
Hybris: Robust Hybrid Cloud Storage

Dan Dobre
work done at NEC Labs Europe

dan@dobre.net

Paolo Viotti
EURECOM

paolo.viotti@eurecom.fr

Marko Vukolić
Systems Group, ETH Zurich and

EURECOM
marko.vukolic@eurecom.fr

Abstract
Besides well-known benefits, commodity cloud storage also
raises concerns that include security, reliability, and consis-
tency. We present Hybris key-value store, the first robust hy-
brid cloud storage system, aiming at addressing these con-
cerns leveraging both private and public cloud resources.

Hybris robustly replicates metadata on trusted private
premises (private cloud), separately from data which is dis-
persed (using replication or erasure coding) across multiple
untrusted public clouds. Hybris maintains metadata stored
on private premises at the order of few dozens of bytes per
key, avoiding the scalability bottleneck at the private cloud.
In turn, the hybrid design allows Hybris to efficiently and
robustly tolerate cloud outages, but also potential malice in
clouds without overhead. Namely, to tolerate up to f mali-
cious clouds, in the common case of the Hybris variant with
data replication, writes replicate data across f + 1 clouds,
whereas reads involve a single cloud. In the worst case, only
up to f additional clouds are used. This is considerably better
than earlier multi-cloud storage systems that required costly
3 f + 1 clouds to mask f potentially malicious clouds. Fi-
nally, Hybris leverages strong metadata consistency to guar-
antee to Hybris applications strong data consistency without
any modifications to the eventually consistent public clouds.

We implemented Hybris in Java and evaluated it using a
series of micro and macrobenchmarks. Our results show that
Hybris significantly outperforms comparable multi-cloud
storage systems and approaches the performance of bare-
bone commodity public cloud storage.

Categories and Subject Descriptors C.2.4 [Computer and
Communication Networks]: Distributed Systems

Keywords Cloud storage, Hybrid cloud, Reliability

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Hybrid cloud storage entails storing data on private premises
as well as on one (or more) remote, public cloud storage
providers. To enterprises, such hybrid design brings the best
of both worlds: the benefits of public cloud storage (e.g.,
elasticity, flexible payment schemes and disaster-safe dura-
bility) as well as the control over enterprise data. For exam-
ple, an enterprise can keep the sensitive data on premises
while storing less sensitive data at potentially untrusted pub-
lic clouds. In a sense, hybrid cloud eliminates to a large ex-
tent various security concerns that companies have with en-
trusting their data to commercial clouds [31] — as a result,
enterprise-class hybrid cloud storage solutions are booming
with all leading storage providers offering their proprietary
solutions.

Beyond security and trust concerns, storing data to a sin-
gle cloud poses issues related to provider reliability, avail-
ability, performance, vendor lock-in, as well as consistency,
as cloud storage services are notorious for providing only
eventual consistency [32]. To this end, several research
works (e.g., [6–8, 10, 33, 35]) considered storing data ro-
bustly into public clouds, by leveraging multiple commodity
cloud providers. In short, these multi-cloud storage systems,
such as DepSky [8], ICStore [6], SPANStore [35] and SCFS
[7], leverage multiple public cloud providers to distribute
the trust across clouds, increase reliability, availability and
consistency guarantees, and/or optimize the cost of using the
cloud. A significant advantage of the multi-cloud approach
is that it is based on client libraries that share data accessing
commodity clouds, and as such, demands no big investments
into proprietary storage solutions.

However, the existing robust multi-cloud storage systems
suffer from serious limitations. Often, the robustness of these
systems is limited to tolerating cloud outages, but not arbi-
trary or malicious behavior in clouds (e.g., data corruptions)
— this is the case with ICStore [6] and SPANStore [35].
Other multi-cloud systems that do address malice in systems
(e.g., DepSky [8] and SCFS [7]) require prohibitive cost of
relying on 3 f + 1 clouds to mask f faulty ones. This is a
major overhead with respect to tolerating only cloud out-
ages, which makes these systems expensive to use in prac-
tice. Moreover, all existing multi-cloud storage systems scat-

2014/10/12

ter storage metadata across public clouds increasing the dif-
ficulty of storage management and impacting performance.

In this paper, we unify the hybrid cloud approach with
that of robust multi-cloud storage and present Hybris, the
first robust hybrid cloud storage system. By unifying the hy-
brid cloud with the multi-cloud, Hybris effectively brings to-
gether the best of both worlds, increasing security, reliability
and consistency. At the same time, the novel design of Hy-
bris allows for the first time to tolerate potentially malicious
clouds at the price of tolerating only cloud outages.

Hybris exposes the de-facto standard key-value store API
and is designed to seamlessly replace services such as Ama-
zon S3 as the storage back-end of modern cloud applica-
tions. The key idea behind Hybris is that it keeps all stor-
age metadata on private premises, even when those metadata
pertain to data outsourced to public clouds. This approach
not only allows more control over the data scattered around
different public clouds, but also allows Hybris to signifi-
cantly outperform existing robust public multi-cloud storage
systems, both in terms of system performance (e.g., latency)
and storage cost, while providing strong consistency guaran-
tees. The salient features of Hybris are as follows:

Tolerating cloud malice at the price of outages: Hybris puts
no trust in any given public cloud provider; namely, Hybris
can mask arbitrary (including malicious) faults of up to f
public clouds. Interestingly, Hybris replicates data on as
few as f + 1 clouds in the common case (when the system
is synchronous and without faults), using up to f additional
clouds in the worst case (e.g., network partitions, cloud
inconsistencies and faults). This is in sharp contrast to ex-
isting multi-cloud storage systems that involve up to 3 f +1
clouds to mask f malicious ones (e.g., [7, 8]).

Efficiency: Hybris is efficient and incurs low cost. In com-
mon case, a Hybris write involves as few as f + 1 public
clouds, whereas reads involve only a single cloud, despite
the fact that clouds are untrusted. Hybris achieves this with-
out relying on expensive cryptographic primitives; indeed,
in masking malicious faults, Hybris relies solely on crypto-
graphic hashes. Besides, by storing metadata locally on pri-
vate cloud premises, Hybris avoids expensive round-trips
for metadata operations that plagued previous multi-cloud
storage systems. Finally, to reduce replication overhead Hy-
bris optionally supports erasure coding [29], which reduces
storage requirements at public clouds at the expense of in-
creasing the number of clouds involved in reads/writes.

Scalability: The potential pitfall of using private cloud in
combination with public clouds is in incurring a scalabil-
ity bottleneck at a private cloud. Hybris avoids this pitfall
by keeping the metadata very small. As an illustration, the
replicated variant of Hybris maintains about 50 bytes of
metadata per key, which is an order of magnitude less than
comparable systems [8]. As a result, Hybris metadata ser-
vice residing on a small commodity private cloud, can eas-

ily support up to 30k write ops/s and nearly 200k read ops/s,
despite being fully replicated for metadata fault-tolerance.

Indeed, for Hybris to be truly robust, it has to replicate
metadata reliably. Given inherent trust in private premises,
we assume faults within private premises that can affect
Hybris metadata to be crash-only. To maintain the Hybris
footprint small and to facilitate its adoption, we chose to
replicate Hybris metadata layering Hybris on top of Apache
ZooKeeper coordination service [21]. Hybris clients act sim-
ply as ZooKeeper clients — our system does not entail any
modifications to ZooKeeper, hence facilitating Hybris de-
ployment. In addition, we designed Hybris metadata service
to be easily portable from ZooKeeper to SQL-based repli-
cated RDBMS as well as NoSQL data stores that export con-
ditional update operation (e.g., HBase or MongoDB).

Hybris offers per-key multi-writer multi-reader capabili-
ties and guarantees linearizability (atomicity) [20] of reads
and writes even in presence of eventually consistent pub-
lic clouds [32]. To this end, Hybris relies on strong meta-
data consistency within a private cloud to mask potential
inconsistencies at public clouds — in fact, Hybris treats
cloud inconsistencies simply as arbitrary cloud faults. Our
implementation of the Hybris metadata service over Apache
ZooKeeper uses wait-free [19] concurrency control, boost-
ing further the scalability of Hybris with respect to lock-
based systems (e.g., SPANStore [35], DepSky [8] and SCFS
[7]).

