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Abstract—Small cell networks (SCNs) are widely considered
as a promising solution for future cellular deployments. Lately,
the benefits of small cells to improve spectrum utilization and the
user quality of experience (QoE) have been well documented.
In addition, the power consumption of current deployments,
for instance due to idle power and cooling equipment, is a
major concern for operators. Small cells offer the opportunity
for more dynamic power management of base stations, due to
coverage overlaps and larger spatio-temporal load fluctuations.
Yet, such power management decisions (e.g. turning off a base
station) should not lead to excessive performance degradation for
users associated with it or additional power consumption. This
tradeoff becomes significantly more challenging to evaluate in
future networks, due to the diversity of services offered to users
beyond the traditional voice calls, as well as the complexity of
traffic scheduling algorithms. The goal of this paper is to make a
first step towards an analytical investigation of this tradeoff. To
this end, we propose a number of QoE constraints that a power
management decision should consider, and analytically relate
them to key parameters such as user traffic mix, cell load, user
density, etc. We then use this framework to perform a preliminary
study of the potential energy savings an operator could achieve,
while guaranteeing the satisfaction of these constraints. Our
results provide some qualitative and quantitative insights on the
interesting tradeoff between switch-off duration and number of
small cells one can safely switch off.

I. INTRODUCTION

The growing demand for Internet-enabled wireless devices,
and bandwidth-hungry multimedia services from the increasing
number of “heavy” users and smartphones create significant
capacity problems. Thus, operators tend to build more dense
deployments. Nevertheless, the higher the deployment density,
the higher the chance that cellular nodes will carry no traffic
or only a low traffic-load due to spatial and temporal traffic
fluctuations. Currently, 15-20% of all sites carry about 50%
of the total traffic [1]. Hence, a considerable number of sites
waste energy (for staying ON, as well as for cooling), despite
serving little or no traffic [2].

A large research effort has been initiated recently in the area
of “green” networks. Among the earliest efforts, [3] addresses
energy efficiency issues in fixed networks. As Base Stations
(BS) are responsible for most of the energy consumed by a
cellular network [4], several techniques that consider the BS
utilization have been proposed. For example, optimizing the use
of sleep modes according to daily traffic variations is explored
in [5]. In addition, centralized and distributed cell zooming
techniques [6] that adjust the cell size according to traffic
load, user requirements, and channel conditions, have also been
widely investigated.

Nevertheless, most past studies are performed in the con-
text of large macrocells under homogeneous traffic profiles,

and with large time-scales (e.g. turning off BSs during the
night [7]). Furthermore, usually simple QoS requirements are
considered when applying such techniques, e.g. signal quality
as in [8], or traditional blocking probabilities as in [9]. In
modern and future cellular networks, dealing with energy
consumption issues becomes more challenging. Significantly
more opportunities arise for switching off BSs in smaller time
scales (e.g. in the order of some minutes), due to (a) coverage
overlaps stemming from heterogeneous and/or independent
deployment of cells, (b) larger spatio-temporal load variations
due to the smaller number of users associated to each cell, and
(c) power-proportional and load-dependent BSs. Yet, exploiting
such opportunities must be done without violating agreed QoE
performance for users. The evaluation of the latter is a rather
daunting task, due to the diversity of user traffic (streaming,
voice, web, file download, etc.) and service and performance
requirements offered to users. As a result, a number of inter-
esting questions arise: Which QoE metric(s) should be used in
such future SCNs? Which types of users and BSs should one
consider when making a power management decision? Should
the duration of switching-off period, affect our decision, and if
so, how?

Towards answering these questions, in this paper we iden-
tify three QoE constraints, related to different ways that the
performance of a User Equipement (UE) could deteriorate. We
then derive analytically the probability of violating each of
them, as a function of user and network parameters and planned
switch-off duration. Specifically, we consider:

• Network coverage, i.e. the probability that a random
UE experiences poor signal quality when it needs to
use the network (e.g. making a call, or sending a web
request). (Section II-A).

• Admission control and “blocking” probabilities,
i.e. the probability that a flow that requires a certain
amount of (dedicated) bandwidth, is blocked due to the
lack of the available resources (Section II-B).

• Admission control and “service delay” for regular
“best-effort” flows, i.e. the ongoing delay for the flows
that are multiplexed and have to compete for resources.
(Section II-C).

