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ABSTRACT

Multimedia databases contain an increasing amount of videos that
are hardly semantically accessed. Among the useful indices that
can be extracted from the sound track, the presence of a keyword at
some place plays a prominent role.
This paper deals with the specificities of such a keyword spotter
and the enhancement brought to our previous technique, [1] based
on frame labeling. To be useful, such a keyword spotter has to be
speaker independent. Moreover it has to be able to detect any word
out of an open vocabulary. This directly implies the use of a
phonemic representation of the word. These constraints usually
lead to an excessively time consuming tool. The division of the
indexing process into two parts, the first one off-line, the second
one at the query time, allows a faster response.

1. INTRODUCTION

Multimedia databases contain an increasing amount of videos that
are hardly semantically accessed. Content based indexing tools are
thus of primary interest for easy access to the information. The
search for semantically described events may rely on the video
content itself (face recognition, scene understanding) but also on
the sound track. Moreover containing audio and video information
could enhance the indexing process. Among the useful indices that
can be extracted from the sound track, the presence of a keyword at
some place plays a prominent role. Other audio indices could be
speaker identification, speech / non speech detection, language
identification, male / female voice detection,...
This paper deals with the specificities of such a keyword spotter
and the enhancement brought to our previous technique [1], based
on frame labelling. To be useful, such a keyword spotter has to be
speaker independent. Moreover it has to be able to detect any word
out of an open vocabulary. This directly implies the use of a
phonemic representation of the word. The severe constraints lead to
an excessively time consuming tool. The division of the indexing
process into two parts, the first one off-line, the second one at the
query time, allows a faster response.
The off-line job consists in building a lattice of phoneme
hypotheses. To obtain local phonetic probabilities, two models are
compared: standard Gaussian distribution and neural network
estimation. A Hidden Markov Model (HMM) trained on a standard
corpus is used as a phonemic language. Then a Viterbi algorithm
gives the best phoneme segmentation which can be viewed as an
initial lattice of phoneme hypotheses. For each segment, the

occurrence probability of every phoneme is computed by using the
local phonetic probabilities. Using a threshold, the best hypotheses
are sorted and added to the lattice. This lattice is supposed to
contain all the required speech information for the search of a
keyword that will take place in a on-line query. Therefore this is the
only data saved for the on-line treatment.
At each query, this lattice is first enhanced according to a
previously computed confusion matrix based on phonetic
recognition rates of the HMM. For each hypothesis, the highest
confusable phonemes are taken into account. This process is done
at the query time in order to keep the size of the lattice as small as
possible, but can be achieved off-line if response time is critical.
Then, this enhanced lattice is parsed searching for the specific
keyword. Introducing multiple phonetic transcriptions due to the
various pronunciations of the searched keyword is easily done and
would produce more precise detection. Experiments using TIMIT
database will be reported.
The front-end analyzer is described in section 2, while section 3
describes the language model implied in the process. Two kinds of
local probabilities are considered for the HMMs.
In Section 4, the two steps of hypothesis generation is analyzed. In
the first one, a segmentation results from a Viterbi alignment. In a
second one, the lattice is enhanced by a N-Best segmentation.
Section 5 presents our search algorithm over the lattice.
In Section 6, experiments are reported. Enhancement and results
are commented.
In the conclusion, a glance on future perspectives reveals our
development plans.

2. FRONT-END ANALYSIS

As in all recognition systems, speech is preprocessed over short
time frames (32 msec here), shifted by 10 msec; each frame is
described by a vector, , in a so-called feature space . This
vector is composed with the 17 first Mel cepstrum coefficients, a
voiceness estimator based on cepstrum coefficients, and all their
delta coefficients, totaling 36 coefficients.
As it is well known [6], a voiced frame can be easily detected on a
cepstrum analysis since the pitch-periodical nature of the spectrum
corresponds to a peak in the cepstral domain. Knowing that
fundamental frequency ranges from 40Hz to 250Hz, we can isolate
the cepstrum part of this range to detect the highest energy
frequency. The ratio between this energy and the average energy
over this frequency domain gives us an measurement of voiceness.
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3. LANGUAGE MODEL

The language model is based on a HMM structure composed by
sub-models of phonemes, , connected in order to generate
any possible phonetic sequence. The inter-phoneme connections
are the time-shift invariant phoneme transition probabilities

. These probabilities are based on the number of
phonetic transition, , found in the training
database:

3.1. Phoneme Models

Each phoneme, , is modeled by a standard 3 states HMM,
where the states are denoted: . Each state may
generate the local a priori probability , for an acoustic
vector , to be produced by a given state .
Two different state probabilities are tested: Gaussian density based
model giving  and a multi layer perceptron (MLP)
based model giving an a posteriori probability, . In
the latter case, Bayes rule is used to deduce an a priori probability.
While the first parametric distribution has been used for
classification with HMM for a long time, neural network
generation of probabilities has drawn recently a lot of interest [4].