Finally, Hybris optionally supports caching of data stored
at public clouds, as well as symmetric-key encryption for
data confidentiality leveraging trusted Hybris metadata to
store and share cryptographic keys. While different caching
solutions can be applied to Hybris, we chose to interface
Hybris with Memcached [2] distributed cache, deployed on
the same machines that run ZooKeeper servers.

We implemented Hybris in Java1 and evaluated it us-
ing both microbenchmarks and the YCSB [13] macrobench-
mark. Our evaluation shows that Hybris significantly out-
performs state-of-the-art robust multi-cloud storage systems,
with a fraction of the cost and stronger consistency.

The rest of the paper is organized as follows. In Section 2,
we present the Hybris architecture and system model. Then,
in Section 3, we give the algorithmic aspects of the Hybris
protocol. In Section 4 we discuss Hybris implementation and
optimizations. In Section 5 we present Hybris performance
evaluation. We overview related work in Section 6, and con-
clude in Section 7. Correctness arguments are postponed to
Appendix A.

2. Hybris overview
Hybris architecture. High-level design of Hybris is given
in Figure 1. Hybris mixes two types of resources: 1) private,
trusted resources that consist of computation and (limited)

1 Hybris code is available at http://hybris.eurecom.fr/code.

2014/10/12

http://hybris.eurecom.fr/code

storage resources and 2) (virtually unlimited) untrusted stor-
age resources in public clouds. Hybris is designed to lever-
age commodity public cloud storage with API that does not
offer computation, i.e., key-value stores (e.g., Amazon S3).

Zookeeper (ZK)

Hybris
Reliable MetaData Service

(RMDS)

Hybris client

ZK client

Distributed cache
(e.g., memcached)

Hybris client

ZK client

Hybris client

ZK client

trust
boundary

private premises
(private cloud)

untrusted
public clouds

data

data

metadata

Figure 1. Hybris architecture. Reused (open-source) com-
ponents are depicted in grey.

Hybris stores metadata separately from public cloud data.
Metadata is stored within the key component of Hybris
called Reliable MetaData Service (RMDS). RMDS has no
single point of failure and, in our implementation, resides on
private premises.

On the other hand, Hybris stores data (mainly) in un-
trusted public clouds. Data is replicated across multiple
cloud storage providers for robustness, i.e., to mask cloud
outages and even malicious faults. In addition to storing data
in public clouds, Hybris architecture supports data caching
on private premises. While different caching solutions exist,
our Hybris implementation reuses Memcached [2], an open
source distributed caching system.

Finally, at the heart of the system is the Hybris client,
whose library is responsible for interactions with public
clouds, RMDS and the caching service. Hybris clients are
also responsible for encrypting and decrypting data in case
data confidentiality is enabled — in this case, clients lever-
age RMDS for sharing encryption keys (see Sec. 3.6).

In the following, we first specify our system model and
assumptions. Then we define Hybris data model and specify
its consistency and liveness semantics.
System model. We assume an unreliable distributed system
where any of the components might fail. In particular, we
consider dual fault model, where: (i) the processes on private
premises (i.e., in the private cloud) can fail by crashing, and
(ii) we model public clouds as potentially malicious (i.e.,
arbitrary-fault prone [27]) processes. Processes that do not
fail are called correct.

Processes on private premises are clients and metadata
servers. We assume that any number of clients and any
minority of metadata servers can be (crash) faulty. Moreover,
we allow up to f public clouds to be (arbitrary) faulty;
to guarantee Hybris availability, we require at least 2 f +
1 public clouds in total. However, Hybris consistency is
maintained regardless of the number of public clouds.

Similarly to our fault model, our communication model
is dual, with the model boundary coinciding with our trust
boundary (see Fig. 1).2 Namely, we assume that the com-
munication among processes located in the private portion
of the cloud is partially synchronous [16] (i.e., with arbi-
trary but finite periods of asynchrony), whereas the commu-
nication among clients and public clouds is entirely asyn-
chronous (i.e., does not rely on any timing assumption) yet
reliable, with messages between correct clients and clouds
being eventually delivered.

Our consistency model is also dual. We model processes
on private premises as classical state machines, with their
computation proceeding in indivisible, atomic steps. On the
other hand, we model clouds as eventually consistent [32];
roughly speaking, eventual consistency guarantees that, if no
new updates are made to a given data item, eventually all
accesses to that item will return the last updated value.

Finally, for simplicity, we assume an adversary that can
coordinate malicious processes as well as process crashes.
However, we assume that the adversary cannot subvert cryp-
tographic hash functions we use (SHA-1), and that it cannot
spoof the communication among non-malicious processes.

Hybris data model and semantics. Similarly to com-
modity public cloud storage services, Hybris exports a
key-value store (KVS) API; in particular, Hybris address
space consists of flat containers, each holding multiple
keys. The KVS API features four main operations: (i)
PUT(cont,key,value), to put value under key in container
cont; (ii) GET(cont,key,value), to retrieve the value; (iii)
DELETE(cont,key) to remove the respective entry and (iv)
LIST(cont) to list the keys present in container cont. We col-
lectively refer to operations that modify storage state (e.g.,
PUT and DELETE) as write operations, whereas the other
operations (e.g., GET and LIST) are called read operations.

Hybris implements a multi-writer multi-reader key-value
storage. Hybris is strongly consistent, i.e., it implements
atomic (or linearizable [20]) semantics. In distributed stor-
age context, atomicity provides an illusion that a complete
operation op is executed instantly at some point in time be-
tween its invocation and response, whereas the operations
invoked by faulty clients appear either as complete or not
invoked at all.

Despite providing strong consistency, Hybris is highly
available. Hybris writes are wait-free, i.e., writes by a correct
client are guaranteed to eventually complete [19]. On the
other hand, Hybris guarantees a read operation by a correct
client to complete always, except in the corner case where an
infinite number of writes to the same key is concurrent with
the read operation (this is called finite-write termination [3]).

2 We believe that our dual fault and communication models reasonably
model the typical hybrid cloud deployment scenarios.

2014/10/12

RMDS

w
k put(k|ts

new,v) ack k,ts
new
,H(v),[c

1
,c
2
]ts ok

c
1

c
2

c
3

ack

(a) PUT (k,v)

RMDS

r

k

c
1

c
2

c
3

get(k|ts)ts, hash, [c
1
,c
2
] v

H(v) == hash

vv

(b) GET (k)

Figure 2. Hybris PUT and GET protocol illustration (f = 1). Common-case communication is depicted in solid lines.

3. Hybris Protocol
The key component of Hybris is its RMDS component
which maintains metadata (logical timestamp, pointers to
clouds storing data, cryptographic hash of data, and data
size). Such Hybris metadata, despite being lightweight, is
powerful enough to enable tolerating arbitrary cloud fail-
ures. Intuitively, the cryptographic hash within a trusted and
consistent RMDS enables end-to-end integrity protection: it
ensures that neither corrupted values produced by malicious
clouds, nor stale values retrieved from inconsistent clouds,
are ever returned to the application. Complementarily, data
size helps prevent certain denial-of-service attack vectors by
a malicious cloud (see Sec. 4.2).

Furthermore, Hybris metadata acts as a directory pointing
to f +1 clouds that have been previously updated, enabling
a client to retrieve the correct value despite f of them being
arbitrary faulty. In fact, with Hybris, as few as f + 1 clouds
are sufficient to ensure both consistency and availability of
read operations (namely GET) — indeed, Hybris GET never
involves more than f +1 clouds (see Sec. 3.2). Additional f
clouds (totaling 2 f +1 clouds) are only needed to guarantee
that PUT is available as well (see Sec. 3.1).

Finally, besides cryptographic hash and pointers to clouds,
metadata includes a timestamp that induces a partial order
of operations which captures the real-time precedence or-
dering among operations (atomic consistency). The subtlety
of Hybris (see Sec. 3.4 for details) is in the way it combines
timestamp-based lock-free multi-writer concurrency control
within RMDS with garbage collection (Sec. 3.3) of stale
values from public clouds to save on storage costs.

In the following we detail each Hybris operation. Note
that a given Hybris client never invokes concurrent opera-
tions on the same key; operations on the same key by the
same client are invoked sequentially.

