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Efficient Techniques for Publicly Verifiable Delegation of
Computation

Abstract

With the advent of cloud computing, individuals and companies alike are

looking for opportunities to leverage cloud resources not only for storage but

also for computation. Nevertheless, the reliance on the cloud to perform com-

putation raises the unavoidable challenge of how to assure the correctness of

the delegated computation. In this regard, we introduce two cryptographic

protocols for publicly verifiable computation that allow a lightweight client

to securely outsource to a cloud server the evaluation of high degree uni-

variate polynomials and the multiplication of large matrices. Similarly to

existing work, our protocols follow the amortized verifiable computation ap-

proach. However, instead of using algebraic pseudo-random functions, we

exploit the mathematical properties of polynomials and matrices to propose

more efficient and more viable solutions. Besides their efficiency, our proto-

cols are provably secure under standard assumptions.
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1 Introduction

Cloud computing is increasingly becoming an attractive option for SMEs inter-

ested in minimizing their expenditures by outsourcing their data and computations.

However, the lack of security still deters the wide adoption of cloud technology.

As a matter of fact, cloud clients lose control over their data once outsourced, and

as such they can neither thwart nor detect cloud servers’ misbehavior.

Recently, researchers [1–5] introduced solutions for verifiable outsourced com-

putation whereby a client delegates the execution of computationally demanding

operations to the cloud, and further receives the result with some cryptographic

proof asserting the correct execution of requested operations. By definition, these

cryptographic proofs fulfill the classical security requirements of correctness and

soundness: They neither yield a situation in which a server is falsely accused of

misbehavior, nor make the client accept an incorrect result.

In addition to the previously mentioned security requirements, another key

prequisite that should be taken into account when designing solutions for verifiable

computation is the efficiency of the proof verification at the client: For a solution to

be viable, the computational and the storage complexity of the verification process

should naturally be lower than the complexity of the outsourced function. This

requirement thus seeks solutions that minimize the computational and the storage

load at lightweight clients, in the aim of not offsetting the advantages of cloud

computing.

In order to be able to check the proof of correct computation efficiently, the

client generates a verification key: While some solutions [1, 2] keep this veri-

fication key secret, in which case only the client verifies the correctness of the

outsourced computation, other proposals [3–6] allow public verifiability which em-

powers any third party verifier to assess the validity of the outsourced computation.

In this paper, we focus on the public verifiability of two specific functions,

namely, high degree polynomial evaluation and matrix multiplication. Similarly to

[3, 7], we adopt the amortized model [1]: In this model, the client is required to

execute a one-time expensive pre-processing operation that is leveraged later for

efficient verifications. While authors in [3] and [7] use algebraic pseudo-random

functions (algebraic PRF) which thanks to their closed-form efficiency give way

to an efficient verification process, we instead take advantage of the mathemati-

cal properties of polynomials and matrices to propose two cryptographic solutions

that compare favorably to existing work. Notably, we exploit the properties of Eu-

clidean division for polynomial evaluation and the properties of dot product for

matrix multiplication.

Contributions:

• We first propose a verifiable polynomial evaluation solution whose efficiency

derives from the Euclidean division of the actual polynomial by some ran-

domly generated small degree polynomial. The basic idea of our solution is

that the client securely stores this small degree polynomial together with the
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remainder one and outsources the actual polynomial with the quotient poly-

nomial. Thanks to the properties of Euclidean division, the pre-processing

of data before outsourcing in our scheme outperforms existing solutions [3].

• Secondly, we propose a solution for verifiable matrix multiplication which

similarly to [3], requires the client to construct an auxiliary matrix. However,

to optimize the verification operation, our solution generates this matrix as

the product of two secret vectors as opposed to using algebraic PRFs. In this

manner, we ensure that the verification at the client amounts to computing a

dot product and performing a constant number of exponentiations and bilin-

ear pairings, which makes our solution significantly more performant than

related work.

• Both of our solutions are publicly verifiable and are proved to be correct

and sound. Their soundness is proved under standard assumptions, namely

the co-computational Diffie-Hellman (co-CDH) and external Diffie-Hellman

(XDH) assumptions.

The rest of the paper is organized as follows. Section II formally defines pub-

licly verifiable computation and the underlying security model. The proposed veri-

fiable polynomial evaluation and matrix multiplication solutions are described and

evaluated in Sections III and IV respectively. Finally, we review the state of the art

in section V.

2 Publicly Verifiable Computation

A publicly verifiable computation scheme is defined by four polynomial-time

algorithms that enable a client C to outsource the evaluation of a family of functions

F to a potentially malicious server S, while allowing a third party verifier V to

assess the correctness of the results output by server S (cf. [6]).

• Setupp1κ, fq Ñ pparamf,SKf,EKfq: It is a randomized algorithm executed

by client C. It takes as input the security parameter κ and a description of

the function f P F to be outsourced, and outputs a set of public parameters

paramf that will be used by subsequent algorithms, a secret key SKf that will

be stored at client C and an evaluation key EKf that will be transferred to

server S.