Our general methodology is to, first, identify the key parameters
for each QoE constraint, and then use analytical tools, mostly
coming from queueing theory, to evaluate the probability of
violating each one of them, if a BS is switched-off. Our goal
in this direction is to strike a tradeoff between realistically
capturing some features of new, data-centric cellular systems,
while maintaining a certain analytical tractability to provide
insights into the QoE vs. Energy savings. The novelty of



our methodology is that we can select even a small time-
interval, for the sleeping period X , and evaluate the energy-
QoE tradeoff by switching to transient analysis (rather than
stationary analysis) of the stochastic model in hand. Based on
these QoE constraints and the time duration X , we perform
a preliminary study and show that significant energy savings
can be achieved even for switching-off periods of the order of
some minutes (Section III).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present some general assumptions about
the problem setting. Without loss of generality, we consider
a cellular network that is overlaid with Ms small cells (with
partially overlapping coverage) and Mm macro cells (macro
cells are used to avoid disconnections for users that cannot
be connected to a small cell). Our aim is to decrease energy
consumption of this cellular network, by dynamically switching
off one or more of small cells, during a defined time-duration
of X minutes, referred to as switch-off period, hereafter1.

Our first observation is that different users will affect the
considered constraints differently. For example, ensuring good
signal quality for a UE that has some ongoing traffic (e.g. doing
a VoIP call, or streaming a video), is more important (and
more challenging) than for a UE currently “on” the network
but idle. If the former experiences poor signal quality, the
communication session might be dropped immediately. We
consider three different types of users:

• Active users (AU): users that are connected to a
BS and have one or more on-going traffic flows
currently. These users reside in EMM (EPS-Mobility
Management) REGISTERED and ECM (EPS Connec-
tion Management) CONNECTED states.

• Connected users (CU): users associated with a BS but
without any ongoing traffic sessions2. These users are
in EMM REGISTERED and ECM IDLE states.

• Disconnected users (DU): users in the vicinity of
the BS, but currently not ON (or in airplane mode);
while their exact number and location cannot be known
their impact should be estimated, especially when the
switch-off duration increases, as one of them might
decide to switch on the UE and use the network. These
users are in the EMM DEREGISTERED and ECM
IDLE states.

In addition to the above classification of users, we also need
to make some assumptions about the classification of flows.

• Dedicated flows (e.g. voice and video), where dedi-
cated bearers are coupled with the Guaranteed Bit Rate
(GBR) to meet the required application bit rate under
the latency constraint [10]. They are differentiated by
their QoS class of identifier (QCI) ranging from 1 to
4 [11].

1“Idle” power consumption (related to both electronics, but also cooling) is a
major component one could thus save. The additional “load-dependent” power
consumption would essentially be shifted over to a neighboring base station, not
leading to significant further gains. We defer exploring more complex power
management techniques (e.g. cell zooming [6]) to future work.

2For simplicity, we will ignore background traffic as it usually less delay-
sensitive, and often “lightweight” (e.g. email client polling, social network
notifications, etc.).

• Best Effort flows, where default or dedicated bearers
are coupled with the non-GBR, which are differenti-
ated by their QCI ranging from 5 to 9 [11].

While the above classification divides flows into two
groups [10], it provides a service differentiation between flows
that affect the proposed system model very differently.

The probability that the next flow generated by a user is a
dedicated or best effort flow depends on the aggregate traffic
mix (e.g. percentage of VoIP calls vs. video streaming vs.
simple browsing, etc.). We will assume this to be an input
parameter. Furthermore, we assume that each BS has a peak
data rate Rtotal to allocate among all flows from all serving
users, with Rd, and Rb being allocated to dedicated and best
effort flows (Rtotal = Rd +Rb), respectively3.

A. Coverage Constraint

When the decision to switch off a BS with users is made,
those users will have to be handed-over to an available neigh-
boring BS. This will often result into a weaker than average
signal level. Hence, before a decision to switch off a target BS
is made, we must ensure that it will not lead to a disconnection
or unacceptable quality for one or more handed-over users.
To this end, as our first QoE constraint we will consider the
probability that a user, originally associated with a switched-off
BS, will experience low-signal quality (e.g. a deep fade) if it
needs to use the network during the switch-off period.