3.1 PUT Protocol
Hybris PUT protocol entails a sequence of consecutive steps
illustrated in Figure 2(a). To write a value v under key k,
a client first fetches from RMDS the latest authoritative
timestamp ts by requesting the metadata associated with key
k. Timestamp ts is a tuple consisting of a sequence number
sn and a client id cid. Based on timestamp ts, the client

computes a new timestamp tsnew, whose value is (sn + 1,
cid). Next, the client combines the key k and timestamp tsnew
to a new key knew = k|tsnew and invokes put (knew, v) on
f + 1 clouds in parallel. Concurrently, the clients starts a
timer whose expiration is set to typically observed upload
latencies (for a given value size). In the common case, the
f +1 clouds reply to the the client in a timely fashion, before
the timer expires. Otherwise, the client invokes put (knew, v)
on up to f secondary clouds (see dashed arrows in Fig. 2(a)).
Once the client has received acks from f +1 different clouds,
it is assured that the PUT is durable and proceeds to the final
stage of the operation.

In the final step, the client attempts to store in RMDS the
metadata associated with key k, consisting of the timestamp
tsnew, the cryptographic hash H(v), size of value v size(v),
and the list (cloudList) of pointers to those f +1 clouds that
have acknowledged storage of value v. As this final step is
the linearization point of PUT, it has to be performed in a spe-
cific way. Namely, if the client performs a straightforward
update of metadata in RMDS, then it may occur that stored
metadata is overwritten by metadata with a lower timestamp
(old-new inversion), breaking the timestamp ordering of op-
erations and Hybris consistency. To solve the old-new inver-
sion problem, we require RMDS to export an atomic con-
ditional update operation. Then, in the final step of Hybris
PUT, the client issues conditional update to RMDS which
updates the metadata for key k only if the written timestamp
tsnew is greater than the timestamp for key k that RMDS al-
ready stores. In Section 4 we describe how we implement
this functionality over Apache ZooKeeper API; alternatively
other NoSQL and SQL DBMSs that support conditional up-
dates can be used.

3.2 GET in the common case
Hybris GET protocol is illustrated in Figure 2(b). To read
a value stored under key k, the client first obtains from
RMDS the latest metadata, comprised of timestamp ts, cryp-
tographic hash h, value size s, as well a list cloudList of
pointers to f + 1 clouds that store the corresponding value.
Next, the client selects the first cloud c1 from cloudList and
invokes get (k|ts) on c1, where k|ts denotes the key under
which the value is stored. Besides requesting the value, the

2014/10/12

client starts a timer set to the typically observed download
latency from c1 (given the value size s and for that particular
cloud). In the common case, the client is able to download
the correct value from the first cloud c1 before expiration of
its timer. Once it receives value v, the client checks that v
hashes to hash h comprised in metadata (i.e., if H(v) = h). If
the value passes the check, then the client returns the value
to the application and the GET completes.

In case the timer expires, or if the value downloaded from
the first cloud does not pass the hash check, the client se-
quentially proceeds to downloading the data from the second
cloud from cloudList (see dashed arrows in Fig. 2(b)) and so
on, until the client exhausts all f +1 clouds from cloudList.3

In specific corner cases, caused by concurrent garbage
collection (described in Sec. 3.3), failures, repeated timeouts
(asynchrony), or clouds’ inconsistency, the client has to take
additional actions in GET (described in Sec. 3.4).

3.3 Garbage Collection
The purpose of garbage collection is to reclaim storage space
by deleting obsolete versions of keys from clouds while
allowing read and write operations to execute concurrently.
Garbage collection in Hybris is performed by the writing
client asynchronously in the background. As such, the PUT
operation can give back control to the application without
waiting for completion of garbage collection.

To perform garbage collection for key k, the client re-
trieves the list of keys prefixed by k from each cloud as well
as the latest authoritative timestamp ts. This involves invok-
ing list(k|∗) on every cloud and fetching metadata associ-
ated with key k from RMDS. Then for each key kold , where
kold < k|ts, the client invokes delete (kold) on every cloud.

3.4 GET in the worst-case
In the context of cloud storage, there are known issues with
weak, e.g., eventual [32] consistency. With eventual con-
sistency, even a correct, non-malicious cloud might deviate
from atomic semantics (strong consistency) and return an
unexpected value, typically a stale one. In this case, sequen-
tial common-case reading from f +1 clouds as described in
Section 3.2 might not return a value since a hash verifica-
tion might fail at all f + 1 clouds. In addition to the case
of inconsistent clouds, this anomaly may also occur if: (i)
timers set by the client for a otherwise non-faulty cloud ex-
pire prematurely (i.e., in case of asynchrony or network out-
ages), and/or (ii) values read by the client were concurrently
garbage collected (Sec. 3.3).

To cope with these issues and eventual consistency in
particular, Hybris leverages metadata service consistency to
mask data inconsistencies in the clouds effectively allowing
availability to be traded off for consistency. To this end,

3 As we discuss in details in Section 4, in our implementation, clouds in
cloudList are ranked by the client by their typical latency in the ascending
order, i.e., when reading the client will first read from the “fastest” cloud
from cloudList and then proceed to slower clouds.

Hybris client indulgently reiterates the GET by reissuing
a get to all clouds in parallel, and waiting to receive at
least one value matching the desired hash. However, due
to possible concurrent garbage collection (Sec. 3.3), a client
needs to make sure it always compares the values received
from clouds to the most recent key metadata. This can be
achieved in two ways: (i) by simply looping the entire GET
including metadata retrieval from RMDS, or (ii) by looping
only get operations at f +1 clouds while fetching metadata
from RMDS only when metadata actually changes.

In Hybris, we use the second approach. Notice that this
suggests that RMDS must be able to inform the client proac-
tively about metadata changes. This can be achieved by hav-
ing a RMDS that supports subscriptions to metadata updates,
which is possible to achieve in, e.g.., Apache ZooKeeper
(using the concepts of watches, see Sec. 4 for details). The
entire protocol executed only if common-case GET fails
(Sec. 3.2) proceeds as follows:

1. A client first reads key k metadata from RMDS (i.e.,
timestamp ts, hash h, size s and cloud list cloudList) and
subscribes for updates for key k metadata with RMDS.

2. Then, a client issues a parallel get (k|ts) at all f + 1
clouds from cloudList.

3. When a cloud c ∈cloudList responds with value vc, the
client verifies H(vc) against h4.

(a) If the hash verification succeeds, the GET returns vc.

(b) Otherwise, the client discards vc and reissues get
(k|ts) at cloud c.

4. At any point in time, if the client receives a metadata up-
date notification for key k from RMDS, the client cancels
all pending downloads, and repeats the procedure by go-
ing to step 1.

The complete Hybris GET, as described above, ensures
finite-write termination [3] in presence of eventually con-
sistent clouds. Namely, a GET may fail to return a value
only theoretically, in case of infinite number of concurrent
writes to the same key, in which case the garbage collection
at clouds (Sec. 3.3) might systematically and indefinitely of-
ten remove the written values before the client manages to
retrieve them.5

3.5 DELETE and LIST

Besides PUT and GET, Hybris exports the additional func-
tions: DELETE and LIST— here, we only briefly sketch how
these functions are implemented.

Both DELETE and LIST are local to RMDS and do not
access public clouds. To delete a value, the client performs

4 For simplicity, we model the absence of a value as a special NULL value
that can be hashed.
5 Notice that it is straightforward to modify Hybris to guarantee read avail-
ability even in case of an infinite number of concurrent writes, by switching
off the garbage collection.

2014/10/12

the PUT protocol with a special cloudList value ⊥ denoting
the lack of a value. Deleting a value creates metadata tomb-
stones in RMDS, i.e. metadata that lacks a corresponding
value in cloud storage. On the other hand, Hybris LIST sim-
ply retrieves from RMDS all keys associated with a given
container cont and filters out deleted (tombstone) keys.

3.6 Confidentiality
Adding confidentiality to Hybris is straightforward.To this
end, during a PUT, just before uploading data to f +1 public
clouds, the client encrypts the data with a symmetric crypto-
graphic key kenc. Then, in the final step of the PUT protocol
(see Sec. 3.1), when the client writes metadata to RMDS us-
ing conditional update, the client simply adds kenc to meta-
data and computes the hash on ciphertext (rather than on
cleartext). The rest of the PUT protocol remains unchanged.
The client may generate a new key with each new encryp-
tion, or fetch the last used key from the metadata service, at
the same time it fetches the last used timestamp.

