Achievable Rate

The achievable rate over a point-to-point channel can be usually computed,
assuming Gaussian signaling at the transmitter and treating interference as
noise at the receiver, by

R = log(1 + SINR) (2.1)

where SINR is the ratio between the desired signal power and the sum power
of interference and noise.

Degrees of Freedom

As the performance metric of later chapters, DoF characterization serves as
the first-order capacity approximation for wireless networks, from which novel
interference management techniques and insights emerge. The number of
DoF represents the slope with which the rate increases with the logarithm of
SNR. Note that when taking additional system limitations into account such
as imperfect hardware, finite modulation levels, and cost of channel training
in a time-varying environment, the sum rate inevitably saturates in the very
large SNR limit [25]. However, the DoF can be shown to be meaningful
within a reasonable interval of practical SNRs for properly designed systems,
and it has proved useful in understanding the fundamental limits of several
communication protocols, such as interference alignment (IA) [8] and multi-
cell MIMO [6] among many others. Mathematically, the achievable DoF
value is defined as

d = lim
P!1

R

logP
(2.2)

where P is the transmit power and R is the achievable rate. Note that the
more specific definitions of DoF will be given later when needed.
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2.2.3 Network Performance with Channel Uncertainty

For the point-to-point MIMO channel, channel state information (CSI) at
transmitter (CSIT) is usually utilized to allocate power at the transmitter,
and thus channel uncertainty is not important in terms of DoF for SU-MIMO.
While the sum DoF of multiuser uplink MAC is not a↵ected by partial or
lack of CSIT, channel uncertainty could severely degrade the performance of
downlink BC and IC in the sense of DoF. In what follows, the performance in
terms of DoF is described with regard to various channel feedback availability.

Perfect Feedback

When channel knowledge with infinite precision and zero-latency is avail-
able at the transmitter (referred to as “perfect CSIT”), the optimal DoF
value of K-user M transmit-antenna MISO BC is min{M,K} achieved
by linear strategies such as ZF beamforming. When it comes to K-user
MIMO BC with M antennas at the transmitter and Nk antennas at kth
receiver, the optimal sum DoF min{M,

PK
k=1

Nk} can also be achieved by
ZF precoding at both transmitters and receivers [26]. While the optimal
sum DoF of K-user SISO interference channels were shown to be K

2

[7],
the DoF characterization of the general MIMO case with arbitrary antenna
configurations is open and still attracting more attention [11, 27]. Partic-
ularly, for the two-user MIMO IC, where the transmitters and receivers
are equipped with M
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}} with perfect CSIT [28].
Nevertheless, the performance promised by perfect CSIT is depressed by the
harsh constraints of infinite precision and zero-latency feedback, which is
impractical.

No Feedback

On the other hand, in the absence of knowledge of channel realizations at the
transmitter (referred to as “no CSIT”), a collapse of DoF was predicted by
information theoretic studies. Specifically, some previous works with no CSIT
settings have observed this collapse of DoF, under the additional assumption
of homogeneity, such as i.i.d. isotropic fading, channel degradedness or
statistical equivalence of receivers [29–32]. For instance, in a two-user MISO
BC with generic (i.e., channel coe�cients are drawn from a continuous
distribution) and constant or time-varying channels, if the transmitter is
blind to both users’ channel states, then the best known sum DoF outer
bound is 4

3

whereas the best known inner bound is still 1. Remarkably,
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a surprising result by Jafar [33] showed that, under some heterogeneous
block fading model, the sole knowledge of channel coherence intervals can
improve sum DoF. For example, for a two-user MISO BC, given that one
user experiences time-selective fading whereas the other one experiences
frequency-selective fading, the optimal DoF 4

3

can be achieved. Nevertheless,
whether the outer or inner bound is tight in general no CSIT setting is still
unknown.

It was further claimed in [34] that DoF collapse with fixed imprecision of
CSIT whose error does not scale with SNR, and the DoF value of a two-user
MISO BC is upper bounded by 4

3

. This DoF upper bound was proved to
be tight by Gou, Jafar and Wang in [35], and by Maddah-Ali in [36] under
the finite state compound setting, in which DoF are shown to be robust to
channel uncertainty and the optimal 4

3

DoF are achievable for the finite state
compound MISO BC, regardless of the number of states. On the other hand,
it was conjectured that the sum DoF of a two-user MISO BC must collapse
to 1 under the general no CSIT setting without any additional assumptions.
To prove or disprove this conjecture has been a longstanding open problem,
until a recent breakthrough by Davoodi and Jafar [37], who showed that
the inner bound is tight such that DoF collapse to unity as conjectured.
Remarkably, this is the first result to show the total collapse of DoF under
channel uncertainty.

Feedback with Finite Precision

It is also well known that the full DoF in BC can be maintained under
imperfect CSIT if the error in CSIT decreases as O(P�1) as P grows [38,
39]. The interpretation is that such a quantization strategy maintains
the quantization noise at a level no greater than the thermal noise, hence
avoiding to make quantization a bottleneck of transmission as the SNR grows.
Moreover, for the case of the temporally correlated fading channel such that
the transmitter can predict the current state with error decaying as O(P�↵)
for some constant ↵ 2 [0, 1], ZF can only achieve a fraction ↵ of the optimal
DoF per user [38,39]. This result somehow reveals the bottleneck of a family
of precoding schemes relying only on the feedback precision of instantaneous
CSIT as the temporal correlation decreases.

Feedback with finite precision was also considered in interference channels
in conjunction with interference alignment. Among many others, in [40],
the number of required feedback bits via broadcast feedback links was
characterized to maintain full DoF with perfect global CSIT. The minimum
number of broadcasting feedback bits should scale as the number of users
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and logP , meaning that the channel uncertainty decreases as O(P�1) as P
grows, which agrees with the BC case.

Feedback with Delay

When it comes to the feedback delay, the conventional wisdom suggests
to predict the current channel from the delayed feedback by exploiting
the channel time correlation. The predicted channel state is then used for
precoding as if it is the true channel state. It works (although not necessarily
optimal) when the coherence time is larger than the overall feedback delay.
Otherwise, the delayed feedback bears no information on the current true
channel, and the precoding built upon this prediction o↵ers no multiplexing
gain at all.

When the CSI feedback is fully obsolete (i.e., uncorrelated with the
current true channel, referred to as fully “delayed CSIT”), it would seem such
channel information is non-exploitable in view of improving multiplexing
gains. Recently, this viewpoint was challenged by an interesting information
theoretic work [41], in which Maddah- Ali and Tse showed a surprising result
that even completely outdated CSIT can be very useful in terms of degrees
of freedom, as long as it accurately describes past channel realizations, i.e.,
the error in describing past channel states should decay at least as fast as
O(P�1). For the two-user MISO BC, the proposed scheme in [41] (referred
to as “MAT”) achieves the DoF of 2

3

per user – irrespectively of the temporal
correlation – achieving strictly better DoF than what is obtained without
any CSIT, even in extreme situations when the delayed channel feedback is
made totally obsolete by a feedback delay exceeding the channel coherence
time. The role of perfect delayed CSIT can be re-interpreted as a feedback of
information characterizing the past signal/interference heard by the receivers.
This side information enables the transmitter to perform “retrospective”
interference alignment in the space and time domain, as demonstrated in
di↵erent multiuser network systems [42–47]. Despite its DoF optimality, these
MAT-inspired schemes are designed assuming the worst case scenario where
the delayed channel feedback provides no information about the current
channel state.

The further investigation on channel uncertainty in this avenue includes
the so-called “alternating CSIT” [48], in which the users experience time-
varying CSI availability, e.g., the channel uncertainty varies among perfect,
delayed and no CSIT settings, and many others.

This delayed feedback is the form of channel uncertainty considered in
Chapters 3 and 4.
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Topological Feedback

In partially connected networks, the knowledge of network connectivity can
be fairly easy to be acquired by the transmitters via feedback (referred to as
“topological feedback”), as the long term (statistical) channel connectivity
often varies slower than channel realizations, and the feedback overhead of
this topological information (with binary value indicating whether the channel
is strong or weak) is negligible. Specifically, the sole knowledge of network
connectivity at the transmitters via topological feedback was shown to be
beneficial to improve network performance in partially connected interference
networks, whether the channel is slow fading [49] or fast fading [50, 51].
Remarkably, the interference channels with no CSIT beyond topological
information were formulated under the topological interference management
framework, in which this topological feedback problem was shown to be
equivalent to the well-defined index coding problem [52] under linear solutions.

This topological feedback is the setup envisioned in Chapters 5 and 6.

2.3 Objectives and Methodology

2.3.1 Objectives

In general, this thesis focuses on the study of interference management
with channel uncertainty in multiuser MIMO networks. As stated earlier,
a common feature behind much of the analysis of interference management
techniques has been the availability of perfect instantaneous CSIT, with
exceptions dealing with so-called limited feedback schemes [23, 24, 34, 39]. In
practice, however, the acquisition of perfect (or even su�ciently precise) CSI
at the transmitters is di�cult, if not impossible, especially for fast fading
channels. The channel feedback su↵ers from delays as well as the strictly
limited capacity of feedback links. As such, in the extreme cases, we may
either consider a su�ciently precise CSI but with large latency or have access
instantaneously to a coarse channel information (e.g., one bit indicating
whether the channel is strong or weak), in which the former renders the
available CSI feedback fully obsolete under the fast fading channel, and the
latter makes the transmitter almost blind except the binary indicator of
channel strength. This thesis focuses on di↵erent regimes with respect of the
CSIT availability, trying to address the following two fundamental problems:

• How to best exploit delayed feedback?

• How to best exploit topological feedback?
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2.3.2 Methodology

For these two problems, we mainly look at them from an information theoretic
perspective, in which we derive information theoretic outer bounds and design
achievability schemes to approach the outer bounds. The optimality will
be shown when the achievability coincides with the outer bounds. The
exception is Chapter 3, in which we focus on the signal processing aspect
such as precoder design by minimizing mean square error and maximizing
mutual information.

The techniques used in Chapter 3 include optimization, iterative algo-
rithm, and matrix di↵erential equations. In Chapter 4, the outer bounds are
derived by utilizing the genie-aid bounding techniques, extremal inequality,
and ergodic capacity of MIMO channels with uncertainty, whereas the achiev-
ability is built upon block-Markov encoding and backward decoding, as well
as the novel concept of interference quantization. Chapter 5 introduces some
tools in graph theory and combinatorics, and the interference management
problem with topological feedback is connected to some well-defined problems
in graph theory. Apart from the information theoretic bounding techniques,
Chapter 6 also builds connection between interference management problems
and graph coloring problems as well as index coding problems.

2.3.3 Assumptions

In order to make involved problems more tractable, we make the following
assumptions in this thesis.

• High SNR: By taking DoF as the main performance metric, the chal-
lenging problems such as optimal precoder design and power allocation
are substantially simplified, as SNR tends to infinity. As such, more
tractable analysis can be made to gain insight on how to design schemes.
This assumption applies to Chapters 4,5, and 6, while in Chapter 3 we
take finite SNR achievable rate performance into account.

• Perfect CSI at the receivers (CSIR): Throughout this thesis, we
assume channel estimation is perfectly performed at the receivers during
the training phase, and CSI is perfectly known by receivers.

• User mobility: Due to user’s mobility, channel coe�cients vary over
time. In Chapters 3, the channel of interest varies from slot to slot,
as feedback delay exceeds channel coherence time such that channel
feedback is vulnerable to be outdated. In contrast, Chapter 4 takes
channel time correlation into account, where feedback delay is within
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channel coherence time. In Chapters 5 and 6, the channels keep constant
during channel coherence time and vary when exceeds.

• Gaussian signaling: When we calculate achievable rate (in Chapter
3) and design achievability schemes (in Chapter 4), Gaussian signaling
is usually assumed.

• Linear filters: When we focus on high SNR performance, the use
of linear or nonlinear filter makes no di↵erence to DoF metric. For
simplicity, we usually employ linear filters at both transmitter and
receiver sides.

• Treat interference as noise: Apart from the joint decoding in
Chapter 4, we usually treat interference as noise at receivers.

2.4 Contributions of This Thesis

This thesis is made up of a member of contributions on how to manage
interference with delayed or topological feedback. In what follows, we outline
all contributions in this thesis and subsequent publications.

2.4.1 Interference Management with Delayed Feedback

When the CSI feedback is fully outdated (i.e., delayed CSIT), a recent break-
through [41] has shown that even the completely outdated channel feedback
is still useful. This surprising result is based on the idea of retrospective
interference alignment (also known as “MAT alignment”) which allows the
transmitter reconstruct and retransmit the overheard interference at receivers
in the past by retrospecting the delayed CSIT, so that the receivers can align
the interference perfectly and recover desired symbols successfully, making it
an optimal scheme in terms of DoF in the infinite SNR regime.

Although inspiring and fascinating from a conceptual point of view,
this result is subject to improvement. It can be seen as optimistic in that
it intrinsically focuses on the asymptotic SNR behavior, leaving aside in
particular the question of how shall precoding be done practically using stale
CSIT at finite SNR. But it can also be seen as pessimistic in that it assumes
the channel is independent and identically distributed (i.i.d.) across time,
where delayed CSIT bears no correlation with current channel realizations.

The thesis in this regard will investigate the following two problems based
on such a delayed feedback setting:
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• Can we do better at finite SNR? How does delayed CSIT improve sum
rate performance?

• Can we do better if the channel exhibits correlation across time? How
does time correlation a↵ect the DoF region of the general MIMO case?

Precoding with Delayed CSIT: The Finite SNR Case

In Chapter 3, we will formulate a similar problem under the delayed CSIT
setting, yet at finite SNR. We propose a first construction for the precoder
which matches the previous results at infinite SNR yet reaches a useful trade-
o↵ between interference alignment and signal enhancement at finite SNR,
allowing for significant performance improvement in practical settings. We
will present two general precoding methods with arbitrary number of users
by means of virtual MMSE and mutual information optimization, achieving
good compromise between signal enhancement and interference alignment.
In particular, by optimizing the approximation of mutual information, we
arrive at a convenient closed-form solution, which o↵ers a remarkably good
compromise between interference alignment and signal enhancement.

These results presented in Chapter 3 were published in

• Xinping Yi and David Gesbert, “Precoding methods for the MISO
broadcast channel with delayed CSIT,” IEEE Transactions on Wireless
Communications, vol. 12, no. 5, pp. 2344–2354, May 2013.

• Xinping Yi and David Gesbert, “Precoding on the broadcast MIMO
channel with delayed CSIT: The finite SNR case,” in Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’12), Kyoto, Japan, March 2012.

MIMO Networks with Delayed CSIT: The Time Correlated Case

Owing to the finite Doppler spread behavior of fading channels, it is the case
in many real life situations that past channel realizations can provide some
information about current ones. Together with delayed CSIT, the benefit
of such imperfect current CSIT was first exploited in [53] for the MISO BC
whereby a novel transmission scheme was proposed which improves over pure
MAT alignment in constructing precoders based on delayed and estimated
current CSIT. The full characterization of the optimal DoF for this mixed
CSIT was later reported in [54,55] for MISO BC under this setting.

Unfortunately, the extension to the MIMO case with arbitrary antenna
configurations is not a trivial step, even with the symmetric current CSIT
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quality assumption. The main challenges are two-fold: (a) the extra spatial
dimension at the receiver side introduces a non-trivial tradeo↵ between useful
signal and mutual interference, and (b) the asymmetry of receive antenna
configurations results in the discrepancy of common-message-decoding capa-
bility at di↵erent receivers. In particular, the total number of streams that
can be delivered as common messages to both receivers is inevitably limited
by the weaker one (i.e., with fewer antennas).

In Chapter 4, we will consider the time-correlated MIMO networks (BC
and IC) where the transmitter(s) has/have 1) delayed CSI obtained from a
latency-prone feedback channel as well as 2) imperfect current CSIT, obtained,
e.g., from prediction on the basis of these past channel samples according
to temporal correlation. The DoF regions for the two-user broadcast and
interference MIMO networks with general antenna configurations under such
conditions are fully characterized, as a function of the prediction quality
indicator. Specifically, a simple unified framework is proposed, allowing us to
attain optimal DoF region for the general antenna configurations and current
CSIT qualities. Such a framework builds upon block-Markov encoding with
interference quantization, optimally combining the use of both outdated and
instantaneous CSIT. A striking feature of our work is that, by varying the
power allocation, every point in the DoF region can be achieved with one
single scheme.

We also establish outer bounds on the DoF region for MIMO BC and
IC as a function of the current CSIT quality exponent. By introducing a
virtual received signal for the IC, we nicely link the outer bound to that of
the BC, arriving at a similar outer bound result for both cases. In addition
to the genie-aided bounding techniques and the application of the extremal
inequality, we develop a set of upper and lower bounds of ergodic capacity
for MIMO channels, which is essential for the MIMO case but not extendible
from MISO. In the sequel, we propose a new systematic way to prove the
achievability, instead of checking the achievability of every corner point of
the outer bound region, as typically done in the literature. This contrasts
with most existing proofs in the literature where the achievability of each
corner point is checked.

These results presented in Chapter 4 were published in

• Xinping Yi, Sheng Yang, David Gesbert, and Mari Kobayashi, “The
degrees of freedom region of temporally-correlated MIMO networks
with delayed CSIT,” IEEE Transactions on Information Theory, vol.
60, no. 1, pp. 594-614, January 2014.

• Xinping Yi, David Gesbert, Sheng Yang, and Mari Kobayashi, “Degrees
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of freedom of time-correlated broadcast channels with delayed CSIT:
The MIMO case,” in Proc. of IEEE International Symposium on
Information Theory (ISIT’13), Istanbul, Turkey, July 2013.

• Xinping Yi, David Gesbert, Sheng Yang, and Mari Kobayashi, “On the
DoF of the multiple-antenna time correlated interference channel with
delayed CSIT,” in Proc. Asilomar Conference on Signals and Systems
(Invited Paper), Pacific Grove, CA, USA, November 2012. (long version
arXiv: 1204.3046)

The above papers constitute generalizations of some of our previous works
addressing MISO only results, which are not presented in this thesis.

• Sheng Yang, Mari Kobayashi, David Gesbert, and Xinping Yi, “Degrees
of freedom of time correlated MISO broadcast channels with delayed
CSIT,” IEEE Transactions on Information Theory, vol. 59, no. 1, pp.
315-328, January 2013.

• Sheng Yang, Mari Kobayashi, David Gesbert, and Xinping Yi, “De-
grees of Freedom of MISO broadcast channel with perfect delayed and
imperfect current CSIT,” in Proc. IEEE Information Theory Workshop
(ITW’12), Lausanne, Switzerland, September 2012.

• Mari Kobayashi, Sheng Yang, David Gesbert, and Xinping Yi, “On the
Degrees of freedom of time correlated MISO broadcast channel with
delayed CSIT,” in Proc. of IEEE Intern. Symposium on Information
Theory (ISIT’12), Cambridge, MA, USA, July 2012.

2.4.2 Interference Management with Topological Feedback

At first glance, a limitation to one-bit feedback is like a drop in a CSIT
ocean, making it di�cult for the transmitters to extract substantial DoF
gain from cooperation, seemingly useless in the sense of DoF. It has been
reported in [29,30] that a substantial DoF cannot be realized in IC or BC
scenario without CSIT. A closer examination of these pessimistic results
however reveals that many of the considered networks are fully connected,
in which any transmitter interferes with any non-intended receiver in the
network.

Owing to the nodes’ random placement, the fact that power decays fast
with distance, the existence of obstacles, and local shadowing e↵ects, we
may argue that certain interference links are unavoidably much weaker than
others, suggesting the use of a partially-connected graph to model, at least
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approximately, the network topology. An interesting question then arises as
to whether the partial connectivity could be leveraged to allow the use of some
relaxed form of CSIT while still achieving a substantial DoF performance.
In particular the exploitation of topological information, simply indicating
which of the interfering links are weak enough to be approximated by zero
interference and which links are too strong to do so, is of great practical
interest.

Recently, interference networks with no CSIT except for the network
connectivity graph have been studied under the so-called topological interfer-
ence management (TIM) framework [49]. A surprising fact revealed that the
network performance can be significantly improved under the sole topology
information, provided that the network is partially connected. Remarkably,
interference alignment was proven to be beneficial over orthogonal access
schemes, even without the knowledge of channel realization at transmitters.

While the TIM problem is shown to be equivalent to the index coding
problem under linear solutions [49], there are still many interesting open
problems in TIM setting. For instance, two problems are listed as follows:

• With no CSIT, orthogonal access is optimal in fully connected in-
terference networks, while interference alignment o↵ers more gains
under TIM settings. One interesting question then arises as to when
orthogonal access is optimal under TIM settings.

• Given the benefit of topological feedback in interference networks, a
logical question is whether topological feedback is beneficial in the
context of an interference network where a message exchange mecha-
nism between transmitters pre-exists. That is, what is the benefit of
transmitter cooperation under TIM settings?

Topological Interference Management: The Optimality of Orthog-
onal Access

In Chapter 5, the optimal DoF of multiple unicast TIM problems are fully
characterized via simple orthogonal access schemes for a subclass of cellular
network topologies. In particular, it will be shown that the orthogonal
access achieves the optimal symmetric DoF, sum DoF, and DoF region of the
one-dimensional (where both the transmitters and the receivers are placed
along a straight line) convex cellular networks [where cell coverage is convex
such that every transmitter (or receiver) connects to consecutive receivers (or
transmitters)] with arbitrary message sets (i.e., the general multiple unicast
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setting). Remarkably, the physical convexity turns out to be the fundamental
limitation in all one-dimensional convex cellular networks.

These results presented in Chapter 5 were submitted for publication.

• Xinping Yi, Hua Sun, Syed Ali Jafar, and David Gesbert, “Topological
interference management: The optimality of orthogonal access in convex
cellular networks,” to be submitted, 2014.

Topological Interference Management with Transmitter Coopera-
tion

In future LTE-A cellular networks for instance, a backhaul routing mechanism
ensures that base stations selected to cooperate under the CoMP framework
receive a copy of the messages to be transmitted. Still, the exchange of
timely CSI is challenging due to the rapid obsolescence of instantaneous CSI
and the latency of backhaul signaling links. In this case, a broadcast channel
over distributed transmitters ensues, with lack of instantaneous CSIT.

In Chapter 6, we consider the TIM setting where a typical transmitter
cooperation is enabled. We will show that the sole topological information
can also be exploited in this case to strictly improve DoF when the network
is not fully connected, which is a reasonable assumption in practice. Several
inner bounds based on graph coloring, hypergraph covering, and subspace
interference alignment will be proposed, together with some outer bounds
built upon generator sequence, compound settings and index coding, to
characterize the symmetric DoF for the regular networks as well as to
identify the conditions to achieve a certain amount of DoF for the arbitrary
network topologies.

These results presented in Chapter 6 were published in

• Xinping Yi and David Gesbert, “Topological interference management
with transmitter cooperation,” in Proc. of IEEE International Sympo-
sium on Information Theory (ISIT’14), Hawaii, USA, July 2014.

• Xinping Yi and David Gesbert, “Topological interference management
with transmitter cooperation,” IEEE Transactions on Information
Theory, July 2014, under revision.

2.5 Other Contributions

Other contributions also generalizing some of above results during the course
of PhD thesis are not presented in this thesis.
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MISO Broadcast Channels with Delayed CSIT: The K-user Case

The extension to a K-user MISO BC was also studied when the transmitter
has access to delayed CSI in addition to imperfect current CSIT. We con-
tributed to the characterization of DoF region in such a setting by deriving an
outer bound and providing an achievable scheme. Remarkably, the achievable
DoF is obtained by developing a new retrospective interference alignment
scheme, which builds upon both the principle of the MAT alignment and ZF
precoding to achieve a larger DoF. This contribution was published in

• Paul de Kerret, Xinping Yi, and David Gesbert, “On the degrees of
freedom of the K-User time-correlated broadcast channel with delayed
CSIT”, in Proc. of IEEE International Symposium on Information
Theory (ISIT’13), Istanbul, Turkey, July 2013. (long version arXiv:
1301.3138)

Network MIMO with Backhaul Delays

An interesting application of delayed CSIT in cellular networks was also stud-
ied. We considered the problem of downlink precoding for multi-cell MIMO
networks where transmitters are provided with imperfect CSI. Specifically,
each transmitter receives a delayed channel estimate with the delay being
specific to each channel component. This model is particularly adapted to
the scenarios where a user feeds back its CSI to its serving base only as it
is envisioned in future LTE networks. We analyzed the impact of the delay
during the backhaul-based CSI exchange on the rate performance achieved by
Network MIMO. We highlighted how delay can dramatically degrade system
performance if existing precoding methods are used. An alternative robust
beamforming strategy was proposed, achieving the maximal performance, in
DoF sense. This contribution was published in

• Xinping Yi, Paul de Kerret, and David Gesbert, “The DoF of network
MIMO with backhaul delays,” in Proc. of IEEE International Con-
ference on Communications (ICC’13), Budapest, Hungry, June 2013.
(long version, arXiv: 1210.5470.)
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Interference Management
with Delayed Feedback
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Chapter 3

Precoding Methods with
Delayed CSIT:
The Finite SNR Case

The impact of channel uncertainty caused by feedback delay and how to
exploit delayed feedback will be considered in this chapter from a signal
processing perspective, with emphasis on sum-rate performance at finite
SNR.

Recent results in [41] have shown that precoding in multiuser downlink
channel with outdated channel feedback due to feedback delay could lead
to data rates much beyond the ones obtained without any CSIT, even in
extreme situations when such a channel feedback is made totally obsolete by
the feedback delay exceeding the channel coherence time. This surprising
result is based on the idea of retrospective interference alignment. Thanks
to delayed channel feedback, the transmitter is allowed to retrospect the
past channel realizations, reconstruct, and retransmit overheard interference
in the past at receivers. As such, the receivers are able to cancel out the
overheard interference completely (as if the interferences are aligned perfectly
in time domain) and recover desired symbols successfully.

In this chapter, we formulate a similar problem under such a delayed
CSIT setting, yet at finite SNR. We propose a first construction for the
precoder which matches the previous results at infinite SNR yet reaches a
useful trade-o↵ between interference alignment and signal enhancement at
finite SNR, allowing for significant performance improvements in practical
settings.
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3.1 Introduction

In multi-user downlink MIMO systems, also known as MIMO BC, the ability
to beamform (i.e. linearly precode) multiple data streams simultaneously to
several users (up to N) comes nevertheless at a price in terms of requiring
the base station transmitter to be informed of the channel coe�cients of all
served users [4]. In frequency division duplex scenarios (the bulk of available
wireless standards today), this implies establishing a feedback link from the
mobiles to the base station which can carry CSI related information, in
quantized format. A common limitation of such an approach, perceived by
many to be a key hurdle toward a more widespread use of multiuser MIMO
methods in real-life networks, lies in the fact that the feedback information
typically arrives back to the transmitter with a delay which may cause a
severe degradation when comparing the obtained feedback CSIT with the
actual current CSI. Pushed to the extreme, and considering a feedback
delay with the same order of magnitude as the channel coherence time, the
available CSIT feedback becomes completely obsolete (i.e., uncorrelated with
the current true channel) and, seemingly non-exploitable in view of designing
the precoding coe�cients.

Recently, this commonly accepted viewpoint was challenged by an in-
teresting information-theoretic work [56] which suggest that precoding on
the multi-user MIMO channel with delayed CSIT could substantially in-
crease DoF beyond the ones obtained without any CSIT, even in extreme
situations when the delayed channel feedback is made totally obsolete by
a feedback delay exceeding the channel coherence time. This surprising
result is built upon a novel idea of retrospective interference alignment which
allows the transmitter reconstruct and retransmit the overheard interference
at receivers in the past by retrospecting the past channel realizations (i.e.,
outdated channel feedback), so that the receivers can align the interference
perfectly, achieving the optimal DoF at the infinite SNR.

The premise in [56] is a time-slotted MISO BC with a common transmitter
serving multiple users and having a delayed version of CSIT, where the delay
causes the CSIT to be fully uncorrelated with the current channel. In this
situation, it has been shown that the transmitter can still exploit the stale
channel information: The transmitter tries to reproduce the interference
generated to the users in the past time slots, while at the same time making
sure the forwarded interference occupies a subspace of reduced dimension,
compatible with its cancelation at the user’s side. Building on such ideas,
[56] constructs a transmission protocol which was shown to achieve the
maximum DoF for the delayed CSIT broadcast MIMO channel. Precoding
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on delayed CSIT MIMO channels has recently attracted more interesting
work, dealing with DoF analysis on extended channels, like the X channel
and interference channels [42,43,57], but also performance analysis including
e↵ects of feedback [58] and training [59]. In the example of the two-antenna
transmitter, two-user MISO BC, the maximum DoF were shown in [56] to be
4

3

, less than the value of 2 which would be obtained with perfect CSIT, but
strictly larger than the single DoF obtained in the absence of any CSIT. This
demonstrated that completely obsolete channel feedback is actually useful.

Although fascinating from a conceptual point of view, these results are
intrinsically focussed on the asymptotic SNR behavior (i.e., DoF), leaving
aside in particular the question of how shall precoding be done practically
using stale CSIT at finite SNR (e.g., sum rate). This chapter precisely tackles
this question. In what follows we obtain the following key results:

• We show finite SNR precoding using delayed CSIT can be achieved
using a combination of retrospective interference alignment together
with a signal enhancement strategy.

• We propose a first construction for the precoder generalizing the ideas
of [56], namely Generalized MAT (GMAT), which matches the previous
results at infinite SNR yet reaches a useful trade-o↵ between interference
alignment and signal enhancement at finite SNR, allowing for significant
sum-rate performance improvement in practical settings.

• We present two general precoding methods with arbitrary number
of users by means of virtual minimum mean square error (MMSE)
and mutual information optimization, achieving good compromise
between signal enhancement and interference alignment. The precoder
coe�cients are interpreted as beamforming vector coe�cients in an
equivalent interference channel scenario, which can be optimized in a
number of ways.

Numerical evaluation reveals a substantial performance benefit in terms of
data rate in the low to moderate SNR region, but coinciding with the DoF
results in [56] when SNR grows to infinity.

The rest of the chapter is organized as follows. In Section 3.2, the channel
model of interest is described and the proposed GMAT protocol is detailed
first in the two-user case then is generalized to the K-user case. Section 3.3
focuses on the precoder optimization methods based on MMSE and mutual
information criteria. Discussion on the multiplexing gain and an interesting
interpretation from an equivalent MIMO interference channel is given in
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Section 3.4. Numerical examples showing the advantages of the new methods
are discussed in Section 3.5. Finally, Section 3.5 concludes the chapter.

Notation: Matrices and vectors are represented as uppercase and lower-
case letters, and transpose and conjugate transpose of a matrix are denoted as
(·)T and (·)H, respectively. Further, Tr(·), k · k and k·k

F

represent respectively
the trace of a matrix, the norm of a vector and a Frobenius norm of a matrix.
We reserve [A]m,n to denote the element at the m-th row and n-th column
of matrix A, and |S| to the cardinality of the set S. Finally, an order-k
message denoted by uS (|S| = k) refers to a linear combination of k distinct
symbol vectors intended to k di↵erent users in set S.

3.2 System Model

Consider a K-user MISO downlink system with a base station transmitter
equipped with K antennas and K single-antenna users, as shown in Fig. 3.1.
The received signal in the t-th time slot at j-th user (j 2 {1, . . . ,K}) can be
represented as

yj(t) =

r

P

K
hT
j (t)x(t) + zj (3.1)

where hT
j (t) = [hj1(t) . . . hjK(t)] is the multi-antenna channel vector from

the transmitter to j-th user in the t-th time slot, with hjk being the channel
coe�cient from k-th transmit antenna to j-th user, x(t) is the K⇥1 vector of
signals sent from the array of K transmit antennas satisfying E(x(t)xH(t)) =
I, P denotes transmit power, and zj is the additive Gaussian noise with
zero mean and unit variance. A time slotted transmission protocol in the
downlink direction is considered.

As in [56], the point made in this chapter is that delayed feedback
can be of use to the transmitter including the extreme situation where a
feedback delay of one unit of time creates a full decorrelation with the current
downlink channel. For this reason, we base ourselves on the framework of
so-called delayed CSIT [42, 43, 56–59] by which at time t, it is assumed
that user-j has perfect knowledge of {hj(s)}ts=1

and of the delayed CSIT of
other users {hk(s)}t�1

s=1

, k 6= j, while the transmitter is informed perfectly
{hj(s)}t�1

s=1

, 8j. The accessibility of such delayed CSI at other terminals has
been justified in previous work such as [58] by the following model. The
users feed back their CSI to the transmitter with delays, then the transmitter
broadcasts all the CSI to all the users such that all users have access to
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unit delay 

Figure 3.1: Multiuser MISO downlink broadcast channel with delayed feedback.

other users’ delayed CSI1. Nevertheless, there exists another more e�cient
scenario for sharing the delayed CSI across users. It is based on the notion of
“broadcast uplink feedback”, i.e., the terminals broadcast their CSI which is
then captured by any overhearing device, which includes both the transmitter
and the other terminals. Furthermore, we make no assumption about any
correlation between the channel vectors across multiple time slots (could be
fully uncorrelated), making it is impossible for the transmitter to use classical
MU-MIMO precoding to serve the users, since the transmitter possesses some
CSIT possibly independent from the actual channel.

Recently, Maddah-Ali and Tse [56] proposed an algorithm (referred to
in this chapter as “MAT” algorithm) under such a delayed CSIT setting
obtaining DoF strictly beyond those obtained without any CSIT, even in
extreme situations when the delayed CSIT is made totally obsolete. In
general, for the K-user case, a K-phase transmission protocol can achieve
the maximum DoF K

1+

1
2+···+ 1

K

. Although such rates are inferior to the

ones obtained under the full CSIT setting (cf. K symbols/channel use for
K transmit antenna case), they are substantially higher than what was

1Clearly, the broadcast phase may introduce some additional delays. The transmitter
then exploits the largest delayed version of the CSI, which is common with the one received
by the users.
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previously reported for the no CSIT case (cf. 1 symbol/channel use regardless
of K).

Although optimal in terms of DoF at infinite SNR, we point out that
the MAT algorithm can be substantially improved at finite SNR. The key
reason is that, at finite SNR, a good scheme will not attempt to use all DoF
to eliminate the interference but will try to strike a compromise between
interference canceling and enhancing the detectability of the desired signal
in the presence of noise. Taking into account this property of basic receivers
leads us to revisit the design of the protocol and in particular the design
of the precoding coe�cients as functions of the knowledge of past channel
vectors under the name of GMAT (i.e., generalized MAT algorithm).

First, we proceed by reviewing the proposed protocol in the two-user
case, highlighting the connections with the original MAT algorithm. We
then generalize the protocol to respectively the three- and K-user cases. In
the next section, we then turn to the problem of the optimization of the
precoders.

3.2.1 GMAT for the Two-User Case

The transmission of GMAT in the first two time slots is identical to the MAT
algorithm, with2

x(1) = sA, x(2) = sB (3.2)

where x(t) (t = 1, 2) is the 2⇥ 1 signal vector sent from the transmitter at
time slot t, sA and sB are 2⇥ 1 symbol vectors intended to user A and B,
respectively, satisfying E{sisH

i } = I. In the third time slot, the transmitter
now sends

x(3) =



uAB

0

�

(3.3)

where uAB corresponds to an order-2 message (i.e., a combination of two
individual user messages) in the following form

uAB = wT
1

sA +wT
2

sB (3.4)

where w
1

and w
2

are precoding vectors satisfying the power constraint
kw

1

k2 + kw
2

k2  2 and can be a function of hi(1) and hi(2) (i = A,B)

2For the notational simplicity, we use the index exchangeably, where both A and 1
correspond to the first user/component, and so forth.
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according to the delayed CSIT model. Note that this power constraint
balances the transmit power used over three time slots. The signal vector
received over the three time slots at user A can be rewritten as

ȳA =

r

P

2
H̄A1

sA +

r

P

2
H̄A2

sB + zA, (3.5)

where ȳA = [yA(1) yA(2) yA(3)]T is the concatenated received signal vector at
user A in overall three time slots, zA = [zA(1) zA(2) zA(3)]T is the Gaussian
noise vector, and the e↵ective signal and interference channel matrices are

H̄A1

=

2

4

hT
A(1)
0

hA1

(3)wT
1

3

5 , H̄A2

=

2

4

0
hT
A(2)

hA1

(3)wT
2

3

5 , (3.6)

and, by analogy, for user B, we get the interference and signal matrices:

H̄B1

=

2

4

hT
B(1)
0

hB1

(3)wT
1

3

5 , H̄B2

=

2

4

0
hT
B(2)

hB1

(3)wT
2

3

5 . (3.7)

A Particular Case (MAT Algorithm)

We point out that the MAT algorithm [56] can be derived as a particular
case of the above method, with w

1

and w
2

specified as

w
1

= hB(1), w
2

= hA(2). (3.8)

The key idea behind the original MAT solution in (3.8) is that the interference
sB seen by user A arrives with an e↵ective channel matrix H̄A2

which is of
rank one, making it possible for user A to combine the three received signals
in order to retrieve sA while canceling out sB completely. This process is
referred to as alignment of interference signal sB , as it mimics the approach
taken in interference channels in e.g., [7]. A similar property is exploited in
(3.8) at user B as well by making H̄B1

be rank 1.

Interpretation of GMAT v.s. MAT

A drawback of the original MAT solution in (3.8) is to optimize the precoders
from the point of view of interference alone while the signal matrices H̄A1

and H̄B2

are ignored. Although this approach is optimal from an information
theoretic (i.e., DoF) point of view, it is suboptimal at finite SNR.

47



CHAPTER 3. PRECODING METHODS WITH DELAYED CSIT:
THE FINITE SNR CASE

In contrast, here, the role of introduced beamformer w
1

is to strike
a balance between aligning the interference channel of sA at user B and
enhancing the detectability of sA at user A. In algebraic terms, this can be
interpreted as having a compromise between obtaining a rank deficient H̄B1

and an orthogonal matrix for H̄A1

. When it comes to w
2

, the compromise is
between obtaining a rank deficient H̄A2

and an orthogonal matrix for H̄B2

.
How to achieve this trade-o↵ in practice is addressed in Section 3.3.

It is also important to note that, there might be alternative fashions of
constructing finite SNR precoders based on delayed CSIT. For instance, an
interesting question is: Can delayed feedback be exploited already in the
second time slot with gains on the finite SNR performance? The intuitive
answer to this question is yes. However, the use of precoders in the last time
slot only generates a strong symmetry and handling of the users, which in
turn allows for closed-form and insightful solutions. This symmetric property
is also maintained in the MAT algorithm.

3.2.2 GMAT for the Three-User Case

Similarly to the MAT algorithm, the proposed GMAT sends 18 symbols in
a total of three phases, which include 6, 3, and 2 time slots, respectively,
o↵ering the e↵ective DoF of 18

11

symbols/slot. In the first phase, 6 symbol
vectors carrying all 18 symbols are sent in 6 consecutive time slots in a way
identical to the initial MAT

x(1) = s1

A, x(2) = s1

B, x(3) = s1

C , (3.9)

x(4) = s2

A, x(5) = s2

B, x(6) = s2

C (3.10)

where s1

i and s2

i (i = A,B,C) are 3⇥1 symbol vectors (i.e., order-1 messages)
intended to user-i. As in the two-user case, we do not introduce channel
dependent precoding in the first phase in order to preserve symmetry across
the users. Instead, feedback based precoding is introduced in the second
phase.

Phase-2 involves 3 time slots, in each of which two order-2 messages (i.e.,
a linear combination of two order-1 messages) are sent from the first two
transmit antennas:

x(7) =

2

4

u1

AB

u2

AB

0

3

5 , x(8) =

2

4

u1

AC

u2

AC

0

3

5 , x(9) =

2

4

u1

BC

u1

BC

0

3

5 (3.11)

where the order-2 messages are constructed by

u1

AB = w1 T
12

s1

A +w1 T
21

s1

B, u2

AB = w2 T
12

s2

A +w2 T
21

s2

B (3.12)
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u1

AC = w1 T
13

s1

A +w1 T
31

s1

C , u2

AC = w2 T
13

s2

A +w2 T
31

s2

C (3.13)

u1

BC = w1 T
23

s1

B +w1 T
32

s1

C , u2

BC = w2 T
23

s2

B + x2 T
32

s2

C (3.14)

where u1

ij and u2

ij (i 6= j) are two realizations of the order-2 message ded-

icated to both user-i and user-j, and w1

ji 2 C3⇥1,w2

ji 2 C3⇥1, 1  i, j  3
can be arbitrary vector functions of hi(t), i = A,B,C, t = 1, · · · , 6. The
responsibility of Phase-2 is to provide independent equations with regard to
s1

i (or s2

i ) by utilizing the overheard interferences in the previous phase.
Finally, in the last phase, channel dependent precoding is not introduced

as this allows to obtain decoupled optimization problems for each of the wl
ji

(l = 1, 2) as will be made in Section 3.3. In this phase, two order-3 messages
(i.e., linear combinations of order-2 messages) are sent at the first transmit
antenna within two consecutive time slots, i.e.,

D(10) =

2

4

u1

ABC

0
0

3

5 , x(11) =

2

4

u2

ABC

0
0

3

5 (3.15)

where ulABC (l = 1, 2) is the order-3 message which is identical to the original
MAT algorithm

ulABC = al
1

(hC1

(7)u1

AB + hC2

(7)u2

AB) + al
2

(hB1

(8)u1

AC

+ hB2

(8)u2

AC) + al
3

(hA1

(9)u1

BC + hA2

(9)u2

BC)

where {alj} (j = 1, 2, 3) are chosen in a way similar to the original MAT, i.e.,
arbitrary yet linearly independent sets of coe�cients and known by both
transmitter and receivers.

Without loss of generality, we treat user A as the target user, and the
compact received signal model in matrix format over the 11 time slots can
be given by

ȳA =

r

P

3

2

X

l=1

H̄ l
A1

slA +

r

P

3

2

X

l=1

H̄ l
A2

slB +

r

P

3

2

X

l=1

H̄ l
A3

slC + zA

where the equivalent channel matrices can be formulated as

H̄ l
A1

=

2

4

H̃ l
A1

Dl
A(2)W

l
1

(2)
Dl

A(3)W
l
1

(3)

3

5 , H̄ l
A2

=

2

4

H̃ l
A2

Dl
A(2)W

l
2

(2)
Dl

A(3)W
l
2

(3)

3

5 , (3.16)

H̄ l
A3

=

2

4

H̃ l
A3

Dl
A(2)W

l
3

(2)
Dl

A(3)W
l
3

(3)

3

5 2 C11⇥3 (3.17)
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in which

H̃ l
Aj =

2

6

4

0ml
1⇥3

hA(ml
1

+ 1)
0nl

1⇥3

3

7

5

2 C6⇥3 (3.18)

withml
1

= (3(l�1)+j�1), nl
1

= 6�3(l�1)�j,Dl
A(2) = diag{hAl(7), hAl(8), hAl(9)},

Dl
A(3) = diag{hA1

(10), hA1

(11)}, and

W l(2) =

2

6

6

6

4

2

4

wl T
12

wl T
13

0
1⇥3

3

5

| {z }

W l
1(2)

2

4

wl T
21

0
1⇥3

wl T
23

3

5

| {z }

W l
2(2)

2

4

0
1⇥3

wl T
31

wl T
32

3

5

| {z }

W l
3(2)

3

7

7

7

5

2 C3⇥9 (3.19)

is the global precoding matrix (referred to as the order-2 message generation
matrix) in which W l

j (2) is corresponding to user-j.

Given the order-2 message generation matrix W l
j (2) 2 C3⇥3, the precod-

ing matrix for the third phase (referred to as order-3 message generation
matrix) can be recursively obtained by

W l
j (3) = C l(2)⇤⇤⇤l(2)W l

j (2) 2 C2⇥3, j = 1, 2, 3 (3.20)

where ⇤⇤⇤l(2) = diag{hCl(7), hBl(8), hAl(9)} is set identically to MAT for
simplicity, and

C l(2) =

✓

a1

1

a1

2

a1

3

a2

1

a2

2

a2

3

◆

(3.21)

is a constant matrix known by both transmitter and receivers.