It turns out this probability changes for different types of
users, namely AU, CU, and DU. Specifically, an AU with
a current ongoing session will be immediately affected by a
signal quality drop. In contrast, a CU or DU will be affected
only if both the following events occur: (i) it becomes active
(e.g. initiates a new call or data session) during the switch-off
period X , and (ii) the signal quality is low. Consequently, we
need to calculate the following quantities:

• the outage probability, which is the probability that the
signal strength of user is not sufficient to maintain an
ongoing service,

• the activation probability, which is the probability that
a user covered by the BS in question (e.g. a CU or a
DU) becomes active during the next X minutes, and

• the coverage failure probability, which depends on
both the outage (AU, CU, DU) and activation proba-
bilities (CU, DU), and is the quantity we are interested
in.

Outage probability. For simplicity, we use the SNR to
calculate the outage probability4. Thus, we assume that the
SNR for the lth UE associated with the jth BS, is given by [8]:

SNRlj =
GljRljpj

N0
. (1)

The noise power is denoted as N0, and the transmission
power of the jth BS is pj . Glj represents the nonnegative

path loss between the jth BS and the lth UE (it may also
encompass antenna and coding gains) that is often modeled

3The actual values are operator-specific, which is why in our analysis it is
considered as an input parameter. Note also that, depending on the deployment,
the available rate Rtotal might not be bounded by the radio access capacity,
but rather by the backhaul capacity [12].

4The use of SINR could also be introduced in this constraint, but would
make our analysis more complex.



TABLE I. NOTATION

Variable Meaning

X Duration of the switch-off period.

pd, pb Probability that a random flow requires dedicated, or best-effort resources respectively.

pf , pblock, Dmax Thresholds for Failure Probability (Proposition 1), Blocking Probability (Proposition 2), and ongoing service delay (Proposition 3)

Rd, Rb, Rtotal Available peak bit rates for “dedicated‘” flows, for “best effort” flows, and their sum (total available).

λAU, λCU, λDU Data rates for active, connected and disconnected users.

E[Bd], Yb Expected bit rate (in bps) of dedicated flows, and (average) length (in bits) for best effort flows.

as proportional to r−n
lj (n is the power fall-off factor and

rlj denotes distance). Rlj corresponds to a Rayleigh fading
component, and is exponentially distributed with unit mean.
The distribution of the received power from the jth BS at
the lth UE is then exponentially distributed with mean value
E[GljRljpj ] = Gljpj .

Thus, the outage probability for the lth AU or CU associated
with the jth BS is:

Pout(rlj) = P (SNRlj < γ) = 1− e
−

γN0
Gljpj = 1− e

−
γN0

r
−n
lj

pj .
(2)

The above formula is applicable for AUs and CUs, as their
actual distance rlj is known. In the case of DUs, their location
and the total number is unknown. Assuming that there are ρDU

DUs per m2, and the transmission range of a base station is
rmax, the expected number of DUs in the considered cell is:

NDU = ρDUπr
2
max. (3)

If we now consider a specific DU that becomes active, and
whose “local” BS is switched off, it will try to connect to
one of the neighboring cells. Let rd denote the distance of the
chosen BS from the local BS (its mean value is a function of
deployment density). Thus, we can replace rlj in Eq.(2) with
rd to get an estimate for the DU outage probability:

PDU
out = 1− e

−
γN0

(rd)−npj . (4)

Activation Probability. We now consider the probability
that a CU or DU becomes active during the next X minutes.
We denote these probabilities as PCU

act (X) and PDU
act (X),

respectively. For simplicity, we assume that the time until
a CU or a DU generates a new session (call, data session,
etc.) is exponentially distributed with rate λCU and λDU ,
respectively (we assume λDU ≤ λCU ). Hence, we can calculate
the activation probabilities as follows:

PCU
act (X) = 1− e−λCUX , (5)

PDU
act (X) = 1− e−λDUX . (6)

The above equations can be easily extended to general user
session interarrival distributions. However, Poisson arrivals are
often assumed for user-initiated sessions [13].

Coverage Failure Probability. Assume that the candidate
BS serves NAU active and NCU connected users. We denote
the set of active and connected users as NAU and NCU ,
respectively, and we assume that some DUs are also in the
covered region, whose number is given by Eq.(3). If the BS is
switched off, then let J(i) denote the BS that user i is handed-
over to5. Finally, assume that the desired QoE is described

5Note that in the real system, this is done using RSSI and RSRP mea-
surements coupled with the received system information assuming that the
terminal is eligible. In our analysis, we will assume that either maximum SNR
or, simply, distance is used as the criterion.

by a maximum failure probability pf , chosen by the operator
or indicated in a Service Level Agreement (SLA). Then, the
following Proposition captures the first system constraint:

Proposition 1: (Constraint I) A BS cannot be switched off
if the average user associated with it will experience a coverage
failure probability, during the switch-off period X, that exceeds
a threshold pf . This probability is given by6:

∑

i∈NAU

Pout(riJ(i)) +
∑

i∈NCU

PCU
act (X)Pout(riJ(i)) +NDUPDU

act (X)PDU
out

NAU +NCU +NDU

.