To decrypt data, a client first obtains the most recently
used encryption key kenc from metadata retrieved from
RMDS during a GET. Then, upon the retrieved ciphertext
from some cloud successfully passes the hash test, the client
decrypts data using kenc.

3.7 Erasure coding
In order to minimize bandwidth and storage capability re-
quirements, Hybris supports erasure coding. Erasure codes
entail partitioning data into k > 1 blocks with m additional
parity blocks, each of the k+m blocks taking about 1/k of
the original storage space. When using an optimal erasure
code, the data can be reconstructed from any k blocks de-
spite up to m erasures. In Hybris, we fix m to equal f .

Deriving an erasure coding variant of Hybris from its
replicated counterpart is relatively straightforward. Namely,
in a PUT, the client encodes original data into f + k erasure
coded blocks and places one block per cloud. Hence, with
erasure coding, PUT involves f + k clouds in the common
case (instead of f +1 with replication). Then, the client com-
putes f +k hashes (instead of a single hash with replication)
that are stored in the RMDS as the part of metadata. Finally,
erasure coded GET fetches blocks from k clouds in com-
mon case, with block hashes verified against those stored in
RMDS. In the worst case, Hybris with erasure coding uses
up to 2 f + k (resp., f + k) clouds in PUT (resp., GET).

Finally, it is worth noting that in Hybris, there is no ex-
plicit relation between parameters f and k which are inde-
pendent. This offers more flexibility with respect to prior so-
lutions that mandated k ≥ f +1.

4. Implementation
We implemented Hybris in Java. The implementation per-
tains solely to the Hybris client side since the entire func-
tionality of the metadata service (RMDS) is layered on top

of Apache ZooKeeper client. Namely, Hybris does not entail
any modification to the ZooKeeper server side. Our Hybris
client is lightweight and consists of about 3400 lines of Java
code. Hybris client interactions with public clouds are im-
plemented by wrapping individual native Java SDK clients
(drivers) for each particular cloud storage provider into a
common lightweight interface that masks the small differ-
ences across native client libraries.

In the following, we first discuss in details our RMDS
implementation with ZooKeeper API. Then, we describe
several Hybris optimizations that we implemented.

4.1 ZooKeeper-based RMDS
We layered Hybris implementation over Apache ZooKeeper
[21]. In particular, we durably store Hybris metadata as
ZooKeeper znodes; in ZooKeeper znodes are data objects
addressed by paths in a hierarchical namespace. In particu-
lar, for each instance of Hybris, we generate a root znode.
Then, the metadata pertaining to Hybris container cont is
stored under ZooKeeper path 〈root〉/cont. In principle, for
each Hybris key k in container cont, we store a znode with
path pathk = 〈root〉/cont/k.

ZooKeeper exports a fairly modest API. The ZooKeeper
API calls relevant to us here are: (i) create/setData(p,data),
which creates/updates znode with path p containing data,
(ii) getData(p) to retrieve data stores under znode with p,
and (iii) sync(), which synchronizes a ZooKeeper replica
that maintains the client’s session with ZooKeeper leader.
Only reads that follow after sync() are atomic.

Besides data, znodes have some specific Zookepeer meta-
data (not be confused with Hybris metadata which we store
in znodes). In particular, our implementation uses znode ver-
sion number vn, that can be supplied as an additional param-
eter to setData operation which then becomes a conditional
update operation which updates znode only if its version
number exactly matches vn.

Hybris PUT. At the beginning of PUT (k,v), when client
fetches the latest timestamp ts for k, the Hybris client issues
a sync() followed by getData(pathk) to ensure an atomic
read of ts. This getData call returns, besides Hybris times-
tamp ts, the internal version number vn of the znode pathk
which the client uses when writing metadata md to RMDS
in the final step of PUT.

In the final step of PUT, the client issues setData(pathk,md,vn)
which succeeds only if the znode pathk version is still vn. If
the ZooKeeper version of pathk changed, the client retrieves
the new authoritative Hybris timestamp tslast and compares
it to ts. If tslast > ts, the client simply completes a PUT
(which appears as immediately overwritten by a later PUT
with tslast). In case tslast < ts, the client retries the last step
of PUT with ZooKeeper version number vnlast that corre-
sponds to tslast . This scheme (inspired by [11]) is wait-free
[19] and terminates as only a finite number of concurrent
PUT operations use a timestamp smaller than ts.

2014/10/12

Hybris GET. In interacting with RMDS during GET, Hy-
bris client simply needs to make sure its metadata is read
atomically. To this end, a client always issues a sync() fol-
lowed by getData(pathk), just like in our PUT protocol.
In addition, for subscriptions for metadata updates in GET
(Sec. 3.4) we use the concept of ZooKeeper watches (set
by e.g., getData) which are subscriptions on znode update
notifications. We use these notifications in Step 4 of the al-
gorithm described in Section 3.4.

4.2 Optimizations
Cloud latency ranks. In our Hybris implementation, clients
rank clouds by latency and prioritize clouds with lower la-
tency. Hybris client then uses these cloud latency ranks in
common case to: (i) write to f +1 clouds with the lowest la-
tency in PUT, and (ii) to select from cloudList the cloud with
the lowest latency as preferred cloud in GET. Initially, we
implemented the cloud latency ranks by reading once (i.e.,
upon initialization of the Hybris client) a default, fixed-size
(100kB) object from each of the public clouds. Interestingly,
during our experiments, we observed that the cloud latency
rank significantly varies with object size as well as the type
of the operation (PUT vs. GET). Hence, our implementation
establishes several cloud latency ranks depending on the file
size and the type of operation. In addition, Hybris client can
be instructed to refresh these latency ranks when necessary.

Erasure coding. Hybris integrates an optimally efficient
Reed-Solomon codes implementation, using the Jerasure li-
brary [28], by means of its JNI bindings. The cloud latency
rank optimizations remains in place with erasure coding.
When performing a PUT, f + k erasure coded blocks are
stores in f +k clouds with lowest latency, whereas with GET,
k > 1 clouds with lowest latency are selected (out of f + k
clouds storing data chunks).

Preventing “Big File” DoS attacks. A malicious preferred
cloud may mount a DoS attack against Hybris client during a
read by sending, instead of the correct file, a file of arbitrary
length. In this way, a client would not detect a malicious fault
until computing a hash of the received file. To cope with this
attack, Hybris client uses value size s that Hybris stores and
cancels the downloads whose payload size extends over s.

Caching. Our Hybris implementation enables data caching
on private portion of the system. We implemented sim-
ple write-through cache and caching-on-read policies. With
write-through caching enabled, Hybris client simply writes
to cache in parallel to writing to clouds. On the other hand,
with caching-on-read enabled, Hybris client upon returning
a GET value to the application, writes lazily the GET value
to the cache. In our implementation, we use Memcached
distributed cache that exports a key-value interface just like
public clouds. Hence, all Hybris writes to the cache use ex-
actly the same addressing as writes to public clouds (i.e.,
using put(k|ts,v)). To leverage cache within a GET, Hybris

client upon fetching metadata always tries first to read data
from the cache (i.e., by issuing get (k|ts) to Memcached),
before proceeding normally with a GET.

5. Evaluation
For evaluation purposes, we deployed Hybris “private” com-
ponents (namely, Hybris client, metadata service (RMDS)
and cache) as virtual machines (VMs) within an OpenStack6

cluster that acts as our private cloud located in Sophia An-
tipolis, France. Our OpenStack cluster consists of: two mas-
ter nodes running on a dual quad-core Xeon L5320 server
clocked at 1.86GHz, with 16GB of RAM, two 1TB hard-
ware RAID5 volumes, and two 1Gb/s network interfaces;
and worker nodes that execute on six dual exa-core Xeon
E5-2650L servers clocked at 1.8GHz, with 128GB of RAM,
ten 1TB disks and four 1Gb/s network cards.7 We use the
KVM hypervisor, and each machine in the physical cluster
runs the Grizzly release of OpenStack on top of a Ubuntu
14.04 Linux distribution.