A Particular Case (MAT Algorithm)

The original MAT algorithm can be deduced from the proposed method by
selecting

W 1(2) =

2

4

hT
B(1) hT

A(2) 0
1⇥3

hT
C(1) 0

1⇥3

hT
A(3)

0
1⇥3

hT
C(2) hT

B(3)

3

5 (3.22)

and W 2(2) in an analogous way.
Similarly to the two-user case, interferences carrying unintended symbols

slB and slC are aligned perfectly at user A, and hence matrices H̄ l
A2

and
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H̄ l
A3

are rank deficient with total rank of 5, making the useful symbol
slA retrievable from the left 6-dimensional interference-free subspace. For
the proposed GMAT algorithm, we seek to balance signal orthogonality
(conditioning of H̄ l

A1

) and perfect interference alignment by a careful design
of W l(2).

3.2.3 GMAT for the General K-User Case

In the K-user case, the maximum achievable DoF are d = KPK
k=1

1
k

[56]. Let

d = K2L
T , where T is an integer representing the overall required time slots

and L is the number of repeated transmission to guarantee T to be an integer.
Without loss of generality, we assume L = (K � 1)!. The total T times slots
can be divided into K phases. In Phase-1, there consist of LK time slots.
As the same way to the MAT algorithm, an order-1 message x(t) is sent in
t-th time slot, i.e.,

x(t) = sli, l = 1, · · · , L (3.23)

satisfying t = L(l � 1) + i, where sli is the K ⇥ 1 symbol vector intended to
user-i.

From Phase-2 to Phase-K, the transmission of GMAT is similar to MAT
algorithm. Phase-k (2  k  K) requires Tk , LK

k time slots, with each
time slot transmitting K � k + 1 order-k messages from K � k + 1 transmit
antennas, i.e.,

x(t) =
h

u1

Sk
· · · uK�k+1

Sk
0 · · · 0

iT

(3.24)

where ujSk
(1  j  K � k + 1) is the j-th message realization of the order-k

message that can be generated by

ul
Sk

= W l(k)sl (3.25)

where ul
Sk

is the Qk ⇥ 1 vector (Qk ,
�

K
k

�

) with each element being order-
k message that can be interpreted as the combination of any k symbol
vectors from {sli} (1  l  L); Sk is the set of dedicated users and satisfies

|Sk| = k; sl = [sl T
1

· · · sl T
K ]T 2 CK2⇥1 is the concatenated symbol vector, and

W l(k) 2 CQk⇥K2
is the order-k message generation matrix, whose definition

is as follows:

Definition 3.1 (Order-k Message Generation Matrix). The order-k
message generation matrix W l(k) =

⇥

W l
1

(k) · · · W l
K(k)

⇤

(2  k  K) is
a Qk ⇥K2 matrix which satisfies:
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1. it contains k nonzero and K � k zero blocks in each row, where each
block is 1⇥K row vector;

2. the positions of nonzero blocks of any two rows are not identical; and

3. it contains all possibilities of k nonzero positions out of total K positions
in each row.

We point out that the order-k message is desired by those k users whose
symbols are contained, and will be overheard by other K � k users as an
interference.

Based on the above definition, the signal model of K-user GMAT protocol
can be extended as

ȳi =

r

P

K

L
X

l=1

H̄ l
iis

l
i +

r

P

K

L
X

l=1

K
X

j=1,j 6=i

H̄ l
ijs

l
j + zi (3.26)

where

H̄ l
ij =

2

6

6

6

6

6

6

4

H̃ l
ij(1)
...

H̃ l
ij(k)
...

H̃ l
ij(K)

3

7

7

7

7

7

7

5

2 CT⇥K (3.27)

with T =
PK

i=1

Tk, is defined as follows:

• The first submatrix corresponds to the e↵ective channel matrix in
Phase-1, which can be given by

H̃ l
ij(1) =

2

6

4

0ml
1⇥K

hi(t)
0nl

1⇥K

3

7

5

2 CT1⇥K (3.28)

where j = 1, . . . ,K, l = 1, . . . , L, ml
1

= (K(l � 1) + j � 1), nl
1

=
KL�K(l � 1)� j, and t = ml

1

+ 1;

• The k-th submatrix (2  k  K � 1) which corresponds to Phase-k
can be formulated as

H̃ l
ij(k) =

2

6

4

0ml
k⇥K

Dl
i(k)W

l
j (k)

0nl
k⇥K

3

7

5

2 CTk⇥K (3.29)
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where ml
k =

⇣

d l·lkL e � 1
⌘

Qk, nl
k = Tk � d l·lkL eQk with lk = Tk

Qk
, and

Dl
i(k) = diag{his(t)} 2 CQk⇥Qk corresponds to the present channel

over which the order-k message is sent in Phase-k with s = ((l · lk)
mod L) mod k and t being the index of time slot. In general, W l

j (k)
(k � 2) is the order-k message generation matrix specified to user-j,
which is recursively defined according to

W l
j (k + 1) = C l(k)⇤⇤⇤l(k)W l

j (k) (3.30)

where C l(k) 2 CQk+1⇥Qk is a constant matrix known by transmitter
and all users, satisfying: (1) each row contains k + 1 nonzero elements,
and (2) the positions of nonzero elements of any two rows are di↵erent
one another; and ⇤⇤⇤l(k) 2 CQk⇥Qk is a diagonal matrix whose elements
are chosen to be functions of the channel coe�cients in Phase-k, so that
the interference overheard can be aligned within a limited dimensional
subspace. For simplicity, we place emphasis on W l

j (k), letting ⇤⇤⇤
l(k)

be predetermined as the channel coe�cients in Phase-k, as did in the
original MAT algorithm.

• The last submatrix is corresponding to the last phase, i.e.,

H̃ l
ij(K) = Dl

i(K)W l
j (K) 2 CTK⇥K (3.31)

where W l
j (K) is defined similarly to (3.30), in which C l(K � 1) 2

CTK⇥QK�1 is a full rank constant matrix without zero elements, and
Dl

i(K) = diag{hi1(t)} 2 CTK⇥TK (t 2 [T �TK+1, T ]) contains channel
coe�cients during Phase-K.

For further illustration, we take the four-user case for example to show
its order-2 message generation matrix, i.e.,

W l(2) =

2

6

6

6

6

6

6

4

wl T
12

wl T
21

0 0
wl T

13

0 wl T
31

0
wl T

14

0 0 wl T
41

0 wl T
23

wl T
32

0
0 wl T

24

0 wl T
42

0 0 wl T
34

wl T
43

3

7

7

7

7

7

7

5

(3.32)

where wl
ji 2 CK⇥1 is the beamforming vector aiming at the compromise

between user-i and user-j. This formulation collapses to (3.12)-(3.14) for the
three-user case and to (3.4) for the two-user case.
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A Particular Case (MAT Algorithm)

Particularly for the four-user case, the original MAT algorithm is a specialized
GMAT algorithm by setting order-2 message generation matrix as

W 1(2) =

2

6

6

6

6

6

6

4

hT
B(1) hT

A(2) 0 0
hT
C(1) 0 hT

A(3) 0
hT
D(1) 0 0 hT

A(4)
0 hT

C(2) hT
B(3) 0

0 hT
D(2) 0 hT

B(4)
0 0 hT

D(3) hT
C(4)

3

7

7

7

7

7

7

5

(3.33)

for l = 1 and similarly for other l. For example, for user A, the interference
channels H̄ l

Aj (j 6= 1) are perfectly aligned, leaving K = 4 interference-free
dimensions for desired signal, and therefore making the intended symbols
retrievable at user A. Similarly for other users, all symbols can be recovered.
Hence, 96 symbols are delivered within 50 time slots, yielding the sum DoF
of 48

25

.
It is worth noting that the higher order messages can be delivered by the

combination of lower order messages. For example, from Phase-k to K, the
messages delivered to the receivers aim at completely decoding the order-k
message. To avoid too many parameters being optimized which requires
huge complexity, we will focus merely on the design of the order-2 message
generation matrices {W l

j (2)}.

3.3 GMAT Optimization Design

There exist several distinct avenues for computing the delayed CSIT based
precoders (i.e., matrices {W l

j (2)}). Two of them are briefly described in the
following subsections. The first is based on the optimization of a virtual
MMSE metric, yielding an iterative solution, while the second one considers
the maximization of an approximation of the mutual information, yielding
suboptimal yet closed-form solutions. Note that none of these approaches
have anything in common with finite SNR interference alignment methods
with non-delayed CSIT, such as, e.g., [60,61], since the nature of our problem
is fully conditioned by the delayed CSIT scenario. In all cases below, the
design of the precoders obeys two principles: (i) the precoders are functions
of delayed channel feedback, and (ii) the design is based on the exploitation
of alignment-orthogonality trade-o↵ that is underpinned by eq-(3.5), (3.16),
and (3.26).
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3.3.1 Virtual MMSE Metric

In the following, we describe an approach based on a virtual MMSE metric
(referred to later as “GMAT-MMSE”) for the two-user case, and subsequently
generalize it to the K-user case.

Special K = 2 Case

One di�culty in the precoder design lies in the fact that, since the transmitter
does not know hi(3) at Slot-3, the optimization of the precoder in (3.6) and
(3.7) cannot involve such information even though the channel realizations
on the third time slot clearly a↵ect the overall rate performance. The
question therefore is whether a meaningful criterion can be formulated for
the optimization of the precoder that IS NOT a function of the non-delayed
CSIT. The answer is positive. In what follows, we first o↵er an intuitive
treatment of this problem. Then, a rigorous mathematical argument is o↵ered
for it in the next subsection based on mutual information bounds.

In order to derive an optimization model that does no longer depend on
the non-delayed CSIT coe�cients hA1

(3) and hB1

(3), we observe that the key
trade-o↵ between alignment of interference and desired signal orthogonality
is in fact independent from the realizations of hA1

(3) and hB1

(3), since
such coe�cients impact on the amplitudes of the precoders but not on their
directions. Hence, it is natural to formulate a virtual signal model that
skips dependency on the unknown CSIT yet preserves the above mentioned
trade-o↵:

yi =

r

P

2
Hi1sA +

r

P

2
Hi2sB + zi, i = A,B (3.34)

where the virtual channel matrices are now modified from (3.6) and (3.7)
according to:

Hi1 =

2

4

hT
i (1)
0
wT

1

3

5 , Hi2 =

2

4

0
hT
i (2)
wT

2

3

5 , i = A,B. (3.35)

Given w
1

and w
2

, the optimum RX MMSE filter at user-i over this virtual
channel is given by

Vi =
p
⇢ (⇢Hi1H

H
i1 + ⇢Hi2H

H
i2 + I)�1

Hii (3.36)

where ⇢ = P
K (here K = 2), and the corresponding minimal MSE is

Ji(w1

,w
2

) = Tr
�

I� ⇢HH
ii(⇢Hi1H

H
i1 + ⇢Hi2H

H
i2 + I)�1Hii

�

.
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Note that we exchangeably use A and 1 to represent the first user, and so
forth.

Hence, the optimal w
1

, w
2

can be obtained from the following optimiza-
tion problem, i.e.,

min
w1,w2:kw1k2+kw2k22

J = JA(w1

,w
2

) + JB(w1

,w
2

).

In practice, the gradient based approaches can be used to perform optimiza-
tion although the convexity of the problem is not guaranteed [62,63].

General K-User Case

In Phase-k, the transmitter does not know hi(t) in Slot-t, where t =
Pk�1

l=1

Tl+

1, · · · ,
Pk

l=1

Tl. Similarly to the two-user case, the virtual received signal can
be generalized as (i = 1, · · · ,K)

yi =

r

P

K

L
X

l=1

H l
iis

l
i +

r

P

K

L
X

l=1

K
X

j=1,j 6=i

H l
ijs

l
j + zi, (3.37)

where

H l
ij =

h

H̃ l T
ij · · · 0K⇥ml

k
W l T

j (k) 0K⇥nl
k
· · · W l T

j (K)
iT

whose elements are defined in Section 3.2.
Similarly, given W l

j (2), the optimum MMSE filter for sli at user-i becomes

V l
i =
p
⇢

0

@⇢
L
X

l=1

K
X

j=1

H l
ijH

l H
ij + I

1

A

�1

H l
ii (3.38)

where ⇢ = P
K is the normalized transmit power, and the corresponding

minimal MSE is

J l
i (W

l
j (2), j = 1, · · · ,K)

= Tr

0

@I� ⇢H l H
ii

0

@⇢
L
X

l=1

K
X

j=1

H l
ijH

l H
ij + I

1

A

�1

Gl
ii

1

A .

The optimal solutions of {W l
j (2), j = 1, · · · ,K} in the sense of virtual

MMSE at the receiver side are now given by:

min
W l

j (2),j=1,··· ,K
J =

L
X

l=1

K
X

i=1

J l
i (W

l
j (2)) (3.39)

56



CHAPTER 3. PRECODING METHODS WITH DELAYED CSIT:
THE FINITE SNR CASE

s.t.
L
X

l=1

K
X

j=1

kW l
j (2)k2F  KT

2

(3.40)

where T
2

was defined in Section 3.2.3.
As the above optimization does not lend itself easily to a closed-form

solution, we propose an iterative procedure, based on the gradient descent of
the cost function J , where W l

j (2) is iteratively updated according to

Ŵ l
j (2)[n+ 1] = Ŵ l

j (2)[n]� �
@(J)

@W l
j (2)

(3.41)

where n is the iteration index and � is a small step size. The partial derivation
is given in the Appendix. Nevertheless, to circumvent non-convexity issue,
we explore an alternative optimization method below.

3.3.2 Mutual Information Metric

Here, we propose an approach based on maximizing an approximation of the
mutual information, yielding a convenient closed-form solution for {W l

j (2)}.
In the following, we will start with the two-user case to gain insight, and
then generalize it to the K-user case.

Special K = 2 Case

Recall that

ȳA =
p
⇢H̄A1

sA +
p
⇢H̄A2

sB + zA (3.42)

where ⇢ = P
K (here K = 2), w

1

and w
2

are functions of hi(j), i = A,B, j =
1, 2 and satisfy power constraint kw

1

k2 + kw
2

k2  2. Consequently, the
exact mutual information of user A can be calculated by

I(sA; ȳA) = log det
⇣

I+
�

I+ ⇢H̄A2

H̄H
A2

��1

⇢H̄A1

H̄H
A1

⌘

(3.43)

= log det

 

I+ ⇢

"

1 0

0
1+khH

A(2)k2
�1(w2)

#



khH
A(1)k2 h⇤A1

(3)wH
1

hA(1)
hA1

(3)hH
A(1)w1

|hA1

(3)|2kw
1

k2
�

!

(3.44)

= log

✓

1 + ⇢khA(1)k2 +
⇥

1

(w
1

)

�
1

(w
2

)

◆

(3.45)
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where the second line can be easily obtained by permuting rows 2 and 3 in
H̄A1

and H̄A2

, and the third line is due to the characteristic polynomial
equality [64]

det(I+ ⇢M) = 1 + ⇢ Tr(M) + ⇢2det(M), (3.46)

where M is a 2⇥ 2 Hermitian matrix. By analogy, the mutual information
of user B can be given by

I(sB; ȳB) = log

✓

1 + ⇢khB(2)k2 +
⇥

2

(w
2

)

�
2

(w
1

)

◆

(3.47)

where ⇥i(wj) and �i(wj) are defined as

⇥
1

(w
1

) = ⇢C
2

|hA1

(3)|2(C
1

kw
1

k2 � ⇢wH
1

hA(1)hA(1)
Hw

1

) (3.48)

�
1

(w
2

) = C
2

(1 + ⇢|hA1

(3)|2kw
2

k2)� ⇢2|hA1

(3)|2wH
2

hA(2)hA(2)
Hw

2

(3.49)

⇥
2

(w
2

) = ⇢C
3

|hB1

(3)|2(C
4

kw
2

k2 � ⇢wH
2

hB(2)hB(2)
Hw

2

) (3.50)

�
2

(w
1

) = C
3

(1 + ⇢|hB1

(3)|2kw
1

k2)� ⇢2|hB1

(3)|2wH
1

hB(1)hB(1)
Hw

1

(3.51)

with

C
1

= 1 + ⇢khA(1)k2, C
2

= 1 + ⇢khA(2)k2 (3.52)

C
3

= 1 + ⇢khB(1)k2, C
4

= 1 + ⇢khB(2)k2. (3.53)

By imposing a symmetric constraint for power allocation between w
1

and w
2

, e.g., kw
1

k2 = kw
2

k2 = 1 for simplicity, the sum mutual information
can be deduced to

I(sA; ȳA) + I(sB; ȳB) ⇡ log

✓

1 +
wH

1

R
1

w
1

wH
2

R
2

w
2

◆

+ log

✓

1 +
wH

2

Q
2

w
2

wH
1

Q
1

w
1

◆

+ log(C
1

C
4

) (3.54)

where

R
1

= C
2

⇣

I+ ⇢h?
A(1)h

?H
A (1)

⌘

(3.55)

R
2

= C
1

⇣

�
1

I+ ⇢h?
A(2)h

?H
A (2)

⌘

(3.56)

Q
1

= C
4

⇣

�
2

I+ ⇢h?
B(1)h

?H
B (1)

⌘

(3.57)
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Q
2

= C
3

⇣

I+ ⇢h?
B(2)h

?H
B (2)

⌘

(3.58)

with

�
1

=
1 + ⇢khA(2)k2
⇢|hA1

(3)|2 + 1, �
2

=
1 + ⇢khB(1)k2
⇢|hB1

(3)|2 + 1 (3.59)

and h?
i (j) 2 C2⇥1 is the orthogonal component of hi(j) (i = A,B, j = 1, 2)

satisfying

hi(j)h
H
i (j) + h?

i (j)h
?H
i (j) = khi(j)k2I. (3.60)

The maximization of the mutual information in closed-form is very chal-
lenging in the arbitrary SNR regime. In this chapter, we investigate the
possibility of studying the high-enough SNR regime (i.e., high enough to
produce tractable solutions) while maintaining an SNR regime that is finite-
enough so as to preserve the key notion of alignment-orthogonality trade-o↵
exposed earlier in Section 3.2. Thus, we further approximate the mutual
information as

I(sA; ȳA) + I(sB; ȳB) ⇡ log

✓

wH
1

R
1

w
1

wH
2

R
2

w
2

wH
2

Q
2

w
2

wH
1

Q
1

w
1

◆

+ log(C
1

C
4

) (3.61)

which can be optimized by separately maximizing two Rayleigh Quotients,
i.e.,

max
kw1k2=1

log

✓

wH
1

R
1

w
1

wH
1

Q
1

w
1

◆

= max
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(3.62)

max
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log

✓
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wH
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I+ ⇢h?
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. (3.63)

Hence, we can obtain the optimal solutions wopt
1

and wopt
2

, which are given
by the dominant generalized eigenvectors of the pairs (R

1

,Q
1

) and (Q
2

,R
2

),
respectively.

Nevertheless, these solutions can be found to be dependent on parameters
�

1

and �
2

which in turn depend on the unknown channel coe�cients in Slot-3.
Fortunately, it is possible to average their impact and obtain a lower bound
on mutual information that no longer depends on such coe�cients. Aware of
the convexity of mutual information approximation in eq-(3.61) with regard
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to |hA1

(3)|2 and |hB1

(3)|2, we further lower-bound it by applying Jensen’s
inequality, i.e.,
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with

�̄
1

= 1 + khA(2)k2 + 1/⇢, �̄
2

= 1 + khB(1)k2 + 1/⇢

being independent of the unknown channel coe�cients hA1

(3) and hB1

(3)
where E[|hA1

(3)|2] = E[|hB1

(3)|2] = 1, such that the original optimization
problem can be alternatively done by

max
kwik2=1

wH
i

�

I+ ⇢h?
i (i)h

?H
i (i)

�

wi

wH
i

�

�̄
¯iI+ ⇢h?

¯i
(i)h?H

¯i
(i)
�

wi
(3.64)

where i, ī = 1, 2 and i 6= ī. As mentioned earlier, we exchangeably use A and
1 to represent the first user, and so forth.

Interestingly, the above objective function can be interpreted as dual
SINR in a two-user interference channel. Define

DSINRi ,
wH

i

�

I+ ⇢h?
i (i)h

?H
i (i)

�

wi

wH
i

�

�̄
¯iI+ ⇢h?

¯i
(i)h?H

¯i
(i)
�

wi
(3.65)

which is referred to as a regularized SINR in a dual two-user interference
channel with a desired channel h?

i and interference channel h?
¯i
, where wi is

interpreted as a receive filter. Thus, the optimization problem in eq-(3.64)
can be equivalently done by maximizing the regularized SINR in the dual
MISO interference channels. Note that the regularization lies in not only the
interference channels but also the desired channels. This solution is referred
to later as “GMAT-DSINR”.
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General K-User Case

Recall that the definition of DSINR in eq-(3.65) for the two-user case, where
wi is determined by the orthogonal channels of itself and also its peers.
According to the structure of W l(2) for the K-user case, we can follow this
approach and design each nonzero submatrices wl

ji separately. For each wl
ji,

the dual interference channel can be constructed by the orthogonal channels.
Thus, the regularized dual SINR can be formulated as (e.g., l = 1)

DSINRl
ji =

wl H
ji

⇣

I+ ⇢
P

k 6=i h
?
k (j)h

?H
k (j)

⌘

wl
ji

wl H
ji

�

�̄jiI+ ⇢h?
i (j)h

?H
i (j)

�

wl
ji

, (3.66)

where j 6= i, wl
ji 2 CK⇥1 is the i-th (when i < j) or (i� 1)-th (when i > j)

nonzero block of W l
j (2), h

?
i (j) 2 CK⇥K is one representation of the null

space of hi(j) with the same norm3, and

�̄ji = kwl
jik2 + khi(j)k2 + 1/⇢ (3.67)

where kwl
jik2 can be chosen to satisfy the overall transmit power constraint,

and T
2

was defined earlier in Section 3.2.3. Note that the numerator and
denominator of DSINRl

ji represent the requirements of signal orthogonality
and interference alignment, respectively. While the latter aims at aligning
wl

ji as close as possible to the interference component h?
i (j), the former tries

to make wl
ji as orthogonal as possible to the spanned subspace by all the

channel vectors h?
k (j) with k 6= i.

Accordingly, the optimal wl
ji can be obtained by separately optimizing

(8 i, j, i 6= j)

max
wl

ji

DSINRl
ji, j 6= i (3.68)

s.t.
L
X

l=1

K
X

j=1

kW l
j (2)k2F  KT

2

(3.69)

where the corresponding solution can be simply obtained by generalized
eigenvalue decomposition. By maximizing the dual SINR, wl

ji is preferred
to keep aligned along with hj(j) while to be as orthogonal to hk(j) (8 k 6=
i) as possible. Consequently, the optimal solution of wl

ji balances signal
orthogonality with interference alignment between user-j’s and other users’
dual orthogonal channels at j-th time slot.

3We abuse here the vector notation to represent the corresponding orthogonal channel
matrix for the sake of consistence.
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3.4 Discussion

3.4.1 Multiplexing Gain of GMAT

In the following, we show the GMAT algorithm possesses the same multi-
plexing gain as original MAT. We consider the two-user case for example.
According to equations from (3.54) to (3.64), we have
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(3.71)

Thus, together with the fact that lim⇢!1
E log(C1C4)

log ⇢ = 2, the multiplexing
gain can be achieved with

MG = lim
⇢!1

Emaxkwik2=1

(I(sA; ȳA) + I(sB; ȳB))

3 log ⇢
=

4

3

which is identical to the original MAT algorithm. Intuitively, at high SNR,
the signal orthogonality becomes no relevance, thus our solution naturally
seeks perfect interference alignment as in MAT.

3.4.2 Single-Beam MIMO Interference Channel Interpreta-
tion

To understand more clearly the roles of desired signal orthogonality and
interference alignment, we transform the mutual information equality (3.54)
into another form, and further interpret their relationship from the point
of view of a two-user single-beam MIMO interference channel. The strong
benefit of this interpretation is that the problem of computing the precoders
lends itself to classical precoding techniques in the MIMO interference channel.
Based on eq-(3.54), the sum mutual information equation can be further
transformed to the form

I(sA; ȳA) + I(sB; ȳB) (3.72)

= log

✓

1 +
↵

1

⇢wH
1

hA(1)hH
A(1)w1

+ ↵
2

⇢wH
1

h?
A(1)h

?H
A (1)w

1

�2

1

+ �
3

⇢wH
2

hA(2)hH
A(2)w2

+ �
4

⇢wH
2

h?
A(2)h

?H
A (2)w

2

◆

(3.73)
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According to eq-(3.73) and eq-(3.74), the sum mutual information can be
treated as that of two-user MIMO interference channels with 2 antennas at
each transmitter and receiver, as shown in Fig. 3.2. Note that w

1

and w
2

act as the transmit beamformers, where the single beam is transmitted from
each transmitter.

Accordingly, the received signals at two receivers can be equivalently
expressed as
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and the additive noises follow the distribution ni ⇠ CN (0,
�2
i
2

I).
Consequently, the received SINR for both users can be written, respec-

tively, as
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Figure 3.2: Interpretation as an MIMO interference channel.
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which are identical to those in eq-(3.73-3.74). Note that the approach in
the previous section that skips the dependency on the unknown channel
coe�cients hA1

(3), hB1

(3) can also be applied. We omit the details here to
avoid redundancy. Hence, existing precoder design methods in the two-user
single-beam MIMO interference channels with perfect CSIT, e.g., [65–68],
can be used here in the context of delayed CSIT precoding. Instead of going
into details about those solutions, we take the classic MRT and ZF precoders
here for example,

wMRT
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= U
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(HH
1

H
1

), wMRT
2

= U
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(GH
2

G
2

) (3.86)
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= U
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(HH
2

H
2

) (3.87)

where U
max

(·) and U
min

(·) are the generalized eigenvectors corresponding
to the largest and smallest eigenvalues, respectively. Interestingly, for the
first user, it is worth noting that ↵

1

< ↵
2

and therefore wMRT
1

! h?
A(1),

means perfect orthogonality of desired signal is preferred. On the other hand,
↵

3

< ↵
4

, which denotes wZF
1

! hB(1), corresponds to the preference of
perfect interference alignment. Our proposed GMAT-MMSE and GMAT-
DSINR solutions o↵er a trade-o↵ between them, yielding a better performance
at finite SNR.

3.5 Numerical Results

The e↵ectiveness of the proposed solutions is evaluated in terms of the sum
rate per time slot in bps/Hz over a correlated rayleigh fading channel, where
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Figure 3.3: Sum rate vs. SNR for the two-user case.

the concatenated channel matrix in slot-t can be formulated as

H(t) = R1/2
r Hw(t)R

1/2
t (3.88)

where Hw(t) is normalized i.i.d. rayleigh fading channel matrix, and Rt, Rr

are transmit and receive correlation matrices with (i, j)-th entry being ⌧ |i�j|
t

and ⌧ |i�j|
r [69, 70], respectively, where ⌧t and ⌧r are randomly chosen within

[0, 1). Note that the users’ channel vectors are the rows of H(t).
The parameters in the simulation are set as follows. Maximum 500

gradient-descent iterations for the GMAT-MMSE with � = 0.01. The
performance is averaged over 1000 channel realizations. Recall that the
present channel coe�cients (cf. Di(k), e.g., hA1

(3) and hB1

(3) for the two-
user case) are unknown to the transmitter and therefore are circumvented
for transmit precoder design, while they should be taken into account at the
receiver. Naturally, such a mismatch would result in performance degradation,
but our proposed precoding methods are verified to be always e↵ective
thanks to the e�cient trade-o↵ between interference alignment and signal
enhancement.

We show in Fig. 3.3 for the two-user case the sum rate comparison
among GMAT-MMSE with the iteratively updated w

1

, w
2

, GMAT-DSINR
with closed-form solutions in eq-(3.64), and the original MAT algorithm with
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Figure 3.4: Sum rate vs. SNR for the three-user case.

w
1

= hB(1), w2

= hA(2), with the same power constraint kw
1

k2+kw
2

k2  2
for all. Note that MMSE receiver is used here to set up a reference for
comparison together with GMAT-MMSE solution, such that we are able
to show how good the closed-form solution can achieve compared to the
iterative one at finite SNR. In Fig. 3.3, the gap of sum rate between GMAT
and MAT illustrates improvement of GMAT-MMSE and GMAT-DSINR
algorithms over the initial MAT concept, demonstrating the benefit of the
trade-o↵ between interference alignment and desired signal orthogonality
enhancement. Compared with the original MAT algorithm, both GMAT
approaches have gained substantial improvement at finite SNR and possessed
the same slope, which implies the same multiplexing gain, at high SNR.
Interestingly, the closed-form solution performs as well as the iterative one,
indicating the e↵ectiveness of the mutual information approximation.

In Fig. 3.4, we present the similar performance comparison for the three-
user case with MMSE receiver. The GMAT-MMSE solution updates order-2
message generation matrix {W l

j (2)} iteratively, while the original MAT
algorithm set it according to eq-(3.22) and the GMAT-DSINR solution is
obtained by optimizing eq-(3.68) and eq-(3.69). All these methods hold
the same power allocation. With more transmit antennas and users, the
same insights regarding the trade-o↵ between signal orthogonality and in-
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terference alignment can be always obtained. It is interesting to note that,
GMAT-DSINR performs as well as GMAT-MMSE, despite the distributed
optimization.

3.6 Summary

We generalize the concept of precoding over a multi-user MISO broadcast
channel with delayed CSIT for arbitrary number of users case, by proposing
a precoder construction algorithm, which achieves the same DoF at infinite
SNR yet reaches a useful trade-o↵ between interference alignment and signal
enhancement at finite SNR. Our proposed precoding concept lends itself to a
variety of optimization methods, e.g., virtual MMSE and mutual information
solutions, achieving good compromise between signal orthogonality and
interference alignment. An interesting question is also the diversity gain
performance of schemes combining current and delayed CSIT. Clearly our
scheme will achieve the same diversity performance as the original MAT
since it converges to it in the high SNR regime. The question of whether
modified schemes can be devised to address the DoF-diversity trade-o↵ is an
interesting open problem.

Remarkably, our work has triggered a line of interesting works since
it published in [71, 72], including [73], among many others, in which the
precoding methods were considered in the delayed CSIT setting at finite
SNR, together with the additional statistical CSIT.

3.7 Appendix

3.7.1 Gradient Descent Parameter for GMAT-MMSE

Let [H l
ij ]m,n = eH

mH l
ijen be the m-th row and n-th column element of H l

ij .
Particularly,

[H l
ij ]m,n = eH

m0W l
j (k)en (3.89)

when m =
Pk�1

s=1

Ts +m0 where 1  m0  Tk and 1  n  K. Here, em is
defined as a binary vector with only one ‘1’ at m-th row. By di↵erentiating
over W l

j (2), we have the di↵erentiation
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Note that we abuse vector em0 with various dimensions Tk according to the
corresponding matrices W l

j (k) for the sake of notational simplicity. Then, it
follows that
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where 1  p  Tk, 1  q  K, and we have

@H l
ij

@[W l T
j (2)]p,q

= Qlepe
H
q (3.95)

Finally, according to the chain rule of matrix di↵erentiation [63,74], we have
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So, for the K-user case, the Gaussian descent parameter can be calculated
by
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Chapter 4

MIMO Networks with
Delayed CSIT:
The Time-Correlated Case

While the previous chapter focused on throughput maximization of time
i.i.d. MISO BC with delayed CSIT at finite SNR, in this chapter we take into
account channel time correlation in MIMO networks. It is quite challenging
to optimize throughput at finite SNR with channel time correlation. Instead,
we maximize DoF region, from an information theoretic perspective, as
a first-order capacity approximation at infinite SNR and leave the exact
capacity region characterization to future study.

In particular, we consider the time-correlated MIMO BC and IC where
the transmitter(s) has/have (i) delayed CSI obtained from a latency-prone
feedback channel as well as (ii) imperfect current CSIT, obtained, e.g., from
prediction on the basis of these past channel samples based on the temporal
correlation. The DoF regions for the two-user broadcast and interference
MIMO networks with general antenna configuration are fully characterized,
as a function of the prediction quality indicator. Specifically, a simple
unified framework is proposed, allowing to attain optimal DoF region for the
general antenna configurations and current CSIT qualities. Such a framework
builds upon block-Markov encoding with interference quantization, optimally
combining the use of both outdated and instantaneous CSIT. A striking
feature is that, by varying the power allocation, every point in the DoF region
can be achieved with one single scheme. As a result, instead of checking the
achievability of every corner point of the outer bound region, as typically done
in the literature, we propose a new systematic way to prove the achievability.
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4.1 Introduction

While the capacity region of the MIMO BC was established in [26], the
characterization of the capacity of Gaussian IC has been a long-standing open
problem, even for the two-user single-antenna case. Recent progress sheds
light on this problem from various perspectives, among which the authors
in [28] characterized the DoF region for the two-user MIMO IC. In most
works, the DoF analysis for multiuser channels involves the full knowledge
of CSI at both the transmitter and receiver sides. In practice, however,
the acquisition of perfect CSI at the transmitters is di�cult especially for
fast fading channels. The CSIT obtained via feedback su↵ers from delays,
which renders the available CSIT feedback possibly fully obsolete (i.e., fully
“delayed CSIT”) under the fast fading channel.

As mentioned in previous chapter, under this delayed CSIT setting, a novel
scheme (termed in this chapter as “MAT alignment”) was proposed in [41]
for the MISO BC to demonstrate that even the completely outdated channel
feedback is still useful. The precoders are designed achieving strictly better
DoF than what is obtained without any CSIT. The essential ingredient for the
proposed scheme in [41] lies in the use of a multi-slot protocol initiating with
the transmission of unprecoded information symbols to the user terminals,
followed by the analog forwarding of the interferences created in the previous
time slots. Most recently, generalizations under the similar principle to
the MIMO BC [75], MIMO IC [43] settings, the MIMO BC with secrecy
constraints [47], among others, were also addressed, where the DoF regions are
fully characterized with arbitrary antenna configurations, again establishing
DoF strictly beyond the ones obtained without CSIT [29,30,32] but below
the ones with perfect CSIT [26,28]. Note that other recent interesting lines of
work combining instantaneous and delayed forms of feedback were reported
in [48,76–78].

Albeit inspiring and fascinating from a conceptual point of view, these
works made an assumption that the channel is i.i.d. across time, where the
delayed CSIT bears no correlation with the current channel realization. Hence,
these results pessimistically consider that no estimate for the current channel
realization is producible to the transmitter. Owing to the finite Doppler
spread behavior of fading channels, it is however the case in many real life
situations that the past channel realizations can provide some information
about the current one. Therefore a scenario where the transmitter is endowed
with delayed CSI in addition to some (albeit imperfect) estimate of the current
channel is of practical relevance. Together with the delayed CSIT, the benefit
of such imperfect current CSIT was first exploited in [53] for the MISO
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BC whereby a novel transmission scheme was proposed which improves
over pure MAT alignment in constructing precoders based on delayed and
current CSIT estimate. The full characterization of the optimal DoF for
this hybrid CSIT was later reported in [54, 55] for MISO BC under this
setting. The key idea behind the schemes (termed hereafter as “↵-MAT
alignment”) in [53–55] lies in the modification of the MAT alignment such
that i) the initial time slot involves transmission of precoded symbols, which
enables to reduce the power of mutual interferences and e�ciently compress
them; ii) the subsequent slots perform a digital transmission of quantized
residual interferences together with new private symbols. Most recently,
this philosophy was extended to the MIMO networks (BC/IC) but only
with symmetric antenna configurations [79], as well as the K-user MISO
case [80]. The generalization to the MISO BC with di↵erent qualities of
imperfect current CSIT was also studied in [81]. Remarkably, the authors
of [81] showed that, in order to balance the asymmetry of the CSIT quality,
an infinite number of time slots are required. As such, they extended the
number of phases of the ↵-MAT alignment [54] to infinity and varied the
length of each phase.

Unfortunately, extending the previous results to the MIMO case with
arbitrary antenna configurations is not a trivial step, even with the symmetric
current CSIT quality assumption. The main challenges are two-fold: (a)
the extra spatial dimension at the receiver side introduces a non-trivial
tradeo↵ between the useful signal and the mutual interference, and (b) the
asymmetry of receive antenna configurations results in the discrepancy of
common-message-decoding capability at di↵erent receivers. In particular, the
total number of streams that can be delivered as common messages to both
receivers is inevitably limited by the weaker one (i.e., with fewer antennas).
Such a constraint prevents the system from achieving the optimal DoF of the
symmetric case by simply extending the previous schemes developed in [79].

To counter these new challenges posed by the asymmetry of antenna
configurations, we develop a new strategy that balances the discrepancy of
common-message-decoding capability at two receivers. This allows us to fully
characterize the DoF region of both MIMO BC and MIMO IC, achieved by a
unified and simple scheme built upon block-Markov encoding. This encoding
concept was first introduced in [82] for relay channels and then became a
standard tool for communication problems involving interaction between
nodes, such as feedback (e.g., [83,84]) or user cooperation (e.g., [85]). It turns
out that our problem with both delayed and instantaneous CSIT, closely
related to [83], can also be solved with this scheme. As it will become clear
later, in each block, the transmitter superimposes the common information
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about the interferences created in the past block (due to the imperfect
instantaneous CSIT) on the new private information (thus creating new
interferences). At the receiver side, backward decoding is employed, i.e.,
the decoding of each block relies on the common side information from the
decoding of future blocks. Due to the repetitive nature in each block, the
proposed scheme can be uniquely characterized with the parameters such
as the power allocation and rate splitting of the superposition. Surprisingly
enough, our block-Markov scheme can also include the asymmetry of current
CSIT with a simple parameter change, and thus somehow balance the global
asymmetry, i.e., antenna asymmetry and CSIT asymmetry, in the system.

More specifically, in this chapter we obtain the following key results:

• We establish outer bounds on the DoF region for the two-user temporally-
correlated MIMO BC and IC with perfect delayed and imperfect current
CSIT, as a function of the current CSIT quality exponent. By intro-
ducing a virtual received signal for the IC, we nicely link the outer
bound to that of the BC, arriving at the similar outer bound results
for both cases. In addition to the genie-aided bounding techniques and
the application of the extremal inequality in [54], we develop a set of
upper and lower bounds of ergodic capacity for MIMO channels, which
is essential for the MIMO case but not extendible from MISO.

• We propose a unified framework relying on block-Markov encoding
uniquely parameterized by the rate splitting and power allocation,
by which the optimal DoF regions confined by the outer bounds are
achievable with perfect delayed plus imperfect current CSIT. For any
antenna and current CSIT settings, every point in the outer bound
region can be achieved with one single scheme. For instance, the
MIMO BC with M = 3, N

1

= 2 and N
2

= 1 achieves optimal sum
DoF 15+4↵1+2↵2

7

when 3↵
1

� 2↵
2

 1 and 7+2↵2
3

otherwise, where ↵
1

and ↵
2

are imperfect current CSIT qualities for both users’ channels.
This smoothly connects three special cases: the case with pure delayed
CSIT [75] (↵

1

= ↵
2

= 0), that with perfect current CSIT [26] (↵
1

=
↵

2

= 1), and that with perfect CSIT at Receiver 1 and delayed CSIT
at Receiver 2 [86] (↵

1

= 1,↵
2

= 0).

• We propose a new systematic way to prove the achievability. In the
proposed framework, the achievability region is defined by the decod-
ability conditions in terms of the rate splitting and power allocation.
The achievability is proved by mapping the outer bound region into a
set of proper rate and power allocation and showing that this set lies
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within the decodability region. This contrasts with most existing proofs
in literature where the achievability of each corner point is checked.

It is worth noting that our results cover the previously reported particular
cases: the perfect CSIT setting [26,28] (i.e., current CSIT of perfect quality),
the pure delayed CSIT setting [43] (i.e., current CSIT of zero quality), the
partial/hybrid CSIT MIMO BC/IC case [42,86,87] (with perfect CSIT at
one receiver and delayed CSIT at the other one), and the special MISO
case [53–55] with N

1

= N
2

= 1, symmetric MIMO case [79], as well as
the MISO case with asymmetric current CSIT qualities [81]. In a parallel
work [88], a similar scheme was independently revealed, also built on the block-
Markov encoding, evolving from the multi-phase scheme initially proposed
in [81]. While they focus on the MISO BC in a more general evolving CSIT
setting, our work deals with a wider class of channel configurations (both
MIMO BC and IC) with static CSIT.

The rest of the chapter is organized as follows. We present the system
model and assumptions in the coming section, followed by the main results
on DoF region characterization for both MIMO BC and MIMO IC cases
in Section 4.3. Some illustrative examples of the achievability schemes are
provided in Section 4.4, followed by the general formulation in Section 4.5.
In Section 4.6, we present the proofs of outer bounds. Finally, we conclude
the chapter in Section 4.7.

Notation: Matrices and vectors are represented as uppercase and low-
ercase letters, respectively. Matrix transport, Hermitian transport, inverse,
rank, determinant and the Frobenius norm of a matrix are denoted by AT,
AH, A�1, rank(A), det(A) and kAk

F

, respectively. A
[k1:k2] represents the

submatrix of A from k
1

-th row to k
2

-th row when k
1

 k
2

. h? is the
normalized orthogonal component of any non-zero vector h. We use IM to
denote an M ⇥M identity matrix where the dimension is omitted when-
ever confusion is not probable. The approximation f(P ) ⇠ g(P ) is in the

sense of limP!1
f(P )

g(P )

= C, where C > 0 is a constant that does not scale
as P . Partial ordering of Hermitian matrices is denoted by ⌫ and �, i.e.,
A � B means B�A is positive semidefinite. Logarithms are in base 2. (x)+

means max{x, 0}, and Rn
+

represents the set of n-tuples of non-negative real

numbers. f = O(g) follows the standard Landau notation, i.e., lim f
g  C

where the limit depends on the context. With some abuse of notation, we
use OX(g) to denote any f such that EX(f) = O(EX(g)). Finally, the range
or null spaces mentioned in this chapter refer to the column spaces.
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unit delay 

Figure 4.1: MIMO broadcast channel with delayed CSIT.

4.2 System Model

4.2.1 Two-user MIMO Broadcast Channel

For a two-user (M,N
1

, N
2

) MIMO broadcast channel with M antennas at
the transmitter and Ni antennas at Receiver i, as in Fig. 4.1, the discrete
time signal model is given by

yi(t) = Hi(t)x(t) + zi(t) (4.1)

for any time instant t, where Hi(t) 2 CNi⇥M is the channel matrix for
Receiver i (i = 1, 2); zi(t) ⇠ NC (0, INi) is the normalized additive white
Gaussian noise (AWGN) vector at Receiver i and is independent of channel
matrices and transmitted signals; the coded input signal x(t) 2 CM⇥1 is
subject to the power constraint E

�

kx(t)k2
�

 P , 8 t.

4.2.2 Two-user MIMO Interference Channel

For a two-user (M
1

,M
2

, N
1

, N
2

) MIMO interference channel with Mi anten-
nas at Transmitter i and Nj antennas at Receiver j, for i, j = 1, 2, as in
Fig. 4.2, the discrete time signal model is given by

yi(t) = Hi1(t)x1

(t) +Hi2(t)x2

(t) + zi(t) (4.2)

for any time instant t, where Hji(t) 2 CNj⇥Mi (i, j = 1, 2) is the channel
matrix between Transmitter i and Receiver j; the coded input signal xi(t) 2
CMi⇥1 is subject to the power constraint E

�

kxi(t)k2
�

 P for i = 1, 2, 8 t.
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Figure 4.2: MIMO interference channel with delayed CSIT.

In the rest of this chapter, we refer to MIMO BC/IC as MIMO networks.
For notational brevity, we define the ensemble of channel matrices, i.e.,
H(t) , {H

1

(t),H
2

(t)} (resp. H(t) , {H
11

(t),H
21

(t),H
12

(t),H
22

(t)}), as
the channel state for BC (resp. IC). We further define Hk , {H(t)}kt=1

, and
Ĥk , {Ĥ(t)}kt=1

, where k = 1, · · · , n.

4.2.3 Assumptions and Definitions

Assumption 4.1 (perfect delayed and imperfect current CSIT). At each
time instant t, the transmitters know perfectly the delayed CSI Ht�1, and
obtain an imperfect estimate of the current CSI Ĥ(t), which could, for
instance, be produced by standard prediction based on past samples. The
current CSIT estimate is modeled by

Hi(t) = Ĥi(t) + H̃i(t) (4.3)

Hij(t) = Ĥij(t) + H̃ij(t) (4.4)

for BC and IC, respectively, where estimation error H̃i(t) (resp. H̃ij(t)) and

the estimate Ĥi(t) (resp. Ĥij(t)) are mutually independent, and each entry
is assumed1 to be NC

�

0,�2

i

�

and NC
�

0, 1� �2

i

�

. Further, we assume the

1We make the above assumption on the fading distribution to simplify the presentation,
although the results can be applied to a broader class of distributions.
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following Markov chain

(Ht�1, Ĥt�1)! Ĥ(t)! H(t), 8t, (4.5)

which means H(t) is independent of (Ht�1, Ĥt�1) conditional on Ĥ(t). Fur-
thermore, at the end of the transmission, i.e., at time instant n, the receivers
know perfectly Hn and Ĥn.