(7)

Impact of switch-off duration X: The above analysis gives
qualitative insight about the impact of the switch-off duration.
If X is short, compared to the average inactivity time for CUs
(DUs), one can more aggressively switch off BSs as a smaller
percentage of node is affected. However, for large X Eq.(5)
and (6) converge to 1. In that case, all users in the vicinity of a
BS must be considered, and the decision only depends on the
average outage probability.

B. Admission Control: Blocking Probability Constraint

In this subsection, we focus on the impact of switching off
a BS on the admission control mechanism of the neighboring
BSs, where users will have to be handed over. A given BS is
allocated a finite set of k resources, where k could be frequen-
cies, time slots, etc.. If a user initiates a new session (e.g. call)
when the system is already using all its k resources, this session
will be blocked. An M/M/k/k loss system, like the one shown
in Fig. 1, can be used to calculate this blocking probability,
which is given by the well-known Erlang-B formula [13].

This simple loss system has been the basis of most of the
early works on “green” cellular networks, in the context of
macrocells [9]: switching off a BS will save energy, but it will
also increase the load, λ, in neighboring BSs, thus increasing
the blocking probability. However, in modern networks with
data flows (rather than voice) comprising the cell’s load,
a number of issues make the above approach not directly
applicable:

1) Each user might generate different dedicated flows
that require different bit rates;

2) A given dedicated bit rate might require a different
amount of resources (e.g. bandwidth, power) to be
scheduled by the BS, depending mainly on the dis-
tance (channel quality);

3) The switch-off duration X can be small, making the
use of stationary probabilities for the Markov chain
of Fig.1 (and thus the Erlang-B formula) incorrect;

4) Different dedicated flows might have different priori-
ties and buffer occupancies.

6Instead of this weighted average approach, one could also consider a very
conservative, worst-outage probability minimization approach, that has been
considered in [14], using the Perron-Frobenius theorem. We omit this case due
to space limitations.



Fig. 1. k-server Loss system

We would like to still use the M/M/k/k system by making
appropriate modifications in the model and respective analysis,
to address the first three points. To keep our discussion simpli-
fied, we assume that there is only one class of dedicated flows
(that has priority over non-dedicated ones). In the remaining
discussion, when we consider a given BS, we use the term
“handed over” or “remote” (sub-/superscript “HO”) to refer to
users that have been “transferred” to this BS from a neighboring
BS that is switched off, and “local” (sub-/superscript “l”) for
existing users of this BS. Handed-over users are generally
further away from the BS than local ones.

Arrival and service rate of dedicated flows: Consider a
given BS being switched off, whose users are handed over to
(different) neighboring BSs. Consider now one of this neighbor-
ing BSs, and let us denote as N l

i , and NHO
i the number of local

and remote users, respectively, of type i (i ∈ {AU,CU,DU}),
associated with this BS. Let further λi denote the flow arrival
rate per user of type i. The total load for this BS is the
sum of all flow rates across these users, and we’ll assume
that the actual arrival process is Poisson with the sum rate
(This assumption is motivated by the Palm-Khintchine theorem,
which states that the sum of many independent arrival processes
becomes Poisson in the limit [13] ). Finally, assume that each
arriving flow requires dedicated resources with a probability
pd. Then, due to Poisson splitting, the arrival process remains
Poisson with total rate λd, given by:

λd = pd

(

λAU

∑

i∈{AU,CU,DU}

(N l
i +NHO

i )P i
act(X)

)

, (8)

where P i
act(X) are the activation probabilities defined in (5)

and (6). Here, we also need to define the activation probability
for AUs, since an AU might ask for additional dedicated
flows: PAU

act (X) = 1 − e−λAUX , where λAU is the rate that
AU ask for new flows . We will also assume that the flow
sizes are exponentially-distributed with parameter µd, that is,
approximately, the average one between dedicated flows. Thus,
we can replace λ and µ in the Markov chain of Fig. 1, with
λd and µd, for the case of dedicated flow admission control.