• Gaussian Distribution

Here, the parameters for each phoneme consist in a mean vector
and a covariance matrix which is assumed to be diagonal for
simplification purpose [6].

• Multi Layer Perceptron

It is now well accepted that the outputs of an MLP trained with a
classification criterion (one active output only with all the others
fired off) approximate the a posteriori probabilities. Using Bayes
rule and the a priori probabilities of the classes, a posteriori
probabilities can be converted into local probabilities within an
irrelevant scaling factor in the Forward Backward or Viterbi
algorithms, [7]. It is worth noticing that no distribution shape
constrains the resulting distribution and that the a posteriori
probabilities are trained according to a discriminant criterion.
It is out of the scope of this paper to describe in the details the
training techniques for the determination of the distribution
parameters. The learning algorithm of the MLP is a standard error
backpropagation with a cross-validation test for iteration control to
avoid overtraining, [2].

3.2. Models Estimation

The model we are dealing with, are estimated through a standard
training iterative process, [5].

4. LATTICE GENERATION

Nodes and arcs make up the lattices.
Nodes are inter-phoneme connections that can be referred by frame
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number. Each arc represents a phoneme hypothesis.
Each hypothesis contains a beginning node , an ending node , a
phoneme label , and the probability  that this phoneme is
located between  and . The hypothesis is denoted by

 where  stands for  and
.

The a priori probability that the vector sequence  can be
associated with a specific path

through the HMM is given by:

.

Each sequence of states generated by a path through the HMM can
also be viewed as a sequence of sub-paths through phoneme
models, , where  phonemes have
been generated and , where

.
Then we can write:

,

where

.

At each time , during the forward part of the Viterbi process, the
probability associated with the best path finishing in each state is
known.
As shown in [2], not all possible backtrack informations collected
during the forward process should be saved.

• Forward

In a Viterbi approach, we only need to keep at each time , the best
finishing phoneme  and its duration . In a lattice making
approach, as in the N-best approach, we need to keep more
information. At each time , we need to keep the N best finishing
phonemes, , their respective durations,

, and the probabilities associated with
them ,

where  stands for .

These associations can already be viewed as hypotheses.

• Backward

In order to be time efficient during the lattice search process, we
cannot keep trace of all the exact N-best paths, as each N-best path
has its own phoneme segmentation, and therefore would need to
generate too much nodes. In order to limit the node generation, a
two step process is used. First, the node generated by the best path
(Viterbi) is kept. Second, for each selected node, we inspect the N
finishing phonemes associated with, and select their beginning
nodes. Third, we keep in the lattice hypotheses containing all the
phonemes beginning and ending on selected nodes.
Doing so, we defineGroups of Hypotheses, containing the same
beginning and ending nodes.
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5. SEARCH OVER THE LATTICE

5.1. Blocking Effect

• Confusion Matrix

Since hypotheses are obtained through an N-Best like strategy,
speaker variability is taken into account. For instance, if the speaker
pronounces a “a” phoneme in the [“a”- “e”] area, the “a” hypothesis
and the “e” hypothesis will be generated. Unfortunately, this
mechanism is not efficient in case of total mispronunciation.
A confusion matrix that takes into account similarities between
phonemes will give more freedom in the representation so as to
mask the effect of phoneme mislabelling in the training and of
phoneme misrecognition.
For each sentence of the training database, phonetic segmentation
is determined according to the correct phoneme sequence. Acoustic
vectors are then labeled according to this segmentation. Let us note

, the set of all acoustic vectors labeled by the correct phoneme
. If we note  the estimated phoneme, we can then compute the

confusion probability:

where ,  and  are taken when using the training
database with the language model, and  when using the Viterbi
segmentation on the known phoneme sequence.

• Transition

In [1], hypotheses were deduced from the local probabilities.
Therefore the boundaries cannot be grouped as done in this paper.
So, the end of an hypothesis does not necessarily coincide with the
beginning of the next hypothesis. Between successive hypotheses
temporal jumps are then required. Now, as boundaries hypotheses
are grouped according to the Viterbi segmentation and its second
iteration (see Backward part in section 4), jumps are no longer
needed. This reduces searching time as hypotheses transitions
boundaries  are fixed.

5.2. Algorithm

Using the confusion matrix, let  be the phonetic
transcription of the searched keyword.
For each group of hypotheses having the same boundaries,

, where ,we can compute

,

generating a new lattice specific to the keyword, denoted .
Next, we search the best sequence of hypotheses denoted

 which maximizes the probability:
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The search of the optimal sequence of hypotheses is based on a
recursive process.