It readily follows that, for any fat submatrix H of Hi or Hij ,

E(log det(HHH)) > �1 and E(log det(ĤĤH)) = O(1)

when �2

i goes to 0.
The assumption on CSIR is in accordance with previous works with

delayed CSIT, and does not add any limitation over the assumption made
in [41,43,75]. We point out that only local CSIT/CSIR (the channel links
with which the node is connected) is really helpful and leads to the same
result. Nevertheless, we assume the CSIT/CSIR to be available in a global
fashion for simplicity of presentation.

We are interested in characterizing the DoF of the above system as
functions of the quality of current CSIT, thus bridging between the two
previously investigated extremes which are the perfect instantaneous CSIT
and the fully outdated (non-instantaneous) CSIT cases. As it was established
in previous works [53,54], the imperfect current CSIT has beneficial value
(in terms of improving the DoF) only if the CSIT estimation error decays at
least exponentially with the SNR or faster. Thus it is reasonable to study
the regime by which the CSIT quality can be parameterized by an indicator
↵i � 0 such that:

↵i , � lim
P!1

log �2

i

logP
(4.6)

if the limit exists. This ↵i indicates the quality of current CSIT corresponding
to Receiver i at high SNR. While ↵i = 0 reflects the case with no current
CSIT, ↵i !1 corresponds to that with perfect instantaneous CSIT. As a
matter of fact, when ↵i � 1, the quality of the imperfect current CSIT is
su�cient to avoid the DoF loss, and ZF precoding with this imperfect CSIT
is able to achieve the maximum DoF [39]. Therefore, we focus on the case
↵i 2 [0, 1] henceforth. The connections between the above model and the
linear prediction over existing time-correlated channel models with prescribed
user mobility are highlighted in [53,54]. According to the definition of the
estimated current CSIT, we have E

�

|hH
k(t)ĥ

?
k (t)|2

�

= �2

i ⇠ P�↵i , with hH
k
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representing any row of channel matrices Hi(t) (resp. Hij(t)), and ĥH
k being

its corresponding estimate.
A rate pair (R

1

, R
2

) is said to be achievable for the two-user MIMO
networks with perfect delayed and imperfect current CSIT if there exists a
�

2nR1 , 2nR2 , n
�

code scheme with:

• two message sets W
1

, [1 : 2nR1 ] and W
2

, [1 : 2nR2 ], from which two
independent messages W

1

and W
2

intended respectively to Receiver 1
and Receiver 2 are uniformly chosen;

• one encoding function for (each) transmitter:

BC: x(t) = ft
�

W
1

,W
2

,Ht�1, Ĥt
�

IC: xi(t) = fi,t
�

Wi,Ht�1, Ĥt
�

, i = 1, 2;
(4.7)

• one decoding function at the corresponding receiver,

Ŵj = gj
�

Y n
j ,Hn, Ĥn

�

, j = 1, 2 (4.8)

for Receiver j, where Y n
j , {yj(t)}nt=1

,

such that the average decoding error probability P (n)

e , defined as P (n)

e ,
P
�

(W
1

,W
2

) 6= (Ŵ
1

, Ŵ
2

)
�

, vanishes as the code length n tends to infinity. The
capacity region C is defined as the set of all achievable rate pairs. Accordingly,
the DoF region can be defined as follows:

Definition 4.1 (DoF region). The DoF region for the two-user MIMO
network is defined as

D =

⇢

(d
1

, d
2

) 2 R2

+

| 8(w
1

, w
2

) 2 R2

+

, w
1

d
1

+ w
2

d
2

 lim sup
P!1

 

sup
(R1,R2)2C

w
1

R
1

+ w
2

R
2

logP

!)

. (4.9)

4.3 Main Results

According to the assumptions and definitions in the previous section, the
main results of this chapter are stated as the following two theorems:
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Theorem 4.1. For the two-user (M,N
1

, N
2

) MIMO BC with delayed and
imperfect current CSIT, the optimal DoF region {(d

1

, d
2

)|(d
1

, d
2

) 2 R2

+

} is
characterized by

d
1

 min{M,N
1

}, (4.10a)

d
2

 min{M,N
2

}, (4.10b)

d
1

+ d
2

 min{M,N
1

+N
2

}, (4.10c)

d
1

min{M,N
1

} +
d

2

min{M,N
1

+N
2

}  1 +
min{M,N

1

+N
2

}�min{M,N
1

}
min{M,N

1

+N
2

} ↵
1

,

(4.10d)

d
1

min{M,N
1

+N
2

} +
d

2

min{M,N
2

}  1 +
min{M,N

1

+N
2

}�min{M,N
2

}
min{M,N

1

+N
2

} ↵
2

,

(4.10e)

where ↵i 2 [0, 1] (i = 1, 2) indicates the current CSIT quality exponent of
Receiver i’s channel.

Proof. The proof of achievability will be presented in Section 4.4 showing
some insights with toy examples, and in Section 4.5 for the general formulation.
The converse proof will be given in Section 4.6 focusing on (4.10d) and (4.10e),
because the first three bounds correspond to the upper bounds under perfect
CSIT settings and thus hold trivially under delayed and imperfect current
CSIT settings.

Remark 4.1. This result yields a number of previous results as special
cases: the delayed CSIT case [75] for ↵

1

= ↵
2

= 0, where the sum DoF
bound (4.10c) is inactive; perfect CSIT case [26] for ↵

1

= ↵
2

= 1, where the
weighted sum DoF bounds (4.10d) and (4.10e) are inactive; partial CSIT
(i.e., perfect CSIT for one channel and delayed CSIT for the other one)
case [86] for ↵

1

= 1,↵
2

= 0, where only (4.10b) and (4.10e) are active;
delayed CSIT in MISO BC for N

1

= N
2

= 1 [54,55,81].

Before presenting the optimal DoF region for MIMO IC, we specify two
conditions.

Definition 4.2 (Condition Ck). Given k 2 {1, 2}, the condition Ck holds,
indicating the following inequalities

Mk � Nj , Mj < Nk, M
1

+M
2

> N
1

+N
2

(4.11)

are true, 8 j 2 {1, 2}, j 6= k.
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Remark 4.2. This definition that points out the existence of the correspond-
ing outer bound, is di↵erent from that in [43], in which the condition implies
the activation of the outer bounds.

Theorem 4.2. For the two-user (M
1

,M
2

, N
1

, N
2

) MIMO IC with delayed
and imperfect current CSIT, the optimal DoF region {(d

1

, d
2

)|(d
1

, d
2

) 2 R2

+

}
is characterized by

d
1

 min{M
1

, N
1

}, (4.12a)

d
2

 min{M
2

, N
2

}, (4.12b)

d
1

+ d
2

 min {M
1

+M
2

, N
1

+N
2

,

max{M
1

, N
2

},max{M
2

, N
1

}} ,
(4.12c)

d
1

min{M
2

, N
1

} +
d

2

min{M
2

, N
1

+N
2

} 
min{N

1

,M
1

+M
2

}
min{M

2

, N
1

}

+
min{M

2

, N
1

+N
2

}�min{M
2

, N
1

}
min{M

2

, N
1

+N
2

} ↵
1

,

(4.12d)

d
1

min{M
1

, N
1

+N
2

} +
d

2

min{M
1

, N
2

} 
min{N

2

,M
1

+M
2

}
min{M

1

, N
2

}

+
min{M

1

, N
1

+N
2

}�min{M
1

, N
2

}
min{M

1

, N
1

+N
2

} ↵
2

,

(4.12e)

d
1

+
N

1

+ 2N
2

�M
2

N
2

d
2

 N
1

+N
2

+ (N
1

�M
2

)↵
2

, if C
1

holds

(4.12f)

d
2

+
N

2

+ 2N
1

�M
1

N
1

d
1

 N
1

+N
2

+ (N
2

�M
1

)↵
1

, if C
2

holds

(4.12g)

where ↵i 2 [0, 1] (i = 1, 2) indicates the current CSIT quality exponent
corresponds to Receiver i.

Proof. The general formulation of achievability will be presented in Section
4.5, and the converse will be given in Section 4.6. For the converse, the
first three inequalities correspond to the outer bounds for the case of perfect
CSIT, which should also hold for our setting. Hence, it is su�cient to prove
the last four bounds. Due to the symmetry property of the bounds (4.12d)
and (4.12e), (4.12f) and (4.12g), it is su�cient to prove the bounds (4.12d)
and (4.12f).
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Remark 4.3. Some previous reported results can be regarded as special cases
of our results: delayed CSIT case [43] for ↵

1

= ↵
2

= 0; perfect CSIT case [28]
for ↵

1

= ↵
2

= 1, where the weighted sum DoF bounds (4.12d)-(4.12g) are
inactive; hybrid CSIT (i.e., perfect CSIT for one channel and delayed CSIT
for the other one) case [87] for ↵

1

= 1,↵
2

= 0, where the bounds (4.12e) and
(4.12f) are active.

4.4 Achievability: Toy Examples

To introduce the main idea of our achievability scheme, we revisit MAT [41]
and ↵-MAT alignment [53–55] for the case of MISO BC in Section 4.4.1,
followed by an alternative way built on block-Markov encoding and backward
decoding in Section 4.4.2, as well as some examples in Section 4.4.3 and 4.4.4
showing that block-Markov encoding allows us to balance the asymmetry both
in current CSIT qualities and antenna configurations. Although MAT [41]
and ↵-MAT alignment [53–55] appear to be conceptually di↵erent, these
schemes boil down into a single block-Markov encoding scheme (of an infinite
number of constant-length blocks). In fact, both schemes can be represented
exactly in the same manner with di↵erent parameters.

4.4.1 MAT v.s. ↵-MAT Revisit

Let us take the simplest antenna configuration, i.e., (2, 1, 1) BC, as an
example. Recall that both MAT and ↵-MAT deliver symbol under the same
structure. Specifically, in the first phase (Phase I), two independent messages
w

1

and w
2

are encoded into two independent vectors u
1

(w
1

) and u
2

(w
2

)
with di↵erent covariance matrices Q

1

, E (u
1

uH
1

) and Q
2

, E (u
2

uH
2

). The
sum of these vectors are sent out, i.e.,

x[1] = u
1

+ u
2

,

s.t.

8

>

<

>

:

MAT: Q
1

= Q
2

= P I,

↵-MAT:

(

Q
1

= P
1

���
ˆh2

+ P
2

���
ˆh?
2

Q
2

= P
1

���
ˆh1

+ P
2

���
ˆh?
1

(4.13)

where P
1

⇠ P 1�↵, P
2

= P � P
1

⇠ P , 8↵ 2 [0, 1], and ���h , hhH

khk2 . Each

receiver experiences some interferences caused by the symbols dedicated to
the other receiver

⇢

⌘
1

, hH
1

u
2

⌘
2

, hH
2

u
1

s.t.

⇢

MAT: E
�

|⌘i|2
�

⇠ P
↵-MAT: E

�

|⌘i|2
�

⇠ P 1�↵ (4.14)
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Then, the task of the second phase is to multicast the interferences (⌘
1

, ⌘
2

)
to both receivers. The main di↵erence between the MAT and ↵-MAT lies
in the way in which the interferences are sent. While the analog version of
⌘k is sent in two slots with MAT, the digitized version is sent with ↵-MAT
instead. Note that the covariance matrices Q

1

and Q
2

, or equivalently, the
spatial precoding and power allocation, of ↵-MAT are such that the mutual
interferences (⌘

1

, ⌘
2

) have a reduced power level P 1�↵. According to the
rate-distortion theorem [89], each interference ⌘k, k = 1, 2, can be compressed
with a source codebook of size P 1�↵ or (1�↵) logP bits into an index lk, in
such a way that the average distortion between ⌘k and the source codeword
⌘̂k(lk) is comparable to the AWGN level [54]. Then, the index lk is encoded
with a channel codebook into a codeword xc(lk) ⇠ P I

2

and sent as the
common message to both receivers. Thanks to the reduced range of lk, there
is still room to transmit private messages. The structure of the two slots in
the second phase (Phase II) is

⇢

MAT: x[2] = vk⌘k,
↵-MAT: x[2] = xc(lk) + up1 + up2

(4.15)

where k = 1, 2, vk is a randomly chosen vector; the covariances of the private
signals up1 and up2 are respectively Qup1 = P↵���

ˆh?
2
and Qup2 = P↵���

ˆh?
1
in

such a way that they are drown in the AWGN at the unintended receivers
without creating noticeable interferences (at high SNR). At Receiver k, the
common messages l

1

and l
2

are first decoded from the two slots in Phase II,
by treating the private signal up1 or up2 as noise. The common messages are
then used to 1) reconstruct ⌘

1

and ⌘
2

that will be used with the received signal
in Phase I to decode wk and recover 2� ↵ DoF, and 2) to reconstruct xc(lk)
and remove it from the received signals in Phase II so as to decode the private
messages and recover 2↵ DoF (in two slots). In the end, 2� ↵+ 2↵ = 2 + ↵
DoF per user are achievable in three slots, yielding average DoF of 2+↵

3

per
user. The interested readers may refer to [54] for more details of ↵-MAT
alignment.

4.4.2 An Alternative: Block-Markov Implementation

In fact, both MAT and ↵-MAT can be implemented in a block-Markov
fashion, the concept of which is shown in Fig. 4.3 for ↵ = 0. The common
message xc(lb�1

) comes from the previous block b�1, and uk(wkb) is the new
private message dedicated to Receiver k (k = 1, 2). Essentially, we “squeeze”
the Phase II of block b� 1 and the Phase I of block b into one single block,
with proper power and rate scaling.
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𝒙௖(𝑙௕ିଶ) 

𝒖ଵ 𝑤ଵ௕ିଵ + 𝒖ଶ(𝑤ଶ௕ିଵ) 

𝒙௖(𝑙௕ିଵ) 

𝒖ଵ 𝑤ଵ௕ + 𝒖ଶ(𝑤ଶ௕) 

𝒙௖(𝑙௕) 

𝒖ଵ 𝑤ଵ௕ାଵ + 𝒖ଶ(𝑤ଶ௕ାଵ) 
⋯ ⋯ 

Figure 4.3: Block-Markov Encoding.

The transmission consists of B blocks of length n. For simplicity of
demonstration, we set n = 1. In block b, the transmitter sends a mixture of
two new private messages w

1b and w
2b together with one common message

lb�1

, for b = 1, . . . , B. As it will become clear, the message lb�1

is the
compression index of the mutual interferences experienced by the receivers
in the previous block b � 1. By encoding w

1b, w2b, and lb�1

into u
1

(w
1b),

u
2

(w
2b), and xc(lb�1

), respectively, with independent channel codebooks,
the transmitted signal is written as

x[b] = xc(lb�1

) + u
1

(w
1b) + u

2

(w
2b), b = 1, . . . , B (4.16)

where we set l
0

= 1 to initiate the transmission and w
1B = w

2B = 1 to end
it. As before, the common message xc(lb�1

) is with power P , whereas the
precoding in u

1

and u
2

is with a reduced power, parameterized by A, A0,
with 0  A,A0  1, such that

Q
1

= PA���
ˆh2

+ PA0
���

ˆh?
2
, Q

2

= PA���
ˆh1

+ PA0
���

ˆh?
1

(4.17)

where A , (A0 � ↵)+. The mutual interferences are defined similarly and
their powers are now reduced

y
1

[b] = hH
1

xc(lb�1

)
| {z }

P

+hH
1

u
1

(w
1b)

| {z }

PA0

+hH
1

u
2

(w
2b)

| {z }

⌘1b⇠PA

(4.18)

y
2

[b] = hH
2

xc(lb�1

)
| {z }

P

+hH
2

u
2

(w
2b)

| {z }

PA0

+hH
2

u
1

(w
1b)

| {z }

⌘2b⇠PA

(4.19)

where we omit the block indices for the channel coe�cients as well as the
AWGN for brevity. At the end of block b, (⌘

1b, ⌘2b) are compressed with
a codebook of size P 2A into an index lb 2

�

1, . . . , P 2A
 

. The distortion
between (⌘

1b, ⌘2b) and (⌘̂
1

(lb), ⌘̂2

(lb)) is at the noise level.
At the end of B blocks, Receiver k would like to retrieve wk1

, . . . , wk,B�1

.
Let us focus on Receiver 1, without loss of generality. In this particular case,
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lb�1

can be decoded at the end of block b, by treating the private signals
as noise, i.e., with signal-to-interference-and-noise-ratio (SINR) level P 1�A0

,
for b = 2, . . . , B. The correct decoding of lb�1

is guaranteed if the SINR can
support the DoF of 2A for the common message, i.e.,

2A  1�A0. (4.20)

Given that this condition is satisfied, l
0

, l
1

, . . . , lB�1

are available to both
receivers. Therefore, ⌘

1b, ⌘2b, b = 1, . . . , B � 1, are known, up to the noise
level. To decode w

1b, Receiver 1 uses ⌘
1b, ⌘2b, and lb�1

to form the following
2⇥ 2 MIMO system



y
1

[b]� hH
1

xc(lb�1

)� ⌘
1b

⌘
2b

�

=



hH
1

hH
2

�

u
1

(w
1b) (4.21)

where the equivalent channel matrix has rank 2 almost surely. This decoding
strategy for the private message boils down to the backward decoding, where
the mutual interferences (⌘

1b, ⌘2b) decoded in the future block are utilized
in current block as side information. From the covariance matrix Q

1

of u
1

from (4.17), we deduce that the correct decoding of w
1b is guaranteed if the

DoF d
1b of w1b satisfy

d
1b  A+A0. (4.22)

Combining (4.20) and (4.22), it readily follows that the optimal A0 should
equalize (4.20), i.e., A0⇤ = 1+2↵

3

. Thus, we achieve d
1b =

2+↵
3

. Due to the
symmetry, d

2b has the same value. Finally, we have

dk =
1

B

B�1

X

b=1

dkb =
B � 1

B

2 + ↵

3
, k = 1, 2 (4.23)

which goes to 2+↵
3

when B !1.

By now, we have shown that both MAT and ↵-MAT schemes can be
interpreted under a common framework of block-Markov encoding with power
allocation parameters (A,A0) and that they only di↵er from the choice of
these parameters. As we will show in the following subsections, the strength
(or benefit) of the block-Markov encoding framework becomes evident in
the asymmetric system setting, where the original ↵-MAT alignment fails to
achieve the optimal DoF in general.
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Table 4.1: Parameter Setting for the (2, 1, 1) BC Case (↵1 � ↵2)

Condition A0
1

A0
2

Corner Point (d
1

, d
2

)

2↵
1

� ↵
2

 1
A0

1

= 1+↵1+↵2
3

A0
2

= 1+↵1+↵2
3

�

2+2↵1�↵2
3

, 2�↵1+2↵2
3

�

A0
1

= 1+↵2
2

A0
2

= ↵
1

(1,↵
1

)
2↵

1

� ↵
2

> 1 A0
1

= 1+↵2
2

A0
2

= 1+↵2
2

(1, 1+↵2
2

)
- A0

1

= ↵
2

A0
2

= 1+↵1
2

(↵
2

, 1)

4.4.3 Asymmetry in Current CSIT Qualities

Let us consider again the MISO BC case but assume now that the CSIT
qualities of two channels are di↵erent, i.e., ↵

1

6= ↵
2

, where ↵k (k = 1, 2) is
for Receiver k. The signal model is in the exact same form as in (4.16) with
a more general precoding, parameterized by Ak, A0

k, with 0  Ak, A0
k  1,

such that

Q
1

= PA1���
ˆh2

+ PA0
1���

ˆh?
2
, Q

2

= PA2���
ˆh1

+ PA0
2���

ˆh?
1

(4.24)

where Ak , (A0
k � ↵j)+, j 6= k 2 {1, 2}. Following the same footsteps as

in the symmetric case, it is readily shown that ⌘
1b ⇠ PA2 and ⌘

2b ⇠ PA1

and that (⌘
1b, ⌘2b) can be compressed up to the noise level with a source

codebook of size PA1+A2 . The decoding at both receivers is the same as
before. To decode the common message lb�1

by treating the private signals
as noise, since the SINR is P 1�A0

1 at Receiver 1 and P 1�A0
2 at Receiver 2,

the DoF of the common message should satisfy

A
1

+A
2

 min{1�A0
1

, 1�A0
2

}. (4.25)

Using the common messages lb and lb�1

as side information, w
1b and w

2b can
be decoded at the respective receivers if

d
1b  A

1

+A0
1

and d
2b  A

2

+A0
2

. (4.26)

By carefully selecting the parameters A0
1

and A0
2

, all corner points of the
DoF outer bound can be achieved, as shown in Table 4.1 on the top of this
page where the condition is to make sure the corner points exist. Note that
the corner point (↵

2

, 1) always exists as long as ↵
1

� ↵
2

.

4.4.4 Asymmetry in Antenna Configurations

We use the (4, 3, 2) MIMO BC case to show that the block-Markov encoding
can achieve the optimal performance in asymmetric antenna settings. Recall
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that, in the previous subsections, the backward decoding is performed to
decode the private messages, and that the common messages can be decoded
block by block. In this case, however, we also need backward decoding to
decode the common messages as well.

The same transmission signal model (4.16) is used here, with the following
precoding, parameterized by Ak and A0

k, k = 1, 2, 0  Ak  A0
k  1:

Q
1

= PA1���
ˆH2

+ PA0
1���

ˆH?
2
, Q

2

= PA2���
ˆH1

+ PA0
2���

ˆH?
1

(4.27)

where Ak, k 6= j 2 {1, 2}, is defined as

Ak ,
(

(A0
k � ↵j)+, dk  4�Nj↵j ,

dk�(4�Nj)

Nj
, dk > 4�Nj↵j

(4.28)

with dk 2 R
+

being the achievable DoF associated with Receiver k. It is
readily verified that A0

k�↵j  Ak  A0
k is always true, such that the created

interference at intended Receiver j is of power level Ak, and the desired
signal at Receiver k is of level A0

k.
We recall that the common message xc(lb�1

) is transmitted with power
P and that the ranks of ���

ˆH2
, ���

ˆH?
2
, ���

ˆH1
, and ���

ˆH?
1
are respectively 2, 2, 3,

and 1, almost surely. The received signals are now vectors given by

y
1

[b] = H
1

xc(lb�1

)
| {z }

P I3

+H
1

u
1

(w
1b) +H

1

u
2

(w
2b)

| {z }

⌘1b⇠PA2I3

, (4.29)

y
2

[b] = H
2

xc(lb�1

)
| {z }

P I2

+H
2

u
2

(w
2b) +H

2

u
1

(w
1b)

| {z }

⌘2b⇠PA1I2

. (4.30)

Following the same footsteps as in the single receive antenna case, it is readily
shown that (⌘

1b,⌘2b) can be compressed up to the noise level with a source
codebook of size P 2A1+3A2 . For convenience, let us define

d⌘ , 2A
1

+ 3A
2

. (4.31)

Unlike the MISO case where the common messages can be decoded
independently in each block without loss of optimality, backward decoding is
required to jointly decode the common and private messages in the general
MIMO case, in order to achieve the optimal DoF. As we will see later on,
the common rate can be improved with backward decoding in general. The
decoding starts at block B. Since w

1B and w
2B are both known, the private

signals can be removed from the received signals y
1

[B] and y
2

[B]. The
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common message lB�1

can be decoded at both receivers if d⌘  2. At block
b, for b = B � 1, . . . , 2, assuming lb is known perfectly from the decoding
of block b+ 1, ⌘

1b and ⌘
2b can be reconstructed up to the noise level. The

following MIMO system can be obtained


y
1

[b]� ⌘
1b

⌘
2b

�

=



H
1

0

�

xc(lb�1

) +



H
1

H
2

�

u
1

(w
1b). (4.32)

Note that this is a multiple-access channel (MAC) from which lb�1

and w
1b

can be correctly decoded if the rate pair lies within the following region

d⌘  3 (4.33)

d
1b  2A

1

+ 2A0
1

(4.34)

d⌘ + d
1b  3 + 2A

1

, (4.35)

whose general proof is provided in Appendix 4.8.1. Let us set d
1b to equalize

(4.34). Then, (4.33) and (4.35) imply d⌘  3 � 2A0
1

. Similar analysis on
Receiver 2 will lead to d⌘  2� A0

2

, by setting d
2b = A0

2

+ 3A
2

. Therefore,
from (4.31), we obtain the following constraint

2A
1

+ 3A
2

 min
�

3� 2A0
1

, 2�A0
2

 

(4.36)

to achieve any (d
1b, d2b) such that

d
1b  2A

1

+ 2A0
1

and d
2b  A0

2

+ 3A
2

. (4.37)

By letting B ! 1, d
1

= 2A
1

+ 2A0
1

and d
2

= A0
2

+ 3A
2

can be achieved
for any A0

1

, A0
2

 1 given the definition of (A
1

, A
2

) in (4.28), as long as
(4.36) is satisfied. We can show that, by properly choosing (A0

1

, A0
2

), all the
corner points given by the outer bound can be achieved. For example, by
setting ↵

1

= ↵
2

= ↵, the values (A0
1

, A0
2

) that achieve the corner points are
illustrated in Table 4.2 on the top of the next page. Note that (12

5

, 4

5

+ ↵)
exists only when ↵  4

5

, whereas (3↵, 4 � 3↵) and (4 � 2↵, 2↵) exist only
when ↵ > 4

5

.

4.5 Achievability: the General Formulation

As aforementioned, the key ingredients of the achievability scheme consist of:

• block-Markov encoding with a constant block length: the fresh messages
in the current block and the interferences created in the past blocks
are encoded together with the proper rate splitting and power scaling;
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Table 4.2: Parameter Setting for the (4, 3, 2) BC Case with ↵1 = ↵2 = ↵.

Corner Point (d
1

, d
2

) Cond. (A0
1

, A0
2

) (A
1

, A
2

) d⌘

(3,↵)
↵  1

2

(3+2↵
4

,↵) (3�2↵
4

, 0) 3�2↵
2

↵ > 1

2

(1,↵) (1

2

, 0) 1

(2↵, 2)
↵  2

3

(↵, 2+3↵
4

) (0, 2�↵
4

) 6�3↵
4

↵ > 2

3

(↵, 1) (0, 1

3

) 1
(12

5

, 4

5

+ ↵) ↵  4

5

(3

5

+ 1

2

↵, 1

5

+ ↵) (3

5

� 1

2

↵, 1

5

) 9

5

� ↵
(3↵, 4� 3↵) ↵ > 4

5

(1, 1) (3↵�2

2

, 1� ↵) 1
(4� 2↵, 2↵) ↵ > 4

5

(1, 1) (1� ↵, 2↵�1

3

) 1

• spatial precoding with imperfect current CSIT: with proper power
allocation over the range and null spaces of the inaccurate current
channel, the interference power at unintended receiver can be reduced
as compared to that without any CSIT;

• interference quantization: instead of forwarding the overheard interfer-
ence directly in an analog way as done in pure delayed CSIT scenario,
the reduced-power interferences are compressed first with a reduced
number of bits, and forwarded in a digital fashion with lower rate;

• backward decoding: the messages are decoded from the last block to
the first one, where in each block the messages are decoded with the
aid of side information provided by the blocks in the future.

In the following, the general achievability scheme will be described in
detail for BC and IC respectively.

4.5.1 Broadcast Channels

First of all, we notice that the region (4.10) given in Theorem 4.1 does not
depend on M (resp. Nk) when M > N

1

+N
2

(resp. Nk > M). Therefore, it
is su�cient to prove the achievability for the case M  N

1

+N
2

and Nk M .
And the achievability for the other cases can be inferred by simply switching
o↵ the additional transmit/receive antennas. Thus, it yields

M = min {M,N
1

+N
2

} ,
Nk = min {M,Nk} , k = 1, 2.

(4.38)
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Block-Markov encoding

The block-Markov encoding has the same structure as before, namely,

x[b] = xc(lb�1

) + u
1

(w
1b) + u

2

(w
2b), b = 1, . . . , B (4.39)

where we recall that we set l
0

= 1 to initiate the transmission and w
1B =

w
2B = 1 to end it.

Spatial precoding

Both u
1

,u
2

2 CM⇥1 are precoded signals of M streams, such that

Q
1

= PA1���
ˆH2

+ PA0
1���

ˆH?
2
, Q

2

= PA2���
ˆH1

+ PA0
2���

ˆH?
1

(4.40)

where the rank of ���
ˆHk

is Nk whereas the rank of ���
ˆH?
k
is M �Nk, k = 1, 2.

In other words, for Receiver k, Nj streams are sent in the subspace of the
unintended Receiver j with power level Ak and the other M �Nj streams
are sent in the null space of Receiver j with power level A0

k, where (Ak, A0
k)

satisfies

0  Ak  A0
k  1 and Ak � A0

k � ↵j (4.41)

for j 6= k 2 {1, 2}. Note that the above condition guarantees that the
interference at Receiver j has power level Ak and the desired signal at
Receiver k is of power level A0

k.

Interference quantization

Recall that the common message xc(lb�1

) is sent with power P . The received
signals in block b are given by

y
1

[b] = H
1

xc(lb�1

)
| {z }

P IN1

+H
1

u
1

(w
1b) +H

1

u
2

(w
2b)

| {z }

⌘1b⇠PA2IN1

, (4.42)

y
2

[b] = H
2

xc(lb�1

)
| {z }

P IN2

+H
2

u
2

(w
2b) +H

2

u
1

(w
1b)

| {z }

⌘2b⇠PA1IN2

. (4.43)

It is readily shown that (⌘
1b,⌘2b) can be compressed up to the noise level

with a source codebook of size PN2A1+N1A2 into an index lb. For convenience,
let us define

d⌘1 , N
1

A
2

, d⌘2 , N
2

A
1

, and d⌘ , d⌘1 + d⌘2 . (4.44)
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Backward decoding

The decoding starts at block B. Since w
1B and w

2B are both known, the
private signals can be removed from the received signals y

1

[B] and y
2

[B]. The
common message lB�1

can be decoded at both receivers if d⌘  min {N
1

, N
2

}.
At block b, assuming lb is known perfectly from the decoding of block b+ 1,
⌘

1b and ⌘
2b can be reconstructed up to the noise level, for b = B � 1, . . . , 2.

The following MIMO system can be obtained at Receiver k, k = 1, 2


yk[b]� ⌘kb

⌘jb

�

=



Hk

0

�

xc(lb�1

) +



Hk

Hj

�

uk(wkb) (4.45)

for j 6= k 2 {1, 2}. Since the common message lb�1

and the private message
wkb are both desired by Receiver k, this system corresponds to a multiple-
access channel (MAC). As formally proved in Appendix 4.8.1, Receiver k
can decode correctly both messages if the following conditions are satisfied.

d⌘  Nk (4.46)

dkb  NjAk + (M �Nj)A
0
k (4.47)

d⌘ + dkb  Nk +NjAk. (4.48)

Let us choose dkb to be equal to the right hand side of (4.47) for k = 1, 2
and b = 1, .., B � 1. Then, the equality in (4.47) together with (4.44), (4.46),
(4.48) implies, when letting B !1, the following lemma.

Lemma 4.1 (decodability condition for BC). Let us define

A
BC

,
�

(A
1

, A0
1

, A
2

, A0
2

) | Ak, A
0
k 2 [0, 1],

A0
k � ↵j  Ak  A0

k, 8 k 6= j 2 {1, 2}
 

(4.49)

D
BC

, {(d
1

, d
2

) | dk 2 [0, Nk], 8 k 2 {1, 2}} (4.50)

and

fA-d : A
BC

! D
BC

(4.51)

(Ak, A
0
k) 7! dk , NjAk + (M �Nj)A

0
k, 8k 6= j 2 {1, 2}. (4.52)

Then (d
1

, d
2

) = fA-d(A), for some A 2 A
BC

, is achievable with the proposed
scheme, if

d⌘1 + d
1

 N
1

, (4.53)

d⌘2 + d
2

 N
2

. (4.54)

where we recall d⌘1 , N
1

A
2

and d⌘2 , N
2

A
1

.
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Remark 4.4. In the above lemma, d⌘k can be interpreted as the degrees of
freedom occupied by the interference at Receiver k. Therefore, (4.53) and
(4.54) are clearly outer bounds for any transmission strategies, i.e., the sum
of the dimension of the useful signal and the dimension of the interference
signal at the receiver side cannot exceed the total dimension of the signal
space. These bounds are in general not tight except for special cases such as
the “strong interference” regime where interference can be decoded completely
and removed or the “weak interference” regime where the interference can be
treated as noise while the useful signal power dominates the received power.
Remarkably, the proposed scheme achieves these outer bounds. This is due
to two of the main ingredients of our scheme, namely, the block-Markov
encoding and interference quantization. The block-Markov encoding places
the digitized interference in the “upper level” of the signal space (with full
power) and thus “pushes” the channel into the “strong interference” regime in
which the digitized interference can be decoded thanks to the structure brought
by the interference quantization.

Definition 4.3 (achievable region for BC). Let us define

IBC

A ,
⇢

(A
1

, A0
1

, A
2

, A0
2

) 2 A
BC

�

�

�

�

(d
1

, d
2

) = fA-d(A1

, A0
1

, A
2

, A0
2

),
dk
Nk
 1�Aj , k 6= j 2 {1, 2}

�

(4.55)

and the achievable DoF region of the proposed scheme

IBC

d , fA-d(IBC

A ) ,

8

<

:

(d
1

, d
2

)

�

�

�

�

�

�

(d
1

, d
2

) = fA-d(A1

, A0
1

, A
2

, A0
2

),
(A

1

, A0
1

, A
2

, A0
2

) 2 A
BC

,
dk
Nk
 1�Aj , k 6= j 2 {1, 2}

9

=

;

. (4.56)

Achievability analysis

In the following, we would like to show that any pair (d
1

, d
2

) in the outer
bound region defined by (4.10), hereafter referred to as OBC

d , can be achieved
by the proposed strategy. Therefore, it is su�cient to show that OBC

d ✓ IBC

d .
The main idea is as follows. If there exists a function

fd-A : OBC

d ! A
BC

(4.57)
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such that

(d
1

, d
2

) = fA-d(fd-A(d1

, d
2

)), and (4.58)

fd-A(d1

, d
2

) 2 IBC

A , (4.59)

then for every (d
1

, d
2

) 2 OBC

d we can use the power allocation (A
1

, A0
1

, A
2

, A0
2

) =
fd-A(d1

, d
2

) on the proposed scheme to achieve it, i.e.,

OBC

d = fA-d(fd-A(OBC

d )) ✓ fA-d(IBC

A ) = IBC

d (4.60)

from which the achievability is proved. Now, we define formally the power
allocation function.

Definition 4.4 (power allocation for BC). Let us define fd-A : OBC

d ! A
BC

:

(d
1

, d
2

) 7! (A
1

, A0
1

) , f
1

(d
1

), (A
2

, A0
2

) , f
2

(d
2

) (4.61)

where fk, j 6= k 2 {1, 2}, is specified as below.

• When M = Nj: A0
k = Ak = dk

M ;

• When M > Nj and dk < M �Nj↵j: Ak = (A0
k � ↵j)+, and thus

A0
k =

(

dk
M�Nj

, if dk < (M �Nj)↵j ;
dk+Nj↵j

M , otherwise;
(4.62)

• When M > Nj and dk � M � Nj↵j: A0
k = 1, and thus Ak =

dk�(M�Nj)

Nj
.

It is readily shown that, for any (d
1

, d
2

) 2 OBC

d , the resulting power
allocation always lies in A

BC

as defined in (4.49) and that (4.58) is always
satisfied. It remains to show that (4.59) holds as well, i.e., the decodability
condition in (4.55) is satisfied. To that end, for any (d

1

, d
2

) 2 OBC

d , we first
define (A

1

, A0
1

, A
2

, A0
2

) , fd-A(d1

, d
2

) which implies dj = NkAj+(M�Nk)A0
j ,

j 6= k 2 {1, 2}. Applying this equality on the constraints in the outer bound
OBC

d in (4.10), we have

dk
Nk


M � (M �Nk)A0
j

Nk
�Aj , (4.63)

dk
Nk
 1�



(M �Nk)(A0
j � ↵k) +NkAj

M

�

+

(4.64)

for k 6= j 2 {1, 2}, where the first one is from the sum rate constraint (4.10c)
whereas the second one is from the rest of the constraints in (4.10). The final
step is to show that either of (4.63) and (4.64) implies the last constraint in
(4.55):
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• When M = Nk, (4.64) is identical to the last constraint in (4.55);

• When M > Nk and dj �M �Nk↵k, we have A0
j = 1 according to the

mapping fd-A defined in Definition 4.4. Hence, (4.63) is identical to
the last constraint in (4.55);

• When M > Nk and dj < M � Nk↵k, we have Aj = (A0
j � ↵k)+

according to Definition 4.4. Hence,



(M �Nk)(A0
j � ↵k) +NkAj

M

�

+

� Aj (4.65)

with which (4.64) implies the last constraint in (4.55).

By now, we have proved the achievability through the existence of a proper
power allocation function such that (4.58) and (4.59) are satisfied for every
pair (d

1

, d
2

) in the outer bound.

4.5.2 Interference Channels

The proposed scheme for MIMO IC is similar to that for BC, with the di↵er-
ences that (a) the interferences can only be reconstructed at the transmitter
from which the symbols are sent, and (b) antenna configuration does matter
at both transmitters and receivers. Further, as with the broadcast channel,
we notice that the region (4.12) given in Theorem 4.2 does not depend on
Mk (resp. Nk) when Mk > N

1

+ N
2

(resp. Nk > M
1

+ M
2

), k = 1, 2.
Therefore, it is su�cient to prove the achievability for the case Mk  N

1

+N
2

and Nk M
1

+M
2

, k = 1, 2, since the achievability for the other cases can
be inferred by simply switching o↵ the additional transmit/receive antennas.
Thus, it yields

Mk = min {Mk, N1

+N
2

} ,
Nk = min {Nk,M1

+M
2

} , k = 1, 2.
(4.66)

We also define for notational convenience

N 0
1

, min {N
1

,M
2

} , N 0
2

, min {N
2

,M
1

} . (4.67)

Block-Markov encoding

The block-Markov encoding is done independently at both transmitters

x
1

[b] = x
1c(l

1,b�1

) + u
1

(w
1b), (4.68)
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x
2

[b] = x
2c(l

2,b�1

) + u
2

(w
2b), b = 1, . . . , B (4.69)

where we set l
1,0 = l

2,0 = 1 to initiate the transmission and w
1B = w

2B = 1
to end it.

Spatial precoding

The signal uk 2 CMk⇥1, k = 1, 2, is precoded signal of Mk streams, such that

Q
1

= PA1���
ˆH21

+ PA0
1���

ˆH?1
21

+ PA00
1���

ˆH?2
21

, (4.70)

Q
2

= PA2���
ˆH12

+ PA0
2���

ˆH?1
12

+ PA00
2���

ˆH?2
12

(4.71)

where we use Ĥ?1

jk (resp. Ĥ?2

jk ) to denote any matrix spanning the (Mk �
N 0

j � ⇠k)-dimensional (resp. ⇠k-dimensional) subspace of the null space of

Ĥjk where ⇠k will be specified later on. Therefore, the rank of ���
ˆHjk

is N 0
j

whereas the rank of ���
ˆH?1
jk

and ���
ˆH?2
jk

are respectively Mk �N 0
j � ⇠k and ⇠k,

k = 1, 2. The power levels (Ak, A0
k, A

00
k) satisfy

Ak, A
0
k, A

00
k 2 [0, 1],

Ak  A0
k, A00

k  A0
k, and Ak � A0

k � ↵j
(4.72)

for j 6= k 2 {1, 2}. Note that the above condition guarantees that the
interference at Receiver j has power level Ak and the desired signal at
Receiver k at power level A0

k.

Interference quantization

Recall that the common messages x
1c(l

1,b�1

) and x
2c(l

2,b�1

) are sent with
power P . The received signals in block b are given by

y
1

[b] = H
11

x
1c(l

1,b�1

) +H
12

x
2c(l

2,b�1

)
| {z }

P IN1

+H
11

u
1

(w
1b) +H

12

u
2

(w
2b)

| {z }

⌘1b⇠PA2IN0
1

, (4.73)

y
2

[b] = H
22

x
2c(l

2,b�1

) +H
21

x
1c(l

1,b�1

)
| {z }

P IN2

+H
22

u
2

(w
2b) +H

21

u
1

(w
1b)

| {z }

⌘2b⇠PA1IN0
2

. (4.74)
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It is readily shown that ⌘
1b and ⌘

2b can be compressed separately up to the
noise level with two independent source codebooks of size PN 0

1A2 and PN 0
2A1 ,

into indices l
2,b and l

1,b, respectively. For convenience, let us define

d⌘1 , N 0
1

A
2

, d⌘2 , N 0
2

A
1

, and d⌘ , d⌘1 + d⌘2 . (4.75)

Backward decoding

The decoding starts at block B. Since w
1B and w

2B are both known, the
private signals can be removed from the received signals y

1

[B] and y
2

[B].
The common messages l

1,B�1

and l
2,B�1

can be decoded at both receivers if

d⌘k  min {Mj , N1

, N
2

} , (4.76)

d⌘1 + d⌘2  min {N
1

, N
2

} , (4.77)

i.e., the common rate pair should lie within the intersection of MAC regions
at both receivers for the common messages. At block b, assuming both l

1,b

and l
2,b are known perfectly from the decoding of block b+1, ⌘

1b and ⌘
2b can

be reconstructed up to the noise level, for b = B � 1, . . . , 2. The following
MIMO system can be obtained at Receiver k



yk[b]� ⌘kb

⌘jb

�

=



Hkk

0

�

xkc(lk,b�1

) +



Hkj

0

�

xjc(lj,b�1

)

+



Hkk

Hjk

�

uk(wkb) (4.78)

for j 6= k 2 {1, 2}. Note that this system corresponds to a multiple-access
channel from which the three independent messages l

1,b�1

, l
2,b�1

, and wkb

are to be decoded. It will be shown in the Appendix 4.8.1 that the three
messages can be correctly decoded if the DoF quadruple (d⌘1 , d⌘2 , d1b, d2b)
lies within the following region

dkb  N 0
jAk + (Mk �N 0

j � ⇠k)A
0
k + ⇠kA

00
k (4.79)

d⌘k  min {Mj , N1

, N
2

} (4.80)

d⌘1 + d⌘2  min {N
1

, N
2

} (4.81)

d⌘k + dkb  N 0
k +min

�

Mk �N 0
j , Nk �N 0

k

 

A0
k

+N 0
jAk (4.82)

d⌘j + dkb  min {Mk, Nk}+N 0
jAk (4.83)

d⌘1 + d⌘2 + dkb  Nk +N 0
jAk. (4.84)
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Now, let us fix

dkb , N 0
jAk + (Mk �N 0

j � ⇠k)A
0
k + ⇠kA

00
k (4.85)

d⌘j , N 0
jAk (4.86)

from which we can reduce the region defined by (4.79)-(4.84). First, we
remove (4.79) that is implied by (4.85). Second, (4.80) is not active as
it is implied by (4.86) and (4.81). Third, (4.81) is implied by (4.84) and
(4.85). Finally, from (4.86), (4.83) is equivalent to dkb  min{Mk, Nk} that
is implied by (4.85). Therefore, by letting B ! 1, we have the following
counterpart of Lemma 4.1 for interference channels.

Lemma 4.2 (decodability condition for IC). Let us define

A
IC

,

8

<

:

(A
1

, A0
1

, A00
1

, A
2

, A0
2

, A00
2

)

�

�

�

�

�

�

Ak, A0
k, A

00
k 2 [0, 1]

A0
k � ↵j  Ak  A0

k, A00
k  A0

k,
⇠kA00

k  N 0
k(1�Aj), k 6= j 2 {1, 2}

9

=

;

(4.87)

D
IC

,
�

(d
1

, d
2

) | dk 2 [0,min{Mk, Nk}], 8 k 2 {1, 2}
 

(4.88)

and

fA-d : A
IC

! D
IC

(4.89)

(Ak, A
0
k, A

00
k) 7! dk , N 0

jAk + (Mk �N 0
j � ⇠k)A

0
k + ⇠kA

00
k,

8k 6= j 2 {1, 2} (4.90)

where

⇠k ,
⇢

(Mk �N 0
j)

+ � (Nk �N 0
k)

+, if Ck holds
0, otherwise.