Resource constraint k: As explained earlier, k, the re-
source constraint in a loss system is a “hard” resource con-
straint, related to countable resources (e.g. servers, time slots,
etc.). In the context considered, the available peak rate for
dedicated flows Rd, is a flexible resource, whose allocation
is a function of the number of flows, respective dedicated rate
demand, and user channel quality. Thus, we apply a “softer”,
estimated value of k in our loss system.

First, we estimate the average bit rate demand per dedicated
flow. Assume that there are different types of “dedicated flows”,
and that (i) a flow of type i requires a data rate of bi bits-per-
second (bps), and (ii) the ratio of flows with rate bi is equal to pi
(where

∑

i pi = 1). Thus, the average data rate for an incoming

dedicated flow, denoted by E[Bd], can be approximated as:

E[Bd] =
∑

i

bipi (9)

If a peak rate Rd is available at the BS, the resource constraint
k could be approximated in the M/M/k/k system as Rd

E[Bd]
, since

an “average” flow consumes a percentage
E[Bd]
Rd

of the available

rate. However, this nominal peak rate is only available when
the SNR is ideal, or more simply, within a certain distance from
the BS (assuming e.g. a simple log-distance path loss model).
Hence, to better estimate the maximum number of “average”
dedicated flows that can be served, we need to also consider the
(potential) distances of different users generating these flows.
For this purpose, we adopt a simple model associating peak
rate to distance, proposed in [15], [16], stating that the peak
rate available drops with distance rij from a BS j as:

c(rlj) =

{

1, rlj ≤ r0
( r0
rlj

)n, otherwise
(10)

where r0 is some threshold range within which the maximal
rate is obtained, and n, is the attenuation factor.

Hence, if all dedicated flows where requested from a
distance rlj , then the total rate available to them would be
only c(rlj)Rd (≤ Rd), or stated differently, the effective rate
requirement per average flow would be higher at a large
distance r and given by:

B(rlj) =
E[Bd]

c(rlj)
. (11)

We can now approximate the peak rate drop factor c(r)
based on the combination of UEs and distances, e.g. using
again a weighted average. Specifically, our estimated resource
constraint k for dedicated flows is given by:

k =
Rd

B̃d

, (12)

where

B̃d =

NAU
∑

l=1

B(rlj) +
NCU
∑

m=1
B(rmj)

NAU +NCU
, (13)

and Ni = N l
i+NHO

i , i ∈ {AU,CU}, denotes the total number
of users, local and remote, of type i. We can thus replace k
with the approximated value of k in the loss system of Fig. 17.
Finally, note that we have assumed that DUs will not affect
the peak data rate of the considered BSs (but only affect this
constraint through Eq.(8), where we assume that DUs might
also switch on and generate some flows during X).

Transient analysis of M/M/k/k: So far, we have shown
how to calculate the necessary parameters for the Markov
chain of Fig. 1. However, to calculate the probability that
a newly arrived flow that needs dedicated resources will be
blocked, it does not suffice to replace these parameters in the
Erlang B formula. The latter gives the stationary blocking
probability, that requires the respective chain to be converged,
and thus corresponds to large values of X . Instead, we need

7We should stress that, as mentioned earlier, this is only an estimate. In
practice, there will be a few times when the system is serving more than k
dedicated flows (e.g. when all users are close-by or flows require lower rates
than average), and times when a new flow might be blocked even if less than
k flows are served.



Fig. 2. DTMC k-Loss system

to apply transient analysis to this system, and estimate the
blocking probability via the occupation time in state k during
the intended switch-off duration X .

The initial state for the Markov chain, at time 0 (the
beginning of the switch-off period), corresponds to the current
number of active dedicated flows. Denoted as s,it is:

s = pd · (N
l
AU +NHO

AU ) · ξ, (14)

where we use ξ to denote the expected number of ongoing
flows per AU (this is an input parameter). Starting from s, the
occupation time in state i, denoted as Oi(X) (0 ≤ i ≤ k), is the
time that the MC spends in state during the next X minutes (or

time units). We are interested in deriving the quantity
E[Ok(X)]