• ProbGenpx,SKfq Ñ pσx,VKxq: Given an input x in the domain Df of func-

tion f and the client’s secret key SKf, this algorithm generates an encoding

σx of x that will be transmitted to server S, and a public verification key

VKx that will be used by verifier V afterwards to check the correctness of

the result returned by server S.
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• Computepσx,EKfq Ñ σy: On input of the encoding σx and the evaluation

key EKf, server S runs this algorithm to compute an encoding σy of f’s output

y “ fpxq.

• Verifypσy,VKxq Ñ outy: Verifier V operates this deterministic algorithm

to check the correctness of the result σy supplied by server S on input σx.

More precisely, this algorithm first decodes σy which yields a value y, and

then uses the public verification key VKx associated with the encoding σx to

decide whether y is equal to the expected output fpxq. If so, Verify outputs

outy “ y meaning that fpxq “ y; otherwise it outputs an error outy “K.

A publicly verifiable computation scheme should assure that if server S is hon-

est (i.e. executes the algorithm Compute correctly), then algorithm Verify always

accepts the results provided by S (i.e. algorithm Verify never outputs an error K).

This matches the correctness property of publicly verifiable computation. Verifi-

able computation schemes should also guarantee that a malicious server S cannot

make the algorithm Verify (and therewith verifier V) accept a result that is not cor-

rectly computed. This corresponds to the soundness property of publicly verifiable

computation.

2.1 Correctness

A publicly verifiable computation scheme for a family of functions F is deemed

to be correct, if whenever an honest server executes the algorithm Compute to eval-

uate a function f P F on an input x P Df, this algorithm always yields an encoding

σy that will be accepted by algorithm Verify (i.e. Verifypσy,VKxq Ñ fpxq).

Definition 1. A publicly verifiable computation scheme for a family of functions F
is correct, iff for any function f P F and any input x P Df:

If ProbGenpx,SKfq Ñ pσx,VKxq and Computepσx,EKfq Ñ σy, then:

PrpVerifypσy,VKxq Ñ fpxqq “ 1

2.2 Soundness

A publicly verifiable computation scheme for a family of functions F is said to

be sound, if for any f P F and for any x P Df, a server cannot convince a verifier V

to accept an incorrect result. Notably, a verifiable computation scheme is sound if

it assures that the only way a server generates a result σy that will be accepted by

verifier V as a valid encoding of the evaluation of some function f P F on an input

x, is by correctly computing σy (i.e. σy Ð Computepσx,EKfq).

To capture the adversarial capabilities of an adversary (i.e. malicious server) A

against a publicly verifiable computation scheme for a family of functions F , we

define a soundness game in which adversary A has an oracle access to the outputs

of algorithms Setup and ProbGen (cf. [3, 6]).
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Algorithm 1: Learning phase of the soundness game of publicly verifiable

computation

pparamf,EKfq Ð OSetupp1κ, fq;

for i :“ 1 to t do

A Ñ xi;

pσxi
,VKxi

q Ð OProbGenpxi,EKfq;

end

Algorithm 2: Challenge phase of the soundness game of publicly verifiable

computation

A Ñ x˚;

pσx˚ ,VKx˚q Ð OProbGenpx˚,EKfq;

A Ñ σy˚ ;

outy˚ Ð Verifypσy˚ ,VKx˚q;

This formally means that adversary A is allowed to query the following oracles

during the soundness game:

• OSetup: When queried with a security parameter κ and a description of a

function f P F , this oracle first executes the algorithm Setup which outputs

a set of public parameters paramf, an evaluation key EKf and a secret key

SKf that thereafter will be associated with function f; then returns the public

parameters paramf and the evaluation key EKf.

• OProbGen: When invoked with evaluation key EKf and input x in Df, this

oracle calls the algorithm ProbGen with x and secret key SKf matching the

evaluation key EKf, and outputs the resulting public encoding σx and public

verification key VKx.

In the learning phase of the soundness game (cf. Algorithm 1), adversary A calls

oracle OSetup with a security parameter κ and a function f P F in order to get the

public parameters paramf and the evaluation key EKf. Next, adversary A adap-

tively invokes oracle OProbGen with inputs xi and receives as a result the matching

pairs of public encoding σxi
and public verification key VKxi

.

In the challenge phase (see Algorithm 2), adversary A outputs a challenge

input x˚ P Df and calls the oracle OProbGen with evaluation key EKf and x˚ so

as to get the matching pair of encoding σx˚ and public verification key VKx˚ .

Thereafter, adversary A generates an encoding σy˚ . At the end of the challenge

phase, algorithm Verify takes as input the pair pVKx˚ , σy˚ q and outputs a value

outy˚ .

We say that adversary A succeeds in the soundness game of publicly verifiable

computation if outy˚ ‰K and outy˚ ‰ fpx˚q.
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Let ΠA,f denote the probability that adversary A succeeds in the soundness

game of publicly verifiable computation (i.e. Prpouty˚ ‰K ^ outy˚ ‰ fpx˚qq).