(4.91)

Then (d
1

, d
2

) = fA-d(A), for some A 2 A
IC

, is achievable with the proposed
scheme, if

d⌘1 + d
1

 N
1

, (4.92)

d⌘2 + d
2

 N
2

. (4.93)

where we recall d⌘1 , N 0
1

A
2

and d⌘2 , N 0
2

A
1

.
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Proof. It has been shown that with (4.86) and (4.90), only (4.82) and (4.84)
are active. With ⇠k defined in (4.91), we can verify that Mk � N 0

j � ⇠k =

min
n

Mk �N 0
j , Nk �N 0

k

o

. Thus, from (4.86), (4.90), (4.91), and the last

constraint in (4.87), it follows that (4.82) always holds. Finally, the only
constraint that remains is (4.84) that can be equivalently written as (4.92)
and (4.93).

Definition 4.5 (achievable region for IC). Let us define

IIC

A ,
⇢

(A
1

, A0
1

, A00
1

, A
2

, A0
2

, A00
2

) 2 A
IC

�

�

�

�

(d
1

, d
2

) = fA-d(A1

, A0
1

, A00
1

, A
2

, A0
2

, A00
2

),
dk
N 0

k
 Nk

N 0
k
�Aj , k 6= j 2 {1, 2}

)

(4.94)

and the achievable DoF region of the proposed scheme

IIC

d , fA-d(IIC

A ) ,

8

<

:

(d
1

, d
2

)

�

�

�

�

�

�

(d
1

, d
2

) = fA-d(A1

, A0
1

, A00
1

, A
2

, A0
2

, A00
2

),
(A

1

, A0
1

, A00
1

, A
2

, A0
2

, A00
2

) 2 A
IC

,
dk
N 0

k
 Nk

N 0
k
�Aj , k 6= j 2 {1, 2}

9

>

=

>

;

. (4.95)

Achievability analysis

The analysis is similar to the BC case, i.e., it is su�cient to find a function
fd-A : OIC

d ! A
IC

where OIC

d denotes the outer bound region defined by
(4.12), such that

(d
1

, d
2

) = fA-d(fd-A(d1

, d
2

)), and (4.96)

fd-A(d1

, d
2

) 2 IIC

A . (4.97)

Now, we define formally the power allocation function.

Definition 4.6 (power allocation for IC). Let us define �k, k 6= j 2 {1, 2},
as

�k , min

⇢

1,
Mj � dj

⇠k

�

. (4.98)
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Then, we define fd-A : OIC

d ! A
IC

:

(d
1

, d
2

) 7! (A
1

, A0
1

, A00
1

) , f
1

(d
1

, d
2

),
(A

2

, A0
2

, A00
2

) , f
2

(d
1

, d
2

)
(4.99)

where fk, k 6= j 2 {1, 2}, such that (4.90) is satisfied, and that

• when Mk = N 0
j: A00 = A0

k = Ak = dk
Mk

;

• when Mk > N 0
j, dk < (Mk �N 0

j)�k +N 0
j(�k � ↵j)+:

Ak = (A0
k � ↵j)

+, A0
k = A00

k < �k; (4.100)

• when Mk > N 0
j, dk � (Mk �N 0

j)�k +N 0
j(�k � ↵j)+, and �k < 1:

Ak = (A0
k � ↵j)

+, A0
k > A00

k = �k; (4.101)

• when Mk > N 0
j, dk � (Mk �N 0

j)�k +N 0
j(�k � ↵j)+, and �k = 1:

A0
k = A00

k = 1. (4.102)

First, one can verify, with some basic manipulations that, fd-A(OIC

d ) ✓
A

IC

. Second, (4.96) is satisfied by construction. Finally, it remains to show
that (4.97) holds as well, i.e., the decodability condition in (4.94) is satisfied.
Since the region OIC

d depends on whether the condition Ck holds, we prove
the achievability accordingly.

Neither C
1

nor C
2

holds (⇠
1

= ⇠
2

= 0)

For any (d
1

, d
2

) 2 OIC

d , we can define (A
1

, A0
1

, A00
1

, A
2

, A0
2

, A00
2

) , fd-A(d1

, d
2

)
which implies, in this case,

dj = N 0
kAj + (Mj �N 0

k)A
0
j , j 6= k 2 {1, 2}. (4.103)

Applying this equality on the constraints in the outer bound OIC

d in (4.12),
we have

dk
N 0

k

 min {max {M
1

, N
2

} ,max {M
2

, N
1

}}
N 0

k

�
(Mj �N 0

k)A
0
j

N 0
k

�Aj , (4.104)
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dk
N 0

k

 min{Mk, Nk}
N 0

k

�


min{Mk, Nk}�Nk

N 0
k

+
(Mj �N 0

k)(A
0
j � ↵k) +N 0

kAj

Mj

�

+

, (4.105)

for k 6= j 2 {1, 2}, where the first one is from the sum rate constraint (4.12c)
whereas the second one is from the rest of the constraints in (4.12). The final
step is to show that either of (4.104) and (4.105) implies the last constraint
in (4.94).

• When Mj = N 0
k, (4.105) implies the last constraint in (4.94) because

min{Mk,Nk}�Nk
Nk

 0;

• When Mj > N 0
k and dj � Mj � N 0

k↵k, we have A0
j = 1 according to

the mapping fd-A defined in Definition 4.6, since �j = 1. Hence, the
right hand side (RHS) of (4.104) is not greater than Nk

N 0
k
� Aj , which

implies the last constraint in (4.94);

• When Mj > N 0
k and dj < Mj � N 0

k↵k, we have Aj = (A0
j � ↵k)+

according to Definition 4.6 with �j = 1. Since min{Mk,Nk}�Nk
Nk

 0, we
can show that



min{Mk, Nk}�Nk

Nk
+

(Mj �N 0
k)(A

0
j � ↵k) +N 0

kAj

Mj

�

+

� min{Mk, Nk}�Nk

Nk
+Aj (4.106)

with which (4.105) implies the last constraint in (4.94).

Ck holds (⇠k > 0, ⇠j = 0)

In this case, it is readily shown, from (4.90) and (4.91), that

dk = NjAk + (Nk �Mj)A
0
k + ⇠kA

00
k, (4.107)

dj = MjAj . (4.108)

Applying the mapping dj = MjAj on (4.12c) results in

dk
N 0

k

 min{Mk, Nk}
N 0

k

�Aj (4.109)
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that always implies dk
N 0

k
 Nk

N 0
k
�Aj . Due to the asymmetry, we also need to

prove that dj
Nj
 1�Ak. Therefore, the final step is to show that it can be

implied by at least one of the constraints in (4.12), together with (4.107) and
(4.108).

• When dk < (Mk � Nj)�k + Nj(�k � ↵j)+, we have A0
k = A00

k < �k
according to (4.100). Therefore, dk = NjAk + (Mk �Nj)A0

k, plugging
which into (4.12e), we obtain

dj
Nj
 min{Mj , Nj}

Nj
�


min{Mj , Nj}�Nj

Nj

+
(Mk �Nj)(A0

k � ↵j) +NjAk

Mk

�

+

(4.110)

 min{Mj , Nj}
Nj

�


min{Mj , Nj}�Nj

Nj
+Ak

�

(4.111)

where the [·]+ in (4.110) is from the single user bound (4.12b); the last

inequality is due to Ak = (A0
k � ↵j)+ and min{Mj ,Nj}�Nj

Nj
 0.

• When dk � (Mk � Nj)�k + Nj(�k � ↵j)+, we have A0
k � A00

k = �k
according to (4.101) and (4.102).

– If �k < 1, then A00
k = �k = Mj�dj

⇠k
and dk = (Nk �Mj)A0

k +Mj �
dj +NjAk. Plugging the latter into (4.12f), we obtain

dj
Nj
min{Mj , Nj}

Nj
�


min{Mj , Nj}�Nj

Nj

+
(Nk �Mj)(A0

k � ↵j) +NjAk

Nk +Nj �Mj

�

+

(4.112)

min{Mj , Nj}
Nj

�


min{Mj , Nj}�Nj

Nj
+Ak

�

(4.113)

where the [·]+ in (4.112) is from the single user bound (4.12b); the

last inequality is due to Ak = (A0
k � ↵j)+ and min{Mj ,Nj}�Nj

Nj
 0.

– If �k = 1, then A0
k = A00

k = 1 and dk = Mk�Nj +NjAk. Plugging
the latter into (4.12c), we obtain

dj
Nj
 min{Mk, Nk}�Mk +Nj �NjAk

Nj
(4.114)

 1�Ak. (4.115)
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Thus, the last constraint in (4.94) is shown in all cases. By now, we have
proved the achievability through the existence of a proper power allocation
function such that (4.96) and (4.97) are satisfied for every pair (d

1

, d
2

) in
the outer bound.

4.6 Converse

To obtain the outer bounds, the following ingredients are essential:

• Genie-aided bounding techniques by providing side information of one
receiver to the other one [43,75];

• Extremal inequality to bound the weighted di↵erence of conditional
di↵erential entropies [90,91];

• Ergodic capacity upper and lower bounds for MIMO channels with
channel uncertainty.

In the following, we first present the proof of outer bound (4.10d) for
MIMO BC and (4.12d) for MIMO IC, referred to in this section as L

4

. It
should be noticed that both bounds share the same structure. Then, we give
the proof of bound (4.12f) for the MIMO IC case, referred to in this section
as L

6

, when the condition C
1

holds.

4.6.1 Proof of Bound L
4

We first provide the outer bounds by employing the genie-aided techniques
for BC and IC, respectively, reaching a similar formulation of the rate bounds.
With the help of extremal inequalities, the weighted sum rates are further
bounded. Finally, the bounds in terms of (↵

1

,↵
2

) are obtained by deriving
novel ergodic capacity bounds for MIMO channels with channel uncertainty.

To obtain the outer bounds, we adopt a genie-aided upper bounding
technique reminisced in [43,75], by providing Receiver 2 the side information
of Receiver 1’s message W

1

as well as received signal Y n
1

. For notational
brevity, we define a virtual received signal as

ȳi(t) ,
⇢

Hi(t)x(t) + zi(t) for BC
Hi2(t)x2

(t) + zi(t) for IC
(4.116)

and we also define Xn , {x(t)}nt=1

, Xn
i , {xi(t)}nt=1

, Y k
i , {yi(t)}kt=1

, and

Ȳ k
i , {ȳi(t)}kt=1

. Denote also n✏n , 1 + nRP (n)

e where ✏n tends to zero as

n!1 by the assumption that limn!1 P (n)

e = 0.
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Broadcast Channel

The genie-aided model is a degraded BC Xn ! (Y n
1

,Y n
2

) ! Y n
1

, and
therefore we bound the achievable rates by applying Fano’s inequality as

n(R
1

� ✏n)

 I(W
1

;Y n
1

|Hn, Ĥn) (4.117)

=
n
X

t=1

I(W
1

;y
1

(t)|Hn, Ĥn,Y t�1

1

) (4.118)

=
n
X

t=1

⇣

h(y
1

(t)|Hn, Ĥn,Y t�1

1

) �h(y
1

(t)|Hn, Ĥn,Y t�1

1

,W
1

)
⌘

(4.119)


n
X

t=1

(h(y
1

(t)|H(t))� h(y
1

(t)|U(t),H(t))) (4.120)

 nN 0
1

logP �
n
X

t=1

h(ȳ
1

(t)|U(t),H(t)) + n ·O(1) (4.121)

n(R
2

� ✏n)

 I(W
2

;Y n
1

,Y n
2

,W
1

|Hn, Ĥn) (4.122)

= I(W
2

;Y n
1

,Y n
2

|W
1

,Hn, Ĥn) (4.123)

=
n
X

t=1

I(W
2

;y
1

(t),y
2

(t)|Hn, Ĥn,Y t�1

1

,Y t�1

2

,W
1

) (4.124)


n
X

t=1

I(x(t);y
1

(t),y
2

(t)|Hn, Ĥn,Y t�1

1

,Y t�1

2

,W
1

) (4.125)

=
n
X

t=1

⇣

h(y
1

(t),y
2

(t)|Hn, Ĥn,Y t�1

1

,Y t�1

2

,W
1

) (4.126)

� h(y
1

(t),y
2

(t)|x(t),Hn, Ĥn,Y t�1

1

,Y t�1

2

,W
1

)
⌘

(4.127)


n
X

t=1

h(y
1

(t),y
2

(t)|Hn, Ĥn,Y t�1

1

,Y t�1

2

,W
1

) (4.128)

=
n
X

t=1

h(ȳ
1

(t), ȳ
2

(t)|U(t),H(t)) (4.129)

where U(t) ,
n

Ȳ t�1

1

, Ȳ t�1

2

,Ht�1, Ĥt,W
1

o

for BC and N 0
1

, min{M,N
1

};
(4.120) is from (4.116) and because (a) conditioning reduces di↵erential

103



CHAPTER 4. MIMO NETWORKS WITH DELAYED CSIT:
THE TIME-CORRELATED CASE

entropy, and (b) {ȳ
1

(t), ȳ
2

(t)} are independent of Hn
t+1

and Ĥn
t+1

, given the
past states and channel outputs; (4.121) follows the fact that the rate of the
point-to-point M ⇥ N

1

MIMO channel (i.e., between the transmitter and
Receiver 1) is bounded by min{M,N

1

} logP + O(1); (4.123) is due to the
independence between W

1

and W
2

; (4.125) follows date processing inequality;
(4.128) is obtained by noticing (a) translation does not change di↵erential
entropy, (b) Gaussian noise terms are independent from instant to instant,
and are also independent of the channel matrices and the transmitted signals,
and (c) the di↵erential entropy of Gaussian noise with normalized variance
is non-negative and finite.

Interference Channel

Given the message and corresponding channel states, part of the received
signal is deterministic and therefore removable without mutual information
loss. Hence, similarly to the BC case, we formulate a degraded channel model,
i.e., Xn

2

!
�

Ȳ n
1

, Ȳ n
2

�

! Ȳ n
1

. By applying Fano’s inequality, the achievable
rate of Receiver 1 and Receiver 2 can be bounded as

n(R
1

� ✏n)

 I(W
1

;Y n
1

|Hn, Ĥn) (4.130)

= I(W
1

,W
2

;Y n
1

|Hn, Ĥn)� I(W
2

;Y n
1

|W
1

,Hn, Ĥn) (4.131)

 nÑ
1

logP � I(W
2

;Y n
1

|W
1

,Hn, Ĥn) + n ·O(1) (4.132)

= nÑ
1

logP � h(Y n
1

|W
1

,Hn, Ĥn)

+ h(Y n
1

|W
1

,W
2

,Hn, Ĥn) + n ·O(1) (4.133)

= nÑ
1

logP � h(Y n
1

|W
1

,Hn, Ĥn) + n ·O(1) (4.134)

= nÑ
1

logP � h(Ȳ n
1

|Hn, Ĥn) + n ·O(1) (4.135)

 nÑ
1

logP �
n
X

t=1

h(ȳ
1

(t)|Hn, Ĥn, Ȳ t�1

1

, Ȳ t�1

2

) + n ·O(1) (4.136)

= nÑ
1

logP �
n
X

t=1

h(ȳ
1

(t)|U(t),H(t)) + n ·O(1) (4.137)

n(R
2

� ✏n)

 I(W
2

;Y n
1

,Y n
2

,W
1

|Hn, Ĥn) (4.138)

= I(W
2

;Y n
1

,Y n
2

|W
1

,Hn, Ĥn) (4.139)

= I(W
2

; Ȳ n
1

, Ȳ n
2

|Hn, Ĥn) (4.140)
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=
n
X

t=1

I(W
2

; ȳ
1

(t), ȳ
2

(t)|Hn, Ĥn, Ȳ t�1

1

, Ȳ t�1

2

) (4.141)


n
X

t=1

I(x
2

(t); ȳ
1

(t), ȳ
2

(t)|Hn, Ĥn, Ȳ t�1

1

, Ȳ t�1

2

) (4.142)

=
n
X

t=1

⇣

h(ȳ
1

(t), ȳ
2

(t)|Hn, Ĥn, Ȳ t�1

1

, Ȳ t�1

2

) (4.143)

� h(ȳ
1

(t), ȳ
2

(t)|x
2

(t),Hn, Ĥn, Ȳ t�1

1

, Ȳ t�1

2

)
⌘

(4.144)


n
X

t=1

h(ȳ
1

(t), ȳ
2

(t)|Hn, Ĥn, Ȳ t�1

1

, Ȳ t�1

2

) (4.145)

=
n
X

t=1

h(ȳ
1

(t), ȳ
2

(t)|U(t),H(t)) (4.146)

where we define U(t) ,
n

Ȳ t�1

1

, Ȳ t�1

2

,Ht�1, Ĥt
o

for IC and Ñ
1

, min{M
1

+

M
2

, N
1

}; (4.132) follows the fact that the mutual information at hand is
upper bounded by the rate of the (M

1

+M
2

) ⇥ N
1

point-to-point MIMO
channel created by letting the two transmitters cooperate perfectly, given
by min{M

1

+ M
2

, N
1

} logP + O(1); (4.134) is due to the fact that (a)
transmitted signal Xn

i is a deterministic function of messages Wi, Hn, and
Ĥn�1 as specified in (4.7) for i = 1, 2, (b) translation does change di↵erential
entropy, and (c) the di↵erential entropy of Gaussian noise with normalized
variance is non-negative and finite; (4.135) and (4.140) are obtained because
translation preserves di↵erential entropy; (4.136) is because conditioning
reduces di↵erential entropy; (4.145) is because (a) translation does not
change di↵erential entropy, (b) Gaussian noise terms are independent from
instant to instant, and are also independent of the channel matrices and the
transmitted signals, and (c) the di↵erential entropy of Gaussian noise with
normalized variance is non-negative and finite; (4.146) is obtained due to
the independence {ȳ

1

(t), ȳ
2

(t)} of Hn
t+1

and Ĥn
t+1

, given the past state and
channel outputs.

It is worth noting that BC and IC share the common structure of the
achievable rate bounds, and therefore can be further bounded in a similar way.
To avoid redundancy, we give the proof for IC, which can be straightforwardly
extended to BC.
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Define

S(t) ,


H
12

(t)
H

22

(t)

�

, Ŝ(t) ,


Ĥ
12

(t)
Ĥ

22

(t)

�

,

K(t) , E{x
2

(t)xH
2

(t) | U(t)}.
(4.147)

Let p = min{M
2

, N
1

+N
2

} and q = min{M
2

, N
1

}. By following the footsteps
in [54], we have

1

p
h(ȳ

1

(t), ȳ
2

(t)|U(t),H(t))� 1

q
h(ȳ

1

(t)|U(t),H(t)) (4.148)

 E
ˆS(t) max

K⌫0,
tr(K)P

ES(t)| ˆS(t)

✓

1

p
log det(I+ S(t)K(t)SH(t))

� 1

q
log det(I+H

12

(t)K(t)HH
12

(t))

◆

(4.149)

 �min{M
2

, N
1

+N
2

}�min{M
2

, N
1

}
min{M

2

, N
1

+N
2

} log �2

1

+O(1) (4.150)

where (4.149) is obtained by applying extremal inequality [90,91] for degraded
outputs; the last inequality is obtained from the following lemma:

Lemma 4.3. For two random matrices S = Ŝ + S̃ 2 CL⇥M and H =
Ĥ + H̃ 2 CN⇥M with L � N , S̃, H̃ are respectively independent of Ŝ, Ĥ,
and the entries of H̃ are i.i.d. NC(0,�2). Then, given any K ⌫ 0 with
eigenvalues �

1

� · · · � �M � 0, we have

1

min{M,L}E ˜S log det(I+ SKSH)

� 1

min{M,N}E ˜H log det(I+HKHH)

 �min{M,L}�min{M,N}
min{M,L} log(�2) +O

ˆS(1) +O
ˆH(1) (4.151)

as �2 goes to 0.

Proof. See Appendix B.

Remark:

• This lemma can be regarded as the weighted di↵erence of the ergodic
capacity for two MIMO channels with uncertainty, where S̃ and H̃ are
channel uncertainties. It can also be interpreted as the ergodic capacity
di↵erence of two Ricean MIMO channels with line-of-sight components
Ŝ, Ĥ, and fading components S̃, H̃.
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• This lemma also shows the change of the ergodic capacity per dimension
as the dimensionality decreases. In other words, as the channel dimen-
sion decreases, the di↵erence of the ergodic capacity per dimension is
bounded by the dimension di↵erence and the channel uncertainty.

According to the Markov chain Xn
2

!
�

Ȳ n
1

, Ȳ n
2

�

! Ȳ n
1

, we upper-bound
the weighted sum rate as

n

✓

R
1

min{M
2

, N
1

} +
R

2

min{M
2

, N
1

+N
2

} � ✏n

◆

(4.152)

 n · min{M
1

+M
2

, N
1

}
min{M

2

, N
1

} logP

+
n
X

t=1

✓

1

min{M
2

, N
1

+N
2

}h(ȳ1

(t), ȳ
2

(t)|U(t),H(t)) (4.153)

� 1

min{M
2

, N
1

}h(ȳ1

(t)|U(t),H(t))

◆

+ n ·O(1) (4.154)

 n
min{M

1

+M
2

, N
1

}
min{M

2

, N
1

} logP + n ·O(1)

+ n
min{M

2

, N
1

+N
2

}�min{M
2

, N
1

}
min{M

2

, N
1

+N
2

} ↵
1

logP (4.155)

and another outer bound can be similarly obtained by exchanging the roles
of Receiver 1 and Receiver 2. Accordingly, the corresponding outer bound
L

4

of the DoF region is obtained by the definition.

4.6.2 Proof of Bound L
6

This bound is active when C
1

holds, i.e., M
1

� N
2

, N
1

> M
2

, and M
1

+M
2

>
N

1

+N
2

. The proof follows the same lines of thought in [43]. Since N
1

> M
2

,
we formulate a virtual received signal

ỹ
1

(t) , Uy
1

(t)

= UH
11

(t)x
1

(t) +UH
12

(t)x
2

(t) +Uz
1

(t) (4.156)

where U 2 CN1⇥N1 is any unitary matrix such that the last N
1

�M
2

rows
of U(t)H

12

(t) are with all zeros and is independent of the rest of random
variables. Therefore, the last N

1

�M
2

outputs in ỹ
1

(t) are interference free,
i.e., ỹ

1[M2+1:N1]
(t) ⇠H

1[M2+1:N1]1
(t)x

1

(t) + z
1[M2+1:N1]

(t). For convenience,
we also define

ỹ
2

(t) , H
21

(t)x
1

(t) + z
2

(t). (4.157)
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Starting with Fano’s inequality, the achievable rate can be bounded as

n(R
1

� ✏n)

 I(W
1

;Y n
1

|Hn, Ĥn) (4.158)

= I(W
1

; Ỹ n
1

|Hn, Ĥn) (4.159)

= I(W
1

; Ỹ n
1[1:M2]

|Hn, Ĥn, Ỹ n
1[M2+1:N1]

)

+ I(W
1

; Ỹ n
1[M2+1:N1]

|Hn, Ĥn) (4.160)

 n(M
2

� d
2

) logP + n ·O(1)

+ I(W
1

; Ỹ n
1[M2+1:N1]

|Hn, Ĥn) (4.161)

 n(M
2

� d
2

) logP + n ·O(1)

+ I(W
1

; Ỹ n
1[M2+1:N1]

, Ỹ n
2

|Hn, Ĥn) (4.162)

= n(M
2

� d
2

) logP + n ·O(1)

+
n
X

t=1

I
�

W
1

; ỹ
1[M2+1:N1]

(t), ỹ
2

(t)|Hn, Ĥn, Ỹ t�1

1[M2+1:N1]
, Ỹ t�1

2

�

(4.163)

 n(M
2

� d
2

) logP + n ·O(1)

+
n
X

t=1

h(ỹ
1[M2+1:N1]

(t), ỹ
2

(t)|Hn, Ĥn, Ỹ t�1

1[M2+1:N1]
, Ỹ t�1

2

) (4.164)

= n(M
2

� d
2

) logP + n ·O(1)

+
n
X

t=1

h(ỹ
1[M2+1:N1]

(t), ỹ
2

(t)|U(t),H(t)) (4.165)

n(R
2

� ✏n)

 I(W
2

;Y n
2

|Hn, Ĥn) (4.166)

= I(W
1

,W
2

;Y n
2

|Hn, Ĥn)� I(W
1

;Y n
2

|W
2

,Hn, Ĥn) (4.167)

 nN
2

logP � I(W
1

; Ỹ n
2

|Hn, Ĥn) + n ·O(1) (4.168)

 nN
2

logP � h(Ỹ n
2

|Hn, Ĥn) + h(Ỹ n
2

|W
1

,Hn, Ĥn) + n ·O(1) (4.169)

= nN
2

logP � h(Ỹ n
2

|Hn, Ĥn) + n ·O(1) (4.170)

 nN
2

logP �
n
X

t=1

h(ỹ
2

(t)|Hn, Ĥn, Ỹ t�1

1[M2+1:N1]
, Ỹ t�1

2

) + n ·O(1) (4.171)

= nN
2

logP �
n
X

t=1

h(ỹ
2

(t)|U(t),H(t)) + n ·O(1) (4.172)
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where U(t) , {Ht�1, Ĥt, Ỹ t�1

1[M2+1:N1]
, Ỹ t�1

2

} and Ỹ k
i , {ỹi(t)}kt=1

, i = 1, 2;

(4.159) holds due to the fact that unitary transformation does not change
the mutual information; (4.161) comes from Lemma 6 in [43], given by

I(W
1

; Ỹ n
1[1:M2]

|Hn, Ĥn, Ỹ n
1[M2+1:N1]

)  n(M
2

�d
2

) logP +n ·O(1) (4.173)

where a similar proof can be straightforwardly obtained; (4.164) holds because
(a) ỹ

1[M2+1:N1]
(t) and ỹ

2

(t) are deterministic functions of W
1

, Hn and Ĥn,
(b) translation does not change di↵erential entropy, and (c) the di↵erential
entropy of Gaussian noise with normalized variance is non-negative and
finite; (4.168) follows that the mutual information at hand is upper bounded
by the capacity of an (M

1

+M
2

)⇥N
2

point-to-point MIMO channel, i.e.,
N

2

logP +O(1) since M
1

+M
2

> N
2

from the condition C
1

; (4.170) holds
because ỹ

2

(t) is a deterministic function of W
1

, given channel states, and the
di↵erential entropy of the normalized Gaussian noise is finite; (4.171) is due
to conditioning reduces the di↵erential entropy; (4.165) and the last equality
are due to that the received signals at instant t are independent of Hn

t+1

and

Ĥn
t+1

, given the past states and channel outputs.
Next, we define

S(t) ,


H
1[M2+1:N1]1

(t)
H

21

(t)

�

2 C(N1+N2�M2)⇥M1 . (4.174)

Similarly to the proof for bound L
4

, we obtain the weighted di↵erence of two
di↵erential entropies by applying the extremal inequality and Lemma 4.3

1

p
h(ỹ

1[M2+1:N1]
(t), ỹ

2

(t)|U(t),H(t))� 1

q
h(ỹ

2

(t)|U(t),H(t))

 � N
1

�M
2

N
1

+N
2

�M
2

log �2

2

+O(1) (4.175)

where we set p = min{M
1

, N
1

+ N
2

� M
2

} = N
1

+ N
2

� M
2

and q =
min{M

1

, N
2

} = N
2

.
Finally, we have

n

✓

R
1

N
1

+N
2

�M
2

+
R

2

N
2

� ✏n

◆

(4.176)

 n

✓

1 +
M

2

� d
2

N
1

+N
2

�M
2

◆

logP

+
n
X

t=1

✓

1

N
1

+N
2

�M
2

h(ỹ
1[M2+1:N1]

(t), ỹ
2

(t)|U(t),H(t)) (4.177)
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� 1

N
2

h(ỹ
2

(t)|U(t),H(t))

◆

+ n ·O(1) (4.178)

 n

✓

1 +
M

2

� d
2

N
1

+N
2

�M
2

◆

logP

+ n
N

1

�M
2

N
1

+N
2

�M
2

↵
2

logP + n ·O(1) (4.179)

which leads to

d
1

+
N

1

+ 2N
2

�M
2

N
2

d
2

 N
1

+N
2

+ (N
1

�M
2

)↵
2

. (4.180)

By exchanging the roles of Receiver 1 and Receiver 2, the outer bound (4.12g)
can be obtained straightforwardly when the condition C

2

holds.

4.7 Summary

In this chapter, we focus on the two-user MIMO broadcast and interference
channels where the transmitter(s) has/have access to both delayed CSIT
and an estimate of current CSIT. Specifically, the DoF region of MIMO
networks (BC/IC) in this setting with general antenna configuration and
general current CSIT qualities has been fully characterized, thanks to a simple
yet unified framework employing interference quantization, block-Markov
encoding and backward decoding techniques. Our DoF regions generalize a
number of existing results under more specific CSIT settings, such as delayed
CSIT [43,75], perfect CSIT [26,28], partial/hybrid/mixed CSIT [42,86,87].
The results further shed light on the benefits of the temporally correlated
channel, when such correlation can be opportunistically taken into account
for system designs. The capacity region characterization in the entire SNR
regime is still an interesting open problem and left to future work.

4.8 Appendix

4.8.1 Achievable rate regions for the related MAC channels

Broadcast Channels

Let us focus on Receiver k, k 6= j 2 {1, 2}, without loss of generality. The
channel in (4.45) is a MAC, rewritten as



yk[b]� ⌘kb

⌘jb

�

| {z }

Yk

=



Hk

0

�

| {z }

S1

Xc +



Hk

Hj

�

| {z }

S2

Xk + Zk (4.181)
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where Xc , xc(lb�1

) and Xk , uk(wkb) are independent, with rate Rc and
Rk, respectively; Zk is the AWGN. It is well known [89] that a rate pair
(Rc, Rk) is achievable in the channel if

Rc  I(Xc;Yk |Xk, S) (4.182)

Rk  I(Xk;Yk |Xc, S) (4.183)

Rc +Rk  I(Xc, Xk;Yk |S) (4.184)

for any input distribution pXcXk = pXcpXk ; S , {S
1

, S
2

} denotes the state
of the channel. Let Xc ⇠ NC (0,Q

c

) and Xk ⇠ NC (0,Qk) with Q
c

, P IM
and Qk , PA0

k���
ˆH?
j
+ PAk���

ˆHj
. It readily follows that2

I(Xc;Yk |Xk) = log det(I+ PS
1

SH
1

)

= Nk logP +O(1) (4.185)

I(Xk;Yk |Xc) = log det(I+ S
2

QkS
H
2

)

= ((M �Nj)A
0
k +NjAk) logP +O(1) (4.186)

since S
2

2 C(N1+N2)⇥M has rank M almost surely, given the assumption
N

1

+N
2

�M . For the sum rate constraint, we have

I(Xc, Xk;Yk)

= h(Yk)� h(Zk) (4.187)

= h(HjXk + Zk2

) +O(1)

+ h(Hk(Xc +Xk) + Zk1

|HjXk + Zk2

) (4.188)

� h(HjXk + Zk2

) +O(1)

+ h(Hk(Xc +Xk) + Zk1

|HjXk + Zk2

, Xk) (4.189)

= h(HjXk + Zk2

) + h(HkXc + Zk1

) +O(1) (4.190)

= NjAk logP +Nk logP +O(1) (4.191)

where we define Zk1

and Zk2

the first and second parts of the noise vector
Zk; the second equality is from the chain rule and the fact that the Gaussian
noise Zk is normalized; (4.189) is due to conditioning reduces di↵erential
entropy; (4.190) is from the independence between Xc and Xk and between
the noises and the rest; the first term in (4.191) is essentially the di↵erential
entropy of the interference ⌘jb. By relating the rate pair (Rc, Rk) to the DoF
pair (d⌘, dkb), (4.46)-(4.48) is straightforward.

2Hereafter, we omit for notational brevity the expectation on the channel states S,
whenever possible, which does not change the high SNR behavior in this case. We consider
any realization S1 and S2 instead.
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Mk

Nj

Mk

(Mk − Nj)+�� �

�� �

Nj

T

Figure 4.4: Visualization of the interplay between Xjc and Xk.

Interference Channels

In (4.78), each receiver sees a MAC with three independent messages. Let us
focus on Receiver k, k 6= j 2 {1, 2}, without loss of generality. The channel
in (4.78) is rewritten as



yk[b]� ⌘kb

⌘jb

�

| {z }

Yk

=



Hkk

0

�

| {z }

Sk1

Xkc +



Hkj

0

�

| {z }

Sk2

Xjc +



Hkk

Hjk

�

| {z }

Sk3

Xk + Zk (4.192)

where Xkc , xkc(lk,b�1

), Xjc , xjc(lj,b�1

), and Xk , uk(wkb), k 6= j 2
{1, 2}, are three independent signals, with rate Rkc, Rjc, and Rk, respectively;
Zk is the AWGN. It is well known [89] that a rate triple (Rkc, Rjc, Rk) is
achievable in the channel if

Rkc  I(Xkc;Yk |Xjc, Xk) (4.193)

Rjc  I(Xjc;Yk |Xkc, Xk) (4.194)

Rk  I(Xk;Yk |Xkc, Xjc) (4.195)

Rkc +Rjc  I(Xkc, Xjc;Yk |Xk) (4.196)

Rkc +Rk  I(Xkc, Xk;Yk |Xjc) (4.197)

Rjc +Rk  I(Xjc, Xk;Yk |Xkc) (4.198)

Rkc +Rjc +Rk  I(Xkc, Xjc, Xk;Yk) (4.199)

for any pXkcXjcXk = pXkcpXjcpXk , where we omit the conditioning on the
channel states S as in the BC case for brevity. Let Xkc ⇠ NC (0,Qkc

)
and Xk ⇠ NC (0,Qk) with Qkc

, P IMk and Qk , PAk���
ˆHjk

+ PA0
k���

ˆH?1
jk

+

PA00
k���

ˆH?2
jk

. It is readily shown that

I(Xkc;Yk |Xjc, Xk) = log det(I+ PSk1

SH
k1

)

= min {Mk, Nk} logP +O(1) (4.200)
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I(Xjc;Yk |Xkc, Xk) = log det(I+ PSk2

SH
k2

)

= min {Mj , Nk} logP +O(1) (4.201)

I(Xk;Yk |Xkc, Xjc) = log det(I+ Sk3

QkS
H
k3

)

= (N 0
jAk + (Mk �N 0

j � ⇠k)A
0
k

+ ⇠kA
00
k) logP +O(1) (4.202)

I(Xjc, Xkc;Yk |Xk) = log det(I+ PSk1

SH
k1

+ PSk2

SH
k2

)

= Nk logP +O(1) (4.203)

since Sk3

2 C(N1+N2)⇥Mk has rank Mk almost surely, given the assumption
N

1

+N
2

�Mk. Following the same steps as (4.187)-(4.191), we can obtain

I(Xkc, Xk;Yk |Xjc) � N 0
jAk logP + min{Mk, Nk} logP + O(1). (4.204)

It remains to bound the RHS of (4.198) and (4.199). First, using the
chain rule, we have

I(Xjc, Xk;Yk |Xkc) = I(Xk;Yk |Xkc) + I(Xjc;Yk |Xk, Xkc) (4.205)

where the scaling of the second term is already shown in (4.201). The first
term can be interpreted as the rate of Xk by treating Xjc as noise in a
two-user MAC with a channel matrix in the block upper triangular form
h

Hkj Hkk

Hjk

i

. As shown in Fig. 4.4, since Hkj , Hkk, and Hjk are mutually

independent, there exists an invertible row transformation T that can convert
the (N

1

+N
2

)⇥ (M
1

+M
2

) matrix to the form on the right, almost surely.
The interference created by Xjc is through the matrix H̄kj , only a↵ecting the
overlapping part between Xjc and Xk, as shown in Fig. 4.4. Note that the
dimension of the overlapping is ((Mk �Nj)+ � (Nk �Mj)+)+ that coincides
with the definition of ⇠k in (4.91). From Fig. 4.4, the interference-free received

signal for Xk is Ỹk =
h

Gkk
Hjk

i

Xk + Z̃k. Thus,

I(Xk;Yk |Xkc) � I(Xk; Ỹk) (4.206)

= log det
⇣

I+
h

Gkk
Hjk

i

Qk

h

Gkk
Hjk

iH⌘

+O(1) (4.207)

� log det

 

I+



˜G0
kk

˜Gkk

˜H0
kk

˜Hkk

�

"

PA0
k IMk�N0

j�⇠k

PAk IN0
j

#

·


˜G0
kk

˜Gkk

˜H0
kk

˜Hkk

�H◆

+O(1) (4.208)

= ((Mk �N 0
j � ⇠k)A

0
k +N 0

jAk) logP +O(1) (4.209)
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where the O(1) term in (4.207) is from the fact that the covariance of the
noise Z̃k depends on T that does not scale with P ; Gkk and Hjk remain
independent. Next, let Qk = Ujk diag(PA00

kI⇠k , P
A0

kIMk�N 0
j�⇠k , P

AkIN 0
j
)UH

jk

be the eigenvalue decomposition of Qk and define the column partitions
⇥

G̃00
kk G̃

0
kk G̃kk

⇤

, GkkUjk and
⇥

H̃ 00
jk H̃

0
jk H̃jk

⇤

, HjkUjk where the num-
ber of columns of the submatrices is ⇠k, Mk � N 0

j � ⇠k, and N 0
j , respec-

tively; inequality (4.208) is from the fact that removing one column block
and the corresponding diagonal block of size ⇠k can only reduce the log-
determinant; the last equality is from the fact that the square matrix


˜G0
kk

˜Gkk

˜H0
jk

˜Hjk

�

has full rank, almost surely, for the following reasons: 1) the

matrices G and H are mutually independent since the column transform
Ujk is unitary and independent of the G matrices; 2) the rows related
to the matrices H are linearly independent, since it can be proved that
rank(H̃jk) = rank(Hjk��� ˆHjk

HH
jk) = min {Mk, Nj}, i.e., H̃jk has full rank; 3)

the rows related to the matrices G are linearly independent as well. Plugging
(4.209) and (4.201) into (4.205), we have

I(Xjc, Xk;Yk |Xkc)

� (N 0
k + (Mk �N 0

j � ⇠k)A
0
k +N 0

jAk) logP +O(1). (4.210)

Finally, for the sum rate constraint (4.199), we follow the same steps as
(4.187)-(4.191), we can obtain

I(Xkc, Xjc, Xk;Yk)

� N 0
jAk logP +min{Mk +Mj , Nk} logP +O(1) (4.211)

= (Nk +N 0
jAk) logP +O(1) (4.212)

By relating the rate pair (Rkc, Rjc, Rk) to the DoF pair (d⌘1 , d⌘2 , dkb),
(4.79)-(4.84) are straightforward.

4.8.2 Proof of Lemma 4.3

In order to prove Lemma 4.3, we provide the following preliminary results
stated as Lemma 4.4-4.7.

Let A 2 CN⇥M , N  M , be a full rank matrix and A0 2 CN⇥M 0
,

M 0 M , be a submatrix of A. We have the following lemmas that will be
repeatedly used in the rest of the proof.

Lemma 4.4 (rank of submatrix).

rank(A0) � rank(A)� (M �M 0). (4.213)
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rank(AIk)

k
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(a) An example for Lemma 4.5

rank(AIk)

k

N

�N −M

�

� M

*****

*****
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*****

N − (M −M′)

M′

(b) An example for Lemma 4.6

Figure 4.5: Illustrations of the worst-case ranks of the submatrices from a sliding
window. For each k, the number of vertical dots represents the rank of the submatrix
AIk . In particular, the number of red (resp. blue) dots is the rank of the submatrix
selected by the red (resp. blue) window. The sum of the ranks can be found by
counting the number of dots.

Lemma 4.5. Let I
1

, . . . , IM be a cyclic sliding window of size N on the set
of indices {1, . . . ,M}, i.e.,

Ik , {(k + i)M + 1 : i 2 [0, N � 1]}, k = 1, . . . ,M. (4.214)

If the columns of A are arranged such that rank(AIk) = N for some k 2
[1,M ], then

M
X

k=1

rank(AIk) � N2 (4.215)

where AIk is the matrix composed of N columns of A defined by Ik, i.e.,
AIk , [Aj,i]j2[1,N ],i2Ik .

Proof. The sketch of the proofs for the above lemma is illustrated in Fig. 4.5a.
Given that there exists k such that the submatrix selected by the window is
full rank N (the blue window in Fig.4.5a), the rank of the submatrix selected
by the window Ik+1

or Ik�1

(the red window in Fig.4.5b) is lower bounded
by N � 1. By applying the same argument, it is readily shown that the rank
of the submatrix selected by the window Ik+2

or Ik�2

is lower bounded by
N �2. This lower bound keeps decreasing when the window slides away from
the blue one, until it hits another lower bound N � (M � N) = 2N �M
given by Lemma 4.4. The submatrices within the sliding windows are of rank
2N �M , which lasts M � 1� 2(M �N) = 2N �M � 1 times. With the help
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of Fig.4.5a, a lower bound on the sum of the ranks of all the submatrices
visited by the sliding window, can be obtained by counting the dots in the
figure, i.e.,

N + 2
M�N
X

i=1

(N � i) + (2N �M)(2N �M + 1) = N2. (4.216)

In fact, this can be found easily by “completing the triangle”, the number of
dots in which is N2.

Lemma 4.6. A0 2 CN⇥M 0
, N  M 0  M , is a submatrix of A. We

define I 0
1

, . . . , I 0
M 0 as a cyclic sliding window of size N on the set of indices

{1, . . . ,M 0}, i.e.,
I 0
k , {(k + i)M 0 + 1 : i 2 [0, N � 1]}, k = 1, . . . ,M 0. (4.217)

If the columns of A0 are arranged such that the first rank(A0) columns of
A0

I0
k
are linear independent for some k 2 [1,M ], then we have

M 0
X

k=1

rank(A0
I0
k
) � N(N � (M �M 0)) (4.218)

where A0
I0
k
is the submatrix of A0 with N columns defined by I 0

k, i.e., A
0
I0
k
,

[A0
j,i]j2[1,N ],i2I0

k
.

Proof. The sketch of the proofs for the above lemma is illustrated in Fig.4.5b.
Given that there exists k such that the submatrix selected by the window has
rank r = N � (M �M 0) given by Lemma 4.4 and that the first r columns are
linearly independent (the blue window in Fig.4.5b), the rank of the submatrix
selected by the windows I 0

k�1

, . . . , I 0
k�(N�r) (the red and brown windows in

Fig.4.5b) is lower bounded by r � 1. This lower bound keeps decreasing
when the window slides go away from these positions, until it hits another
lower bound N � (M �N) = 2N �M given by Lemma 4.4. With the help
of Fig.4.5b, a lower bound on the sum of the ranks of all the submatrices
visited by the sliding window, can be obtained by counting the dots in the
Figure. In fact, after some basic computations, it turns out that there are
N(N � (M �M 0)) dots.

Lemma 4.7. Given H = Ĥ + H̃ 2 CN⇥M , N M , with the entries of H̃
being i.i.d. NC

�

0,�2

�

, � > 0, then

E
˜H log det(HHH) � (N � rank(Ĥ)) log �2 +O

ˆH(1) (4.219)

as �2 goes to 0.
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Proof. According to [92, Lemma 1], for any G = Ĝ+ G̃ 2 CN⇥N with the
entries in G̃ i.i.d. NC (0, 1) independent of Ĝ, we have

E
˜G log det(GGH) �

⌧
X

i=1

log(�i(ĜĜH)) +O(1) (4.220)

where ⌧  rank(Ĝ) is the number of eigenvalues of G that are larger than 1.
From here, it follows that

E
˜G log det(GGH) �

rank(

ˆG)

X

i=1

log(1 + �i(ĜĜH)) +O(1) (4.221)

since the remaining rank(Ĝ)� ⌧ eigenvalues are smaller than 1 and do not
contribute more than O(1) to the expectation. Therefore, for any � > 0, we
can apply the above inequality to ��1H and have

E
˜H log det((��1H)(��1H)H)

�
rank(

ˆH)

X

i=1

log(�i(�
�2ĤĤH)) +O(1) (4.222)

= �rank(Ĥ) log �2 +

rank(

ˆH)

X

i=1

log(�i(ĤĤH)) +O(1) (4.223)

= �rank(Ĥ) log �2 +O
ˆH(1) (4.224)

where the last equality is from Assumption 4.1 that E
ˆH(log det(ĤĤH)) >

�1.

In the following, we prove Lemma 4.3 case by case according to the value
of M3. First, let us recall that N  L. Since the case with M  N is trivial,
we focus on the cases with N < M < L and M � L.