X .
This corresponds to the percentage of time that the system is in
state k (all resources are used), during the switch-off period X
and starting from state s. Hence, due to the PASTA (Poisson
Arrivals See Time Averages) property, this also corresponds
to the probability that a newly arrived dedicated flow will
be blocked due to non-available capacity. We can estimate
this percentage of time either by uniformization in CTMC
(Continuous Time Markov Chain) [17], or by converting it to
DTMC (Discrete Time Markov Chain), as an approximation.
To simplify our discussion, we follow the second approach. Let
∆t be a small time inteval. The DTMC depicted in Fig. 2, is
the discrete-time approximation of our system continuous-time
M/M/k/k system, where a state transition occurs every ∆t time
units. If Pij denotes the probability that the chain goes from
state i to state j (0 ≤ i, j ≤ k), then it follows from standard
properties of the Poisson distribution [17] that (see Fig. 2):

p = λd ·∆t, Pi,i+1 = p, 0 ≤ i < k

q = µd ·∆t, Pi,i−1 = i · q, 0 < i ≤ k

Pi,i = 1− Pi,i+1 − Pi,i−1, 0 ≤ i ≤ k

Hence, if P = {Pi,j} denotes the probability transition
matrix, and P

n = {Pn
i,j} the n-step transition matrix (Pn =

(P)n), then the expected occupation time is given by:

E[Ok(X)] =

X
∆t
∑

n=0

Pn
s,k, (15)

where s denotes the initial state (initial number of active
dedicated flows) and X

∆t the total switch-off duration (counted
in discrete time steps of duration ∆t).

Proposition 2: (Constraint II) Assume a desired maximum
blocking probability is given for dedicated flows, defined as
pblock. A given BS can be switched off only if the following
inequality holds for all neighboring BSs to which users of the
switched-off BS are handed-over:

∑

X
∆t

n=0 P
n
s,k

X/∆t
≤ pblock. (16)

Impact of switch-off duration X. The computational
complexity of Proposition 2 can be traded off with accuracy by
increasing the time step ∆t. In addition, as X becomes large
(specifically, larger than the mixing time for the MC of Fig. 2),
the condition of Eq.(16) converges to the Erlang-B formula.

Remark 1: When X → ∞, the condition of Eq. (16),
converges to

( λd

µd
)k/k!

k
∑

j=0

( λd

µd
)j 1

j!

≤ pblock. (17)

Proof:

lim
∆t→0

lim
X→∞

E[Ok](X)

X/∆t
= lim

∆t→0
lim

X→∞

∑

X
∆t

n=0 P
n
s,k

X/∆t

= lim
∆t→0

πk(∆t) = πk,

where πk(∆t) is the stationary probability for state k in the
DTMC approximation with unit step (∆t). As ∆t → 0 this
quantity converges to πk, the stationary probability of state
k for the CTMC corresponding to the standard M/M/k/k loss
system of Fig.1, which is the Erlang B formula [13].

C. Admission Control: Service Delay Constraint

As our last constraint, we consider the delay for a best-
effort flow, i.e. a flow that does not require dedicated resources.
Consider again a given BS being switched-off, whose users are
handed over to different neighboring BSs, and let’s pick one of
them and focus on it. As before, this BS will have some local
users and some remote users, that were handed over from the
switched-off BS, all of which might generate (new) best effort
flows. While there are no guarantees for such flows, we might
still want to keep their expected delay below a certain threshold.
Our goal is to model and analytically bound this delay.

Unlike the case of dedicated flows, that are allocated
separate resources each, best-effort flows are multiplexed and
have to compete for resources. The more flows in parallel in
the system, the larger the expected delay for each flow. A lot of
effort has been devoted to the study of scheduling algorithms
for such “elastic” types of traffic [13]. In this work, we will
assume that best-effort flows are scheduled using Processor
Sharing (PS) [18], as PS works better than First Come First
Serve for high variability loads, and is also widely considered
as a fair queueing discipline. For simplicity, we are only
considering one priority-class of best-effort flows.

To analyze the delay of the PS flow scheduler for best effort
flows we need to know λb, the arrival rate of best-effort flows,
and µb the service rate for best-effort flows. Let pb denote the
probability that a new flow arrival is best effort (rather than
dedicated), and thus pb = 1 − pd, it follows that incoming
“best-effort” flows are Poisson distributed with total rate:

λb = pb

(

λAU

∑

i∈{AU,CU,DU}

(N l
i +NHO

i )P i
act(X)

)

. (18)

To find the service rate for best-effort flows, let Rb denote again
the peak bit rate for best-effort flows. As explained before, if a
single best effort flow exists in the system for a user at distance



rlj , then the actual bit rate received is only c(rlj)Rb, where
c(rlj) is given by Eq(10). The actual average peak rate is:

R̃b = Rb ·

NAU
∑

l=1

c(rlj) +
NCU
∑

m=1
c(rmj)

NAU +NCU
, (19)

where Ni = N l
i +NHO

i , i ∈ {AU,CU}. The above estimated
rate corresponds to a single flow. If there are n total best-effort
flows currently in the system, then PS would split this rate

equally, and each flow would be served with a bit rate R̃b

n .