We collocate ZooKeeper and Memcached (in their de-
fault configurations) using three VMs of the aforementioned
private cloud. Each VM has one quad-core virtual proces-
sor clocked at 2.40GHz, 4GB of RAM, one PATA virtual
hard drive and it is connected to the others through a giga-
bit Ethernet network. All VMs run the Ubuntu Linux 13.10
distribution images, updated with the most recent patches.
In addition, several OpenStack VMs with same character-
istics are used for running clients. Each VM has 100Mb/s
internet connectivity for both upload and download band-
widths. Clients interact with four cloud providers: Amazon
S3, Rackspace CloudFiles, Microsoft Azure (all located in
Europe) and Google Cloud Storage (in US).

We evaluated Hybris performance in several experiments
that focus on the arguably most interesting case where f = 1
[14], i.e., where at most one public cloud can exhibit arbi-
trary faults. Additionally, we fix the erasure coding recon-
struction threshold k to 2.

Experiment 1: Common-case latency. In this experiment,
we benchmark the common-case latency of Hybris and
Hybris-EC (i.e. Hybris using erasure coding instead of repli-
cation) with respect to those of DepSky-A [8],8 DepSky-EC
(i.e. a version of DepSky featuring erasure codes support),
and the four individual clouds underlying Hybris and Dep-
Sky, namely Amazon, Azure, Rackspace and Google. For
this microbenchmark we perform a set of independent PUT
and GET operations for sizes ranging from 100kB to 10MB
and output the median latencies together with 95% confi-
dence intervals on boxplot graphs.

6 http://www.openstack.org/.
7 Our hardware and network configuration closely resembles the one sug-
gested by commercial private cloud providers, such as Rackspace.
8 We used open-source DepSky implementation available at https://
code.google.com/p/depsky/.

2014/10/12

http://www.openstack.org/
https://code.google.com/p/depsky/
https://code.google.com/p/depsky/

We repeated each experiment 30 times, and each set of
GET and PUT operations has been performed one after the
other in order to minimize side effects due to internet routing
and traffic fluctuations.

In Figures 3 and 4 we show latency boxplots of the clients
as we vary the size of the object to be written or read.9

We observe that Hybris GET latency (Fig. 3) closely follows
those of the fastest cloud provider, as in fact it downloads the
object from that specific cloud, according to Hybris cloud la-
tency ranks (see Sec. 4). We further observe (Fig. 4) that Hy-
bris roughly performs as fast as the second fastest cloud stor-
age provider. This is expected since Hybris uploads to clouds
are carried out in parallel to the first two cloud providers pre-
viously ranked by their latency.

Hybris-EC PUT roughly performs as the third fastest
cloud as it uploads 3 chunks in parallel, after having cre-
ated the coding information. Similarly Hybris-EC GET per-
forms slightly worse than the second fastest cloud because
it retrieves chunks from 2 clouds in parallel before recon-
structing the original data.

Notice that Hybris outperforms DepSky-A and DepSky-
EC in both PUT and GET operations. The difference is signif-
icant particularly for smaller to medium object sizes (100kB
and 1MB). This is explained by the fact that Hybris stores
metadata locally, whereas DepSky needs to fetch metadata
across clouds. With increased file sizes (10MB) network la-
tency takes over and the difference is less pronounced.

Throughout the tests, we observed a significant variance
in cloud performance and in particular for downloading large
objects at Amazon and Rackspace.

Experiment 2: Latency under faults. In order to assess
the impact of faulty clouds on Hybris GET performance,
we repeat Experiment 1 with one cloud serving tampered
objects. This experiment aims at stress testing the common
case optimization of Hybris to download objects from a
single cloud. In particular, we focused on the worst case
for Hybris, by injecting a fault on the closest cloud, i.e. the
one likely to be chosen for the download because of its low
latency. We injected faults by manually tampering the data.

Figure 5 shows the download times of Hybris, DepSky-
A and DepSky-EC for objects of different sizes, as well
as those of individual clouds, for reference. Hybris perfor-
mance is nearly the sum of the download times by the two
fastest clouds, as the GET downloads in this case sequen-
tially. However, despite its single cloud read optimization,
Hybris performance under faults remains comparable to that
of DepSky variants that download objects in parallel.

Experiment 3: RMDS performance. In this experiment
we stress our ZooKeeper-based RMDS implementation in
order to assess its performance when the links to clouds are
not the bottleneck. For this purpose, we short-circuit public

9 In the boxplots the central line is showing the median, the box corresponds
to 1st and 3rd quartiles while whiskers are drawn at the most extreme data
points within 1.5 times the interquartile range from 1st and 3rd quartiles.

clouds and simulate upload by writing a 100 byte payload to
an in-memory hash map. To mitigate possible performance
impact of the shared OpenStack cloud we perform (only) this
experiment deploying RMDS on a dedicated cluster of three
8-core Xeon E3-1230 V2 machines (3.30GHz, 20 GB ECC
RAM, 1GB Ethernet, 128GB SATA SSD, 250 GB SATA
HDD 10000rpm). The obtained results concerning metadata
reads and writes performance are shown in Figure 6.

Figure 6(a) shows GET latency as we increase through-
put. The observed peak throughput of roughly 180 kops/s
achieved with latencies below 4 ms is due to the fact that
syncing reads in ZooKeeper comes with a modest overhead
and we take advantage of read locality in ZooKeeper to bal-
ance requests across ZooKeeper nodes. Furthermore, since
RMDS has a small footprint, all read requests are serviced
directly from memory without incurring the cost of stable
storage access.

On the other hand, PUT operations incur the expense of
atomic broadcast within ZooKeeper and stable storage ac-
cesses in the critical path. Figure 6(b) shows the latency-
throughput curve for three different classes of stable storage
backing ZooKeeper, namely conventional HDD, SSD and
RAMDISK, which would be replaced by non-volatile RAM
in a production-ready system. The observed differences sug-
gest that the choice of stable storage for RMDS is crucial
for overall system performance, with HDD-based RMDS in-
curring latencies nearly one order of magnitude higher than
RAMDISK-based at peak throughput of 28 kops/s (resp. 35
kops/s). As expected, SSD-based RMDS is in the middle of
the latency spectrum spanned by the other two storage types.

To understand the impact of concurrency on RMDS per-
formance, we evaluated the latency of PUT under heavy con-
tention to a single key. Figure 6(c) shows that despite 128
clients writing concurrently to the same key, the latency
overhead is only 30% over clients writing to separate keys.

Finally, Figures 6(d) and 6(e) depict throughput curves as
more clients performing operations in closed-loop are added
to the system. Specifically, 6(d) suggests that ZooKeeper-
based RMDS is able to service read requests coming from
2K clients near peak throughput. On the other hand, Fig-
ure 6(e) shows again the performance discrepancy when us-
ing different stable storage types, with RAMDISK and HDD
at opposite ends of the spectrum. Observe that HDD peak
throughput, despite being below that of RAMDISK, slightly
overtakes SSD throughput with 5K clients.

Experiment 4: Caching. In this experiment we test Hy-
bris caching which is configured to implement both write-
through and caching-on-read policies. We configured Mem-
cached with 128 MB cache limit and with 10MB single ob-
ject limit. We varied blob sizes from 1kB to 10 MB and mea-
sured average latency. The experiment workload is YCSB
workload B (95% reads, 5% writes). The results for GET
with and without caching are depicted in Figure 7.

2014/10/12

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

500

1000

1500

2000

2500
Ti

m
e

(m
s)

(a) 100kB GET

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e
(m

s)

(b) 1MB GET

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

20000

40000

60000

80000

100000

Ti
m

e
(m

s)

(c) 10MB GET

Figure 3. Latencies of GET operations.

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
(m

s)

(a) 100kB PUT

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
(m

s)

(b) 1MB PUT

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

2000

4000

6000

8000

10000

12000

Ti
m

e
(m

s)

(c) 10MB PUT

Figure 4. Latencies of PUT operations.