Case A: N < M < L

Let us define M 0 as the number of eigenvalues of K that are not smaller
than 14, and let K = V ⇤⇤⇤V H be the eigenvalue decomposition of K. We

3The technique employed in this proof was first developed in our earlier version of this
chapter [79], and later applied and extended to tackle the K-user MISO case in [80,92].

4Or any constant c > 0 that is independent of any parameter in the system. Note that
M

0 can depend on Ŝ and the SNR P .
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first establish the following upper bound:

det(I+ SKSH) = det(I+⇤⇤⇤V HSHSV H) (4.225)

 det(I+ �
max

(V HSHSV )⇤⇤⇤) (4.226)

 det(I+ kSk2
F

⇤⇤⇤) (4.227)

where the last inequality is due to �
max

(V HSHSV )  kSV k2
F

= kSk2
F

.
Therefore, we have

E
˜S log det(I+ SKSH)  log det(I+ E

˜S(kSk
2

F

)⇤⇤⇤) (4.228)

 log det(I+ E
˜S(kSk

2

F

)⇤⇤⇤0) +O
ˆS(1) (4.229)

where the first inequality is from (4.227) on which we apply Jensen’s in-
equality; ⇤⇤⇤0 is a diagonal matrix composed of the M 0 largest eigenvalues of
K.

Next, let ��� , HV , ���0 , ĤV . Without loss of generality, we assume
that the columns of ��� and ���0 are arranged such that the conditions in
Lemma 4.5 and Lemma 4.6 are satisfied (i.e., rank(���I) = N , where I is the
cyclic window with size N , and ���I is defined as in Lemma 4.5), respectively.
This also implies that the eigenvalues in ⇤⇤⇤ and ⇤⇤⇤0 are arranged accordingly.
In the following, given di↵erent values of M 0, we prove that

E
˜H log det(I+HKHH)

� N

M
log det(⇤⇤⇤0) +

N(M �N)

M
log �2 +O

ˆH(1). (4.230)

Case M 0 = M

In this case, we have

det(I+HKHH) = det(I+���⇤⇤⇤���H) (4.231)

=
X

I✓{1,...,N}

det(⇤⇤⇤I)det(���
H
I���I) (4.232)

�
M
X

k=1

det(���H
Ik���Ik)det(⇤⇤⇤Ik) (4.233)

where (4.232) is an application of the identity det(I+A) =
P

I✓{1,...,M}det(AII)

for any A 2 CM⇥M [93]; the lower bound is obtained by only considering a
sliding window of size N for all the possible sub-determinant. Thus,

log det(I+HKHH)
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� log

 

M
X

k=1

det(���H
Ik���Ik)det(⇤⇤⇤Ik)

!

(4.234)

� log

 

1

M

M
X

k=1

det(���H
Ik���Ik)det(⇤⇤⇤Ik)

!

(4.235)

� 1

M
log

 

M
Y

k=1

det(���H
Ik���Ik)det(⇤⇤⇤Ik)

!

(4.236)

=
1

M

 

N log det(⇤⇤⇤) +
M
X

k=1

log det(���H
Ik���Ik)

!

(4.237)

where (4.236) holds since arithmetic mean is not smaller than geometric
mean; the last equality is from the sliding window property

QM
k=1

det(⇤⇤⇤Ik) =
det(⇤⇤⇤)N . Finally, we have

E
˜H log det(I+HKHH)

� 1

M

 

N log det(⇤⇤⇤) +
M
X

k=1

E
˜H log det(���H

Ik���Ik)

!

(4.238)

� 1

M

 

N log det(⇤⇤⇤) + log �2

M
X

k=1

(N � rank(�̂��Ik))

!

+O
ˆH(1) (4.239)

=
1

M

 

N log det(⇤⇤⇤) + log �2

 

MN �
M
X

k=1

rank(�̂��Ik)

!!

+O
ˆH(1) (4.240)

� N

M

�

log det(⇤⇤⇤0) + (M �N) log �2

�

+O
ˆH(1) (4.241)

where �̂�� , ĤV and hence rank(�̂��) = rank(Ĥ); (4.239) is from Lemma 4.7;
the last inequality is from Lemma 4.5 and that ⇤⇤⇤ = ⇤⇤⇤0 as M = M 0.

Case M > M 0 � N

For this case, we can first get

det(I+HKHH) = det(I+���⇤⇤⇤���H)

� det(I+���0⇤⇤⇤0(���0)H). (4.242)
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Following the same footsteps as in (4.238)-(4.240), we obtain

E
˜H log det(I+HKHH)

� 1

M 0

 

N log det(⇤⇤⇤0) + log �2

 

M 0N �
M 0
X

k=1

rank(�̂��
0
I0
k
)

!!

+O
ˆH(1) (4.243)

� N

M 0
�

log det(⇤⇤⇤0) + (M �N) log �2

�

+O
ˆH(1) (4.244)

� N

M
log det(⇤⇤⇤0) +

N(M �N)

M
log �2 +O

ˆH(1) (4.245)

where the inequality (4.244) is from Lemma 4.6.

Case M 0 < N

From (4.242) and given that M 0 < N , we have

E
˜H log det(I+HKHH)

� log det(⇤⇤⇤0) + log �2

⇣

M 0 � rank(�̂��
0
)
⌘

+O
ˆH(1) (4.246)

� log det(⇤⇤⇤0) + log �2

�

M 0 � (N � (M �M 0))
�

+O
ˆH(1) (4.247)

= log det(⇤⇤⇤0) + (M �N) log �2 +O
ˆH(1) (4.248)

� N

M
log det(⇤⇤⇤0) +

N(M �N)

M
log �2 +O

ˆH(1) (4.249)

where (4.247) is from log �2  0 and rank(�̂��
0
) � N � (M �M 0).

By now, (4.230) has been proved in all configurations of (M,N,M 0).
Combining (4.229) and (4.230), we have

N E
˜S log det(I+ SKSH)�M E

˜H log det(I+HKHH)

 �N(M �N) log �2 +O
ˆS(1) +O

ˆH(1)

+N log det
�

E
˜S(kSk

2

F

) I+ (⇤⇤⇤0)�1

�

(4.250)

 �N(M �N) log �2 +O
ˆS(1) +O

ˆH(1) (4.251)

where the last inequality is from the fact that ⇤⇤⇤0 ⌫ I by construction and
hence log det

�

E
˜S(kSk2F) I+ (⇤⇤⇤0)�1

�

M 0 log(1 + E
˜S(kSk2F)) = O

ˆS(1). This
completes the proof of (4.151) for the case N < M < L.
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Case B: M � L

For the first term in (4.151), we bound it as follows

E
˜S log det(I+ SKSH)

= E
˜S log det(I+US⌃SV

H
SKVS⌃SU

H
S) (4.252)

= E
˜S log det(I+⌃2

SV
H
SKVS) (4.253)

 E
˜S log det(I+ �

max

(⌃2

S)V
H
SKVS) (4.254)

=
L
X

i=1

E
˜S log(1 + �

max

(SSH)�i(V
H
SKVS)) (4.255)


L
X

i=1

E
˜S log(1 + �

max

(SSH)�i) (4.256)


L
X

i=1

E
˜S log(1 + kSk2

F

�i) (4.257)


L
X

i=1

log(1 + E
˜S(kSk

2

F

)�i) (4.258)

= log det(I+ E
˜S(kSk

2

F

)⇤⇤⇤00) (4.259)

= log det(I+ E
˜S(kSk

2

F

)⇤⇤⇤000) +O
ˆS(1) (4.260)

where in (4.252), S = US⌃SV
H
S with ⌃S 2 CN⇥N and VS 2 CM⇥L;

(4.253) comes from the equality det(I + AB) = det(I + BA); (4.256) is
due to Poincare Separation Theorem [93] that �i(V H

SKVS)  �i(K) for
i = 1, · · · , N ; (4.257) is from the fact that �

max

(SSH)  kSk2
F

; (4.258)
is obtained by applying Jensen’s inequality; ⇤⇤⇤00 , diag(�

1

, · · · ,�L) and
⇤⇤⇤000 , diag(�

1

, · · · ,�
min{L,M 0}) with M 0 being the number of eigenvalues

that are not smaller than 1, i.e., ⇤000 ⌫ I.
For the second term in (4.151), we use the following lower bound

E
˜H log det(I+HKHH)

= E
˜H log det(I+�⇤�H) (4.261)

� E
˜H log det(I+�0⇤00�0H) (4.262)

� N

L
log det(⇤⇤⇤000) +

N(L�N)

L
log(�2) +O

ˆH(1) (4.263)

where ��� , HV 2 CN⇥M with V being the unitary matrix containing
the eigenvectors of K, i.e., K = V ⇤⇤⇤V H with ⇤⇤⇤ = diag(�

1

, · · · ,�M ); in
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(4.262), ���0 = HV 0 2 CN⇥L with V 0 being the first L columns of V , and
multiplying by the matrix V 0 does not change the distribution property, and
���⇤⇤⇤���H ⌫ ���0⇤⇤⇤00���0H; the last inequality is obtained from (4.230) in the previous
subsection.

Finally, it is readily shown that, following the same steps as in (4.250)
and (4.251),

1

L
E

˜S log det(I+ SKSH)� 1

N
E

˜H log det(I+HKHH)

 �L�N

L
log(�2) +O

ˆS(1) +O
ˆH(1). (4.264)

This completes the proof of (4.151) for the case M � L.
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Chapter 5

Topological Interference
Management:
The Optimality of
Orthogonal Access

Whereas interference management with delayed feedback was studied in the
first half of this thesis, the focus will be placed on the another source of
channel uncertainty, namely the sole topological feedback, in this and next
chapters.

Interference networks with no CSIT except for the knowledge of the
connectivity graph via topological feedback have been recently studied under
the topological interference management (TIM) framework [49]. In this
chapter, we investigate the limitation of the sole topological feedback under
this TIM framework, particularly focusing on the one-dimensional convex
cellular networks, in which both the transmitters and the receivers are placed
along a straight line, and the signal coverage of each transmitter is convex
such that every transmitter interferes consecutive receivers. The optimal
DoF are fully characterized in such a single-antenna cellular network under
the TIM setting. Specifically, it is shown that orthogonal access achieves the
optimal symmetric DoF, sum DoF, and DoF region of these one-dimensional
convex cellular networks with arbitrary message demands (i.e., the general
multiple unicast setting). This conclusion can be also extended to a larger
class of network topologies when there do not exist long cycles (with length
no less than six) in topology graphs.
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5.1 Introduction

The benefits of multiuser communication in either IC or BC stem from the
availability of CSIT. Most e↵orts on limited [23, 24, 39], imperfect [34, 39],
or delayed feedback settings [41,43,54,55,94], among others [33,48,76,78],
rely on the assumption that the transmitters are endowed with various forms
of certain amount channel information, so that a good fraction of the DoF
achieved in the perfect CSIT can be obtained. Such an assumption is hard to
realize in many practical scenarios, such as cellular networks [95], especially
when the feedback resource is extremely scarce. Conversely, it has been
reported [29–32] that DoF collapse in IC or BC scenario with no CSIT. A
closer examination of these pessimistic results however reveals that many of
the considered networks are fully connected, in that any transmitter interferes
with any non-intended receiver in the network.

Owing to the nodes’ random placement, the fact that power decays fast
with distance, the existence of obstacles, and local shadowing e↵ects, we
may argue that certain interference links are unavoidably much weaker than
others, suggesting the use of a partially-connected graph to model, at least
approximately, the network topology. An interesting question then arises as
to whether the partial connectivity could be leveraged to allow the use of some
relaxed form of CSIT while still achieving a substantial DoF performance.
In particular the exploitation of topological information, simply indicating
which of the interfering links are weak enough to be approximated by zero
interference and which links are too strong to do so, is of great practical
interest.

Recently, interference networks with no CSI except for the knowledge
of the connectivity graph at the transmitters have been formulated as the
topological interference management (TIM) problem [49]. This TIM problem
was nicely bridged to the “index coding” problem [52, 96], which attains
a lot of attention in the past decade from both information theory and
computer science communities. It has been demonstrated to be insightful
and convenient to look into the TIM and index coding problems from an
interference alignment perspective [8,97]. The optimal linear solutions to the
TIM and index coding problems are usually revealed by the optimal vector
subspace assignment under interference alignment principles [98]. Another
line of works by [99, 100] reveals the rate of index coding problem from a
graph theoretic perspective, in which local chromatic number o↵ers a new
upper bound of broadcast rate to index coding problems, correspondingly a
new achievability to TIM problems. Remarkably, this local coloring approach
can be somehow interpreted as the one-to-one interference alignment, and

126



CHAPTER 5. TOPOLOGICAL INTERFERENCE MANAGEMENT:
THE OPTIMALITY OF ORTHOGONAL ACCESS

thus we refer to these approaches as alignment-based approaches.
As alignment-based approaches stimulate the further advance on TIM

and index coding problems, such as TIM with alternating CSIT [101,102],
and TIM with multiple antenna [103], to name a few, some depressed facts
were observed that those sophisticated alignment-based approaches o↵er
no gain over the orthogonal schemes (which can be also interpreted from
an interference alignment perspective [49]) for some class of networks. For
instance, in [104], the one-dimensional connectivity convexity totally prohibits
profit from the alignment-based approaches. Orthogonal access was proven
to be sum DoF optimal in the one-dimensional convex cellular network with
convex message set [104]. The one-dimensional convex network topology
refers to the placement of all transmitters and receivers along a straight line,
such that the transmitter that interferes a receiver will cause interference
to all other closer receivers and the receiver that hears a transmitter will
hear signals from all other closer transmitters. This connectivity convexity
captures the physical phenomenon that signal strength is relying on the
physical locations of transmitters and receivers, where the received signals
are stronger with physically closer nodes than those are farther away. In
real-life cellular networks, however, this convexity might be not so practical
at the base station side, due to the various power allocation at the base
stations. For instance, the user may hear the signal originates from a faraway
base station with higher transmit power, while it does not hear from nearby
ones with lower transmit power. A natural question then arises as to whether
orthogonal access is still sum DoF optimal with convexity at only one side.

Up to date, the one-dimensional convex cellular networks [104] might
be the only explicit subclass of network topologies where orthogonal access
is sum DoF optimal. What else? In addition, while the sum DoF metric
o↵ers us the performance of the whole network, it does not capture the
individual behavior of distinct users, where the network topology asymmetry
does matter. Is orthogonal access still optimal as to the performance metrics,
such as the DoF region. As we may be aware of, the understanding of sum
DoF is far from the characterization of overall DoF region, such that the
extension from the former to the latter is really a huge leap and hence totally
nontrivial. Then the consequently arisen question might be whether the sum
DoF or the symmetric DoF o↵er us some insight toward the characterization
of DoF region.

Furthermore, the optimality of orthogonal access in [104] is restricted to
the convex message sets, where the transmitter has to possess messages to
consecutive receivers. This constraint is not practical and does hurt in real-life
applications. For instance, in a social-oriented application, a transmitter may
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be interested in exchanging messages with any other receivers, not need to
the nearby ones. A crucial question then arises as to whether the optimality
of orthogonal access still holds when message sets are not convex any more.

In this chapter, we try to address these aforementioned questions, still
under the multiple unicast TIM framework mainly in the one-dimensional
convex cellular networks. Specifically, we obtain the following results:

• Orthogonal access is DoF optimal in all of one-dimensional convex
interference channels even if the convexity in network topology is only
at one (either transmitter or receiver) side. The optimal symmetric
DoF, sum DoF, and DoF region are characterized with aid of some
well-defined graph theoretic parameters.

• Orthogonal access is DoF optimal for a class of cellular networks (where
the network topology graph contains no cycles with length greater than
four, including one-dimensional convex networks as special cases) with
arbitrary message sets. The optimal solutions (i.e., symmetric DoF,
sum DoF and DoF region) of multiple unicast TIM problems in such a
subclass of connectivity graphs are comprehensively unveiled.

The rest of the chapter is organized as follows. The general system
model and some basic definitions are given in the coming section. In Section
5.3, we present the main results of the one-dimensional convex interference
channels and chordal cellular networks, followed by the proofs in Section
5.4. We conclude the chapter in Section 5.5, together with some interesting
discussions.

Notations: Throughout this chapter, we let A and A represent a variable
and a set, respectively. In addition, Ā is the complementary set of A, and |A|
is the cardinality of the set A. Denote by AS , {Ai, i 2 S} and AS , [i2SAi.
Define A\a , {x|x 2 A, x 6= a} and A

1

\A
2

, {x|x 2 A
1

, x /2 A
2

}.

5.2 System Model

5.2.1 Channel Model

We consider a cellular network with M base stations (a.k.a. sources, transmit-
ters), which are labeled as S

1

, S
2

, . . . , SM , and N user terminals (a.k.a. desti-
nations, receivers), which are labeled as D

1

, D
2

, . . . , DN . Both transmitters
and receivers are equipped with one single antenna each. The partial con-
nectivity of the network is modeled through the received signal equation for
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Receiver j at time instant t by:

Yj(t) =
X

i2Tj

hji(t)Xi(t) + Zj(t) (5.1)

where hji(t) is the channel coe�cient between source i and destination j,
the transmitted signal Xi(t) is subject to the average power constraint, i.e.,
E
�

|Xi(t)|2
�

 P , with P being the average transmit power, and Zj(t) is
the Gaussian noise with zero-mean and unit-variance and is independent of
transmitted signals and channel coe�cients. We denote by Tn the transmit
set containing the indices of sources that are connected to destination n,
for n 2 {1, 2, . . . , N}, and by Rn the receive set consisting of the indices
of destinations that are connected to source m, for m 2 {1, 2, . . . ,M}. In
practice, the partial connectivity may be modeled by taking those interference
links that are “weak enough” (due to distance and/or shadowing) to zero.
For instance in [49], a reasonable model was suggested whereby a link is
disconnected if the received signal power falls below the e↵ective noise floor.
An interesting discussion in this regard will be given in Section 5.5, together
with some numerical results, showing how the results obtained in TIM
settings reflect to the real-life wireless networks. However, other models
maybe envisioned and the study of how robust the derived schemes are with
respect to modeling errors is an open problem beyond the scope of this thesis.

Conforming with the TIM framework, the actual channel realizations are
not available at the sources, yet the network topology (i.e., Tm,Rn, 8m,n)
is known by all sources and destinations. We follow the similar assumption
on channel coe�cients as in [104], where the nonzero channel coe�cients
can keep constant or vary over time, but are statistically indistinguishable
one another by transmitters. At the destination side, only desired channel
coe�cients are required to known by destinations. The network topology is
assumed to be fixed throughout the duration of communication.

5.2.2 Message Sets

Regarding the message set, we follow the general multiple unicast model
in [49], where each message originates from one unique source and intends for
one unique destination. As such, each source may have multiple independent
messages that could intend for multiple destinations and each destination
may desire multiple independent messages that could originate from multiple
sources.

• Message set at source Si, i.e., W(Si), i 2 {1, . . . ,M}
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• Message set at destination Dj , i.e., W(Dj), j 2 {1, . . . , N}

In particular, interference channels with each source possessing one message
that intends for a unique destination, and X networks with each source
having a message to each connected destination are special cases.

According to the message sets at sources and destinations, there exist
three mutually exclusive possibilities between source Si and destination Dj :

• Weak link (Dj 9 Si): if the channel is weak and the corresponding
edge is absent in network topology.

• Desired link (Si ! Dj): if there is a message Wij originates from
source Si to destination Dj , which is illustrated as a solid black edge.

• Interfering link (Si�Dj): if there is a connection between source Si

and destination Dj , but there are no desired messages between them.
These links are referred to as interfering links and shown as dashed red
edges.

We denote by Si ⇢ Dj if either Si ! Dj or Si �Dj , to indicate that there
is a strong link between Si and Dj .

5.2.3 Definitions

Throughout this part (this chapter and the next chapter), we treat the
network topologies of cellular networks as undirected bipartite graphs, where
the sources and destinations are vertices, and the connectivities between
them are represented as edges. A few definitions of basic graph parameters
pertaining to graph theory [105–107] are now recalled, while some more
definitions will be given in later sections when needed. Note that all graphs
considered in this thesis are finite, simple and loopless.

Definition 5.1 (Basic Graph Parameters [106]).

• The chromatic number of G, denoted by �(G), is the smallest number
of colors that assign to the vertices of G, such that no two adjacent
vertices have colors in common.

• A clique is a subgraph of a graph G where any two vertices in this
subgraph are adjacent.

• The independent set of a graph G is a set of vertices such that
any two vertices are not adjacent. The independent set number,
denoted by ↵(G), is the cardinality of the largest independent set.
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In this chapter, we consider the symmetric DoF (i.e., the maximum
DoF which can be achieved by all users simultaneously), sum DoF (i.e., the
maximum total DoF achievable by all users), and DoF region (i.e., the tuple
of all achievable DoF for all users) as our main figures of merit.

Definition 5.2 (Symmetric DoF, Sum DoF, and DoF Region).

d
sym

= lim sup
P!1

sup
(Rsym,...,Rsym)2C

R
sym

logP
(5.2)

d
sum

= lim sup
P!1

sup
(R1,...,R|W|)2C

P

i2W Ri

logP
(5.3)

D =
n

(d
1

, . . . , d|W|) 2 R|W|
+

�

�

�

8(w
1

, . . . , w|W|) 2 R|W|
+

(5.4)

X

i2W
widi  lim sup

P!1
sup

(R1,...,R|W|)2C

P

i2W wiRi

logP

)

(5.5)

where W is the message set, the capacity region C is the set of all achievable
rate tuples, and P is the average power constraint.

Definition 5.3 (Orthogonal Access). Orthogonal access is such that the
involved messages Wo are orthogonal [104], i.e.,

D(Wj) 9 S(Wi), 8 Wi,Wj 2Wo, i 6= j (5.6)

where S(Wi) is the collection of sources from which Wi originates, and D(Wj)
is the collection of destinations for which Wj intends.

Definition 5.4 (Message Conflict Graphs). The message conflict graph is
a graph with vertices being messages and edges between two vertices if the two
messages are conflicting with one another. The two messages are conflicting
if they originate from the same source, intend for the same destination, or
one’s source interferes the other’s destination.

Clearly, the orthogonal messages are not conflicting, and the conflict-
ing messages are non-orthogonal. The orthogonal messages belong to an
independent set of the message conflict graphs.

5.3 Main Results

In the following, we start with the simple special straight line networks,
where the sources and destinations form a one-dimensional convex interfer-
ence channel with one destination demanding one message from one single
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source, followed by the more general cellular networks with arbitrary mes-
sage demands. For all these networks, we show briefly that orthogonal
access achieves optimal DoF. The related definitions and detailed proofs are
relegated to the next section.

5.3.1 Straight Line Networks

In straight line networks, the base stations and users are placed in a straight
street, with each base station (source) serving one user (destination), which
forms a one-dimensional convex interference channel. The message Wi

originates from a single source Si and intends for a single destination Di, i.e.,
M = N . Each source has only one message, i.e., W(Si) = {Wi}, and each
destination demands one message, i.e., W(Dj) = {Wj}.

Compared to [104], we relax the network convexity to only one side,
which is more practical in the real-life scenarios. It is because the coverage
by the base stations is inclined to spread over the users nearby, given power
constraints at base stations. On the other hand, as the transmitter power
constraints at base stations may di↵er from one another, even if the user
could not hear a base station nearby, it may hear other base station farther
away with higher transmit power. As such, the user side does not have to
comply with the convexity property. An exemplary network topology is
shown in Fig. 5.1.
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Figure 5.1: A straight line network that can be represented by a one-dimensional
convex interference channel.

Let us consider hereafter the convexity only at the sources, and the
case with convexity only at the destinations follows similarly. We adopt
the relative placement of the destinations, where the placement that the
destination node Dj1 is “to the left of” (resp. “to the right of”) another
destination node Dj2 is denoted by Dj1  Dj2 (resp. Dj1 � Dj2). The source
convexity property in the straight line networks can be highlighted in the
following definition:
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Definition 5.5 (Source Convexity Property). For the source convexity, if
Si ⇢ Dj1 and Si ⇢ Dj2 where Dj1  Dj2 , then Si ⇢ Dk for all k satisfying
Dj1  Dk  Dj2.

Clearly, if a source can interfere a destination on its left (resp. right)
side, then it will interfere all other destinations on the left (resp. right) that
are closer. On the other hand, if a source cannot interfere a destination on
its left (resp. right) side, then it will not interfere all other destinations on
the left (resp. right) that are farther away. For cellular networks with this
convexity property, we obtain the following result.

Theorem 5.1. Orthogonal access is DoF optimal for multiple unicast TIM
problems in all one-dimensional convex interference channels. The optimal
symmetric DoF, sum DoF and DoF region achieved by orthogonal schemes
are given by

d
sym

=
1

�(G) (5.7)

d
sum

= ↵(G) (5.8)

D =

⇢

(d
1

, . . . , d|V|) 2 R|V|
+

�

�

�

�

X

i2Cj

di  1, 8 Cj 2 C(G)

9

=

;

(5.9)

where G is the message conflict graph, V is the vertex set of G corresponding
to the message set, �(G) and ↵(G) are chromatic number and independent
set number of G as defined earlier, respectively, and C(G) is the collection of
all possible cliques in G.

Proof. See Section 5.4.2.

Remark 5.1. As a matter of fact, the one-dimensional convex networks can
be represented as convex bipartite graphs [106], where for every vertex in one
disjoint set (e.g., sources), the vertices adjacent to it in the other disjoint set
(e.g., destinations) are consecutive. The graphs are called biconvex graphs,
if this property applies to both disjoint sets. The convex cellular networks
considered in [104] are representable by biconvex bipartite graphs, while here
we consider a superclass: convex bipartite graphs.

Example 5.1. Consider a five-user convex interference channel as shown
in Fig. 5.2, where the convexity applies to the sources only. According to
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Theorem 5.1, the optimal symmetric DoF, optimal sum DoF, and DoF region
are given respectively by d

sym

= 1

3

, d
sum

= 2, and

D =
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<
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;

. (5.10)
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Figure 5.2: A five-user one-dimensional convex interference channel. The left is the
network topology graph with convexity applied to the sources only, and the right is
its conflict graph.

5.3.2 Chordal Cellular Networks

In what follows, we consider a larger class of cellular networks, whose network
topologies are modeled by the following graphs.

Definition 5.6 (Chordal Bipartite Graphs [108]). A chordal bipartite graph
is an undirected bipartite graph in which every cycle of length at least six has
a chord.

The Chordal cellular networks are represented by chordal bipartite graphs
G. Regarding the characterization of chordal bipartite graphs, one approach
is based on a form of edge elimination [109]. One example of chordal cellular
networks is shown in Fig. 5.3, where the arrows indicate the transmission
from sources to destinations. The corresponding network topology is the
same graph ignoring link directions.

The message sets follow the general multiple unicast setting mentioned
earlier, where each message originates from a unique source and intends
for a unique destination. The source Si with message set W(Si) may have
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Figure 5.3: A chordal cellular network, which is a two-dimensional convex network
but is not necessarily a one-dimensional convex network.

multiple messages to a subset of destinations, and the destination Dj may
desire multiple messages, i.e., W(Di).

Let WM be a set of messages desired by some destinations. For instance,
if Wij 2 WM is a message desired by destination Dj and originated from
source Si, then Si ! Dj is a desired link. Otherwise, the connected links are
interfering links.

Before presenting the results, we introduce some useful definitions in
graph theory.

Definition 5.7 (Basic Graph Theoretic Definitions [106]).

• A line graph of G is another graph, denoted by Ge, that represents the
adjacencies of the edges in G.

• The square of a graph G, denoted by G2, is another graph with the same
vertex set, but in which two vertices are adjacent when the distance
between them is no more than 2. The distance between two vertices is
the number of edges in a shortest path connecting them.

• A subgraph of G = (V, E) containing a subset of vertices S (S ✓ V) is
said to be an induced subgraph, denoted by G[S], if for any pair of
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vertices u and v in S, uv is an edge of G[S] if and only if uv is an edge
of G.

Lemma 5.1. For the network topology graph G, given the message demand
set M, the induced subgraph G2

e [M] is the message conflict graph of G with
respect to message set M, in which G2

e is the square of line graph of G.

Proof. See Section 5.4.3.

By message conflict graphs G2

e [M], we obtain the following results.

Theorem 5.2. Orthogonal access is DoF optimal for multiple unicast TIM
problems in all chordal cellular networks with arbitrary message demands.
The optimal symmetric DoF, sum DoF and DoF region achieved by orthogonal
schemes are given by

d
sym

=
1

�(G2

e [M])
(5.11)

d
sum

= ↵(G2

e [M]) (5.12)

D =

⇢

(d
1

, . . . , d|M|) 2 R|M|
+

�

�

�

�

X

i2Cj

di  1, 8 Cj 2 C(G2

e [M])

9

=

;

(5.13)

where M is the desired message set, G2

e [M] is the induced subgraph of G2

e

associated with the message set M, and C(G2

e [M]) is the collection of all
possible cliques in G2

e [M].

Proof. See Section 5.4.4.

Remark 5.2. This theorem is the more general setting on both network
topology and message set. The interference channel is a special case, where
the message set M is selected to be {Wi|Si ! Di, 8 i}. The X network is
also a special case, where the message sets is corresponding to the network
topology, i.e., {Wij |Si ⇢ Dj , 8 j 2 Ri}.

Remark 5.3. As long as G is a chordal bipartite graph, then orthogonal
schemes are DoF optimal regardless of message demands. For instance, no
matter whether in interference channels or X networks, no matter whether
with convex message set as in [104] or non-convex message set, the orthogonal
schemes are DoF optimal.
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Example 5.2. For ease of illustration, we consider a subset of messages
M = {W

31

,W
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,W
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,W
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,W
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,W
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,W
37

} in the cellular network of Fig. 5.4
involving the source and destination pairs S
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. According to Theorem 5.2, we have
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= 3, and DoF region
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+
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9

=

;

(5.14)

where dij is the DoF associated with message Wij.
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Figure 5.4: A chordal cellular network. The left is the network topology graph G
with solid black lines being desired links and dashed red lines being interfering links,
and the right is its conflict graph G2

e [M].

In fact, the one-dimensional convex cellular networks in [104], and its
relaxed version with one side convexity, are special cases of the chordal
cellular networks. Thus, we have the following corollary, which is the direct
generalization of Theorem 5.1 with arbitrary message demands.

Corollary 5.1. Orthogonal access achieves optimal symmetric DoF, optimal
sum DoF, and optimal DoF region of all the one-dimensional convex cellu-
lar networks with general message demands and source and/or destination
convexity.

Proof. This corollary can be directly obtained from Theorem 5.2, owing to
the fact that convex and biconvex bipartite graphs are subclass of chordal
bipartite graphs. The detailed proof will be presented in Section 5.4.5.

Besides convex/biconvex bipartite graphs, the chordal bipartite graphs in-
clude forests (graphs without cycles), bipartite permutation graphs, bipartite
distance hereditary graphs, and di↵erence graphs [108].
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5.4 Proofs

5.4.1 Preliminaries

Definition 5.8 (More Graph Theoretic Definitions [106–108,110]).

• A graph G is said to be n : m-colorable if each vertex in G can
be assigned a set of m colors in which the colors are drawn from a
palette of n colors, such that any adjacent vertices have no colors in
common. Denote by �m(G) the minimum required number, such that
the fractional chromatic number �f (G) can be defined as

�f (G) = lim
m!1

�m(G)
m

= inf
m

�m(G)
m

. (5.15)

• A maximum clique is the a clique with the maximum possible size
in G. The clique number of G, denoted by !(G), is the number of
vertices in the maximum clique.

• The clique covering of G is a set of cliques such that every vertex of
G is a member of at least one clique. The clique covering number
of G is the minimum number of cliques in G required to cover the vertex
set of G.

• The perfect graph is a graph G in which the chromatic number of
every induced subgraph H of G equals to the clique number of this
subgraph, i.e., �(H) = !(H).

• A chordless cycle is a cycle with no edges between any non-consecutive
vertices. A hole is a chordless cycle with five or more vertices, and an
antihole is the complement of a hole.

• A graph is chordal (or triangulated) if there is no induced subgraph
with chordless cycles of length greater than three, i.e., every cycle with
length greater than three has a chord.

• A graph is weakly chordal (or weakly triangulated) if it is hole-free
and antihole-free in its induced graph.

• The complement of a graph G = (V, E), denoted by Ḡ, is another
graph containing the same vertices set V, but the edge uv (8 u, v 2 V)
is in Ḡ if and only if uv is not in G.
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• A separator of an edge e in G = (V, E) is a vertex subset S ⇢ V
whose removal partitions the graph G[V\S] into at least two connected
components, and the edge e belongs to one of these components. A
minimal separator is a separator with minimum number of vertices
such that there do not exist any smaller size of vertices in it as a
separator.

• A neighborhood of a vertex s, denoted by N (s), is a set of vertices
adjacent to s. A neighborhood of an edge e, denoted by N (e), is a
set of vertices, any of which can be seen1 by either endpoint of e. The
neighborhood of a set of vertices S is defined as N (S) , {N (s), s 2
S}\S.

• With regard to a set S of vertices in graph G = (V, E), Ḡ[S] may have a
number of disconnected components, denoted by Sj the j-th component.
An edge e of G[V\S] is said to be S-saturating if for each component
Sj, at least one endpoint of e sees all vertices of Sj.

• In G = (V, E), an edge e 2 E is LB-simplicial, if one of the following
conditions holds

– e [N (e) = V
– For each minimal separator S included in the neighborhood of e,

e is S-saturating.

By these definitions, we have the following lemma to recognize the weakly
chordal graph.

Lemma 5.2 ( [111]). A graph G = (V, E) is weakly chordal if every edge of
E is LB-simplicial.

Proof. We sketch the proof here, for the details please refer to [111]. To
prove this lemma, two facts were introduced.

• Given a graph G, an edge belongs to a hole cannot be LB-simplicial.

• Given a graph G, each antihole contains an edge that is not LB-
simplicial.

By contraposition, if every edge is LB-simplicial, then holes and antiholes
should not be presented in G. Therefore it yields the conclusion.

1A vertex a “sees” another vertex b refers to the adjacency of these two vertices.
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Definition 5.9 (Message Demand Graph). The message demand graph
is a directed graph defined as a bipartite graph with messages at one side
and destinations at the other side, with a directed edge from message to a
destination if this message intends for this destination, and with a directed
edge from destination to message if this destination has side information
of this message, i.e., the source from which this message originates is not
connected to the destination.

Lemma 5.3 ( [49,52]). The symmetric DoF of TIM problems are bounded
as

d
sym

 1

 
(5.16)

where  is the maximum cardinality of a message set that forms an acyclic
message demand graph.

5.4.2 Proof of Theorem 5.1

Proof of Symmetric DoF

To prove the optimality of symmetric DoF, we have the following four key
steps, which are outlined below.

1. The symmetric DoF value achieved by the orthogonal scheme is the
inverse of the fractional chromatic number of the conflict graph G, i.e.,
d

sym

� 1

�f (G)

.

2. Because the network topology is convex, the message conflict graph G is
a weakly chordal graph, which is perfect [110]. As such, the chromatic
number is equal to clique number, i.e., �(G) = !(G).

3. For each clique in the conflict graph G, the involved messages form an
acyclic demand graph, yielding the outer bound d

sym

 1

!(G)

.

4. By the relation �(G) � �f (G) = !f (G) � !(G), it follows that �(G) =
�f (G) = !f (G) = !(G) for perfect graph G, and thus the achievability
coincides with the outer bound.

Given the conflict graph G = (V, E) of the one-dimensional convex inter-
ference channels, we present the detailed proof in the following.
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Step I

By the definition of message conflict graph, any two vertices joint with
an edge in G are conflicting, such that the associated messages cannot be
delivered simultaneously without causing mutual interference. Thus, the
adjacent vertices (messages) in G should be activated (delivered) in di↵erent
time slots, and thus they should be assigned with di↵erent colors from a
graph coloring viewpoint.

A proper color assignment strategy in which no adjacent vertices in G
have any colors in common corresponds to an orthogonal scheduling scheme,
i.e., the number of colors assigned to one vertex is the number of delivered
symbols and the total number of required colors is the total number of
required time slots. As such, the maximum symmetric DoF achieved by
orthogonal schemes turn out to be the maximum ratio between the number
of colors assigned to each vertex and the total required number of colors.
According to the definition of fractional coloring, it is exactly the inverse
of fractional chromatic number, i.e., 1

�f (G)

. Thus, d
sym

= 1

�f (G)

is best

achievable symmetric DoF by orthogonal schemes.

Step II

To prove that the conflict graph G is perfect such that �(G) = !(G), we first
verify that G is a weakly chordal graph by the lemma bellow.

Lemma 5.4. The conflict graphs of one-dimensional convex interference
channels are weakly chordal.

Proof. Let us denote the network topology by H for presentational conve-
nience, which is a convex bipartite graph, and its conflict graph by G = (V, E).
We consider an arbitrary edge eij 2 E connecting two messages Wi and Wj

in conflict graph G, in which these two messages are conflicting, denoted by
Wi $Wj . In H, accordingly, there exist desired links Si ! Di and Sj ! Dj

in H, with either Si �Dj or Sj �Di.
In what follows, we will complete the proof according to Lemma. 5.2. If

eij [N (eij) = V , then eij is LB-simplicial by definition. Thus, we hereafter
focus on eij [N (eij) ⇢ V, and check if eij is LB-simplicial as well.

Let us consider a minimal separator of eij denoted by S , {s
1

, s
2

, . . . , s|S|} ⇢
V in G containing a subset of messages WS , which by definition must be in the
neighborhood of eij , i.e., S ✓ N (eij). Obviously, Wi,Wj /2WS . Otherwise,
S is not the separator of eij . Denote the involved sources and destinations
of these messages in H by SS and DS , respectively.
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Consider the convexity at the sources, and let the sources in SS be
arbitrarily placed and the destinations in DS be arranged from left to right,
without loss of generality, as

Ds1  Ds2  · · ·  Ds|S| (5.17)

where Ssi ! Dsi is the desired link delivering the message Wsi , for all si 2 S.
By the minimal separator S, the induced subgraph G[V\S] is partitioned

into at least two connected components. Denote by G[A] the connected
component to which eij belongs, and by G[B] the rest of the components. As
such, B 6= ; and V = A[B [ S. Since S is the minimal separator and lies in
the neighborhood of eij , we have

S ✓ N (eij), S ✓ N (B), (5.18)

B * N (eij), {i, j} * N (B). (5.19)

It follows that, for any s 2 S, it must see at least one endpoint of eij , i.e.,
Ws $Wi (or Ws $Wj) and at least one vertex (e.g., b) in B, i.e., Ws $Wb,
otherwise S is not the minimal separator, because S\s also separates eij
from b.

In general, the relative placement of the destinations in DS has three
possibilities:

• DS1 : to the left of the destinations Di and Dj

• DS2 : between the destinations Di and Dj

• DS3 : to the right of the destinations Di and Dj

where S = S
1

[ S
2

[ S
3

.
Since Wi $ Wj with Si � Dj or Sj � Di, it follows that for any Ds

between Di and Dj , we have either Si �Ds or Si �Ds by source convexity,
and thus s 2 N (eij). As B * N (eij), for any b 2 B, Db should not be placed
between Di and Dj .

As such, the destinations of interest are located without loss of generality
as follows

Ds1  · · ·  Dsk
| {z }

DS1

 Di  Dsk+1  · · ·  Dsl
| {z }

DS2

(5.20)

 Dj < Dsl+1  · · ·  Ds|S|
| {z }

DS3

< DB. (5.21)
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It is readily verified that destinations in DB should be placed to the right of
all the destinations in DS , otherwise S would not be the minimal separator.

In what follows, we consider the messages in S regarding the above
placement of their destinations.

• Case 1 - messages set WS1[S2 : Since S1

[S
2

✓ S ✓ N (B), there exists a
destination Db (b 2 B) such that for each sn 2 S

1

[S
2

, we have Ssn�Db

to guarantee Wsn $Wb. It is because Sb�Dsn will result in Wj $Wb,
which contradicts B * N (eij). Specifically, if Sb �Dsn , then by source
convexity, we have Sb � Dsm for all sm satisfying Dsn  Dsm  Db,
and then Sb �Dj , which lead to Wj $Wb and the contradiction.

Given Ssn �Db, by source convexity, it follows that Ssn �Dsm for all
sm satisfying Dsn  Dsm  Db. Accordingly in conflict graph G, we
have Wsn $W{j}[S\{s1,...,sn} for each sn. It follows that G[S1

[ S
2

] is
a clique and every vertex in S

1

[ S
2

sees {j} [ S\{S
1

[ S
2

}. Thus, in
Ḡ[S], each vertex in S

1

[ S
2

is isolated from all others and seen by Wj .

• Case 2 - messages set WS3 : Let us start with the farthest desti-
nation in DS3 from Di, i.e., Ds|S| , followed by the closer ones in
{Ds|S|�1

, . . . , Dl+1

} one by one recursively.

Since s|S| 2 N (eij) in G, i.e., Ws|S| $ Wi (or Ws|S| $ Wj), there are
two possible connectivities between desired links Si ! Di (or Sj ! Dj)
and Ss|S| ! Ds|S| in H.

(a) When Ss|S|�Di (or Ss|S|�Dj): With source convexity, Ss|S|�Dsm ,
and thus, Ws|S| $Wsm , for all sm 2 S

3

. As such, Ws|S| is isolated

component in Ḡ(S), and seen by either Wi or Wj .

(b) When Si �Ds|S| (or Sj �Ds|S|): Owing to the source convexity
property, Si � Dsm (or Sj � Dsm), for all sm 2 S

3

. Therefore,
Wi $ Wsm (or Wj $ Wsm), for all sm 2 S

3

. In this case, no
matter whether Ḡ[S

3

] is connected, disconnected or empty, Wi (or
Wj) will see all the elements in WS3 .

For the rest vertices in S
3

, we consider two aforementioned cases
whether Si (or Sj)�Dsn or Ssn�Di (or Dj) for sn = {s|S|�1

, . . . , sl+1

}.
As a result, for any sn 2 S

3

, there are two categories:

– Wsn is isolated component in Ḡ[S], and seen by Wi or Wj .

– W{sn,sn�1,...,sl+1} are seen by Wi or Wj regardless of the connec-
tivity in Ḡ[S].
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As such, in Ḡ[S], the vertices in S
3

either are isolated components with
one vertex or belong to a connected component with multiple vertices.

Figure 5.5: Illustration of minimal separator S in G.

To sum up, G[S
1

[ S
2

] is a clique and each vertex in S
1

[ S
2

sees the
vertices in {j}[S

3

, such that each vertex in S
1

[S
2

is an isolated component
in Ḡ[S] and seen by Wj . Although G[S

3

] is not generally a clique, the vertices
in S

3

are either isolated components with single vertex in Ḡ[S] seen by one
endpoint of eij , or in a connected component with multiple vertices in Ḡ[S] in
which all vertices are seen by one endpoint of eij . Hence, in each component
in Ḡ(S), all vertices are seen by at least one endpoint of eij , and thus eij is
S-saturating. An illustration is shown in Fig. 5.5. Due to S ✓ N (eij), eij is
LB-simplicial. This applies to any edge in E . Hence, G is a weakly chordal
graph by Lemma 5.2.

As weakly chordal graphs are perfect graphs [108,110], it follows that the
chromatic number equals to the clique number for every induced subgraph.
Thus, we have �(G) = !(G).

Step III

For each clique in the conflict graph G, the involved messages form an acyclic
demand graph, whose cardinality yields an outer bound for the symmetric
DoF by Lemma 5.3. Thus, among all cliques, the tightest outer bound is
given by the clique with the maximum size, i.e., clique number. As such, we
have the outer bound

d
sym

 1

!(G) (5.22)
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This is corroborated by the following lemma.

Lemma 5.5. For each clique in conflict graph G, the involved messages form
an acyclic demand graph, such that the sum DoF value of involved messages
is no more than 1.