To find the actual service rate µb of the PS queue, the
number of flows served per time unit (note that this is not equal

to R̃b, which is just the effective bit rate), we also need to know
the average length of best effort flows. If we assume that the
sizes of the best-effort flows are exponentially distributed with

mean Yb, then µb = R̃b

Yb
. When the system is stationary, i.e.

when X is quite large, the expected delay for a newly arriving
flow corresponds to the delay of an M/M/1/PS system:

E[Db] =
1

µb − λb

(X →∞).

However, for general values of X , the Markov chain corre-
sponding to the PS system is not stationary. Thus, we must
again apply transient analysis, assuming an initial state. Let
s again denote the initial number of best-effort flows in
the BS, at the beginning of the switch-off period X , where
s = pb · (N

l
AU + NHO

AU )ξ, similar to Eq. (14). Consider now
a new flow of size Yb arriving at some time t ∈ [0, X]. The
number of active best effort flows in the system that has to
share the PS capacity with, is a random variable, denoted as
n. Our approach will be to find the expected delay conditional
on this value of n, and then take the average.

If our flow of size Yb finishes transmitting while in state
n (i.e. no new flows arrive and no existing flows finish), the

service rate remains fixed at Rn = R̃b/n and the expected

delay for this flow is Yb·n
R̃b

. However, if a state transition occurs

before all Yb bits are transmitted, then the remaining bits will

be transmitted at a lower (R̃b/(n+1)) or higher rate (R̃b/(n−
1)), if a new flow arrived, or an existing finished, respectively.
Let us denote as Tn the time spent in this state until the next
transition. This time is exponentially distributed with rate λb+
µb, so E[Tn] =

1
λb+µb

. Hence, putting everything together, we

can define the following recursion to derive the (conditional)
delay (Dn(Yb)) of a flow of Yb bits finding another n ongoing
flows when it arrives. Rn denotes the transmission rate at state
n.

Dn(Yb) =































Yb
Rn

, if
Yb
Rn

≤ E[Tn]

E[Tn] +Dn+1(Yb −Rn · E[Tn]), if
Yb
Rn

> E[Tn]

and n→ n+ 1

E[Tn] +Dn−1(Yb −Rn · E[Tn]), if
Yb
Rn

> E[Tn]

and n→ n− 1

(20)

It is: P (n→ n+ 1) = λb

λb+µb
, and P (n→ n− 1) = µb

λb+µb
.

However, the actual number of initial active flows n at time
t is also a random variable, which depends on the evolution of
the system, starting at initial state s until time t. To find these
probabilities, we will again use a DTMC approximation and
n-step transitions as before. Due to space limitations, we omit
here the details and give the final result which is:

E[Db] =

X/∆t
∑

t=0

∞
∑

n=1

P
t/∆t
s,n Dn(Yb)

X/∆t
, (21)

In practice, we can add up only a finite number of terms in the
inner sum, to reduce the calculations.

Proposition 3: (Constraint III) Assume a desired maximum
delay for best effort flows, Dmax. A given BS can be switched
off only if the following inequality holds for all neighboring
BSs to which users of the switched-off BS are handed-over:

X/∆t
∑

t=0

∞
∑

n=1

P
t/∆t
s,n Dn(Yb)

X/∆t
≤ Dmax.

Impact of switch-off duration X. The computational complex-
ity of Prop. 3 can be traded off with accuracy by increasing the
step ∆t. Also, as X becomes large, the individual probabilities
of (21) converge to their stationary distribution.

III. SIMULATION RESULTS

To evaluate our QoE constraints, we consider a network
composed of Ms = 120 small cells (µ-cell), and Mm = 2
macro cells (m-cell) that are uniformly distributed in an area of
45km2. Each µ-cell has radius 400m (meters), and each m-cell
had radius 2.2 km. We assume that there are 500 AUs and CUs,
plus 120 DUs. We also assume total peak rate Rtotal= 70 Mbps;
average length and bit-rate for best-effort and dedicated flows
Yb = 20 Kbytes and E[Bd] = 200 kbps, respectively; coverage
threshold γ = 50dB8; probability for dedicated flows pd =
0.7; and rates µd, λAU, λCU, λDU 10, 2, 1 and 0.1 flows/hour,
respectively. Finally, the maximum number of concurrent users
that each µ-cell can handle is set to9 11.