• In step 1, the initialization process consists in
searching over all the lattice , each hypothesis

,  of
occurrence of the first phoneme . For each of
them we can initialize  and

, and execute the second step.

• In each step , for the last hypothesis of
, denoted , we next

search for hypotheses  of
occurrence of , such that .

• For each hypothesis  found:

we build ,

and calculate ,

• if , we go to step ,

• if  and if  is the maximum sequence
probability encountered, we keep this sequence

.

• Once each hypothesis  has been treated, we go
back to step .

At the end of this process which runs over the whole lattice, the
sequence  showing the maximum probability,

 is found.

6. RESULTS

The tests we have done are exactly the same as in [1], in order to
compare them. The test aims to mimic the use of an indexing tool
by a document analyst. They are based on the DARPA TIMIT
corpus (1990). We randomly choose 20 different sentences out of
the SX part of the test databases. We then select one keyword per
sentence (seeTable 1).

Each SX sentence occurred 7 times in the test database as there are
spoken by 7 different speakers.

sx113 muscular sx95 alligators sx14 thursday

sx10 grades sx100 proceeding sx101 decorate

sx110 problems sx20 overalls sx199 exposure

sx103 ambulance sx290 informative sx99 society

sx137 tradition sx109 ankle sx102 kidnappers

sx53 vocabulary sx373 superb sx280 mirage

sx133 pizzerias sx8   silly
Table 1: List of Keywords.
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We keep these 140 sentences (7* 20) as the test corpus in order to
be speaker independent.

• For each sentence, we generate the corresponding
lattice, , .

• For each keyword, , :

1. We compute its probability of occurrence in
every sentences: .

2. We sort the 140 sentences according to their
probability.Table 2 shows the position, in this
classification, of the 7 sentences where the
keyword is really pronounced (“true hits”).

• We compute the average position of these true hits
over every keyword. (seeTable3).

muscular 1 2 3 4 5 7 12

grades 1 2 3 5 6 7 8

problems 1 2 3 4 5 6 13

ambulance 1 4 5 9 18 22 100

tradition 1 3 4 7 8 9 88

vocabulary 1 8 19 71 72 73 74

pizzerias 1 2 3 4 5 8 20

alligators 1 2 3 5 7 11 12

proceeding 1 2 3 4 5 6 7

overalls 1 2 3 5 6 14 53

informative 1 2 5 46 49 126 127

ankle 2 3 6 8 34 78 105

superb 1 2 5 28 30 45 121

silly 1 2 3 4 7 13 14

thursday 1 2 3 7 18 29 70

decorate 1 4 5 7 9 10 12

exposure 1 2 3 4 5 8 9

society 1 2 3 4 5 18 23

kidnappers 1 2 7 18 49 135 136

mirage 4 41 51 115 124 136 139
Table 2: Gaussian Models: True Hit Positions.

Reading 17th line: for “exposure”, the first 5 position sentences
sorted with this method actually contain this keyword, but the

6th and the 7th position sentences do not; only the 8th and 9th

position sentences contain it.

Gaussian. 1.2 4.55 7.0 17.9 23.4 38.0 57.1

MLP. 1.1 2.57 7.05 12.3 23.3 29.0 47.2
Table 3: Average True Hit Positions, HMM models

Average positions are computed for the Gaussian based model
and the MLP based model.

Li i 1 … 140, ,=

φk k 1 … 7, ,=

P φk Li( )

From the document analyst point of vue, we can say that “if we are
only interested in finding three occurrences of a keyword, we
usually only need to listen to 8-9 sentences out of 140 to find them”.

In order to compare these results with those obtained with the frame
labelling process shown in [1], we reproduce the latter inTable 4.

7. CONCLUSION.

The ambitious task of keyword spotting on speaker independent
data without restrictions on the vocabulary has been tackled, [1][3].
A HMM approach has been used in order to compare it with older
frame labeling technique. This comparison shows that a better
result can be expected with this new approach. Due to the new
lattice structure, an improvement in the search time has been
noticed. Extensive tests on more word spotting oriented database
will be achieved as well as tests on actual sound tracks of video
where several speakers intervene. Ultimately the process will be
coupled to a video pattern indexing tool and interactions between
video and speech will be used to enhance the indexing results.
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Gaussian. 2.1 4.4 8.75 14.4 24.3 40.6 60.1

Multi Gaussian. 2.1 4.3 8.5 14.1 24.0 39.9 61.0

MLP. 1.45 3.7 6.8 13.0 19.1 39.1 64.5
Table 4: Average True Hit Positions, Frame Labelling.