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

500

1000

1500

2000

2500

Ti
m

e
(m

s)

(a) 100kB GET

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

5000

10000

15000

20000

Ti
m

e
(m

s)

(b) 1MB GET

Hyb
ris

Hyb
ris

-EC

Dep
Sk

y-A

Dep
Sk

y-E
C

Amaz
on

Azu
re

Rac
ksp

ac
e

Goo
gle

0

20000

40000

60000

80000

100000

120000

140000

160000

Ti
m

e
(m

s)

(c) 10MB GET

Figure 5. Latencies of GET operations with one faulty cloud.

We can observe that caching decreases Hybris latency by
an order of magnitude when cache is large enough compared
to object size. As expected, the benefits of cache diminish
with increase in cache misses. This experiment shows that
Hybris can very simply benefit from caching, unlike other
multi-cloud storage protocols (see also Table 2).

Cost comparison. Table 1 summarizes the monetary costs
incurred by several cloud storage systems in the common
case (i.e. synchrony, no failures, no concurrency), including
Amazon S3 as the baseline. For the purpose of calculating
costs, given in USD, we set f = 1 and assume a symmetric

System PUT GET Storage Cost / Month Total
ICStore [6] 60 376 144 580

DepSky-A [8] 30 376 72 478
DepSky-EC [8] 30 136 36 202

Hybris 10 120 48 178
Hybris-EC 15 120 36 171
Amazon S3 5 120 24 149

Table 1. Cost of cloud storage systems in USD for 2 x
106 transactions, and 106 files of 1MB, totaling to 1TB of
storage.

2014/10/12

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180 200

La
te

n
cy

 (
m

s)

Throughput (kops/s)

GET

(a) GET latency

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

La
te

n
cy

 (
m

s)

Throughput (kops/s)

RAMDISK
SSD
HDD

(b) PUT latency

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64 128

La
te

n
cy

 (
m

s)

No. of clients

Parallel PUT
Concurrent PUT

(c) PUT latency under concurrency

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

s)

No. of clients

GET

(d) GET throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

s)

No. of clients

RAMDISK
SSD
HDD

(e) PUT throughput

Figure 6. Performance of metadata read and write operations.

workload that involves 106 PUT (i.e. modify) and 106 GET
operations accessing 1MB files totaling to 1T B of storage
over the period of 1 month. This corresponds to a modest
workload of roughly 40 hourly operations. The cost per
transaction, storage, and outbound traffic are taken from
Amazon S3 as of 07/18/2014. The basis for costs calculation
is Table 2. Our figures exclude the cost of private cloud
infrastructure in Hybris, which we assume to be part of
already existing IT infrastructure.

We observe that Hybris overhead is twice the baseline
both for PUT and storage because Hybris stores data in 2
clouds in the common case. Since Hybris touches a single
cloud once for each GET operation, the cost of GET equals
that of the baseline, and hence is optimal. On the other hand
Hybris-EC incurs for k = 2 a reduced storage overhead of
1.5x the baseline at the cost of increased overhead for PUT,
because data needs to be dispersed onto 3 clouds.

2014/10/12

0 1kB 10kB 100kB 1MB 10MB
Size

0

100

101

102

103

104

La
te

nc
y

(m
s)

caching
no caching

Figure 7. Hybris GET latency with YCSB workload B.

6. Related Work

Protocol Semantics Common case performance
Cloud faults Consistency No. of Cloud operations Blow-up

ICStore [6] crash-only atomic1 (4 f +2)(D+m) (writes) 4 f +2
(2 f +1)(D+m) (reads)

DepSky [8] arbitrary regular
1 (2 f +1)(D+m) (writes) 2 f +1

2

(2 f +1)(D+m) (reads)

Hybris arbitrary atomic (f+1)D (writes) f+1
3

1D (reads)

1 Unlike Hybris, to achieve atomic (resp., regular) semantics,
ICStore (resp., DepSky) require public clouds to be atomic (resp., regular).
2 The erasure coded variant of DepSky features 2 f+1

f+1 storage blowup.
3 The erasure coded variant of Hybris features f+k

k storage blowup, for any k > 1.

Table 2. Comparison of existing robust multi-writer cloud
storage protocols. We distinguish cloud data operations (D)
from cloud metadata operations (m).

Multi-cloud storage systems. Several storage systems (e.g.,
[4, 6, 8, 9, 24, 26, 35]) have used multiple clouds in boost-
ing data robustness, notably reliability and availability.
SafeStore [24] erasure codes data across multiple storage
providers (clouds) providing data integrity, confidentiality
and auditing, while using a centralized local proxy for con-
currency control, caching and storing metadata. SPANStore
[35] is another recent multi-cloud storage system that seeks
to minimize the cost of use of multi-cloud storage, leverag-
ing a centralized cloud placement manager. However, Safe-
Store and SPANStore are not robust in the Hybris sense,
as their centralized components (local proxy and placement
manager, respectively) are single point of failure. RACS [4]
and HAIL [9] assume immutable data, hence not addressing
any concurrency aspects. Depot [26] key-value store tol-
erates any number of untrusted clouds, yet does not offer
strong consistency and requires computation on clouds.

Multi-cloud storage systems closest to Hybris are Dep-
Sky [8] and ICStore [6]. For clarity, we overview main as-
pects of these three systems in Table 2. ICStore models
cloud faults as outages and implements robust access to
shared data. Hybris advantages over ICStore include toler-

ating malicious clouds and smaller storage blowup10. On the
other hand, DepSky considers malicious clouds, yet requires
3 f + 1 clouds, unlike Hybris. Furthermore, DepSky consis-
tency guarantees are weaker than those of Hybris, even when
clouds behave as strongly consistent. Finally, Hybris guar-
antees atomicity even in presence of eventually consistent
clouds, which may harm the consistency guarantees of both
ICStore and DepSky. Recently, and concurrently with this
work, SCFS [7] augmented DepSky to a full fledged file
system by applying a similar idea of turning eventual con-
sistency to strong consistency by separating cloud file sys-
tem metadata from payload data that is stored using DepSky.
Nevertheless, SCFS still requires 3 f +1 clouds to tolerate f
malicious ones (the overhead SCFS inherits from DepSky).

Separating data from metadata. Separating metadata from
data is not a novel idea in distributed systems. For example,
Farsite [5] is an early protocol that tolerates malicious faults
by replicating metadata (e.g., cryptographic hashes and di-
rectory) separately from data. Hybris builds upon these
techniques yet, unlike Farsite, Hybris implements multi-
writer/multi-reader semantics and is robust against timing
failures as it relies on lock-free concurrency control rather
than locks (or leases). Furthermore, unlike Farsite, Hybris
supports ephemeral clients and has no server code, targeting
commodity cloud APIs.

Separation of data from metadata is intensively used in
crash-tolerant protocols. For example, in the Hadoop Dis-
tributed File System (HDFS), modeled after the Google File
System [18], HDFS NameNode is responsible for maintain-
ing metadata, while data is stored on HDFS DataNodes.
Other notable crash-tolerant storage systems that separate
metadata from data include LDR [17] and BookKeeper [22].
LDR [17] implements asynchronous multi-writer multi-
reader read/write storage and, like Hybris, uses pointers to
data storage nodes within its metadata and requires 2 f + 1
data storage nodes. However, unlike Hybris, LDR consid-
ers full-fledged servers as data storage nodes and tolerates
only their crash faults. BookKeeper [22] implements reliable
single-writer multi-reader shared storage for logs. Book-
Keeper stores metadata on servers (bookies) and data (i.e.,
log entries) in log files (ledgers). Like in Hybris RMDS,
bookies point to ledgers, facilitating writes to f + 1 ledgers
and reads from a single ledger in common-case. Unlike
BookKeeper, Hybris supports multiple writers and tolerates
malicious faults of data repositories.Interestingly, all robust
crash-tolerant protocols that separate metadata from data
(e.g., [17, 22], but also Gnothi [34]), need 2 f +1 data repos-
itories in the worst case, just like our Hybris which tolerates
arbitrary faults.

Finally, the idea of separating control and data planes in
systems tolerating arbitrary faults was used also in [36] in

10 Blowup of a given redundancy scheme is defined as the ratio between the
total storage size needed to store redundant copies of a file, over the original
unreplicated file size.