Proof. Consider without loss of generality a clique in G with vertices Qn =
{q

1

, . . . , q|Qn|}, which is an induced graph of G, i.e., G[Qn]. In G[Qn], any
two messages interfere one another. In the original network topology graph
H, the message Wqi originates from Sqi and intends for Dqi . Assume without
loss of generality the destinations DQn are arranged from left to right as

Dq1  Dq2  · · ·  Dq|Qn| . (5.23)

For instance, because of Wq1 $Wq|Qn| , there are two interfering possibilities
between desired links Sq1 ! Dq1 and Sq|Qn| ! Dq|Qn| , i.e., Sq1 �Dq|Qn| or
Sq|Qn| � Sq1 . By source convexity, it follows that Sq1 �Dk (or Sq|Qn| � Sk),
for all k 2 Qn\{q1} (or k 2 Q\{q|Qn|}). Correspondingly, according to the
definition of demand graph, either of the following two directed edges is
missing:

• from Dqk to Wq1 , 8 qk = {q
2

, . . . , q|Qn|}, or

• from Dqk to Wq|Qn| , 8 qk = {q
1

, . . . , q|Qn|�1

}.
By this, we give the proof by contradiction. Assume there is a cycle in the

demand graph involving messages WQn , thus at least one of Wq1 and Wq|Qn|
should not be in the cycle, because there is no incoming edge at message
Wq1 (or Wq|Qn|). Thus, we remove one of q

1

and q|Qn| from Qn and form
a new message set, denoted by WQn�1 . The induced subgraph G[Qn�1

] is
still a clique. Following the same argument above, at least one message in
WQn�1 should not be included in a cycle, and therefore we reduce the size of
message set to n�2, yielding WQn�2 with cardinality n�2. By induction, we
finally reduce the message set to Q

2

, where only two messages are involved.
By assumption, there is a cycle in demand graph with involving messages
WQ2 , and thus these two messages should be disconnected in G[Q

2

], which
is contradict with the fact that G[Qi] is a clique.

As such, there should not be a cycle in the demand graph involving
messages WQ, if the induced subgraph G[Q] is a clique. By [104, Lemma 1],
it follows that

X

q2Q
dq  1. (5.24)

This completes the proof.
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Step IV

By the definition of perfect graph G, we have �(G) = !(G). Because fractional
chromatic (resp. clique) number �f (G) [resp. !f (G)] is the linear programming
relaxation of chromatic number �(G) [resp. !(G)], and �f (G) and !f (G) are
solutions of the dual problems [106], we have

!(G)  !f (G) = �f (G)  �(G) (5.25)

For the perfect graph G, all these four quantities are equal. Hence, the
achievability and the outer bound coincide.

All in all, we conclude that the symmetric DoF are achievable by orthog-
onal schemes, yielding d

sym

= 1

�(G)

= 1

!(G)

. This completes the proof of the
symmetric DoF.

Proof of Sum DoF

Achievability

The message vertices that are not adjacent to one another in the conflict
graph G can be scheduled at the same time. This set of vertices forms an
independent set. Thus, the largest achievable sum DoF value is the size of
the largest independent set, i.e., independent set number ↵(G), such that we
have the sum DoF inner bound

d
sum

� ↵(G). (5.26)

Outer Bound

As in Lemma 5.5, each clique in conflict graph leads to an acyclic demand
graph, such that for the messages involved in the clique, the sum DoF are
bounded by 1, i.e.,

X

i2C (G)

di  1, (5.27)

where C (G) is a clique in conflict graph G.
Given a set of cliques C in conflict graph G, in which each vertex is

included at least once, it follows that the union of these cliques gives the
collection of all messages. As such, the sum DoF can be bounded by

d
sum

=
X

Cj2C

X

i2Cj(G)

di  |C| (5.28)

146



CHAPTER 5. TOPOLOGICAL INTERFERENCE MANAGEMENT:
THE OPTIMALITY OF ORTHOGONAL ACCESS

where Cj(G) is one clique in C.
According to the definition of clique covering, the tightest outer bound

will be given by the clique covering number:

d
sum

=
X

Cj2C

X

i2Cj(G)

di  ✓(G). (5.29)

Optimality

Due to the duality of the maximum clique (resp. maximum independent set)
problem and the minimum proper coloring (resp. minimum clique covering)
problem, we have

↵(G) = !(Ḡ), ✓(G) = �(Ḡ). (5.30)

According the weakly perfect graph theorem [108], a graph is perfect if and
only if its complement is perfect. Thus, the complement of conflict graph Ḡ is
perfect and therefore !(Ḡ) = �(Ḡ). It follows immediately that ↵(G) = ✓(G),
indicating that the achievability coincides with the outer bound, i.e., the
optimal sum DoF are d

sum

= ↵(G) = ✓(G).

Proof of DoF Region

Consider the conflict graph G, which is a weakly chordal graph and thus a
perfect graph.

Achievability

Given an independent (or stable) set S with S 2 S(G), where S(G) is the
collection of all independent sets in G, let us define the incidence vector
xS 2 R|V| with i-th element given by

xSi =

⇢

1, if i 2 S
0, otherwise.

(5.31)

Accordingly, we define the independent set polytope [112]2 as the convex hull
of the incidence vectors of its independent sets, i.e.,

K(G) = conv{xS |8 S independent set of G.} (5.32)

2A polytope is the convex hull of its vertices.
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which has an equivalent formulation

K(G) =

8

<

:

x 2 {0, 1}|V|
�

�

�

�

X

i2Q
xi  1, Q clique in G

9

=

;

. (5.33)

The incidence vector xS can be associated with a one-shot proper coloring
strategy, in which the vertices in independent set S are assigned with same
colors while the rest ones are not assigned with any colors. This color
assignment yields an achievable DoF tuple with di = xSi for all i 2 V.

Since every incidence vector (i.e., the vertices of independent set polytope)
can be associated with a proper vertex coloring, the whole independent set
polytope can be achievable by time sharing, and thus o↵ers us an achievable
DoF region with orthogonal access.

Outer Bound

From Lemma 5.5, for every clique in G, the involved messages form an acyclic
demand graph, and thus o↵er an outer bound. Thus, the overall outer bound
region can be given by

Do =

8

<

:

(d
1

, . . . , d|V|) 2 R|V|
+

�

�

�

�

X

i2Cj

di  1, 8 Cj 2 C(G)

9

=

;

. (5.34)

where C(G) is the collection of all cliques in G.
The outer bound region is exactly a relaxation of the independent set

polytope by replacing 0� 1 with real numbers, i.e.,

Kf (G) =

8

<

:

x 2 R|V|
+

�

�

�

�

X

i2Q
xi  1, Q clique in G

9

=

;

(5.35)

which is also called fractional independent set polytope. It has been shown
by Chvátal [113] that if G is perfect, then K(G) = Kf (G), which means the
vertices of polytope Kf (G) are integral, i.e., all the corner points have integral
coordinates.

Clearly, it follows immediately that Do = K(G), which means achievability
coincides with outer bound. As such, the orthogonal schemes achieve the
optimal DoF region.

All in all, orthogonal access achieves the optimal symmetric DoF, optimal
sum DoF and optimal DoF region, and therefore it is DoF optimal for all
one-dimensional convex interference channels.
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5.4.3 Proof of Lemma 5.1

We show by construction that G2

e [M] is the message conflict graph of G with
message set M.

First, we consider an arbitrary cellular network topology G, where each
source has one message to each connected destination, i.e., WSi = {WRi}
and W(Dj) = {WTj}. Each edge (e.g., Si ! Dj) in G corresponds to a
message. As such, its line graph Ge represents the adjacency of messages,
where the messages (i.e., edges in G) with common sources or destinations are
adjacent in Ge. These adjacent messages cannot be orthogonally delivered at
the same time and hence are conflicting. In addition, for two messages Wij

(Si ! Dj in G) and Wkl (Sk ! Dl in G), either Si ! Dl or Sk ! Dj will
lead to conflict between Wij and Wkl, because these two messages cannot
be delivered together without mutual interference. Hence, any two edges
connected with one common edge in G, i.e., any two messages with distance
of 2 in Ge are conflicting as well. As such, connecting any two messages with
distance of 2 in Ge by an edge gives us the square of Ge, i.e., G2

e . In G2

e , any
two adjacent messages conflict one another, and in turn G2

e is the message
conflict graph with overall message set.

Second, the conflict between messages is only determined by the network
topology and irrelative to the message set. If some edges in G are interfering
links, then they will have not impact on the conflict of other messages.
Removing the messages (i.e., vertices) associated with these interfering links
from G2

e will not break the conflict condition. As such, given the message
set M, the vertices associated with messages out of WM together with the
involved edges will be removed from G2

e , which yields an induced subgraph
G2

e [M]. The conflict between messages WM is inherited. Thus, G2

e [M] is the
conflict graph with respect to messages WM.

5.4.4 Proof of Theorem 5.2

Proof of Symmetric DoF

In general, Theorem 5.2 is a wider and stronger generalization of Theorem 5.1.
In what follows, we first sketch the main steps in the proof, which is similar
to that of Theorem 5.1, and more details will be given afterwards.

1. As G2

e [M] is the induced message conflict subgraph with message set
M, the symmetric DoF value achieved by orthogonal schemes is the
inverse of the fractional chromatic number of this conflict graph, i.e.,
d

sym

= 1

�f (G2
e [M])

.
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2. Since G is a chordal bipartite graph, which is weakly chordal [108],
then the conflict graph G2

e is also weakly chordal [114] and therefore
perfect. According to the definition of perfect graphs, for any induced
subgraph with vertex set M, we have �(G2

e [M]) = !(G2

e [M]).

3. For every clique in induced conflict subgraph G2

e [M], the involved
messages form an acyclic demand graph. The clique with largest size
dominates the symmetric DoF. As such, the symmetric DoF are outer
bounded by the inverse of clique number of G2

e [M], i.e., d
sym

 1

!(G2
e [M])

.

4. Due to the relation !  !f = �f  � and � = ! for perfect graphs
G2

e [M], it follows that ! = !f = �f = � and thus the achievability
coincides with the outer bound.

The detailed proofs are presented as follows.

Step I

As proved in Lemma 5.1, G2

e [M] is the message conflict graph of G with
regard to message set M. Following the same arguments in the proof of
Theorem 5.1, the adjacent vertices (messages) in G2

e [M] should be assigned
with di↵erent colors. A proper color assignment strategy corresponds to
an orthogonal scheduling scheme. As such, the maximum symmetric DoF
achieved by orthogonal schemes turn out to be the inverse of fractional
chromatic number, i.e., 1

�f (G2
e [M])

. Thus, d
sym

= 1

�f (G2
e [M])

is best achievable

symmetric DoF by the orthogonal scheme.

Step II

First, the topology graph G is a chordal bipartite graph, and thus it is weakly
chordal [108] 3.

Then, we show that the message conflict graph G2

e of chordal cellular
networks is weakly chordal as well with aid of the following lemma.

Lemma 5.6 ( [114]). Given a graph G, if G is weakly chordal, then G2

e is
also weakly chordal.

Proof. We sketch the proof in short and the detailed proof can be found
in [114]. The proof is based on the following two facts:

3Note that the chordal bipartite graph is bipartite and weakly chordal, but not chordal.
Although this terminology has caused confusion, it becomes well-accepted by the graph
theory community.
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• If G has no induced cycles on at least k vertices, where k � 4, then G2

e

has no induced cycles on at least k vertices.

• If G is weakly chordal, then G2

e does not contain the antihole as an
induced subgraph.

If G is weakly chordal, then G contains neither a hole nor an antihole, and
thus G2

e is also weakly chordal according to the above two facts.

Lastly, weakly chordal graphs are perfect, such that for any induced
subgraph G2

e [M] by M, we have �(G2

e [M]) = !(G2

e [M]).

Step III

For a given induced subgraph G2

e [M], every clique with involved messages
forms an acyclic demand graph, whose cardinality yields an outer bound
for the symmetric DoF according to Lemma 5.3. Thus, among all cliques,
the tightest outer bound is given by the clique with the maximum size, i.e.,
clique number. As such, we have the outer bound

d
sym

 1

!(G2

e [M])
(5.36)

This is corroborated by the following lemma.

Lemma 5.7. Given a chordal bipartite graph G with message set M and
its induced conflict subgraph G2

e [M], the demand graph of the associated
messages of every clique is acyclic, such that the sum DoF value of these
involved messages is no more than 1.

Proof. Let us consider the whole conflict graph G2

e first. Given a set of
messages WL = {Wi1i2 ,Wi3i4 , . . . ,Win�1in}, the associated vertices form a
clique in G2

e . Suppose there exist a shortest chordless cycle in demand graph,
which is corresponding to the following connectivity in network topology

Si1 ! Di2 9 Si3 ! Di4 9 Si5 ! · · ·! Din 9 Si1 . (5.37)

Because of the chordless cycle, all the sources are distinct, and so are the
destinations. Otherwise, there should exist a shorter cycle. It is readily
verified that n has to be even and n � 6. It is because the demand graphs
are bipartite graph, and for any two messages Wikik+1 and Wijij+1 in WL,
Dij+1 9 Sik and Dik+1 9 Sij should not present simultaneously, i.e., n 6= 4,
otherwise two messages Wikik+1 and Wijij+1 are not adjacent in G2

e , which
results in a contradiction.
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When n = 6, according to the cycle (5.37), it follows that

Si1 ⇢ Di4 , Si3 ⇢ Di6 , Si5 ⇢ Di2 . (5.38)

Together with the desired links

Si1 ! Di2 , Si3 ! Di4 , Si5 ! Di6 (5.39)

we conclude that there is a chordless cycle in G, namely,

Si1 ! Di2 � Si5 ! Di6 � Si3 ! Di4 � Si1 (5.40)

with length six.
When n � 8, according to the cycle (5.37), it follows that

Si1 ⇢ Di4 , Di6 , Di8 , . . . , Si3 ⇢ Di6 , Di8 , . . . (5.41)

Si5 ⇢ Di8 , . . . , Di2 , Si7 ⇢ . . . , Di2 , Di4 . (5.42)

Considering Di2 , Si3 , Di4 , Si5 , Di6 , Si7 , we have a chordless cycle with length
six, i.e.,

Si3 ! Di4 � Si7 ⇢ Di2 � Si5 ! Di6 � Si3 . (5.43)

Figure 5.6: Illustration of the proof for Lemma 5.7. The black and red dashed
arrows form a cyclic demand graph, the black arrows and lines are edges in topology
graph, and the purple lines indicate a cycle with length six in topology graph.

Thus, if there is a cycle in the demand graph corresponding to a clique
in G2

e as shown in Fig. 5.6, then there is at least a cycle with length six in
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topology graph G. By contraposition, for a chordal bipartite graph G where
no cycles with length greater than four exist, every clique with messages WL
in the conflict graph G2

e leads to an acyclic demand graph with regard to
WL.

In any subgraph induced by M, e.g., G2

e [M], the clique in G2

e [M] is still a
clique in G2

e . Thus, the above argument still holds, i.e., each clique in G2

e [M]
corresponds to an acyclic demand graph. By [104, Lemma 1], it follows that
the sum DoF value of the corresponding messages involved in the clique is
no more than 1. This completes the proof.

In fact, based on the proof of Lemma 5.7, we can make a stronger claim.

Lemma 5.8. Any clique Q in G2

e serves as an outer bound, i.e.,
X

q2Q
dq  1, (5.44)

if the network topological graph G is C
6

-free, i.e., there do not exist induced
subgraphs with length-six cycles in G.

Proof. The proof of this lemma can be directly extended from the above
proof. Since if there exists a cycle in demand graphs, then these should exist
a length-six cycle in G. By contraposition, if G is C

6

-free, then cliques in G2

e

correspond to acyclic demand graphs, and thus serve as outer bounds.

By Lemma 5.3 and Lemma 5.7, the tightest outer bound on symmetric
DoF is determined by the clique with the largest size. Thus, the clique
number o↵ers an outer bound d

sym

 1

!(G2
e [M])

.

Step IV

Since G2

e is weakly chordal and therefore perfect, every induced subgraph
G2

e [M] is also perfect [108]. By the definition of perfect graph, we have
�(G2

e [M]) = !(G2

e [M]). Because fractional chromatic (resp. clique) number
�f (G2

e [M]) [resp. !f (G2

e [M])] is the linear programming relaxation of chro-
matic number �(G2

e [M]) [resp. !(G2

e [M])], and �f (G2

e [M]) and !f (G2

e [M])
are solutions of the dual problems [106], we have

!(G2

e [M])  !f (G2

e [M]) = �f (G2

e [M])  �(G2

e [M]) (5.45)

For the perfect graph G2

e [M], all these four quantities are equal. As such,
orthogonal schemes achieve the optimal symmetric DoF d

sym

= 1

�(G2
e [M])

=
1

!(G2
e [M])

.
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Proof of Sum DoF

The proof of sum DoF is similar to that of Theorem 5.1. Given an induced
conflict subgraph G2

e [M], the messages in any independent set can be sched-
uled at a single time slot without causing any mutual interference. As such,
the independent set number yields the maximum achievable sum DoF

d
sum

= ↵(G2

e [M]). (5.46)

On the other hand, by Lemma 5.7, each clique in G2

e [M] leads to an
acyclic demand graph outer bound, such that for the messages involved in
the clique, the sum DoF are bounded by 1, i.e.,:

X

i2Cj

di  1, 8 Cj 2 C(G2

e [M]) (5.47)

where C(G2

e [M]) is the collection of all possible cliques in G2

e [M]. Suppose
there exists a set of cliques Cc(G2

e [M]) such that each vertex is included at
least once. Thus, we have

d
sum

=
X

Cj2Cc

X

i2Cj

di  |Cc|. (5.48)

According to the definition of clique covering, the tightest outer bound is
given by the clique covering number, i.e.,

d
sum

=
X

Cj2Cc

X

i2Cj

di  ✓(G2

e [M]) (5.49)

Due to the duality between the maximum independent set (resp. maximum
clique) problem and minimal clique covering (resp. minimum proper coloring)
problem, in the induced subgraph G2

e [M], we have

↵(G2

e [M]) = !(G2

e [M]), ✓(G2

e [M]) = �(G2

e [M]) (5.50)

where G2

e [M] is the complement graph of G2

e [M]. Because G2

e is perfect, then
its complement G2

e is also perfect [108], such that

�(G2

e [M]) = !(G2

e [M]) (5.51)

where G2

e [M] is the induced subgraph of G2

e . It is obvious that G2

e [M] and
G2

e [M] yield the same subgraph. Thus, ↵(G2

e [M]) = ✓(G2

e [M]), showing that
the achievability and outer bound coincide. This completes the proof of sum
DoF.
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Proof of DoF Region

Consider the conflict graph G2

e [M] with a message set M. Because G2

e is a
weakly chordal graph and thus perfect, its induced subgraph G2

e [M] is perfect
as well [108]. The achievability and outer bound proofs are similar to those
of Theorem 5.1.

Achievability

Regarding the graphs G2

e [M], given an independent (or stable) set S with
S 2 S(G2

e [M]), where S(G2

e [M]) is the collection of all independent sets in
G2

e [M], let us define the incidence vector xS 2 R|M| with i-th element given
by

xSi =

⇢

1, if i 2 S
0, otherwise.

(5.52)

Similarly, we have the independent set polytope [112]

K(G2

e [M]) =

8

<

:

x 2 {0, 1}|M|
�

�

�

�

X

i2Q
xi  1, Q clique in G2

e [M]

9

=

;

(5.53)

which gives the achievable region.

Outer Bound

From Lemma 5.7, for every clique in G, the involved messages form an acyclic
demand graph, and thus o↵er an outer bound. The outer bound region is
exactly a relaxation of the independent set polytope by replacing 0� 1 with
real numbers, i.e., fractional independent set polytope,

Kf (G2

e [M]) =

8

<

:

x 2 R|M|
+

�

�

�

�

X

i2Q
xi  1, Q clique in G2

e [M]

9

=

;

. (5.54)

It has been shown by Chvátal [113] that if G2

e [M] is perfect, K(G2

e [M]) =
Kf (G2

e [M]), which means the vertices of polytope Kf (G2

e [M]) are integral,
i.e., all the corner points have integral coordinates.

Clearly, it follows immediately that achievability coincides with outer
bound. As such, the orthogonal schemes achieve the optimal DoF region.

All in all, orthogonal access has been shown to achieve the optimal
symmetric DoF, optimal sum DoF and optimal DoF region, and therefore it
is DoF optimal for all the chordal cellular networks.
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5.4.5 Proof of Corollary 5.1

What is left to prove is to verify that convex bipartite graphs are chordal
bipartite graphs. It is only need to show that there do not exist chordless
cycles with length more than four.

We consider the one side convexity at sources, and the proof with regard
to the convexity at destinations follows similarly. Assume by contradiction
that there exists a chordless cycle with length n

S
1

⇢ D
2

� S
3

⇢ · · · ⇢ Dn � S
1

(5.55)

where n � 6 and n is even. We hereafter focus on the induced subgraph by
these sources and destinations, denoted by G[1 : n], and consider the relative
placement of {D

2

, D
4

, . . . , Dn}.
According to the one-dimensional convexity property at sources, the

destinations connected to a source are consecutive in G[1 : n]. It follows
that every source Sk (k 2 {1, 3, . . . , n � 1}) is adjacent to two consecutive
destinations Dk�1

and Dk+1

in G[1 : n], where the indices are taken modulo
n. As such, any two destinations in {D

2

, D
4

, . . . , Dn} are consecutive. It is
impossible for the one-dimensional convex networks, because any placement
of destinations has an order such that the head and tail destinations are
not consecutive, for more than two destinations, i.e., n � 6. Consequently,
there should not exist a chordless cycle with length greater than four, and
therefore by definition convex bipartite graphs are chordal bipartite graphs.

5.5 Summary and Discussions

5.5.1 Summary

Orthogonal access has been shown to achieve the optimal symmetric DoF,
optimal sum DoF, and optimal DoF region of multiple unicast TIM problems
with arbitrary message sets in chordal cellular networks in which these do
not exist cycles with length greater than four. According to the equivalence
between TIM and index coding problems with regard to linear solutions
[49], the orthogonal schemes achieve symmetric capacity, sum capacity, and
capacity region of the corresponding index coding problems. Remarkably, as
demonstrated by the powerful graph theoretic tools, the physical convexity
in cellular network, generally speaking the absence of long cycles (i.e., with
length no less than six) in network topology graphs, turns out to be the
fundamental limitation.
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5.5.2 Discussions

In fact, orthogonal access is equivalent to finding the induced matchings [115]
in the network topology graph, in which no edges in an induced matching are
joint with an edge. Finding the induced matchings of G can be translated
to finding the conventional matching of its square of line graph, i.e., G2

e . As
claimed earlier, the symmetric DoF can be done by finding the maximal
clique, the sum DoF by finding the maximum independent set, and the DoF
region characterization by finding all cliques. As such, the computational
complexity of characterizing DoF in chordal cellular networks is polynomial-
time. On the other hand, given a set of messages M, calculating the weighted
sum DoF of these messages is equivalent to finding the maximum weighted
independent set of G2

e [M], where the weights of vertices in G2

e [M] can be the
weights of individual DoF.

The optimality of orthogonal access works for arbitrary message set,
because of the special property of chordal cellular networks, whose conflict
graphs are weakly chordal. The message conflict graph associated with any
message set can be regarded as the induced subgraph of the square of line
graph of network topology. By the definition of (weakly) chordal graphs, any
induced subgraph of (weakly) chordal graphs are still (weakly) chordal. As
such, the optimality holds for any message set.

As demonstrated in [116–118], finding a minimum vertex coloring of a
weakly chordal graph runs in O(mn), where n is the number of vertices and
m is the number of edges. As in [104], the greedy algorithm is optimal for
biconvex network, because the conflict graph of biconvex networks is chordal,
which is perfectly orderable, implying the optimality of greedy algorithms
according to the definition of perfectly orderable graphs [119]. The conflict
graph of biconvex bipartite complies with perfect elimination order. Weakly
chordral graphs are in general not perfectly orderable. But P5-free weakly
chordal graphs are perfect orderable [120]. As such, if the conflict graphs
of chordal cellular networks are P5-free, then greedy coloring (i.e., edge
scheduling) schemes will lead to optimal solutions.

In fact, some established general solutions to TIM and index coding
problems [49,98,103] can be applied here, so that new insights emerge taking
into account some properties of chordal cellular networks. For instance, if
the transmitters are equipped with multiple antenna to form MISO cellular
networks, according to the conclusion in [103], then the additional transmit
antennas are useless in terms of DoF and the optimality of orthogonal
scheme still holds in MISO chordal cellular networks. Due to the uplink and
downlink duality of multiple unicast TIM problems with linear schemes [49],
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the optimality of orthogonal access still holds for the uplink channel of
chordal cellular networks, in which the conflict graphs of uplink and downlink
channels are exactly the same.

5.5.3 Insight to Practical Scenarios

As argued earlier, in practice, the wireless networks are always fully connected,
no matter how weak the links are. One interesting question is how much
insight obtained in TIM settings can be translated to practical scenarios.
This question is still challenging at this stage. As a first step, we perform
some simulations to see the behavior of the DoF-optimal schemes in the
finite SNR regime.

As an illustrative example, we consider an interference channel with 10
transmitter-receiver pairs. The channel coe�cient is modeled taking both
path loss and small-scale fading into account, as

hji = c ·
q

d�3

ji · hw (5.56)

where c is a constant, dji is the distance between the transmitter i to
the receiver j, and hw is Gaussian distributed with zero mean and unit
variance. The transmitters and receivers are located in two parallel straight
lines. Every two transmitters/receivers are spaced with 500 meters and each
transmitter/receiver pair is spaced with 500 meters as well. At the receiver
side, interference is treated as noise.

For this interference channel with no CSIT, conventional wisdom relying
on fully connected topological graphs suggests either activating all transmit-
ters simultaneously and treating interference as noise at receivers (denoted
by “TIN”) or scheduling one transmitter per time slot so as to completely
avoid interference at each receiver (referred to as “TDMA”). Under the TIM
setting, we distinguish the weak channels from the strong ones by setting a
threshold, such that the channel is modeled to be present if the path loss
value is beyond this threshold and to be absent if otherwise. By adjusting
the threshold, the connectivity graphs can be distinct, and so are the corre-
sponding message conflict graphs. Intuitively, if the threshold is higher, the
topology can be denser, while the topology graph will be sparser if it is lower.
Since the cellular networks of interest are one-dimensional convex, orthogonal
access built on resultant conflict graphs is the DoF-optimal strategy for TIM
setting.

Fig. 5.7 shows the throughput performance per user at finite SNR with
di↵erent transmission strategies and di↵erent threshold values for the TIM
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Figure 5.7: Throughput versus SNR at finite SNR with di↵erent thresholds.

setting. When the threshold is set to be infinity, the message conflict graph
is fully connected, and thus orthogonal access degrades to TDMA. On the
other hand, if the threshold is set to be zero, the message conflict graph
is empty, such that orthogonal access is incline to activate all transmitters
simultaneously, which results in the TIN scheme. Nevertheless, with a fairly
reasonable threshold, the network is partially connected. With respect to
the partial connectivity, the transmitters are activated according to conflict
graphs, such that orthogonal access achieves optimal DoF at infinite SNR
and attains some gains at finite SNR. As shown in Fig. 5.7, within a range of
SNR (i.e., 5dB - 25dB) in which the real systems usually operate, orthogonal
access suggested under TIM settings outperforms both TIN and TDMA
schemes. That is what the TIM results suggest to practical system design.
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Chapter 6

Topological Interference
Management with
Transmitter Cooperation

As shown in the previous chapter, the original multiple-unicast TIM problems
mainly focus on cellular networks with no CSIT except for the knowledge
of the connectivity graph via topological feedback. In this chapter, the
emphasis will be placed specifically on interference channels, where one
transmitter servers one single receiver. We consider a similar problem with
sole topological knowledge but in a distributed broadcast channel setting, i.e.
a network where transmitter cooperation is enabled.

We show that the topological information can also be exploited in this case
to strictly improve DoF as long as the network is not fully connected, which
is a reasonable assumption in practice. Three inner bounds based on graph
coloring, interference alignment, and hypergraph covering, are proposed,
together with three outer bounds built upon generator sequence, compound
settings, and index coding, by all of which we characterize the symmetric DoF
for so-called regular networks with constant number of interfering links, and
identify the su�cient and/or necessary conditions for the arbitrary network
topologies to achieve a certain amount of symmetric DoF.
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CHAPTER 6. TOPOLOGICAL INTERFERENCE MANAGEMENT
WITH TRANSMITTER COOPERATION

6.1 Introduction

Recently, the benefit of topological information to network performance was
intensively revealed by [49–51,101,104,121–123], in the context of interfer-
ence and X channels with topology information from di↵erent perspectives,
focusing on symmetric DoF. These various topological interference man-
agement approaches arrived at a common conclusion that the symmetric
DoF can be significantly improved with the sole topological feedback beyond
time-division, provided that the network is partially connected. In [49], the
TIM problem was bridged with the index coding problem [52,96–98,124,125],
so that the optimal solution to the latter is the outer bound of the former,
and the linear solution to the former is automatically transferrable to the
latter. The ensuing extension in [98] that considered the TIM problem as an
application of index coding problems and attacked it from an interference
alignment perspective, covers a wider class of network topologies, partly
settling the problem for the sparse networks with each receiver interfered by
at most two interfering links.

Given such promising results in interference and X channels, a logical
question is whether the TIM framework can somehow be exploited in the
context of an interference channel where a message exchange mechanism
between transmitters pre-exists. For instance, in future LTE-A cellular
networks, a backhaul routing mechanism ensures that base stations selected
to cooperate under the coordinated multiple point (CoMP) framework receive
a copy of the messages to be transmitted. Still, the exchange of timely
CSI is challenging due to the rapid obsolescence of instantaneous CSI and
the latency of backhaul signaling links. In this case, a broadcast channel
over distributed transmitters (a.k.a. network MIMO) ensues, with a lack
of instantaneous CSIT. The problem raised by this chapter concerns the
use of topology information in this setting. We follow the same strategy
as [49, 50] in targeting the symmetric DoF as a simple figure of merit. By
resorting to interference avoidance and alignment techniques, we characterize
the achievable and/or optimal symmetric DoF of this distributed BC with
topology information in several scenarios of interest. More specifically, our
contributions are as follows:

• We propose an interference avoidance approach built upon fractional
selective graph coloring over the square of line graph of the original
network topology. In doing so, the optimal symmetric DoF of three-cell
networks with all possible topologies are determined, by a new outer
bound on the basis of the concept of generator sequence.
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• We propose an interference alignment based approach to identify the
achievable symmetric DoF of so-called regular networks, which cor-
respond to networks with constant number of interfering links. The
optimal symmetric DoF of the Wyner-type regular networks (i.e., with
only one interfering link) are characterized with the aid of an outer
bound derived based on compound settings.

• We show the su�cient conditions for arbitrary network topologies to
achieve a certain amount of symmetric DoF. These su�cient conditions
are in the form of the relations of transmit sets (i.e., the indices of
transmitters that connected to one receiver) associated with some
receivers, implying the alignment feasibility of the messages desired
by these receivers. Such relations of transmit sets lead us to the
construction of a hypergraph, by which a symmetric DoF inner bound
is consequently established via hypergraph covering.

• We also bridge our problem to index coding problems, letting outer
bounds of the latter serve our problem, by which we identify the
su�cient and necessary condition when time division is symmetric DoF
optimal.

The rest of this chapter is organized as follows. The system model and
some basic definitions are given in the coming section. In Section 6.3, we
summarize the main results with three outer bounds and several inner bounds
of achievability schemes built upon interference avoidance and alignment
techniques, followed by in Section 6.4 two illustrative examples to show the
tightness of outer and inner bounds. The general proofs are presented in
Section 6.5. We conclude the chapter in Section 6.6.

Notation: Throughout this chapter, we define K , {1, 2, . . . ,K}, and
[n] , {1, 2, . . . , n} for any positive integer n. Let A, A, and A represent
a variable, a set, and a matrix/vector, respectively. In addition, Ac is the
complementary set of A, and |A| is the cardinality of the set A. Aij or
[A]ij presents the ij-th entry of the matrix A, and Ai or [A]i is the i-th
row of A. AS , {Ai, i 2 S}, AS , [i2SAi, and AS denotes the submatrix
of A with the rows out of S removed. Define A\a , {x|x 2 A, x 6= a} and
A

1

\A
2

, {x|x 2 A
1

, x /2 A
2

}. We use IM to denote an M ⇥M identity
matrix where the dimension is omitted whenever the confusion is not probable.
1(·) is the indicator function with values 1 when the parameter is true and 0
otherwise. O(·) follows the standard Landau notation. Logarithms are in
base 2.
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6.2 System Model

6.2.1 Channel Model

In this chapter, we focus on a network modeled by a K-user partially con-
nected interference channel, in which each transmitter (e.g. base station) is
equipped with one antenna and serves one single-antenna receiver (e.g., user).
In this partially connected network, similarly to that in the previous chapter,
the received signal for Receiver j at time instant t can be modeled by

Yj(t) =
X

i2Tj

hji(t)Xi(t) + Zj(t) (6.1)

where the parameters are recalled here.

• hji(t) is the channel coe�cient between Transmitter i and Receiver j
at time instant t and the nonzero channel coe�cients drawn from a
continuous distribution are i.i.d.;

• the transmitted signal Xi(t) is subject to the average power constraint,
i.e., E

�

|Xi(t)|2
�

 P , with P being the average transmit power;

• Zj(t) is the additive Gaussian noise with zero-mean and unit-variance
and is independent of transmitted signals and channel coe�cients;

• Tk is the transmit set containing the indices of transmitters that are
connected to Receiver k;

• Rk is the receive set consisting of the indices of receivers that are
connected to Transmitter k, for k 2 {1, 2, . . . ,K}.

Being consistent with TIM framework, the actual channel realizations are
not available at the transmitters, yet the network topology (i.e., Tk,Rk, 8k)
is known by all transmitters and receivers. A typical transmitter cooperation
is enabled, where every transmitter is endowed the messages desired by its
connected receivers, i.e., the Transmitter k has access to a subset of messages
WRk , where Wj (j 2 Rk) denotes the message desired by Receiver j. We refer
to TIM problem with transmitter cooperation in this chapter as “TIM-CoMP”
problem. Each message may originate from multiple transmitters but is
intended for one unique receiver. Note that direct links are not required to
be present thanks to transmitter cooperation. We consider a block fading
channel, where the channel coe�cients stay constant during a coherence
time ⌧c but vary to independent realizations in the next coherence time.
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The coherence time is set to ⌧c = 1 unless otherwise specified. The network
topology is fixed throughout the communication.

While message sharing creates the opportunity of transmitter cooperation,
it also imposes some challenges. For the partially connected IC or X networks
[49–51], each message has a unique source and a unique destination that are
determined a priori such that the desired and interfering links are known.
By contrast, with transmitter cooperation, the message can be sent from
any source that has access to this message. Consequently, the approaches
developed for IC and X networks cannot be directly applied here, as the
desired and interference links are not able to be predetermined.

For notational convenience, we define H , {hji, 8 i, j} as the ensemble
of channel coe�cients, and denote by G the network topology known by all
transmitters and receivers.

6.2.2 Definitions

In addition to the definition in the previous chapter, a few basic definitions
dedicated to this chapter are now recalled, while some more specific definitions
will be given in later sections when needed.

Definition 6.1 (Basic Graph Theoretic Definitions).

• The distance between two vertices in a graph is the minimum number
of edges connecting them.

• A (K, d)-regular bipartite graph G = (U ,V, E) is such that |U| =
|V| = K and |Tk| = |Rk| = d, 8 k.

• For a bipartite graph G = (U ,V, E) with edges {eij 2 E} where i 2 U
and j 2 V, the biadjacency matrix1 B is defined as

[B]ji =

⇢

1, eij 2 E
0, otherwise

. (6.2)

As a reference graph, the regular bipartite graph Gr = (Ur,Vr, Er)
with biadjacency matrix Br is characterized by

[Br]ji =

⇢

1, 0  i� j  d� 1
0, otherwise

, (6.3)

1It is slightly di↵erent from the classic definition, where the biadjacency matrix is in fact
BT in classic definitions. We abuse this definition for the sake of presentational convenience.
This matrix is also referred to as the “topology matrix” in [49].
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which implies Tj = {j, j + 1, . . . , j + d� 1}. Two bipartite graphs are
said to be similar, denoted as G ' Gr, if their biadjacency matrices
B and Br satisfy B = P TBrQ, where P and Q are permutation
matrices. Accordingly, it implies that U and V in G can be obtained
by reordering the vertices of Ur and Vr in Gr with U = Ur and V = Vr,
respectively.

• A Hamiltonian cycle for a graph is a cycle that visits all vertices
exactly once.

• A matching of the graph is a set of edges with no common vertices
between any two edges. A perfect matching is a matching contains
all vertices.

Some special network topologies are therefore defined as follows accord-
ingly.

Definition 6.2 (Some Special Network Topologies). A (K, d)-regular net-
work refers to the K-cell network that representable by a regular bipartite
graph G = (U ,V, E) (i.e., |U| = |V| = K and |Tk| = |Rk| = d, 8 k),
where each transmitter (resp. receiver) has d outgoing (resp. incoming)
links. The reference network represented by Gr therefore corresponds to
the K-cell network where each receiver will overhear the signals from the
transmitter with the same index as well as the successive d � 1 ones, i.e.,
Tj = {j, j+1, . . . , j+ d� 1}. A triangular network refers to a category of
cellular networks with Tj = {1, . . . , j} (i.e., B is a lower triangular matrix)
or Tj = {j, . . . ,K} (i.e., B is an upper triangular matrix), as well as those
whose topology graphs are similar to either one.

A rate tuple (R
1

, . . . , RK) is said to be achievable to the partially con-
nected BC with no CSIT beyond topology (i.e., TIM-CoMP problem), if these
exists a (2nR1 , . . . , 2nRK , n) code scheme including the following elements:

• K message sets Wk , [1 : 2nRk ], from which the message Wk is
uniformly chosen, 8 k 2 K;

• one encoding function for Transmitter i (8 i 2 K):

Xi(t) = fi,t (WRi , G) , (6.4)

where only a subset of messages WRi is available at Transmitter i for
encoding;
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• one decoding function for Receiver j (8 j 2 K):

Ŵj = gj
�

Y n
j , Hn, G

�

, (6.5)

such that the average decoding error probability is vanishing as the code
length n tends to infinity. The capacity region C is defined as the set of all
achievable rate tuples.

In this chapter, we only consider the symmetric DoF as our main figure
of merit [49–51,97,98,121].

Definition 6.3 (Symmetric DoF).

d
sym

= lim sup
P!1

sup
(Rsym,...,Rsym)2C

R
sym

logP
(6.6)

where P is the average transmit power.

6.3 Main Results

In what follows, we will present a summary of our results by the following
theorems.

• As a baseline, an interference avoidance approach with the aid of
fractional graph coloring is first presented in Theorem 6.1 for the
general topologies, followed by an outer bound in Theorem 6.2 built
upon the concept of generator. With the inner and outer bounds we are
able to characterize the optimal symmetric DoF of three-cell networks
with arbitrary topologies.

• To gain further improvements, an interference alignment based ap-
proach is proposed in Theorem 6.3, by which the achievable symmetric
DoF of the regular networks are identified. A new outer bound with
the help of compound settings are derived in Theorem 6.4, with which
the optimal symmetric DoF of Wyner-type networks with only one
interfering link are characterized.

• This interference alignment based technique is further generalized
to the arbitrary network topologies in Theorem 6.5 to identify the
su�cient conditions achieving a certain amount of symmetric DoF.
The conditions are based on the relations of transmit sets, which leads
us to the construction of a hypergraph and hence an inner bound via
hypergraph covering in Theorem 6.6.

167



CHAPTER 6. TOPOLOGICAL INTERFERENCE MANAGEMENT
WITH TRANSMITTER COOPERATION

• Later on, we bridge our problem to index coding problems in Theo-
rem 6.7, showing that our problem is outer bounded by a corresponding
index coding problem, by which the su�cient and necessary condition
of the optimality of time-division is identified.

Before presenting the interference avoidance approach, we first introduce
the following definition generalized from the standard graph coloring.

Definition 6.4 (Fractional Selective Graph Coloring). Consider an undi-
rected graph G = (V, E) with a partition V = {V

1

,V
2

, . . . ,Vp} where [pi=1

Vi =
V and Vi \ Vj = ; 8 i 6= j. The portion Vi (i 2 {1, 2, . . . , p}) is called a clus-
ter. A graph with the partition V is said to be selectively n : m-colorable,
if

• each cluster Vi (8 i) is assigned a set of m colors drawn from a palette
of n colors, no matter which vertex in the cluster receives;

• any two adjacent vertices have no colors in common.

Denote by s�f (G,V) the fractional selective chromatic number of n : m-
coloring over a graph with the partition V, defined as

s�f (G,V) = lim
m!1

s�m(G,V)
m

= inf
m

s�m(G,V)
m

(6.7)

where s�m(G,V) is the minimum n for the selective n : m-coloring regarding
the partition V.

Remark 6.1. If m = 1, fractional selective graph coloring will be reduced
to standard selective graph coloring (a.k.a. partition coloring) [126,127]. If
|Vi| = 1 8 i 2 {1, 2, . . . , p}, then fractional selective graph coloring will be
reduced to standard fractional graph coloring.

Theorem 6.1 (Achievable DoF via Graph Coloring). For the TIM-CoMP
problem, the symmetric DoF

d
sym

=
1

s�f (G2

e ,Ve)
(6.8)

can be achieved by an interference avoidance approach built upon fractional
selective graph coloring, where

• Ge: the line graph of G = (U ,V, E), where the vertices in Ge are edges
of G;
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• Ve: a vertex partition of Ge, where vertices in Ge associated with the
edges in G that share the same vertex vj 2 V (8 j) form a cluster;

• G2

e : the square of Ge, in which any two vertices in Ge with distance no
more than 2 are joint with an edge;

• s�f : fractional selective chromatic number of selective graph coloring,
as defined in Definition 6.4.

Proof. See Section 6.5.1 for a general proof and Section 6.4.1 for an illustrative
example.

By connecting the achievable symmetric DoF of our problem to the
fractional selective chromatic number, we are able to calculate the former by
computing the latter with rich toolboxes developed in graph theory.

To see how tight this interference avoidance scheme is, we provide an outer
bound based on the concept of generator [51]. For simplicity of presentation,
we introduce an index function f

idx

, which is defined as f
idx

: B 7! {0, 1}K ,
to map the position indicated by B ✓ K to a K ⇥ 1 binary vector with
the corresponding position being 1, and 0 otherwise, e.g., f

idx

({1, 3, 5}) =
[1 0 1 0 1 0]T with K = 6. Thus, we have the following definition.

Definition 6.5 (Generator Sequence). Given S ✓ K, a sequence {I
0

, I
1

, . . . , IS}
is called a generator sequence, if it is a partition of S (i.e., [Ss=0

Is = S
and Ii \ Ij = ;, 8 i 6= j), such that

BIs ✓± rowspan {BI0 , IAs} , 8 s = 1, . . . , S (6.9)

where BI is the submatrix of B with rows of indices in I selected, As ,
{i|[BT]i · f

idx

([s�1

r=0

Ir) = |Ri\Sc|} with [BT]i being the i-th row of BT (i.e.,
i-th column of B), and IAs denotes a submatrix of IK with the rows in As

selected. A
1

✓± rowspan{A
2

} is such that two matrices A
1

2 Cm1⇥n and
A

2

2 Cm2⇥n satisfy A
1

= CA
2

I±, where C 2 Cm1⇥m2 can be any full rank
matrix, I± is as same as the identity matrix up to the sign of elements. This
implies that the row of A

1

can be represented by the rows of A
2

with possible
di↵erence of signs of elements. We refer to I

0

as the initial generator with
regard to S, and denote by J (S) all the possible initial generators.

Theorem 6.2 (Outer Bound via Generator Sequence). The symmetric DoF
of the K-cell TIM-CoMP problem are upper bounded by

d
sym

 min
S✓K

min
I0✓J (S)

|I
0

|
|S| (6.10)
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where I
0

is the initial generator, from which a sequence can be initiated and
generated subsequently as defined in Definition 6.5.

Proof. See Section 6.5.2 for a general proof and Section 6.4.1 for an illustrative
example.

By this outer bound and the interference avoidance approach, we char-
acterize the optimal symmetric DoF of three-cell networks with arbitrary
topologies as well as the triangular networks below.

Corollary 6.1 (Optimal DoF for Three-cell Networks). The optimal symmet-
ric DoF of the three-cell TIM-CoMP problem can be achieved by interference
avoidance.

Proof. See Section 6.5.3.

Corollary 6.2 (Optimal DoF for Triangular Networks). For the K-cell
triangular networks, the optimal symmetric DoF value of the TIM-CoMP
problem is 1

K .

Proof. See Section 6.5.4.

The above interference avoidance approach is in general e�cient to the
sparse networks, whereas the graph coloring complexity increases dramati-
cally as the number of edges increases, which motivates ourselves to resort
to advanced interference management techniques, such as interference align-
ment. Building upon the concept of interference alignment, we identify the
achievable symmetric DoF of regular networks as follows.