We are interested in investigating how the different values of
the predefined thresholds pf (failure probability), pblock (block-
ing probability) and Dmax (service delay) affect the portion
of energy savings10. In Fig. 3(a), 3(b) and 4(a), we assume
switching-off duration X = 10min. Each figure contains two
curves; the “top” curve corresponds to the portion of energy
saved when we consider only a certain constraint active, while
the “bottom” curve considers all constraints to be active, at
fixed thresholds (when not explicitly mentioned, we assume
them to be pf = 0.3, pblock = 10−3 and Dmax = 50msec).

In the “top” curve of Fig. 3(a), on the x-axis we increase
the pf and plot the savings. It can be seen that, increasing the
threshold (making the constraint less strict) increases savings,
as it allows for more BSs to be switched off. For instance,
we can save up to 68% for pf = 0.4. As for the “bottom”
curve, savings increase too, but less sharply, as the other two
constraints can overrule the switch-off decision, especially for
large pf . For example, with pf = 0.4 and the other two
thresholds fixed, the energy savings can be up to 30%.

Similarly, Fig. 3(b) and 4(a) depict the portion of the energy
saved, by taking into account the blocking probability and
service delay constraints. For example the top (bottom) curve
of Fig. 3(b), shows that the portion of energy savings can be
up to 50% (28%), by considering only the blocking probability
constraint (plus the other two with fixed). Finally, Fig. 4(a)

8The threshold γ is an input parameter and is chosen to ensure the coverage
constraint with a relatively good signal quality.

9This number can vary, depending on the type of the small cell [4], and
does not affect the blocking probability.

10This portion is equal to the energy we can save, divided by the energy

needed for all BSs switched-on during X i.e.
EALL−Epart

EALL
, where EALL

is the energy needed if all BSs are switched-on, and Epart is the (decreased)
energy needed if we safely switch-off some BSs based on our policies.



shows that the portion of energy savings for the delay constraint
can be 70% by maintaining only the Dmax in 100msec, and 30%
by holding the other two fixed.
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Fig. 3. Portion of Energy Saving versus the Failure and Blocking probability

Another interesting parameter is X , the switch-off duration.
Fig. 4(b) depicts the portion of energy saved for different values
of X with fixed constraint thresholds (pf = 0.4, pblock = 10−3,
Dmax = 200msec). To be more precise, energy savings are
maximum when X is relatively small, but start decreasing
and eventually flatten out, as X increases. The reason is that,
for small X, one needs to only consider the impact of AUs
when evaluating the constraint and the impact of hand overs
to neighboring BSs. However, as X increases, there is a higher
chance that CUs and DUs will add traffic to the total transferred
load (see Eqs .(8) and (18)), which might prevent us from
switching off a BS. Finally, the plot corresponding to each
constraint is not always linear, as some additional phenomena,
such as convergence to stationarity for the stochastic systems
we use in constraints 2 and 3, also affect systems’ behavior.

Thus, a small switch-off duration X promises larger energy
savings. However, it also implies that the system will (a) have to
re-evaluate the state of the system and repeat its decision quite
frequently (computation complexity) and (b) it might lead to
some additional energy wastage (and performance degradation)
due to the fixed power (and delay) needed to switch-off and
back-on a BS. This suggests an interesting trade-off that we
plan to explore in future.
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Fig. 4. Portion of Energy Saving versus the Delay and switching-off period.

IV. CONCLUSION

In this paper, we consider the problem of energy saving
in future SCN by switching off underloaded BSs. Specifically,
we have shown how the potential degradation of user QoE
could be analytically captured and bounded along different

dimensions, namely coverage probability, blocking probability
(for dedicated flows), and delay (for best effort flows). Based on
the proposed framework, we have also showed how a significant
amount of energy in SCNs could be saved while maintaining
some desired QoE levels. Finally, complementary to research
works focusing on large switch-off periods (e.g. night hours)
we show that savings can be achieved for short periods as well,
and that the switch-off duration presents an interesting tradeoff.
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