2014/10/12

the context of replicated state machines (RSM). While the
RSM approach of [36] could obviously be used for imple-
menting storage as well, Hybris proposes a far more scalable
and practical solution, while also tolerating pure asynchrony
across data communication links, unlike [36].
Systems based on trusted components. Several systems
have used trusted hardware to reduce the overhead of repli-
cation despite malicious faults from 3 f + 1 to 2 f + 1 repli-
cas, typically in the context of RSM (e.g., [12, 15, 23, 30]).
Some of these systems, like CheapBFT [23], employ only
f +1 replicas in the common case.

Conceptually, Hybris is similar to these systems in that it
uses 2 f +1 trusted metadata replicas (needed for ZooKeeper)
and 2 f + 1 (untrusted) clouds. However, compared to these
systems, Hybris is novel in several ways. Most importantly,
existing systems entail placing trusted hardware within an
untrusted process, which raises concerns over practicality
of such an approach. In contrast, Hybris trusted hardware
(private cloud) exists separately from untrusted processes
(public clouds), with this hybrid cloud model being in fact
inspired by practical system deployments.

7. Conclusion and Future Work
In this paper we presented Hybris, the first robust hybrid
storage system. Hybris disperses data (using replication or
erasure coding) across multiple untrusted and possibly in-
consistent public clouds, while it replicates metadata within
trusted premises of a private cloud. Hybris tolerates up to
f arbitrary public cloud faults and is very efficient: in the
common-case (with replicated variant of Hybris), writes ac-
cesses only f + 1 clouds, while a reads accesses a single,
“closest” cloud. In a sense, Hybris is the first multi-cloud
storage protocol that makes it possible to tolerate potentially
malicious clouds at the price of tolerating simple cloud out-
ages. To complement this, Hybris offers strong consistency
as it leverages strong consistency of metadata stored off-
clouds to mask the weak consistency of data stored in clouds.

Hybris is designed to seamlessly replace commodity key-
value cloud storage (e.g., Amazon S3) in existing applica-
tions. Hybris could be used for archival (“cold”) data, but
also for mutable data due to its strong multi-writer consis-
tency. For example, in future work and in the scope of the
CloudSpaces EU project [1], we plan to integrate Hybris
with a Dropbox-like personal cloud frontend [25].

In future work, we also plan to address the limitation
of our current deployment of Hybris that restricts metadata
servers to a single geographical location. We aim at geo-
replicating Hybris metadata service, thereby accommodat-
ing geographically distributed clients.

Acknowledgments
We thank Phil Gibbons and anonymous SoCC reviewers
for their useful comments and suggestions. We also thank
Christian Cachin for his comments on earlier drafts of the

paper. This work is partially supported by the EU projects
CloudSpaces (FP7-317555) and SECCRIT (FP7-312758).

A. Correctness
Here, we provide the correctness arguments and pseudocode
(Alg. 1) for the core part of the protocol (PUT, Sec. 3.1 and
worst-case GET, Sec. 3.4). For space limitations, we omit the
correctness proofs pertaining to the RMDS implementation
and DELETE and LIST operations.11 The atomic functional-
ity of RMDS is however specified in Algorithm 2.

Algorithm 1 Algorithm of client cid.
1: operation PUT (k,v)
2: (ts,−,−,−)← RMDS.READ(k, f alse)
3: if ts =⊥ then ts← (0,cid)
4: ts← (ts.sn+1,cid)

5: cloudList← /0; trigger(timer)
6: forall f +1 selected clouds Ci do
7: put 〈k|ts,v〉 to Ci
8: wait until |cloudList|= f +1 or timer expires
9: if |cloudList|< f +1 then

10: forall f secondary clouds Ci do
11: put 〈k|ts,v〉 to Ci
12: wait until |cloudList|= f +1

13: RMDS.CONDUPDATE(k, ts,cloudList,H(v),size(v))
14: trigger garbage collection // see Section 3.3
15: return OK

16: upon put 〈k|ts,v〉 completes at cloud Ci
17: cloudList← cloudList ∪{i}
18: operation GET (k) //worst-case, Section 3.4 code only
19: (ts,cloudList,hash,size)← RMDS.READ(k, true)

20: if ts =⊥ then return ⊥
21: forall Ci ∈ cloudList do
22: get (k|ts) from Ci

23: upon get (k|ts) returns data from cloud Ci
24: if H(data) = hash then return data
25: else get (k|ts) from Ci

26: upon received notify(k, ts′) from RMDS such that ts′ > ts
27: cancel all pending gets
28: return GET (k)

Algorithm 2 RMDS functionality (atomic).
29: operation READ(k,noti f y) by cid
30: if noti f y then subscribed← subscribed∪{cid}
31: return (ts(k),cList(k),hash(k),size(k))

32: operation CONDUPDATE(k, ts,cList,hash,size)
33: if ts(k) =⊥ or ts > ts(k) then
34: (ts(k),cList(k),hash(k),size(k))← (ts,cList,hash,size)
35: send notify(k, ts) to every c ∈ subscribed(k)
36: subscribed(k)← /0
37: return OK

11 Moreover, we ignore possible DELETE operations — the proof is easy to
modify to account for impact of DELETE.

2014/10/12

We define the timestamp of operation o, denoted ts(o),
as follows. If o is a PUT, then ts(o) is the value of client’s
variable ts when its assignment completes in line 4, Alg. 1.
Else, if o is a GET, then ts(o) equals the value of ts when
client executes line 24, Alg. 1 (i.e., when GET returns). We
further say that an operation o precedes operation o′, if o
completes before o′ is invoked. Without loss of generality,
we assume that all operations access the same key k.
LEMMA A.1 (Partial Order). Let o and o′ be two GET or
PUT operations with timestamps ts(o) and ts(o′), respec-
tively, such that o precedes o′. Then ts(o) ≤ ts(o′) and if o′

is a PUT then ts(o)< ts(o′).
Proof: In the following, prefix o. denotes calls to RMDS
within operation o (and similarly for o′). Let o′ be a GET
(resp. PUT) operation.
Case 1 (o is a PUT): then o.RMDS.CONDUPDATE(o.md) in
line 13, Alg. 1, precedes (all possible calls to) o′.RMDS.READ()
in line 19, Alg. 1 (resp., line 2, Alg. 1). By atomicity of
RMDS (and RMDS functionality in Alg. 2) and definition of
operation timestamps, it follows that ts(o′) ≥ ts(o). More-
over, if o′ is a PUT, then ts(o′) > ts(o) because ts(o′) is
obtained from incrementing the timestamp ts returned by
o′.RMDS.READ() in line 2, Alg. 1, where ts≥ ts(o).

Case 2 (o is a GET): then since (all possible calls to)
o′.RMDS.READ() in line 19 (resp. 2) follows after (the last
call to) o.RMDS.READ() in line 19, by Alg. 2 and atomicity
of RMDS, it follows that ts(o′) ≥ ts(o). If o′ is a PUT, then
ts(o′)> ts(o), similarly as in Case 1. �

LEMMA A.2 (Unique PUTs). If o and o′ are two PUT oper-
ations, then ts(o) 6= ts(o′).
Proof: By lines 2- 4, Alg. 1, RMDS functionality (Alg. 2)
and the fact that a given client does not invoke concurrent
operations on the same key. �

LEMMA A.3 (Integrity). Let rd be a GET(k) operation re-
turning value v 6= ⊥. Then there is a single PUT operation
wr of the form PUT(k,v) such that ts(rd) = ts(wr).
Proof: Since rd returns v and has a timestamp ts(rd), rd
receives v in response to get(k|ts(rd)) from some cloud Ci.
Suppose for the purpose of contradiction that v is never
written by a PUT. Then, by the collision resistance of H(),
the check in line 24 does not pass and rd does not return v.
Therefore, we conclude that some operation wr issues put
(k|ts(rd)) to Ci in line 7. Hence, ts(wr) = ts(rd). Finally, by
Lemma A.2 no other PUT has the same timestamp. �

THEOREM A.4 (Atomicity). Every execution ex of Algo-
rithm 1 satisfies atomicity.
Proof: Let ex be an execution of the algorithm. By Lemma A.3
the timestamp of a GET either has been written by some PUT
or the GET returns⊥. With this in mind, we first construct ex′

from ex by completing all PUT operations of the form PUT
(k,v), where v has been returned by some complete GET op-
eration. Then we construct a sequential permutation π by

ordering all operations in ex′, except GET operations that re-
turn⊥, according to their timestamps and by placing all GET
operations that did not return ⊥ immediately after the PUT
operation with the same timestamp. The GET operations that
did return ⊥ are placed in the beginning of π .