Theorem 6.3 (Achievable DoF for Regular Networks). For a (K, d)-regular
network represented by a regular bipartite graph G, as long as it is similar to
the reference bipartite graph Gr, i.e., G ' Gr, the symmetric DoF

d
sym

(K, d) =

⇢

2

d+1

, d  K � 1
1

K , d = K
(6.11)

can be achieved by interference alignment approaches, when the channel
coherence time satisfies ⌧c � d+ 1.

Proof. See Section 6.5.5 for a general proof and Section 6.4.2 for an illustrative
example.

For the regular networks, the outer bound via generator sequence becomes
loose. This urges us to find another bounding techniques. By generalizing
and extending the idea in [50], we obtain in what follows a new outer bound
with the aid of compound settings.
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Theorem 6.4 (Outer Bound via Compound Settings). The symmetric DoF
of K-cell TIM-CoMP problems are upper bounded by the solution of the
following optimization problem:

min
S✓K

K � |S 0|
2K � |S 0|� |S| (6.12)

s.t. S 0 = {i|[BT]i · f
idx

(S) = |Ri|} (6.13)

[j2S Tj = K (6.14)

where [BT]i is the i-th row of BT (i.e., i-th column of B).

Proof. See Section 6.5.6 for a general proof and Section 6.4.2 for an illustrative
example.

By the above outer bound, we are able to characterize the optimal
symmetric DoF of a subset of regular networks.

Corollary 6.3 (Optimal DoF of Cyclic Wyner-type Networks). For a (K, 2)-
regular network, e.g., a cyclic Wyner-type network, the optimal symmetric
DoF are

d
sym

(K, 2) =

⇢

1

2

, K = 2
2

3

, K � 3
(6.15)

if the coherence time ⌧c � 3 when K � 3.

Proof. See Section 6.5.7.

As the previous theorems identify the achievable symmetric DoF of regular
networks, we may wonder to what conditions the network is subject for some
symmetric DoF targets. In what follows, we define alignment-feasible graph,
proper partition, and alignment non-conflict matrix, and identify the su�cient
conditions to achieve a certain amount of symmetric DoF.

Definition 6.6 (Alignment-Feasible Graph). The alignment-feasible graph
(AFG), denoted by GAFG, refers to a graph with vertices representing the
messages and with edges between any two messages indicating if they are
alignment-feasible. The two messages Wi and Wj are said to be alignment-
feasible, denoted by i$ j, if

Ti * Tj , and Tj * Ti. (6.16)
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The condition in (6.16) implies the alignment feasibility, that is, if two
messages are alignment-feasible, then whenever one of them is desired by one
receiver, the other one must be absent to this receiver. The similar insight
was also revealed in [97] in the context of index coding. While the alignment
feasibility condition in (6.16) is given with regard to the transmit sets, it can
be also expressed by the receive sets, i.e., Wi and Wj are alignment-feasible,
if Ri * Rj and Rj * Ri. This alignment feasibility can also be generated to
multiple messages, as shown in the following definition.

Definition 6.7 (Proper Partition). A partition K = {P
1

,P
2

, . . . ,P} with
size , where [i=1

Pi = K and Pi \ Pj = ; 8 i 6= j, is called a proper
partition, if for every portion Pi = {i

1

, i
2

, . . . , ipi} with pi , |Pi| (i 2 []),
we have

Tik
\

0

@

[

ij2Pi\ik

Tij

1

A

c

6= ;, 8 ik 2 Pi. (6.17)

Definition 6.8 (Alignment Non-Conflict Matrix). Regarding an alignment-
feasible cycle i

1

$ i
2

$ · · · $ iK $ i
1

, we construct a K ⇥ K binary
matrix AAFG, referred to as alignment non-conflict matrix, with element
AAFG

kj = 1 (j, k 2 K), if

Tij \ T c
ij+1

* Tik , and Tij+1 \ T c
ij * Tik , (6.18)

and with AAFG
kj = 0 otherwise. Further, we reset AAFG

kj = 0, if

Tij
\

T c
ij+1

\

k:AAFG
kj =1

T c
ik

= ;, or Tij+1

\

T c
ij

\

k:AAFG
kj =1

T c
ik

= ;. (6.19)

Similarly, for a proper partition {P
1

, . . . ,P}, we construct a ⇥  binary
matrix APP , with APP

ij = 1 (j, i 2 []), if

Tjt
\

0

@

[

js2Pj\jt

Tjs

1

A

c

* Tik , 8 jt 2 Pj , 8 ik 2 Pi (6.20)

and with APP
ij = 0 otherwise. Further, we reset APP

ij = 0, if there exist
jt 2 Pj and ik 2 Pi, such that

Tjt
\

0

@

[

js2Pj\jt

Tjs

1

A

c
\

i:APP
ij =1

T c
ik

= ;. (6.21)
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Either the pairs in alignment-feasible graph or the elements in each
portion of proper partition imply that the corresponding messages are able to
align in the same subspace, while the alignment non-conflict matrix identifies
the subspace that can be absent to some receivers. As such, the su�cient
conditions to achieve a certain amount of symmetric DoF are presented as
follows.

Theorem 6.5 (Su�cient Conditions for Arbitrary Networks). For a K-cell
cellular network with arbitrary topologies, with su�cient coherence time, the
following symmetric DoF are achievable:

• d
sym

= 2

K , if there exists a Hamiltonian cycle or a perfect matching in
GAFG;

• d
sym

= 2

K�q , if there exists a Hamiltonian cycle in graph GAFG, say
i
1

$ i
2

$ · · · $ iK $ i
1

, associated with an alignment non-conflict
matrix AAFG, such that

q , min
k

X

j

AAFG
kj ; (6.22)

• d
sym

= 1

 , if there exists a proper partition with size ;

• d
sym

= 1

�q , if there exists a proper partition with size , say {P
1

, . . . ,P},
associated with an alignment non-conflict matrix APP , such that

q , min
i

X

j

APP
ij . (6.23)

Proof. See Section 6.5.8 for general proofs and illustrative examples.

There is a very interesting observation. The alignment-feasible condition
in (6.16) or a proper portion in (6.17) implies the feasibility of a proper
distance-2 graph coloring. The two messages satisfy (6.16) means there
exist two vertices in two clusters i and j of Ge that can be assigned the
same color, so do the messages in (6.17). It follows that the interference
alignment is a general form of interference avoidance, in agreement with the
observation in [50]. Specifically, any two (or more) vertices in clusters jS
(S ✓ K) in Ge (corresponding to edges in G connecting Transmitter is to
Receiver js (8 s 2 S)) that receive the same color are scheduled in a single
time slot with interference avoided, implying that the transmitted signals in
the form of {Xis(Wjs), s 2 S} are alignment-feasible in the same subspace.
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Thus, interference alignment provides at least the same performance as
interference avoidance. Even better, one advantage of interference alignment
over interference avoidance is that, the number of dimensions of the subspace
to make interference alignment feasible could be less than the total number
of colors (i.e., the total number of time slots to schedule links), as some
subspaces may be absent to some receivers so as to decrease the number of
required dimensions.

From the previous theorem, we observe that the messages connected by
an edge in GAFG or lied in the same portion of a proper partition are able
to be scheduled at the same time slot or be aligned at the same direction.
Inspired by this observation, we construct a hypergraph and translate our
problem into a covering problem of this hypergraph. We start with the
construction of this hypergraph as follows.

Definition 6.9 (Hypergraph Covering). A hypergraph HG = (S,X ) associ-
ated with G is composed of the vertex set S ✓ K being a finite set, and the hy-
peredge set X being a family of subsets of S, where Xi , {xi1 , xi2 , . . . , xi|Xi|

} ✓
S is called a hyperedge, i.e., Xi 2 X , as long as

Txik

\

0

B

@

[

xij2Xi\xik

Txij

1

C

A

c

6= ;, 8 xik 2 Xi. (6.24)

A covering of a hypergraph HG is a collection of hyperedges X
1

,X
2

, . . . ,X⌧

such that S ✓ [⌧j=1

Xj, and the least number of ⌧ is called the hyper-
graph covering number, denoted by ⌧(HG). A t-fold covering is a multiset
{X

1

, . . . ,X⌧} such that each s 2 S is in at least t of the Xi’s, and correspond-
ingly ⌧t(HG) is referred to as the t-fold covering number. Accordingly, the
hypergraph fractional covering number is defined to be

⌧f (HG) , lim
t!1

⌧t(HG)

t
= inf

t

⌧t(HG)

t
. (6.25)

Theorem 6.6 (Achievable DoF via Hypergraph Covering). For the TIM-
CoMP problem, the symmetric DoF

d
sym

=
1

⌧f (HG)
(6.26)

are achievable, where ⌧f (HG) is the fractional covering number of the hyper-
graph HG = (K,X ) constructed in Definition 6.9 with the vertex set K and
the hyperedge set X including all satisfactory subsets Xi ✓ K.
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Proof. See Section 6.5.9.

The characterization of the fractional hypergraph covering number ⌧f (HG)
can also be performed by the following integer linear programming relaxation

⌧f (HG) = min
X

i2K
⇢i (6.27)

s.t.
X

i2K:j2Xi

⇢i � 1, 8 j 2 K (6.28)

⇢i 2 [0, 1], 8 i 2 K (6.29)

where ⇢i is an indicator variable associated with the hyperedge Xi 2 X
with value between 0 and 1 indicating the weight assigned to Xi accounts
for the total weight, the first constraint ensures that every vertex in K is
covered at least once, and the last constraint specifies a fractional ⇢i, which
is the relaxation of integers {0, 1}. Although the optimization of this linear
program is NP-hard, the connection of our problem and hypergraph covering
bridges the fields of information theory and graph theory, such that the
progress on one problem is automatically transferrable to the other one.

Knowing that the TIM problem was nicely bridged to the index coding
problem [49], one may wonder if there exist relations between our problem
and index coding. Indeed, our problem can be also related to the index
coding problem. Before presenting this relation, we first define the index
coding problem and its demand graph similarly to those in [49,128].

Definition 6.10 (Index Coding). A multiple unicast index coding problem,
denoted as IC(k|Sk), is comprised of a transmitter who wants to send K
messages Wk, k 2 K to their respective receivers over a noiseless link, and
K receivers, each of which has prior knowledge of WSk with Sk ✓ K\k. Its
demand graph is a directed bipartite graph Gd = (W,K, E) with vertices of
Message Wk 2W and Receiver k (k 2 K), and there exists a directed forward
edge i! j from Message Wi to Receiver j if Wi is demanded by Receiver j
and a backward edge k  j from Receiver j to Message Wk if Receiver j has
the knowledge of Wk as side information.

Theorem 6.7 (Outer Bound via Index Coding). For the TIM-CoMP problem,
given the topology information {Tk,Rk, 8 k 2 K}, the DoF region is outer
bounded by the capacity region of a multiple unicast index coding problem
IC(k|Sk), where

Sk ,
[

j2T c
k

Rj . (6.30)
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Proof. See Section 6.5.10 for the general proof and examples.

The above theorem implies that the outer bounds of the multiple unicast
index coding problem in literature still hold for our problem, but with the
modified side information sets. Together with Corollary 7 in [49], stating
that the symmetric DoF value of 1

K is optimal to a K-unicast index coding
problem if and only if its demand graph is acyclic, we obtain in the following
corollary to identify the su�cient condition of the optimality of symmetric
DoF 1

K in our problem.

Corollary 6.4. For TIM-CoMP problems, the symmetric DoF value d
sym

=
1

K is optimal if the demand graph associated with the index coding problem
IC(k|

S

j2T c
k
Rj) is acyclic.

Proof. See Section 6.5.11.

While the DoF region of TIM problem is outer bounded by the capacity
region of the index coding problem IC(k|T c

k ), our problem with transmitter
cooperation is outer bounded by IC(k| [j2T c

k
Rj). In general, this bound is

loose, because the side information might be over-endowed to the receivers.
Fortunately, it can be used to identify the su�cient and necessary condition
to achieve d

sym

= 1

K .
The su�cient condition provided in Corollary 6.4 on the optimality of

time division through a reconstructed index coding problem is nonetheless
implicit, yet the necessity is still unclear. Considering both the definition of
GAFG and Corollary 6.4, we arrive at the su�cient and necessary condition
of the symmetric DoF optimality of 1

K .

Corollary 6.5. For the K-cell TIM-CoMP problem, the symmetric DoF
value d

sym

= 1

K is optimal, if and only if GAFG is an empty graph.

Proof. See Section 6.5.12.

Remark 6.2. For the triangular network, the alignment feasible graph is
empty and thus the symmetric DoF value is 1

K , which coincides with Corol-
lary 6.2. Note that this triangular network is the minimum graph with empty
alignment-feasible graph.

6.4 Illustrative Examples

In what follows, we start with presenting two illustrative examples, with
which the basic ideas of Theorems 6.1-6.4 are explained here. The general
proofs are relegated to the next section.
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6.4.1 Example 1

In this example, we focus on the network topology studied in [51], as shown in
Fig. 6.1, but with a key di↵erence that message sharing across transmitters is
enabled. As in [49,51,98], the optimal symmetric DoF value is pessimistically
1

3

without message sharing. In contrast, if transmitter cooperation is allowed,
the achievable symmetric DoF can be remarkably improved to 2

5

even with a
simple interference avoidance scheme according to Theorem 6.1. An outer
bound with d

sym

 1

2

based on generator sequence is also presented according
to Theorem 6.2.

Inner Bound via Interference Avoidance

Without message sharing, the interference avoidance scheme consists in
scheduling transmitters to avoid mutual interferences. For instance, by
delivering W

1

, Transmitter 1 will cause interferences to Receivers 2 and 3,
and consequently Transmitters 2 and 3 should be deactivated, because W

2

and W
3

cannot be delivered to Receivers 2 and 3 free of interference. In
contrast, with message sharing, the desired message W

1

can be sent either
from Transmitter 1 or 4. Hence, scheduling can be done across links rather
than across transmitters. For instance, if the link Transmitter 4 ! Receiver
1 (denoted by e

41

) is scheduled, the links adjacent to e
41

(i.e., e
11

, e
42

, and
e
44

) as well as the links adjacent to e
11

, e
42

and e
44

(i.e., e
12

, e
13

, e
22

, e
32

,
e
34

and e
54

) should not be scheduled, because activating Transmitter 1 will
interfere Receivers 1, and Receivers 2 and 4 will overhear interferences from
Transmitter 4 such that any delivery from Transmitter 1 or to Receivers 2
and 4 causes mutual interferences. A possible link scheduling associated with
Fig. 6.1 is shown in Table 6.1. It can be found that each message is able to
be independently delivered twice during five time slots, and hence symmetric
DoF of 2

5

are achievable.

Table 6.1: Link Scheduling

Slot Scheduled Links (eij : TX i ! RX j) Delivered Messages

A e
41

, e
55

, e
66

W
1

,W
5

,W
6

B e
12

, e
54

, e
66

W
2

,W
4

,W
6

C e
13

, e
54

W
3

,W
4

D e
41

, e
33

W
1

,W
3

E e
12

, e
55

W
2

,W
5

Although the above link scheduling solution provides an achievable scheme
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for the example in Fig. 6.1, the generalization is best undertaken by rein-
terpreting the link scheduling into a graph coloring problem, such that the
rich graph theoretic toolboxes can be directly utilized to solve our problem.
The nature of our problem calls for a distance-2 fractional clustered-graph
coloring scheme, which consists of the following ingredients:

• Distance-2 fractional coloring: Both the adjacent links and the adja-
cency of the adjacent links (resp. edges less than two hops) should be
scheduled in di↵erence time slots (resp. assigned with di↵erent colors).

• Clustered-graph coloring: Only the total number of messages delivered
by links with the common receiver (resp. colors assigned to the edges
with the same vertex) matters. Thus, the number of assigned colors
should be counted by clusters where the edges with common vertices
are grouped together.

35 
54 

44 34 

33 

13 

42 32 

22 

12 

41 

11 

55 

36 66 

𝑾෢𝟏 

𝑾෢𝟐 

𝑾෢𝟑 

𝑾෢𝟒 

𝑾෢𝟓 

𝑾෢𝟔 

A 

C 

B 

D 

B 

C 

D 

A B 

E 

E A 

Figure 6.1: An instance of TIM-CoMP problem (K = 6). On the left is the network
topology graph G, and on the right is its line graph Ge. The distance-2 fractional
coloring is performed to o↵er each cluster two out of in total five colors, where any
two vertices that receives the same color are set apart with distance no less than 2.

In what follows, we reinterpret the link scheduling as a distance-2 frac-
tional clustered-graph coloring, and defer the elaboration of the relation with
fractional selective graph coloring to the general proof. To ease presentation,
we transform graph edge-coloring into graph vertex-coloring of its line graph.
As shown in Fig. 6.1, we first transform the topology graph G (left) into
its line graph Ge (right) and map the links connected to each receiver in
G to the vertices in Ge. For instance, the four links to Receiver 2 in G are
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mapped to Vertices e
12

, e
22

, e
32

, e
42

in Ge. Then, we group relevant vertices
in Ge as clusters, e.g., Vertices e

12

, e
22

, e
32

, e
42

in Ge corresponding to the
links to Receiver 2 are grouped as one cluster. By now, a clustered-graph is
generated. The graph coloring can be performed as follows. For instance, if
Vertex e

41

in Ge receives a color indicated by ‘A’, then Vertices e
55

and e
66

can receive the same color, because the distance between any two of them
is more than 2. Try any possible color assignment until we obtain a proper
one, where each cluster receives m distinct colors out of total n ones, such
that any two vertices with distance no more than 2 receive distinct colors.
There may exist many proper color assignments.

This distance-2 fractional clustered graph coloring over the line graph of
network topology, coincides with the definition of fractional selective graph
coloring over the square of line graph given a certain vertex clustering. The
fractional selective chromatic number s�f (G2

e ) refers to the minimum of n
m

among all proper color assignments. In this example, we have m = 2 and
n = 5. The vertices (i.e., links in G) with the same color can be scheduled in
the same time slot. Accordingly, each cluster receives two out of five colors
means every message is scheduled twice during five time slots, yielding the
symmetric DoF of 2

5

. According to the connection between link scheduling
and graph coloring, the inverse of the fractional selective chromatic number,
i.e., 1

s�f (G2
e )

, can serve as an inner bound of symmetric DoF of the general

cellular networks, although its computation is still NP-hard.

Outer Bound via Generator Sequence

According to the topology of the above cellular network, we have the trans-
mit sets T

1

= {1, 4}, T
2

= {1, 2, 3, 4}, T
3

= {1, 3}, T
4

= {3, 4, 5}, T
5

=
{3, 5}, T

6

= {3, 6} and receive sets R
1

= {1, 2, 3}, R
2

= {2}, R
3

=
{2, 3, 4, 5, 6}, R

4

= {1, 2, 4}, R
5

= {4, 5}, R
6

= {6}. With the mes-
sage sharing strategy mentioned earlier, the messages WRi are accessible at
Transmitter i.

Before proceeding further, we define the following virtual signals

Ỹ n
1

, hn
1

Xn
1

+ hn
4

Xn
4

+ Z̃n
1

(6.31)

Ỹ n
4

, hn
3

Xn
3

+ hn
4

Xn
4

+ hn
5

Xn
5

+ Z̃n
4

, (6.32)

where hnk (k = 1, . . . , 6) is assumed to be independent and identically dis-
tributed as hnji when there is a link between Transmitter i and Receiver j, and

the noise terms {Z̃n
1

, Z̃n
4

} are identically distributed as Zj with zero-mean
and unit-variance. Given the fact that the distribution of channel gain is
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symmetric around zero, it follows that {Ỹ n
1

, Ỹ n
4

} are statistically equivalent
to {Y n

1

, Y n
4

}, respectively. From both {Ỹ n
1

, Ỹ n
4

} and {Y n
1

, Y n
4

}, the corre-
sponding messages {Ŵ

1

, Ŵ
4

} can be decoded with error probability tends to
0 as n!1.

As symmetric DoF metric is considered, the DoF outer bound regarding
any subset of messages serves as one candidate in general. Let us consider a
subset of messages WS with S = {1, 3, 4, 5}, where Wi (i 2 Sc = {2, 6}) are
set to be deterministic. Note that eliminating some messages or setting them
to be deterministic does not hurt the maximum achievable rate of remaining
messages. Thus, the sum rate of users in S can be upper bounded as

n
X

i2S
Ri = H(WS |Hn,G) (6.33)

= I(WS ; Ỹ
n
1,4|Hn,G) +H(WS |Ỹ n

1,4,Hn,G) (6.34)

= I(WS ; Ỹ
n
1,4|Hn,G) +H(W

1,4|Ỹ n
1,4,Hn,G)

+H(WS\{1,4}|W1,4, Ỹ
n
1,4,Hn,G) (6.35)

 2n logP +H(WS\{1,4}|W1,4, Ỹ
n
1,4,Hn,G) + n ·O(1) + n✏n

(6.36)

where the last inequality is obtained by Fano’s inequality, and n✏n , 1 +

nRP (n)

e tends to zero as n !1 by the assumption that limn!1 P (n)

e = 0.
Since the transmitted signal Xn

i is encoded from the messages WRi (8 i),
it su�ces to reproduce Xn

4

and Xn
5

from W
1

,W
4

and W
4

,W
5

, respectively,
with W

2

,W
6

switched o↵ (i.e., being set to be deterministic). Thus, we have

H(WS\{1,4}|W1,4, Ỹ
n
1,4,Hn,G) (6.37)

= H(W
3,5|W1,4, X

n
4

, Ỹ n
1,4,Hn,G) (6.38)

= H(W
5

|W
1,4, X

n
4

, Ỹ n
1,4,5,Hn,G) +H(W

3

|W
1,4,5, X

n
4

, Ỹ n
1,4,Hn,G)

(6.39)

 H(W
5

|Ỹ n
5

,Hn) +H(W
3

|W
1,4,5, X

n
4

, Xn
5

, Ỹ n
1,4,Hn,G) (6.40)

 n✏n +H(W
3

|W
1,4,5, X

n
4

, Xn
5

, Ỹ n
1,4,Hn,G) (6.41)

= n✏n +H(W
3

|W
1,4,5, X

n
4

, Xn
5

, Ỹ n
1,3,4,Hn,G) (6.42)

 n✏n +H(W
3

|Ỹ n
3

,Hn,G) (6.43)

 n✏n (6.44)

where (6.38) is from the fact that it su�ces to reproduce Xn
4

from W
1,4, (6.39)

is because of the chain rule of entropy and the fact that Ỹ n
5

= Ỹ n
4

� hn
4

Xn
4

=
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hn
3

Xn
3

+ hn
5

Xn
5

+ Z̃n
4

can be generated from Ỹ n
4

and Xn
4

, (6.40) is due to 1)
removing condition does not reduce entropy, and 2) Xn

5

can be obtained
given the messages W

4,5, (6.42) comes from the generator sequence where
Ỹ n

3

= Ỹ n
1

� Ỹ n
4

+ hn
5

Xn
5

= hn
1

Xn
1

� hn
3

Xn
3

+ Z̃n
1

� Z̃n
4

can be generated from
Ỹ n

1,4 and Xn
5

, (6.43) is due to removing condition does not decrease entropy,
and inequality (6.41) and the last inequalities are due to Fano’s inequality,
where Ỹ n

5

and Ỹ n
3

are statistically equivalent to Y n
5

and Y n
3

respectively,
with bounded di↵erence of noise variance, such that both W

5

and W
3

can be
decoded respectively with negligible errors. Hence, we have

n
X

i2S
Ri  2n logP + n ·O(1) + n✏n (6.45)

which leads to one possible outer bound for symmetric DoF

d
sym

 1

2
. (6.46)

In contrast, by compound settings it gives a looser outer bound d
sym

 4

7

.
Seemingly the generator sequence bounding is more suitable to asymmetric
network topologies.

To summarize, we first generate two statistically equivalent signals
{Ỹ n

1

, Ỹ n
4

}, then with the messagesW
1

,W
4

, we reconstructXn
4

, and then gener-
ate Ỹ n

5

from Ỹ n
4

. Finally, Ỹ n
3

can be generated by knowing {Ỹ n
1

, Ỹ n
4

} and Xn
5

encoded from W
4

,W
5

. As such, the generation sequence is {{1, 4}, {5}, {3}},
initiated from I

0

= {1, 4}. With S = {1, 3, 4, 5}, according to Definition 6.5,
we have

B =

2

6

6

6

6

6

6

4

1 1 1 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 1 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

3

7

7

7

7

7

7

5

T

, B{1,4} =

2

6

6

6

6

6

6

4

1 0
0 0
0 1
1 1
0 1
0 0

3

7

7

7

7

7

7

5

T

B
5

=

2

6

6

6

6

6

6

4

0
0
1
0
1
0

3

7

7

7

7

7

7

5

T

B
3

=

2

6

6

6

6

6

6

4

1
0
1
0
0
0

3

7

7

7

7

7

7

5

T

(6.47)

and A
1

= {4}, A
2

= {4, 5}, and A
3

= {1, 3, 4, 5}. It is readily verified that
B

5

✓± rowspan{B{1,4}, IA1} and B
3

✓± rowspan{B{1,4}, IA2}.
One may notice that the above outer bound derivation has common

properties as that in [51], the di↵erences however are two-fold: 1) due to
transmitter cooperation, the transmitted signal is encoded from multiple
messages, instead of the single message in the TIM setting, and 2) when we
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switch o↵ some messages (e.g., by setting them to be deterministic), we only
eliminate them from the message set Ri of Xn

i , instead of switching o↵ Xn
i

as did in [51].

6.4.2 Example 2

Let us consider another example of a (5, 3)-regular network as shown in
Fig. 6.2. By enabling transmitter cooperation, the achievable symmetric DoF
are improved from 2

5

(as reported in [50]) to 1

2

according to Theorem 6.3. In
what follows, we will show an interference alignment scheme to achieve this
and an outer bound with d

sym

 5

8

according to Theorem 6.4.

Inner Bound via Interference Alignment

According to the network topology, we have transmit and receive sets
T

1

= R
1

= {1, 3, 4}, T
2

= R
2

= {2, 4, 5}, T
3

= R
3

= {1, 3, 5}, T
4

= R
4

=
{1, 2, 4}, T

5

= R
5

= {2, 3, 5}. For notational convenience, we denote by
a, b, c, d, e the messages desired by five receivers, with the subscript distin-
guishing di↵erent symbols for the same receiver. We consider a multiple time-
slotted protocol, in which a space is spanned such that the symbols will be sent
in certain subspaces. Given five random vectors V

1

,V
2

,V
3

,V
4

,V
5

2 C4⇥1,
any four of which are linearly independent, the transmitters send signals
with precoding

X
1

= V
1

c
1

+ V
3

d
1

, X
2

= V
2

d
2

+ V
4

e
1

(6.48)

X
3

= V
5

a
1

+ V
3

e
2

, X
4

= V
4

a
2

+ V
1

b
2

(6.49)

X
5

= V
5

b
1

+ V
2

c
2

(6.50)

within four time slots, where Xi 2 C4⇥1 is the vector of the concatenated
transmit signals from Transmitter i, with each element being the transmitted
signal at each corresponding time slot.

We assume the coherence time ⌧c � 4, during which the channel coe�-
cients keep constant. The received signal at Receiver 1 for example within
four time slots, with T

1

= {1, 3, 4}, can be written as

Y
1

=
X

i2T1

h
1iXi +Z

1

(6.51)

= h
11

X
1

+ h
13

X
3

+ h
14

X
4

+Z
1

(6.52)

= h
13

V
5

a
1

+ h
14

V
4

a
2

| {z }

desired signal

+V
1

(h
11

c
1

+ h
14

b
2

) + V
3

(h
11

d
1

+ h
13

e
2

)
| {z }

aligned interferences

+Z
1

.

(6.53)
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Recall that {Vi, i = 1, . . . , 5} are 4 ⇥ 1 linearly independent vectors
spanning four-dimensional space, by which it follows that the interferences
are aligned in the two-dimensional subspace spanned by V

1

and V
3

, leaving
two-dimensional interference-free subspace spanned by V

4

and V
5

to the
desired symbols a

1

, a
2

. Hence, the desired messages of Receiver 1 can be
successfully recovered, almost surely. In doing so, all receivers can decode
two messages within four time slots, yielding the symmetric DoF of 1

2

.

To illustrate the interference alignment, we describe the transmitted
signals geometrically as shown in Fig. 6.2. In this figure, we depict the
subspace spanned by {Vi, i = 1, . . . , 5} as a four-dimensional space, where
any four of them su�ce to represent this space. We also denote by Xi(Wj)
the message Wj sent from Transmitter i. Let us still take Receiver 1 for
example. Because of T

1

= {1, 3, 4}, the transmitted signals from the trans-
mitters that do not belong to T

1

will not reach Receiver 1, and hence the
vector V

2

is absent to Receiver 1. In addition, we have the interference-free
signals in the directions of V

4

and V
5

, and the aligned interferences carrying
messages other than a

1

, a
2

in the subspace spanned by V
1

and V
3

. Recall
that vectors {V

1

,V
3

,V
4

,V
5

} are linearly independent, almost surely, so that
the interference alignment is feasible at Receiver 1, and it can also be checked
to be feasible at other receivers.

𝑽𝟏 

𝑽𝟐 

𝑽𝟑 

𝑽𝟒 

𝑽𝟓 
𝑋ଵ 𝑐ଵ  

𝑋ସ 𝑏ଶ  

𝑋ଶ 𝑑ଶ  𝑋ହ 𝑐ଶ  

𝑋ଷ 𝑒ଶ  

𝑋ଵ 𝑑ଵ  

𝑋ଶ 𝑒ଵ  

𝑋ସ 𝑎ଶ  

𝑋ହ 𝑏ଵ  

𝑋ଷ 𝑎ଵ  

Figure 6.2: A (5, 3)-regular cellular network. With the interference alignment scheme
illustrated on the right, a four-dimensional space is su�cient to deliver every message
twice free of interference.
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Outer Bound via Compound Settings

In what follows, we derive an outer bound with compound settings [50]. A
more general version will be presented in Section 6.5.6. By Fano’s inequality,
we have

n(R
1

� ✏n)  I(W
1

, Y n
1

|Hn,G) (6.54)

= h(Y n
1

|Hn,G)� h(Y n
1

|W
1

,Hn,G) (6.55)

 n logP � h(Y n
1

|W
1

,Hn,G) + n ·O(1). (6.56)

Assuming there are two compound receivers demanding the same mes-
sage W

1

, we have two compound signals Y 0
1

, Y 00
1

, which are also the linear
combinations of X

1

, X
3

, X
4

as Y
1

, yet with independent channel coe�cients.
Thus, these three received signals are linearly independent with regard to
X

1

, X
3

, X
4

, almost surely, and are statistically equivalent, which results in
the same achievable rate R

1

. Similarly, we have

n(R
1

� ✏n)  n logP � h(Y 0n
1

|W
1

,Hn,G) + n ·O(1) (6.57)

n(R
1

� ✏n)  n logP � h(Y 00n
1

|W
1

,Hn,G) + n ·O(1). (6.58)

For Receiver 2, we consider the statistically equivalent received signals Y
2

by
itself and Y 0

2

by a compound receiver, and have

n(R
2

� ✏n)  n logP � h(Y n
2

|W
2

,Hn,G) + n ·O(1) (6.59)

n(R
2

� ✏n)  n logP � h(Y 0n
2

|W
2

,Hn,G) + n ·O(1). (6.60)

Combining all above inequalities, we have

n(3R
1

+ 2R
2

� ✏n) (6.61)

 5n logP � h(Y n
1

, Y 0n
1

, Y 00n
1

, Y n
2

, Y 0n
2

|W
1

,W
2

,Hn,G) + n ·O(1)
(6.62)

= 5n logP � h({Xn
i + Z̄n

i , i = 1, . . . , 5}|W
1

,W
2

,Hn,G) + n ·O(1)
(6.63)

 5n logP � n(R
3

+R
4

+R
5

) + n ·O(1) (6.64)

where Y
1

, Y 0
1

, Y 00
1

, Y
2

, Y 0
2

are linearly independent with regard to {Xi, i =
1, 2, 3, 4, 5}, by which the noisy versions of {Xi, i = 1, 2, 3, 4, 5}, i.e., Xn

i + Z̄n
i

with Z̄i being bounded noise term, can be recovered, almost surely; the last
inequality due to the fact that the decode of W

3

,W
4

,W
5

is possible only if

n(R
3

+R
4

+R
5

)  I(W
3

,W
4

,W
5

; {Xn
i + Z̄n

i , i = 1, . . . , 5}|W
1

,W
2

,Hn,G)
(6.65)
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= h({Xn
i + Z̄n

i , i = 1, . . . , 5}|W
1

,W
2

,Hn,G) + n ·O(1).
(6.66)

By now, according to the definition of symmetric DoF, it follows that

d
sym

 5

8
. (6.67)

In contrast, generator sequence o↵ers the best possible outer bound
d

sym

 4

5

, which is looser. This confirms again that compound setting
bounding is more suitable to regular networks.

6.5 General Proofs

6.5.1 Proof of Theorem 6.1

To prove this achievability, we first build a connection between interference
avoidance of TIM-CoMP problems and link scheduling problems, and then
solve the link scheduling problems through graph coloring.

Enabling transmitter cooperation, it requires to schedule links rather than
transmitters to avoid mutual interference. Without transmitter cooperation,
the messageWj can only be sent from Transmitter j for all j, whose activation
will cause interferences to Receiver k (k 2 Rj), and consequently inactivate
Transmitter k (k 2 Rj), because Wk cannot be delivered from Transmitter
k to Receiver k free of interference. The interference avoidance in this case
is a matter of activating or inactivating transmitters. In contrast, with
transmitter cooperation (i.e., message sharing), the message Wj can be
sent from any Transmitter i with i 2 Tj , and thus, it is not su�cient to
schedule transmitters only. In fact, the link - rather than the transmitter -
scheduling is of interest, because both the scheduling of the transmitters and
the receivers does matter.2 For instance, if the link eij (i.e., from Transmitter
i to Receiver j) is scheduled, the links adjacent to eij (i.e., eik1 and ek2j with
k

1

2 Ti\j and k
2

2 Rj\i) as well as the links adjacent to eik1 and ek2j should
not be scheduled, because activating Transmitter k

2

will interfere Receiver j
and Receiver k

1

will overhear interferences from Transmitter i, such that any
delivery from Transmitter k

2

or to Receiver k
1

causes mutual interferences.
Such a link scheduling problem is usually solved through graph edge-

coloring, while the nature of our problem calls for a more specific graph

2In fact, transmitter scheduling can also be regarded as link scheduling, yet only
the direct links (i.e., the links from Transmitter j to Receiver j) are candidates of link
scheduling.
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coloring solution. Let us represent the cellular network as a bipartite graph
G = (U ,V, E), and assign the links that are scheduled at di↵erent time slots
with distinct colors. Suppose the edge eij 2 E receives a color. Analogously,
the edges eik1 and ek2j with k

1

2 Ti\j and k
2

2 Rj\i should not be assigned
the same color. Moreover, the edges adjacent to eik1 and ek2j should not
receive the same color either. In a word, the edges within two-hop should be
assigned with distinct colors. In addition, as we aim at symmetric DoF, the
total number of scheduled times of the links connecting a common receiver is
of interest. Thus, the number of colors should be counted by clusters where
the edges with the common vertex vj 2 V are grouped together to form a
cluster.

To ease our presentation, we further transfer the edge-coloring of G to
vertex-coloring of its line graph Ge. Accordingly, we group the vertices in Ge

for which the corresponding edges in G have a vertex vj 2 V in common as
a cluster, such that the number of colors is counted by clusters in Ge. The
above two-hop condition is therefore transferred to a distance-2 constraint,
where two vertices in Ge with distance no more than 2 should receive di↵erent
colors. Thus, the above link scheduling problem is transferable to a distance-2
selective graph vertex coloring problem of its line graph Ge, and thus to
a selective graph vertex coloring problem of the square of its line graph,
i.e., G2

e , in which the vertices are clustered into Ve = {V
1

, . . . ,VK} with
Vk = {ejk, j 2 Tk}. Specifically, a proper selective coloring of G2

e over Ve is a
proper color assignment such that each cluster Vi receives m colors out of in
total n colors. As such, G2

e is selectively n : m colorable over Ve, indicating
that the links in each cluster can be scheduled m times within overall n
time slots without causing mutual interference. Consequently, according to
Definition 6.4, an achievability of symmetric DoF can be given by

d
sym

= sup
m

m

s�m(G2

e ,Ve)
=

1

s�f (G2

e ,Ve)
(6.68)

where s�f is the fractional selective chromatic number as in Definition 6.4.

6.5.2 Proof of Theorem 6.2

According to the definition of symmetric DoF, the outer bound of symmetric
DoF obtained for any subset of receivers should serve as the outer bound in
general. In other words, the general outer bound is the minimum value of all
possible outer bounds for any subset of receivers.

Let us take a subset of receivers S ✓ K with received signals YS into
account. For those receivers who are not considered, we switch o↵ their
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desired messages from the transmitted signal, i.e., the constituent messages
in transmitted signal Xn

i is now comprised of message Wj where j 2 Ri\Sc.
Define X̃T ,

⇥

h
1

X
1

. . . hKXK

⇤

, where hi (i 2 K) is independent and
identically distributed as the nonzero hji, and a set of virtual signals in the
compact form

ỸI , BIX̃ + Z̃I (6.69)

ȲI , BII
±X̃ + Z̃I (6.70)

for a set of receivers in I, where BI is the submatrix of B with the rows out
of I removed, I± is the same as the identity matrix up to the sign of elements,
and ỸI , ȲI , Z̃I are vectors compacted by ỸI , ȲI , and Z̃I , respectively. Note
that ỸI and ȲI are statistically equivalent to YI , because the distribution of
channel gain is symmetric around zero. We assume there exists a generator
sequence {I

0

, I
1

, . . . , IS} with [Ss=0

Is = S and Ii \Ij = ; 8 i 6= j, such that

BIs ✓± rowspan {BI0 , IAs} , 8 s = 1, . . . , S. (6.71)

This implies that there exist Cs 2 C|Is|⇥|I0| and Ds 2 C|Is|⇥|As|, such that

BIs = (CsBI0 +DsIAs)I
±. (6.72)

Multiplying I±X̃ at both sides yields

BIsI
±X̃ = CsBI0X̃ +DsIAsX̃ (6.73)

) ȲIs = CsỸI0 +DsIAsX̃ + Z̃Is �CsZ̃I0 (6.74)

= CsỸI0 +DsX̃As + Z̃Is �CsZ̃I0 (6.75)

= CsỸI0 +DsX̃As � Z̄s (6.76)

with Z̄s , CsZI0 �ZIs being the entropy-bounded noise term [51]. Thus,
according to the mapping f

idx

: B 7! {0, 1}K and the definition of As, we
have

H(WIs |Ỹ n
I0 ,[

s�1

r=0

WIr ,Hn,G) = H(WIs |Ỹ n
I0 ,[

s�1

r=0

WIr , XAs ,Hn,G) (6.77)

= H(WIs |Ỹ n
I0 , Ȳ

n
Is + Z̄n

s ,[s�1

r=0

WIr , XAs ,Hn,G)
(6.78)

 H(WIs |Ȳ n
Is + Z̄n

s ,Hn,G) (6.79)

= H(WIs |Ỹ n
Is + Z̄n

s ,Hn,G) (6.80)

 n✏n + n ·O(1) (6.81)
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where (6.77) is due to the fact that Xn
i is encoded only from WRi\Sc , (6.78)

comes from (6.76) where X̃As can be constructed from XAs , (6.79) is because
removing conditioning does not reduce entropy, (6.80) is due to the argument
that Ỹ and Ȳ are statistically equivalent, and the last inequality is obtained
by following the fact thatH(W |Y n+Z̄n)  n✏n+n·O(1), ifH(W |Y n+Zn) 
n✏n [51], since Z̄s is bounded noise term. Further, we have

n
X

i2S
Ri = H(WS |Hn,G) (6.82)

= I(WS ; Ỹ
n
I0 |H

n,G) +H(WS |Ỹ n
I0 ,H

n,G) (6.83)

= I(WS ; Ỹ
n
I0 |H

n,G) +H(WI0 |Ỹ n
I0 ,H

n,G) +H(WS\I0 |Ỹ n
I0 ,WI0 ,Hn,G)

(6.84)

 n|I
0

| logP + n ·O(1) + n✏n +
S
X

s=1

H(WIs |Ỹ n
I0 ,[

s�1

r=0

WIr ,Hn,G)

(6.85)

 n|I
0

| logP + n ·O(1) + n✏n. (6.86)

By the definition of symmetric DoF, we have

d
sym

 lim
P!1

R
sym

logP
=

|I
0

|
|S| . (6.87)

Among all possible subsets of S and initial generator I
0

, the symmetric DoF
should be outer-bounded by the minimum of them. Thus, we have

d
sym

 min
S✓K

min
I0✓J (S)

|I
0

|
|S| . (6.88)

6.5.3 Proof of Corollary 6.1

Enumerating all the possible topologies of three-cell networks, we verify the
optimality of symmetric DoF by comparing the inner and outer bounds
according to Theorem 6.1 and Theorem 6.2. It is readily verified that all but
two topologies have enhanced symmetric DoF, compared to the case without
transmitter cooperation [49,51,129]. As shown in Fig. 6.3, message sharing
improves the symmetric DoF from 1

2

to 2

3

for the topology (i) and from 1

3

to
1

2

for the topology (m).
For the achievability, two graph coloring realizations are illustrated in

Fig. 6.4 concerning the topologies of (i) and (m). Specifically, every cluster
receives two out of three colors in total in (i), and one out of two colors in
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Figure 6.3: The three-cell TIM-CoMP problem, where all non-isomorphic topologies
are enumerated. The symmetric DoF improvement over the noncooperation case is
due to topologies (i) and (m).

(m), where the conditions of distance-2 fractional selective graph coloring
are satisfied, yielding symmetric DoF inner bounds d

sym

= 2

3

and d
sym

= 1

2

,
respectively. For other topologies, the achievability can be similarly obtained.

Regarding the converse, we apply the outer bound via generator sequence
here. Again, we take those two topologies for example. For topology-(i), we
have a generator sequence {{1, 2}, {3}} with I

0

= {1, 2} and I
1

= {3}. By
generating the virtual signals Ỹ n

1

= hn
1

Xn
1

+ hn
3

Xn
3

+ Z̃n
1

and Ỹ n
2

= hn
1

Xn
1

+
hn

2

Xn
2

+ Z̃n
2

, which are statistically equivalent to Y n
1

and Y n
2

respectively, we
obtain Ỹ n

3

= Ỹ n
1

�Ỹ n
2

= hn
3

Xn
3

�hn
2

Xn
2

+Z̃n
1

�Z̃n
2

that is statistically equivalent
to Y n

3

with a bounded noise di↵erence [51]. Thus, according to Theorem 6.2,

we have d
sym

 |I0|
|S| = 2

3

. Similarly for topology-(m), we have a generator

sequence {{2}, {1}} with I
0

= {2} and I
1

= {1}. Note that we ignore the
received signal at Receiver 3, and therefore eliminate the message W

3

from
the message sets of the respective transmitted signals. Thus, the message
sets of Transmitters 1, 2, and 3 become {W

1

,W
2

}, {W
2

}, and {W
1

,W
2

},
respectively. Following the generator sequence approach, we initiate the
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Figure 6.4: Fractional selective graph coloring of the topologies (i) and (m). It
requires three colors to ensure every cluster receive two in (i), and two colors are
su�cient to o↵er every cluster one color in (m).

generator sequence by a virtual signal Ỹ n
2

= hn
1

Xn
1

+ hn
2

Xn
2

+ hn
3

Xn
3

+ Z̃n
2

,
and successively generate Ỹ n

1

= Ỹ n
2

� hn
2

Xn
2

, where X
2

can be encoded from

the message W
2

. Hence, the symmetric DoF outer bound is d
sym

 |I0|
|S| = 1

2

.
Aware of the coincidence of the inner and outer bounds, we conclude

that the interference avoidance achieves the optimal symmetric DoF. The
optimality verification of other topologies can be similarly done.

6.5.4 Proof of Corollary 6.2

For the converse proof, since the lower and upper triangular matrices are
similar, it su�ces to consider the lower triangular matrix B without loss of
generality, where Tj = {1, . . . , j} for all j 2 K. Thus, the message sets to Xj

with transmitter cooperation are comprised of W{j,··· ,K}. It is readily verified
that {{K}, {K�1}, . . . , {1}} forms a generator sequence with I

0

= {K} and

S = K. Thus, we have the outer bound d
sym

 |I0|
|S| = 1

K , which is achievable
by time division. This completes the proof.

6.5.5 Proof of Theorem 6.3

According to the definition of (K, d)-regular networks, we have |Tj | = d,
8 j 2 K. As we know, when d = K, the network is fully connected and
therefore the optimal symmetric DoF value is 1

K by time division. So, in
what follows, we will consider the general achievability proof when d  K�1.

Since the cellular network graph is assumed to be similar to the reference
one by reordering the transmitters and/or receivers, we directly consider the
referred network topology, because they are equivalent in terms of symmetric
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DoF with transmitter cooperation. For the referred network topology, the
transmit set of Receiver j is given by

Tj = {j, j + 1, . . . , j + d� 1}, (6.89)

where all the receiver indices are modulo K, e.g., j � K = j and 0 = K.
Thus, at Transmitter i we send symbols with careful design

Xi = Vi+1

Xi(W
1

i ) + Vi+2

Xi(W
2

i�d+1

), 8 i = 1, . . . ,K

where {Vi, i = 1, . . . ,K} are (d + 1) ⇥ 1 random vectors, and linearly
independent among any (d+ 1) vectors, almost surely, Xi(Wj) is the signal
transmitted from Transmitter i carrying on message Wj , and W 1

j , W
2

j are
two realizations (symbols) of message Wj . The signals at Receiver j during
d+ 1 time slots, with coherence time ⌧c � d+ 1, can be compacted as

Yj =
X

i2Tj

hjiXi +Zj

=
j+d�1

X

i=j

hji(Vi+1

Xi(W
1

i ) + Vi+2

Xi(W
2

i�d+1

)) +Zj

= hj,jVj+1

Xj(W
1

j ) + hj,j+d�1

Vj+d+1

Xj+d�1

(W 2

j )

+
j+d�1

X

i=j+1

hjiVi+1

Xi(W
1

i ) +
j+d�2

X

i=j

hjiVi+2

Xi(W
2

i�d+1

) +Zj

= hj,jVj+1

Xj(W
1

j ) + hj,j+d�1

Vj+d+1

Xj+d�1

(W 2

j )
| {z }

desired signal

+
j+d�2

X

i=j

Vi+2

(hj,i+1

Xi+1

(W 1

i+1

) + hj,iXi(W
2

i�d+1

))

| {z }

aligned interferences

+Zj .

It is readily shown that the interferences occupy d� 1 dimensional subspace
out of the total d+ 1 dimensional space, leaving 2-dimensional interference-
free subspace spanned by {Vj+1

,Vj+d+1

} to the desired signals, such that the
desired messages for Receiver j, W 1

j and W 2

j , can be successfully recovered.
This philosophy applies to all other receivers. During d+ 1 time slots, every
receiver can decode two messages, yielding symmetric DoF of 2

d+1

.
Geometrically, the interference alignment can be shown in Fig. 6.5, and

also interpreted as follows. Transmitted signalsXj�1

(W 1

j�1

) andXj�2

(W 2

j�d�1

)
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Figure 6.5: Interference alignment for the general (K, d) regular cellular networks.

are aligned in the same subspace spanned by vector Vj , which is absent to Re-
ceiver k (k 2 {j, . . . , j+K�3}). Note that t , K�d�1 and j� t = j+d+1
modulo K. By deduction, the subspace spanned by {Vj+d+2

, . . . ,Vj} are
absent to Receiver j (i.e., the shadow in Fig. 6.5), leaving d+ 1 linearly inde-
pendent vectors {Vj+1

, . . . ,Vj+d+1

} to span the space. As such, the signal
carrying Xj(W 1

j ) is aligned with Xj�1

(W 2

j�d) in the subspace spanned by

Vj+1

, and Xj+d�1

(W 2

j ) is aligned with Xj+d(W 1

j+d) in the subspace spanned
by Vj+d+1

. Note that the signals from Transmitter j � 1 and j + d cannot
be heard by Receiver j according to the network topology, such that W 1

j and

W 2

j are free of interference, and retrievable from overall d+ 1 dimensional
subspace.

It is worth noting that, although the message Wj is shared among the
transmitters i (8 i 2 Tj), its two realizations W 1

j and W 2

j are only utilized
in this scheme by Transmitter j and Transmitter (j � d+ 1), respectively.

6.5.6 Proof of Theorem 6.4

In what follows, we present an outer bound with the aid of compound settings.
As illustrated in Example 2, it is necessary to determine the least required
compound receivers such that the noisy versions of Xi can be recovered.
Thus, we first look into this problem, given that a subset of messages is

192



CHAPTER 6. TOPOLOGICAL INTERFERENCE MANAGEMENT
WITH TRANSMITTER COOPERATION

known a priori.
Consider a set of receivers S ✓ K satisfying [j2STj = K. The received

signals Yj (j 2 S) at Receiver j is a linear combination of {Xi, i 2 Tj}
polluted by noise. To recover the noisy versions of {Xi, i 2 K}, it requires
at least K � |S| extra linear independent equations, which can be provided
by compound receivers that are assume to be possessing the same topology
as the original receivers and demanding the same messages. In the rest of
the proof, we do not distinguish the original from the compound receivers
explicitly.

In fact, in the present of a set of messages WS , the required number
of compound receivers can be further reduced. According to transmitter
cooperation, the transmitted signal Xn

i is encoded with the messages WRi .
Thus, we have

S 0 = {i|[BT]i · f
idx

(S) = |Ri|}, (6.90)

which implies that the knowledge of WS is equivalent to the knowledge of
Xn

S0 . Knowing Xn
S0 , we can remove their contributions from the received

signals. Denote by Yj,i and Ỹj,i the received signals of compound receiver i
before and after removing the contribution of XS0 , respectively, i.e.,

Yj,i =
X

k2T
hj,i,kXk + Zj,i (6.91)

Ỹj,i =
X

k2T \S0

hj,i,kXk + Zj,i. (6.92)

Let T 0
j be the set of the least required compound receivers associated with

Receiver j. Thus, we collect all the compound signals and compact them as

ỸT 0
S
= HT 0

S
XK\S0 +ZT 0

S
(6.93)

where HT 0
S
2 C

P
j2S |T 0

j |⇥(K�|S0|) is the reduced channel matrix with the

columns indexed by S 0 removed. It su�ces to recover XK\S0 from ỸT 0
S
as

long as
P

j2S |T 0
j | � K � |S 0|. We conclude that the required number of

compound receivers can be reduced to K � |S 0|� |S|, given the knowledge
of WS .

Secondly, we proceed to present the outer bound of achievable rates of
compound receivers. For the compound receiver i, by Fano’s inequality, we
have

n(Rj,i � ✏n)  I(Wj , Y
n
j,i|Hn,G) (6.94)
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= h(Y n
j,i|Hn,G)� h(Y n

j,i|Wj ,Hn,G) (6.95)

 n logP � h(Y n
j,i|Wj ,Hn,G) + n ·O(1) (6.96)

where Rj,i denotes the achievable rate of the compound receiver i, and is the
same as Rj . Let

P

j2S |T 0
j | = K � |S 0|. By adding all achievable rates of all

compound receivers, we have

n

0

@

X

j2S

X

i2T 0
j

Rj,i � ✏n

1

A (6.97)

 n
X

j2S
|T 0

j | logP � h({Y n
j,i, j 2 S, i 2 T 0

j }|WS ,Hn,G) + n ·O(1)

(6.98)

= n
X

j2S
|T 0

j | logP � h({Y n
j,i, j 2 S, i 2 T 0

j }|WS , X
n
S0 ,Hn,G) + n ·O(1)

(6.99)

= n
X

j2S
|T 0

j | logP � h(Ỹ n
T 0
S
|WS , X

n
S0 ,Hn,G) + n ·O(1) (6.100)

= n
X

j2S
|T 0

j | logP � h(Xn
K\S0 +H�1

T 0
S
Zn

T 0
S
|WS , X

n
S0 ,Hn,G) + n ·O(1)

(6.101)

= n
X

j2S
|T 0

j | logP � h(Xn
K\S0 + Z̄n

K\S0 |WS , X
n
S0 ,Hn,G) + n ·O(1)

(6.102)

 n
X

j2S
|T 0

j | logP � n
X

j2Sc

Rj + n ·O(1) (6.103)

where (6.99) is due to the fact that the knowledge of WS is equivalent to the
knowledge of XS0 given topological information, (6.100) is because translation
does not change the di↵erential entropy, (6.101) is obtained because HT 0

S
is a square matrix and has full rank almost surely, in (6.102), Z̄n

K\S0 is the
bounded noise terms, and the last inequality is from the decodable condition
similar to that in (6.66). By the definition of the symmetric DoF, it follows
that

d
sym


P

j2S |T 0
j |

P

j2S |T 0
j |+ |Sc| (6.104)

=
K � |S 0|

2K � |S 0|� |S| . (6.105)

194



CHAPTER 6. TOPOLOGICAL INTERFERENCE MANAGEMENT
WITH TRANSMITTER COOPERATION

Among all the possible S, we have the outer bound of symmetric DoF

d
sym

 min
S✓K

K � |S 0|
2K � |S 0|� |S| (6.106)

where S and S 0 are subject to two constraints: [j2STj = K and S 0 =
{i|[BT]i · f

idx

(S) = |Ri|}.

6.5.7 Proof of Corollary 6.3

When K = 2, the network is fully connected and d
sym

= 1

2

is optimal. So,
in the rest of the proof, we focus on K � 3. From the graph theoretic
perspective, any two (K, 2)-regular networks are similar, because they are in
fact the same cycle with rearranged vertices. Hence, it su�ces to consider one
typical topology of the (K, 2)-regular networks, e.g., a K-cell cyclic Wyner
network, for the convenience of presentation. The received signal at Receiver
j of the K-cell cyclic Wyner model can be given as

Yj = hj,j�1

Xj�1

+ hj,jXj + Zj (6.107)

where the indices are modulo K, and Wi,Wi+1

are the only accessible
messages to Transmitter i. In what follows, we will present first the converse,
followed by the achievability proof.

Converse

We consider two cases when K is even or odd.

• K is even: Let S = {1, 3, . . . ,K�1} and S 0 = ;. Consider the received
signals YS and the signals of their respective compound receivers ỸS .
Following the proof of the general case, we have

2n
X

j2S
Rj  nK logP � h(Y n

S , Ỹ n
S |WS ,Hn,G) (6.108)

= nK logP � n(R
2

+R
4

+ · · ·+RK) + n ·O(1) (6.109)

where the noisy version {Xn
i + Z̄n

i , i 2 K} can be recovered from K
linearly independent equations. Thus, with |S| = K

2

and |S 0| = 0, it
follows that

d
sym

 K

K +K/2
=

2

3
. (6.110)
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• K is odd: Let S = {1, 3, . . . ,K � 2,K} and S 0 = {K}. Consider here
the received signals YS and the signals of their respective compound
receivers ỸS\{K�2,K}. Similarly, we have

2n
X

j2S\{K�2,K}

Rj + nRK�2

+ nRK (6.111)

 (K � 1) logP � h(Y n
S , Ỹ n

S\{K�2,K}|WS ,Hn,G) (6.112)

= n(K � 1) logP � h(Y n
S , Ỹ n

S\{K�2,K}|WS , X
n
K ,Hn,G) (6.113)

= n(K � 1) logP � n(R
2

+R
4

+ · · ·+RK�1

) (6.114)

where Xn
K is reproducible with W

1

and Wk, and the noisy version
{Xn

i + Z̄n
i , i 2 K\K} can be recovered from K� 1 linearly independent

equations. Thus, with |S| = K+1

2

and |S 0| = 1, it follows that

d
sym

 K � 1

K � 1 + K�1

2

=
2

3
. (6.115)

To sum up, we have d
sym

 2

3

whenever K is even or odd.

Achievability

Although the general achievability proof has been presented with general
d, we make it concrete here for d = 2. During three time slots, we send at
Transmitter i

Xi = Vi�1

Xi(W
1

i+1

) + ViXi(W
2

i ) (6.116)

where {Vi, i = 1, . . . , n} are 3⇥ 1 vectors satisfy that any three of them are
linearly independent, almost surely. At Receiver j, we have

Yj = hj,j�1

Xj�1

+ hj,jXj +Zj (6.117)

= hj,j�1

(Vj�2

Xj�1

(W 1

j ) + Vj�1

Xj�1

(W 2

j�1

))

+ hj,j(Vj�1

Xj(W
1

j+1

) + VjXj(W
2

j )) +Zj (6.118)

= hj,j�1

Vj�2

Xj�1

(W 1

j ) + hj,jVjXj(W
2

j )
| {z }

desired signal

+ Vj�1

(hj,j�1

Xj�1

(W 2

j�1

) + hj,jXj(W
1

j+1

))
| {z }

aligned interferences

+Zj . (6.119)
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The interferences carrying messages Wj�1

and Wj+1

are aligned together
in the direction of Vj�1

, leaving two-dimensional interference-free subspace
for desired signals carrying on message realizations W 1

j and W 2

j . Therefore,

two messages are delivered during three time slots, yielding 2

3

DoF per user,
which coincides with the outer bound. This completes the proof of optimality.

6.5.8 Proof of Theorem 6.5

d
sym

= 2

K is achievable

First, we consider the case when there exists a Hamiltonian cycle i
1

$ i
2

$
· · · $ iK $ i

1

in the alignment-feasible graph (GAFG). According to the
definition of GAFG, it follows that, there exist z1

j and z2

j+1

, such that

z1

j 2 Tij \ T c
ij+1

, and z2

j+1

2 Tij+1 \ T c
ij (6.120)

with z1

j , z
2

j 2 Tij and z1

j�1

, z2

j+1

/2 Tij , for j 2 K. Thus, we send along the

direction Vj 2 CK⇥1 two signals Xz1j
(W 1

ij
) and Xz2j+1

(W 2

ij+1
) from Transmit-

ter z1

j and Transmitter z2

j+1

, respectively, for j 2 K. The received signals at
Receiver ij during K time slots can be given as a compact form by

Yij =
K
X

s=1

Vs

⇣

hij ,z1
s
Xz1

s
(W 1

is)1(z
1
s 2 Tij ) + hij ,z2

s+1
Xz2

s+1
(W 2

is+1
)1(z2s+1 2 Tij )

⌘

(6.121)

= Vjhij ,z1
j
Xz1

j
(W 1

ij ) + Vj�1hij ,z2
j
Xz2

j
(W 2

ij )
| {z }

desired signal

+
K
X

s=1,s 6=j�1,j

Vs

⇣

hij ,z1
s
Xz1

s
(W 1

is)1(z
1
s 2 Tij ) + hij ,z2

s+1
Xz2

s+1
(W 2

is+1
)1(z2s+1 2 Tij )

⌘

| {z }

aligned interferences

(6.122)

where 1(·) is the indicator function with value 1 if the parameter is true
and 0 otherwise. It is readily verified that two symbols W 1

ij
and W 2

ij
can be

retrieved almost surely, yielding symmetric DoF of 2

K . An example is shown
in Fig. 6.6, where 1$ 2$ 3$ 4$ 5$ 1 forms a Hamiltonian cycle.

Second, we consider a perfect matching in GAFG where K is even, say
i
1

$ i
2

, . . . , iK�1

$ iK . Similarly, there exist zj and zj+1

, such that

zj 2 Tij \ T c
ij+1

, and zj+1

2 Tij+1 \ T c
ij , j = 1, 3, . . . ,K � 1 (6.123)
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𝑽𝟏 

𝑽𝟐 

𝑽𝟑 
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𝑽𝟓 

𝑋ଶ 𝑏ଶ  

𝑋ସ 𝑎ଶ  

𝑋ଷ 𝑐ଵ  𝑋ସ 𝑑ଶ  

𝑋ଷ 𝑐ଶ  

𝑋ଶ 𝑏ଵ  

𝑋ଵ 𝑎ଵ  

𝑋ହ 𝑒ଵ  

𝑋ଵ 𝑑ଵ  

𝑋ହ 𝑒ଶ  
1 

2 

3 4 

5 

𝑽ଵ, 𝑽ସ 

𝑽ସ, 𝑽ହ 

𝑽ଶ, 𝑽ହ 𝑽ଶ, 𝑽ଷ 

𝑽ଵ, 𝑽ଷ 

(𝑎) (𝑏) (𝑐) 

Figure 6.6: (a) An instance of TIM-CoMP problem (K = 5), (b) alignment-feasible
graph, where the messages connected with an edge are alignment-feasible and can
be aligned in the same subspace, and the red edges indicate a Hamiltonian cycle,
and (c) an interference alignment scheme, where every message appears twice.

with zj 2 Tij and zj+1

/2 Tij . Thus, during in total K
2

time slots, we send
two signals Xzj (Wij ) and Xzj+1(Wij+1) from Transmitter zj and Transmitter

zj+1

, respectively, with the same precoder Vj 2 CK
2 ⇥1. The received signals

at Receiver ij during K
2

time slots can be similarly written as

Yij =

K
2
X

s=1

Vs

�

hij ,zsXzs(Wis)1(zs 2 Tij ) + hij ,zs+1Xzs+1(Wis+1)1(zs+1 2 Tij )
�

(6.124)

= Vjhij ,zjXzj (Wij )
| {z }

desired signal

+

K
2
X

s=1,s 6=j

Vs

�

hij ,zsXzs(Wis)1(zs 2 Tij ) + hij ,zs+1Xzs+1(Wis+1)1(zs+1 2 Tij )
�

| {z }

aligned interferences

(6.125)

with which the message Wij is recovered, yielding 2

K DoF per user. This
completes the proof.

d
sym

= 2

K�q is achievable

The achievability is similar to the previous case, but the duration of trans-
mission is shortened. Without loss of generality, we assume the Hamiltonian
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cycle 1 $ 2 $ · · · $ K $ 1 for the brevity of presentation. According to
the definition of alignment-feasible graph, there exist z1

s and z2

s+1

, such that

z1

s 2 Ts \ T c
s+1

, and z2

s+1

2 Ts+1

\ T c
s (6.126)

with z1

s 2 Ts and z2

s+1

/2 Ts, for s 2 K. Assuming

k
0

2 argmin
k

X

j

Akj , (6.127)

we have
P

j Ak0j = q and thus

f�1

idx

(AT
k0) = {j

1

, . . . , jq} , Jq (6.128)

where f�1

idx

: {0, 1}K 7! B is the inverse function of f
idx

.

𝑽𝟏 

𝑽𝟐 

𝑽𝟑 𝑽𝟒 

𝑽𝟓 

𝑋଺ 𝑓ଵ  

𝑋ହ 𝑑ଵ  

𝑋ଵ 𝑏ଵ  𝑋଺ 𝑓ଶ  

𝑋ହ 𝑒ଶ  

𝑋ଵ 𝑐ଶ  
𝑋ଵ 𝑎ଵ  

𝑋ଷ 𝑑ଶ  

𝑋ସ 𝑎ଶ  𝑋ଷ 𝑐ଵ  

𝑽𝟔 𝑋ଶ 𝑏ଶ  

𝑋ହ 𝑒ଵ  
1 

2 

3 4 

5 

6 𝑽ଵ, 𝑽ଶ 

𝑽ଷ, 𝑽଺ 

𝑽ଵ, 𝑽ସ 𝑽ଷ, 𝑽ହ 

𝑽ଶ, 𝑽଺ 

𝑽ସ, 𝑽ହ 

(𝑎) (𝑏) (𝑐) 

Figure 6.7: (a) An instance of TIM-CoMP problem (K = 6), and (b) alignment-
feasible graph, in which there may exist many Hamiltonian cycles, and the cycle with
red edges is one of them. (c) An interference alignment scheme, where every message
appears twice, and for each receiver there exists at least one absent subspace.

According to the definition of alignment non-conflict matrix, if Ak0j = 1,
then

Tij
\

T c
ij+1

\

k:Akj=1

T c
k0 6= ;, and Tij+1

\

T c
ij

\

k:Akj=1

T c
k0 6= ;, (6.129)

meaning that there is non-conflict to make Wij and Wij+1 aligned with the
occupied subspace absent to Receiver k

0

. It follows that, there exist z1

jt
and

z2

jt+1

(jt 2 Jq), such that

z1

jt 2 Tjt \ T c
jt+1

\ T c
k0 , and z2

jt+1

2 Tjt+1

\ T c
jt \ T c

k0 (6.130)
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with z1

jt
, z2

jt+1

/2 Tk0 . We send Xz1s
(W 1

s ) and Xz2s+1
(W 2

s+1

) at Transmitter

z1

s and Transmitter z2

s+1

, respectively, along with the subspace spanned by

Vs 2 C(K�q)⇥1, giving the received signal at Receiver k
0

as

Yk0 =
K
X

s=1

Vs

⇣

hk0,z1
s
Xz1

s
(W 1

s )1(z
1
s 2 Tk0) + hk0,z2

s+1
Xz2

s+1
(W 2

s+1)1(z
2
s+1 2 Tk0)

⌘

=
K
X

s=1,s/2Jq

Vs

⇣

hk0,z1
s
Xz1

s
(W 1

s )1(z
1
s 2 Tk0) + hk0,z2

s+1
Xz2

s+1
(W 2

s+1)1(z
2
s+1 2 Tk0)

⌘

(6.131)

= Vk0hk0,z1
k0
Xz1

k0
(W 1

k0
) + Vk0�1hk0,z2

k0
Xz2

k0
(W 2

k0
)

+
K
X

s=1,s/2Jq,
s 6=k0�1,k0

Vs

⇣

hk0,z1
s
Xz1

s
(W 1

s )1(z
1
s 2 Tk0) + hk0,z2

s+1
Xz2

s+1
(W 2

s+1)1(z
2
s+1 2 Tk0)

⌘

(6.132)

It follows that the desired messages by Receiver k
0

can be recovered in a
K � q dimensional space with two interference-free subspace and K � q � 2
dimensional subspace with interferences aligned. According to the definition
of q, we conclude that the overall K � q dimensional space is su�cient to
support other receivers with

P

j Akj � q. As such, the symmetric DoF 2

K�q
are achievable. An example can be found in Fig. 6.7 with K = 6 and q = 1.
For a Hamiltonian cycle 1 $ 3 $ 5 $ 2 $ 6 $ 4 $ 1, the alignment
non-conflict matrix is

A =

2

6

6

6

6

6

6

4

0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 1 1 0
0 0 0 0 1 0
0 1 1 0 0 1
0 0 0 1 0 0

3

7

7

7

7

7

7

5

(6.133)

by which k
0

can be 2 or 4.

d
sym

= 1

 is achievable

According to the definition of proper partition, for a portion Pi = {i
1

, . . . , ipi},
we assume with k = 1, . . . , pi that

zik 2 Tik
\

0

@

[

ij2Pi\ik

Tij

1

A

c

, 8 ik 2 Pi. (6.134)
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with zik 2 Tik and zik /2 Tij , 8 j 6= k. Thus we send {Xzik
(Wik), k =

1, . . . , pi} at Transmitter zik via the same precoder Vi 2 C⇥1, yielding the
receiver signal at Receiver ik as

Yik =

X

j=1

Vj

 pj
X

s=1

hik,zjsXzjs (Wjs)1(zjs 2 Tik)
!

(6.135)

= Vihik,zikXzik
(Wik) + Vi

0

@

pi
X

s=1,s 6=k

hik,zisXzis (Wis)1(zis 2 Tik)

1

A

+

X

j=1,j 6=i

Vj

 pj
X

s=1

hik,zjsXzjs (Wjs)1(zjs 2 Tik)
!

(6.136)

= Vihik,zikXzik
(Wik)

| {z }

desired signal

+

X

j=1,j 6=i

Vj

 pj
X

s=1

hik,zjsXzjs (Wjs)1(zjs 2 Tik)
!

| {z }

aligned interferences

(6.137)

with which the desired signal can be retrieved with high probability during 
time slots. This applies all messages that o↵ers 1

 DoF per user. An example
is shown in Fig. 6.8(b), where a proper partition can be {{1, 3, 5}, {2, 4, 6}}.

𝑽𝟐 

𝑋ସ 𝑎  

𝑋ଶ 𝑐  

𝑋ଷ 𝑏  

𝑋ଵ 𝑑  

𝑋଺ 𝑒  
𝑽𝟏 

𝑋ହ 𝑓  

𝑽𝟏 

𝑽𝟐 

𝑽𝟑 

𝑋ଵ 𝑎  

𝑋ଶ 𝑏  

𝑋ଷ 𝑐  𝑋଺ 𝑓  

𝑋ସ 𝑑  

𝑋ହ 𝑒  

(𝑎) (𝑏) (𝑐) 

Figure 6.8: (a) An instance of TIM-CoMP problem (K = 6). The network topology
has two di↵erent proper partitions as shown in (b) and (c), where the messages in
each portion are alignment-feasible and can be aligned in the same subspace. Both
partitions give the same symmetric DoF of 1

2 .
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d
sym

= 1

�q is achievable

The achievability is similar to the previous case, but the required number of
subspace dimension is reduced. Assume similarly

m 2 argmin
i

X

j

Aij , (6.138)

we have
P

j Amj = q and f�1

idx

(AT
m) = Jq.

According to the definition of proper partition, there exists zik with
i 2 {1, . . . ,} such that

zik 2 Tik
\

0

@

[

ij2Pi\ik

Tij

1

A

c

, 8 ik 2 Pi (6.139)

with zik 2 Tik , 8 i, and according to the alignment non-conflict matrix, if
Amj = 1, then

Tjt
\

0

@

[

js2Pj\jt

Tjs

1

A

c
\

i:Amj=1

T c
mk
6= ;, 8 jt 2 Pj , 8 mk 2 Pm, (6.140)

meaning that this is non-conflict to make the messages in portion Pj aligned
with the spanned subspace absent to all the receivers in Pm. It follows that,
there exists zjt with j 2 Jq, such that

zjt 2 Tjt
\

0

@

[

js2Pj\jt

Tjs

1

A

c
\

T c
mk

, 8 mk 2 Pm, jt 2 Pj (6.141)

with zjt /2 Tmk , 8 mk 2 Pm, jt 2 Pj . The received signal at Transmitter mk

with mk 2 Pm can be given as

Ymk =

X

l=1

Vl

 

pl
X

s=1

hmk,zls
Xzls

(Wls)1(zls 2 Tmk)

!

(6.142)

=

X

l=1,l /2Jq

Vl

 

pl
X

s=1

hmk,zls
Xzls

(Wls)1(zls 2 Tmk)

!

(6.143)

= Vmhmk,zmk
Xzmk

(Wmk)1(zmk 2 Tmk)

+ Vm

0

@

pm
X

s=1,s 6=k

hmk,zms
Xzms

(Wms)1(zms 2 Tmk)

1

A
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+

X

l=1,l 6=m,l/2Jq

Vl

 

pl
X

s=1

hmk,zls
Xzls

(Wls)1(zls 2 Tmk)

!

(6.144)

= Vmhmk,zmk
Xzmk

(Wmk)

+

X

l=1,l 6=m,l/2Jq

Vl

 

pl
X

s=1

hmk,zls
Xzls

(Wls)1(zls 2 Tmk)

!

(6.145)

where Vl 2 C(�q)⇥1 is su�cient to recover desired message Wmk , yielding
1

�q DoF. According to the definition of q, this  � q dimensional space

su�ces to support all other receivers. Thus, symmetric DoF of 1

�q are
achievable, almost surely. An example is shown in Fig. 6.8(c), where there
exists another proper partition {{1, 2}, {3, 6}, {4, 5}} with  = 3 and q = 1.
With di↵erent partition, we have the same achievable symmetric DoF.

6.5.9 Proof of Theorem 6.6

In this theorem, we represent the inner bound of the TIM-CoMP problem by
a graph-theoretic parameter, i.e., fractional covering number. To this end,
we will bridge our problem to the hypergraph fractional covering problem,
which is in general a set covering problem.

First of all, we construct such a hypergraph HG according to the network
topology. From the definition of proper partition and the proof in 6.5.8, it
follows that if a set Xi , {xi1 , xi2 , . . . , xi|Xi|

} ✓ S satisfies

Txik

\

0

B

@

[

xij2Xi\xik

Txij

1

C

A

c

6= ;, 8 xik 2 Xi, (6.146)

then any two messages in WXi are mutually alignment-feasible. The messages
{Wxik

, xik 2 Xi} can be sent from the transmitters {zik} in the form of

Xzik
(Wxik

) with the same precoding vector Vi,3, where

zik 2 Txik

\

0

B

@

[

xij2Xi\xik

Txij

1

C

A

c

. (6.147)

As such, only one transmitted signal Xzik
(Wxik

) is active in subspace spanned
by Vi at Receiver xik , and hence Wxik

is recoverable from this subspace. The

3Alternatively, the links from Transmitter zik to Receiver xik (k = 1, . . . , |Xi|) can be
scheduled at the same time slot.
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presence of the subspace spanned by Vi carrying on messages with indices in
Xi guarantees the successful delivery of the messages in WXi . Thus, the set
Xi can serve as a hyperedge of HG . Any set of elements in K that satisfies
the condition (6.146) serves as a hyperedge. As a result, the hypergraph HG
is constructed with vertex set K and hyperedge set being enumeration of all
possible sets of elements satisfy condition (6.146).

Our problem to find the symmetric DoF is equivalent to the covering
problem of this hypergraph to find the minimum number of hyperedges
{Xi, i = 1, 2, . . . , ⌧t} such that each j 2 K appears at least t of the Xi’s.
According to the definition of hypergraph covering in Definition 6.9, the
minimum number of hyperedges that meets the covering problem can be
represented by the t-fold covering number. With hyperedge cover of ⌧t(HG)
times, each vertex in K is covered at least t times, meaning that within
a ⌧t(HG) dimensional subspace spanned by Vi 2 C⌧t⇥1, i = 1, . . . , ⌧t, each
Wj , j 2 K can be delivered t times free of interference. As a consequence,
the achievable symmetric DoF can be represented by

d
sym

= sup
t

t

⌧t(HG)
=

1

⌧f (HG)
, (6.148)

where ⌧f (HG) is the hypergraph fractional covering number as defined in
Definition 6.9.

6.5.10 Proof of Theorem 6.7

The proof follows the channel enhancement approach in [49] with slight
modification by taking transmitter cooperation (i.e., message sharing) into
account. We brief the steps of the channel enhancement as follows.

• Denote by C
1

the capacity region of the TIM-CoMP problem, where
Transmitter i is endowed with the messages desired by its connected
receivers, i.e., WRi , for all i 2 K.

• 8 k, j 2 K, if j 2 Tk, we specify

hkj =

s

SNR

Pj
(6.149)

which will not impact on the reliability of the capacity-achieving coding
scheme.
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• 8 k, j 2 K, if j /2 Tk, we provide WRj to Receiver k as side information,
and connect the missing link by setting the channel coe�cient as a
non-zero value

hkj =

s

SNR

Pj
, (6.150)

where the newly enabled interferences from Transmitter j can be
eliminated given the side information WRj .

• Allowing full transmitter cooperation and full CSIT, the channel turns
out an MISO channel to each receiver, where all received signals are
statistically equivalent. Denote by C

2

the capacity region of current
channel. The capacity region is not diminished, i.e., C

1

✓ C
2

.

• With the network equivalence theorem [130], the MISO channel can be
replaced by a noise-free link with finite capacity, as the bottleneck link
of index coding problem with capacity region C

3

.

It is noticed that all the above steps do not reduce the capacity region, i.e.,
C

1

✓ C
2

✓ C
3

, such that the capacity region of the index coding problem with
side information [j2T c

k
WRj can serve as an outer bound of our problem.

6.5.11 Proof of Corollary 6.4

The achievability is due to time division, whereas the converse comes from the
outer bound of the index coding problem with side information [j2T c

k
WRj .

From Corollary 7 in [49], it is necessary and su�cient to achieve the symmetric
capacity of 1

K per message that the demand graph of the index coding problem
is acyclic. Thus, if the demand graph of index coding problem IC(k|Sk) with
Sk = [j2T c

k
Rj is acyclic, it su�ces that the TIM-CoMP problem is upper

bounded by 1

K , which is also achievable.
As an example, we illustrate in Fig. 6.9(a) a four-cell network with

transmit sets T
1

= T
2

= {1, 2}, T
3

= T
4

= {1, 2, 3, 4} and receive sets
R

1

= R
2

= {1, 2, 3, 4},R
3

= R
4

= {3, 4}. By providing Receivers 1 and 2
with W

3,4, we connect the missing links as shown in Fig. 6.9(c) without
reducing the capacity region. Allowing full CSIT, the problem now is
equivalent to the index coding problem (as in Fig. 6.9(c)) where messages
W

1,2,3,4 are sent from one transmitter to Receiver j (j = 1, 2, 3, 4) who
demands Wj , and both Receivers 1 and 2 have the side information W

3,4.
This index coding problem has no cycles in its demand graph as shown in
Fig. 6.9(d), such that the optimal symmetric DoF value is 1

K .
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𝑊ଵ,ଶ,ଷ,ସ → 𝑋ଵ 

𝑊ଵ,ଶ,ଷ,ସ → 𝑋ଶ 

𝑊ଷ,ସ → 𝑋ଷ 

𝑊ଷ,ସ → 𝑋ସ 

𝑊ଷ,ସ 

𝑊ଷ,ସ 

𝑊ଵ,ଶ,ଷ,ସ 

𝑊ଷ,ସ 

𝑊ଷ,ସ 

𝑊ଵ 

𝑊ଶ 

𝑊ଷ 

𝑊ସ 

𝑊ଵ 

𝑊ଶ 

𝑊ଷ 

𝑊ସ 

RX1 

RX2 

RX3 

RX4 

(𝑎) (𝑏) (𝑐) (𝑑) 

Figure 6.9: (a) An instance of TIM-CoMP problem (K = 4). By providing the
side information W3,4 to Receivers 1 and 2, the network becomes fully connected as
shown in (b). Thus, the DoF region is outer bounded by an index coding problem
with side information as in (c), whose corresponding directed demand graph is shown
in (d). There exist no cycles in this directed graph in (d).

6.5.12 Proof of Corollary 6.5

First, we prove the necessary condition that, if the optimal symmetric
DoF value is 1

K , then GAFG is an empty graph. We achieve this goal by
constructing a proof by contraposition, i.e., if GAFG is not empty, then the
optimal symmetric DoF value is not 1

K . Assume there exists an edge eij
in GAFG, which imply Wi and Wj are alignment feasible, i.e., Ti * Tj and
Ti * Tj . According to the definition of proper partition, we have a proper
partition with size K� 1 where the indices i and j associate with Wi and Wj

respectively are in the same portion and the rest K � 2 messages form K � 2
portions, such that d

sym

= 1

K�1

is achievable. Had proven the contraposition,
the original statement automatically implies.

Second, we prove the su�cient condition that, if the AFG is an empty
graph, then the optimal symmetric DoF value is 1

K . Aware of the fact that
the symmetric DoF 1

K can be trivially achieved by time division, we only
have to prove 1

K is also an outer bound given that GAFG is an empty graph.
According to Theorem 6.7 and Corollary 6.4, our goal can be reached if the
following statement is proved:

if GAFG = ;, then IC(k|Sk) is acyclic.

We construct the proof of this statement by contraposition, i.e.,

if the demand graph of the index coding problem IC(k|Sk) is not acyclic,

then GAFG 6= ;, i.e., 9 i, j, such that Ti * Tj and Tj * Ti.
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To prove this contraposition, we first assume there exists a cycle involving
only two messages, e.g., Wm and Wn, in the demand graph. Thus, we have
m 2 Sn = [j2T c

n
Rj and n 2 Sm = [j2T c

m
Rj , while m /2 Sm = [j2T c

m
Rj

and n /2 Sn = [j2T c
n
Rj , such that there exist j

1

2 T c
n and j

2

2 T c
m where

m 2 Rj1 and n 2 Rj2 whereas m /2 Rj2 and n /2 Rj1 . This leads to
Rj1 * Rj2 and Rj2 * Rj1 . Equivalently, there exist t

1

2 Rj1 and t
2

2 Rj2 ,
such that Tt1 * Tt2 and Tt2 * Tt1 , because both conditions imply the same
alignment feasibility, where Xj1(Wt1) and Xj2(Wt2) can be aligned in the
same subspace. Consequently, two messages Wt1 and Wt2 are alignment-
feasible, and therefore connected in GAFG. Thus, GAFG 6= ; is proven.

Furthermore, we assume without loss of generality the smallest cycle
involving more than two messages, i.e., i

1

! i
2

! · · · ! is ! i
1

with
directed edge from Message im to Receiver im then via Message im+1

to
Receiver im+1

and so on, for m = 1, 2, . . . , s, with modulo applied to the
indices. Given the smallest cycle in the directed demand graph, we have

im+1

2 Sim = [j2T c
im
Rj , (6.151)

im+1

/2 Sin = [j2T c
in
Rj , 8 n 2 {1, 2, . . . , s}, n 6= m. (6.152)

From (6.151), it is readily verified that there must exist jm 2 T c
im
, such that

im+1

2 Rjm . By set n = m � 1 and n = m+ 1 respectively in (6.152), we
have

8 jm�1

2 T c
im�1

, im+1

/2 Rjm�1 , (6.153)

8 jm+1

2 T c
im+1

, im+1

/2 Rjm+1 . (6.154)

It follows that T c
im

* T c
im�1

and T c
im

* T c
im+1

for all m, and in turn

Tim�1 * Tim , and Tim+1 * Tim , 8 m. (6.155)

Otherwise, it results in contradictions with im+1

2 Rjm . Recalling that
i
1

! i
2

! · · ·! is ! i
1

forms a cycle, we conclude that Rim * Rim+1 and
Rim+1 * Rim for all m 2 {1, 2, . . . , s}. Thus, we conclude that, if there exist
a cycle in demand graph, then GAFG 6= ;. Consequently, its contraposition
is equivalently proved: if GAFG = ;, then the corresponding demand graph
is acyclic, and optimal symmetric DoF value is 1

K .
Given the proof of necessity and su�ciency, we complete the proof.

6.6 Summary

The TIM problem with transmitter cooperation (i.e., TIM-CoMP) where
a subset of messages is routed to transmitters has been considered in this
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chapter. Three interference management techniques built upon fractional
graph coloring, interference alignment, and hypergraph covering have been
proposed to exploit the benefits of both topological knowledge and transmitter
cooperation, with which the achievable symmetric DoF are identified for a
class of network topologies. Three outer bounds built upon the concepts of
generator sequence, compound settings, and the equivalence to index coding
are also derived to show the optimality of symmetric DoF for all the three-cell
networks and the cyclic Wyner-type networks.

Yet, fundamental limits of transmitter cooperation in TIM settings are far
less understood. Note also that transmitter cooperation only enables a subset
of messages to be routed to the transmitters. A natural question then arises
as to whether further transmitter cooperation (e.g., more messages shared
among transmitters) o↵ers more gain. In this regard, we give a conjecture in
the negative.

Conjecture 6.1. The transmitter cooperation with Transmitter i (8 i) only
endowed with messages WRi is su�cient in the sense of DoF, and further
transmitter cooperation does not o↵er more gains on DoF.

The intuition is that, if Transmitter-i is not connected to Receiver-j,
the presence of Wj at Transmitter-i does not increase DoF of Wj , and the
transmission of Wj at Transmitter-i will interfere other receivers connected
to Transmitter-i due to lack of channel knowledge. A future interesting
direction would be to prove or disprove this conjecture, which will pave the
way for other TIM-CoMP related problems.
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Chapter 7

Conclusion and Future Work

Focusing on the channel uncertainty in the forms of delayed and sole topo-
logical feedback, this thesis has studied interference management of wireless
networks with channel uncertainty from both signal processing and informa-
tion theoretic perspectives, unveiling the fundamental limitation of channel
uncertainty in terms of sum rate and degrees of freedom. These results also
shed light on how to design robust precoders and transmission protocols to
overcome the potential channel degradation due to channel uncertainty.

The first part of this thesis has focused on the channel uncertainty caused
by feedback delay in the form of delayed CSIT. In Chapter 3, we considered
throughput maximization of time i.i.d. MISO BC at finite SNR with delayed
CSIT. We proposed a first construction for the precoders which reaches a
useful trade-o↵ between interference alignment and signal enhancement at
finite SNR, allowing for significant throughput improvement in practical
settings. In Chapter 4, we considered time-correlated MIMO networks (BC
and IC) where the transmitter(s) has/have delayed and imperfect current CSI.
The DoF regions for two-user broadcast and interference MIMO networks
with general antenna configuration under such conditions have been fully
characterized. Specifically, a simple unified framework has been proposed,
allowing us to attain optimal DoF region for general antenna configurations
and current CSIT qualities.

The focus of the second part was placed on the channel uncertainty due to
the sole topological feedback under the framework of TIM settings. In Chapter
5, the optimal DoF of the multiple unicast TIM problem have been fully
characterized via simple orthogonal schemes for a subclass of cellular network
topologies. In particular, it was shown that orthogonal access achieves the
optimal symmetric DoF, sum DoF, and DoF region of the cellular networks
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without cycles of length larger than four in connectivity graphs. In Chapter
6, we considered the TIM setting where a typical transmitter cooperation
is enabled. We showed that the sole topological information can be also
exploited in this case to strictly improve DoF when the network is not fully
connected. In particular, the symmetric DoF for regular networks were
characterized as well as the conditions to achieve a certain amount of DoF
for arbitrary network topologies were also identified.

While some interesting results have been established in the past three
years in delayed feedback networks, there are still some interesting open
problems left. Most existing works considered delayed CSIT with infinite
preciseness by assuming that either the CSI feedback could be tolerant to
su�cient delays or the feedback links are with infinite capacity. Nevertheless,
the practical systems have neither unlimited delay tolerance nor unbounded
capacity of feedback links. As such, considering delayed feedback in MIMO
networks with finite precision is of practical relevance and interest. Further,
the extension to the general K-user MIMO case is also an interesting open
problem. Besides the lack of tight outer bound, a better achievability
scheme is also needed to reduce the gap between the existing inner and outer
bounds [80].

While DoF characterization made a first-order approximation of channel
capacity in the infinite SNR regime, capacity characterization at any SNR is
still missing. In Chapter 3, we made the first progress toward this target,
followed by the recent progress in [131] which gave a constant gap of capacity
approximation. Nevertheless, the problem of characterizing the sum capacity
or the capacity region with both delayed and imperfect current CSIT is
challenging and still open. Our previous results on DoF characterization in
Chapter 4 shed light on the achievability scheme design, but the optimization
over a number of parameters makes this problem challenging at this moment.

Regarding the topological interference management problems, there are
still lots of interesting open problems for future work. TIM problems can be
regarded as applications of index coding problems in wireless networks, such
that the linear solutions of the former can be transferrable to the latter. As
many researchers were trying to attack index coding problems from di↵erent
perspectives, such as network coding [132], graph theory [99,100], interference
alignment [49,97,98], linear programming [125], random coding [124], rate
distortion theory [133], to name a few, the graph theoretic and interference
alignment perspectives appear to be the most promising ones. While graph
theoretic tools are specialized in describing general results with the aid of
some well-defined graph parameters (such as fractional chromatic number,
local chromatic number, stable set number), the interference alignment
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perspective arms us the powerful lens to reveal the underlying insights and to
allow for much more intuitively transparent statements. Remarkably, their
interplay enables us to gain insights from the latter and leads us to general
solutions from the former. Di↵erently from the index coding problems where
all the messages are encoded together, an additional constraint that the
encoding of messages must be done in a distributed manner is imposed on
TIM problems. So, how much index coding results can be translated into
TIM problems is our future work.

Although some preliminary results have been reported in Chapter 6, the
fundamental limits of transmitter cooperation under TIM settings are far
less understood. The tighter relation between TIM-CoMP and index coding
problems is still unclear. Interesting extensions including reducing the gap
between inner and outer bounds, and fully characterizing the symmetric DoF
of arbitrary topologies are still challenging. A closer examination of TIM-
CoMP problem via combinatorial optimization [112] is a promising direction.
Another research avenue is to investigate how much the DoF results can
translate into practical scenarios. For example, the partial connectivity
in practice is relevant to the thresholds distinguishing strong links from
weak ones. Di↵erent threshold levels result in di↵erent topologies. As we
know, a lower threshold level leads to a denser connectivity and hence o↵ers
limited degrees of freedom to play with topological information, while a
higher threshold level renders SNR su↵ered although the flexibility of scheme
design is increased with sparser connectivity. So, how to choose the optimal
threshold level to achieve the capacity? Some preliminary simulation results
was given in Chapter 5, but the theoretic analysis is still challenging and is
our ongoing work.
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