Towards atomicity, we show that a GET rd in π always
returns the value v written by the latest preceding PUT which
appears before it in π , or the initial value of the register ⊥
if there is no such PUT. In the latter case, by construction
rd is ordered before any PUT in π . Otherwise, v 6=⊥ and by
Lemma A.3 there is a PUT (k,v) operation, with the same
timestamp, ts(rd). In this case, PUT (k,v) appears before rd
in π , by construction. By Lemma A.2, other PUT operations
in π have a different timestamp and hence appear in π either
before PUT (k,v) or after rd.

It remains to show that π preserves real-time order. Con-
sider two complete operations o and o′ in ex′ such that o pre-
cedes o′. By Lemma A.1, ts(o′)≥ ts(o). If ts(o′)> ts(o) then
o′ appears after o in π by construction. Otherwise ts(o′) =
ts(o) and by Lemma A.1 it follows that o′ is a GET. If o is a
PUT, then o′ appears after o since we placed each read after
the PUT with the same timestamp. Otherwise, if o is a GET,
then it appears before o′ as in ex′. �

THEOREM A.5 (Availability). Hybris PUT calls are wait-
free, whereas Hybris GET calls are finite-write terminating.
Proof: The wait freedom of Hybris PUT follows from: a)
the assumption of 2 f +1 clouds out of which at most f may
be faulty (and hence the wait statement in line 12, Alg. 1
is non-blocking), and b) wait-freedom of calls to RMDS
(hence, calls to RMDS in lines 2 and 13, Alg. 1 return).

We prove finite-write termination of GET by contradic-
tion. Assume there is a finite number of writes to key k in
execution ex, yet that there is a GET(k) operation rd by a
correct client that never completes. Let W be the set of all
PUT operations in ex, and let wr be the PUT operation with
maximum timestamp tsmax in W that completes the call to
RMDS in line 13, Alg. 1. We distinguish two cases: (i) rd
invokes an infinite number of recursive GET calls (in line 28,
Alg 1), and (ii) rd never passes the check in line 24, Alg. 1.

In case (i), there is a recursive GET call in rd, invoked
after wr completes conditional update to RMDS. In this GET
call, the client does not execute line 28, Alg 1, by definition
of wr and specification of RMDS.CONDUPDATE in Alg. 2
(as there is no notify for a ts > tsmax). A contradiction.

In case (ii), notice that key k|tsmax is never garbage col-
lected at f + 1 clouds that constitute cloudList in line 13,
Alg. 1 in wr. Since rd does not terminate, it receives a notifi-
cation in line 26, Alg. 1 with timestamp tsmax and reiterates
GET. In this iteration of GET, the timestamp of rd is tsmax.
As cloudList contains f + 1 clouds, including at least one
correct cloud Ci, and as Ci is eventually consistent, Ci even-
tually returns value v written by wr to a get call. This value
v passes the hash check in line 24, Alg. 1 and rd completes.
A contradiction. �

2014/10/12

References
[1] CloudSpaces EU FP7 project. http://cloudspaces.

eu/.

[2] Memcached. http://memcached.org/.

[3] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzan-
tine Disk Paxos: Optimal Resilience with Byzantine Shared
Memory. Distributed Computing, 18(5):387–408, 2006.

[4] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon.
RACS: a case for cloud storage diversity. In SoCC, pages
229–240, 2010.

[5] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. Farsite: Federated, available, and reliable stor-
age for an incompletely trusted environment. SIGOPS Oper.
Syst. Rev., 36(SI), Dec. 2002.

[6] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti,
M. Vukolić, and I. Zachevsky. Robust data sharing with key-
value stores. In Proceedings of DSN, pages 1–12, 2012.

[7] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia,
M. Pasin, and P. Verissimo. SCFS: A shared cloud-backed
file system. In Usenix ATC, 2014.

[8] A. N. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: Dependable and secure storage in a cloud-
of-clouds. ACM Transactions on Storage, 9(4):12, 2013.

[9] K. D. Bowers, A. Juels, and A. Oprea. HAIL: a high-
availability and integrity layer for cloud storage. In ACM CCS,
pages 187–198, 2009.

[10] C. Cachin, R. Haas, and M. Vukolić. Dependable storage
in the intercloud. Technical Report RZ3783, IBM Research,
2010.

[11] G. Chockler, D. Dobre, and A. Shraer. Brief announcement:
Consistency and complexity tradeoffs for highly-available
multi-cloud store. In The International Symposium on Dis-
tributed Computing (DISC), 2013.

[12] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: making adversaries stick to
their word. In SOSP, pages 189–204, 2007.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
SoCC, pages 143–154, 2010.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. C. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Mel-
nik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally distributed database. ACM
Trans. Comput. Syst., 31(3):8, 2013.

[15] M. Correia, N. F. Neves, and P. Verı́ssimo. How to tolerate
half less one Byzantine nodes in practical distributed systems.
In SRDS, pages 174–183, 2004.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, Apr.
1988. ISSN 0004-5411. .

[17] R. Fan and N. Lynch. Efficient Replication of Large Data
Objects. In Proceedings of DISC, pages 75–91, 2003.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In SOSP, pages 29–43, 2003.

[19] M. Herlihy. Wait-Free Synchronization. ACM Trans. Pro-
gram. Lang. Syst., 13(1), 1991.

[20] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst., 12(3), 1990.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
wait-free coordination for internet-scale systems. In USENIX
ATC’10, pages 11–11, 2010.

[22] F. P. Junqueira, I. Kelly, and B. Reed. Durability with book-
keeper. Operating Systems Review, 47(1):9–15, 2013.

[23] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel. Cheap-
BFT: resource-efficient Byzantine fault tolerance. In EuroSys,
pages 295–308, 2012.

[24] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A durable and
practical storage system. In USENIX ATC, pages 129–142,
2007.

[25] P. G. Lopez, S. Toda, C. Cotes, M. Sanchez-Artigas, and
J. Lenton. Stacksync: Bringing elasticity to dropbox-like file
synchronization. In ACM/IFIP/USENIX Middleware, 2014.

[26] P. Mahajan, S. T. V. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with mini-
mal trust. ACM Trans. Comput. Syst., 29(4):12, 2011.

[27] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement
in the Presence of Faults. J. ACM, 27(2), 1980.

[28] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure:
A library in C/C++ facilitating erasure coding for storage
applications - Version 1.2. Technical Report CS-08-627,
University of Tennessee, August 2008.

[29] R. Rodrigues and B. Liskov. High availability in dhts: Erasure
coding vs. replication. In IPTPS, pages 226–239, 2005.

[30] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verı́ssimo. Efficient byzantine fault-tolerance. IEEE Trans.
Computers, 62(1):16–30, 2013.

[31] VMware Professional Services. The Snowden
Leak: A Windfall for Hybrid Cloud? http:
//blogs.vmware.com/consulting/2013/09/
the-snowden-leak-a-windfall-for-hybrid-cloud.
html.

[32] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–
44, 2009.

[33] M. Vukolić. The Byzantine empire in the intercloud. SIGACT
News, 41(3):105–111, 2010.

[34] Y. Wang, L. Alvisi, and M. Dahlin. Gnothi: separating data
and metadata for efficient and available storage replication. In
USENIX ATC’12, pages 38–38, 2012.

[35] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha. Spanstore: cost-effective geo-replicated storage
spanning multiple cloud services. In SOSP, 2013.

[36] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for byzan-
tine fault tolerant services. In SOSP, pages 253–267, 2003.

2014/10/12

http://cloudspaces.eu/
http://cloudspaces.eu/
http://memcached.org/
http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.html
http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.html
http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.html
http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.html

	Introduction
	Hybris overview
	Hybris Protocol
	put Protocol
	get in the common case
	Garbage Collection
	get in the worst-case
	delete and list
	Confidentiality
	Erasure coding

	Implementation
	ZooKeeper-based RMDS
	Optimizations

	Evaluation
	Related Work
	Conclusion and Future Work
	Correctness