Definition 2. A publicly verifiable computation scheme for a family of functions F
is sound, iff: For any adversary A and for any f P F , ΠA,f ď ǫ and ǫ is a negligible

function in the security parameter κ.

3 Publicly Verifiable Polynomial Evaluation

3.1 Protocol Overview

The solution we propose for publicly verifiable evaluation of polynomials draws

upon the basic properties of Euclidean division of polynomials. Notably the fact

that for any pair of polynomials A and B ‰ 0 of degree d and 1 respectively, the

Euclidean division of A by B yields a unique pair of polynomials Q and R such

that: i.) A “ QB ` R and ii.) the degree of the quotient polynomial Q equals

d ´ 1, whereas the the remainder polynomial R is constant. Therefore, the idea

underpinning our scheme is as follows: Client C first picks a random polynomial B

of degree 1, then divides A by B to get the quotient polynomial Q of degree d ´ 1

and the constant remainder polynomial R. Next client C outsources polynomial

A together with quotient polynomial Q to server S while safeguarding polynomial

B and remainder R. Consequently, whenever client C wants to evaluate polyno-

mial A at point x, it transmits x and the corresponding public verification key VKx

(which is defined as a function of x and polynomials B and R) to server S. Server

S in turn computes y “ Apxq and generates the proof π “ Qpxq. To verify the

result py, πq output by server S, verifier V checks whether y “ πBpxq ` R using

verification key VKx.

The efficiency of the verification in the solution sketched above stems from the

fact that B and R are small-degree polynomials. Indeed, to verify the correctness of

a result py, πq provided by server S on an input x, verifier V is required to perform

constant number of computations as opposed to carrying out Opdq operations to

evaluate polynomial A.

Clearly, the soundness of such a protocol relies on the secrecy of polynomials

B and R. However since B is one-degree polynomial, the secrecy of these two

polynomials can be easily compromised by disclosing the quotient polynomial Q.

To remedy this shortcoming, client C encodes polynomial Q using an additively

homomorphic one-way encoding. Namely, each coefficient qi of polynomial Q is

encoded as gqi . Thus, we allow server S to obliviously compute an exponent encod-

ing π “ gQpxq of the evaluation of Q at point x while ensuring the confidentiality

of polynomials B and R.

To allow verifier V to check the correctness of the results py, πq returned by

server S, we employ bilinear pairings, and accordingly, we show that our solution

is sound under the co-computational Diffie-Hellman (co-CDH) assumption.
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Before describing our protocol in full details, we recall the definitions of bilin-

ear pairings and co-CDH assumption.

3.2 Bilinear Pairings

Definition 3 (Bilinear Pairing). Let G1, G2 and GT be three cyclic groups of the

same finite order p.

A bilinear pairing is a map e: G1 ˆ G2 Ñ GT , with the following properties:

1. e is bilinear: @ α, β P Zp, g P G1 and h P G2, epgα, hβq “ epg, hqαβ ;

2. e is computable: There is an efficient algorithm to compute epg, hq for any

pg, hq P G1 ˆ G2;

3. e is non-degenerate: If g is a generator of G1 and h is a generator of G2,

then epg, hq is a generator of GT .

Definition 4 (Co-CDH Assumption). Let G1, G2 and GT be three cyclic groups of

the same finite prime order p such that there exists a bilinear pairing e : G1ˆG2 Ñ
GT .

We say that the co-computational Diffie-Hellman assumption (co-CDH) holds

in G1, if given g, gα P G1 and h, hβ P G2 for random α, β P F
˚
p , the probability to

compute gαβ is negligible.

3.3 Protocol Description

Our protocol for publicly verifiable computation of polynomials comprises four

phases:

Setup Without loss of generality, we assume that client C wants to outsource the

evaluation of a d-degree polynomial ApXq “
řd

i“0
aiX

i with coefficients ai P Fp

where p is a large prime.

To this effect, client C calls algorithm Setup with polynomial A and prime p.

Algorithm Setup selects two cyclic groups G1 and G2 of prime order p that admit

a bilinear pairing e : G1 ˆ G2 Ñ GT and picks a generator g and a generator h

of groups G1 and G2 respectively. Algorithm Setup then defines the set of public

parameters:

paramA “ pp,G1,G2,GT , e, hq

Next Setup randomly selects a 1-degree polynomial B with coefficient bi, i P
t0, 1u in Fp (i.e. BpXq “ b1X ` b0) that does not divide A. Note that a ran-

dom polynomial of degree 1 divides A with probability ď d
p

. It then performs the

Euclidean division of polynomial A by polynomial B in FprXs, which results in

a quotient polynomial QpXq “
řd´1

i“0
qiX

i and a constant remainder polynomial

R ‰ 0 (i.e. A “ QB ` R).
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Thereupon, Setup sets the secret key SKA associated with polynomial A to

SKA “ pg,B,Rq.

To compute the evaluation key EKA matching secret key SKA, algorithm Setup

encodes polynomial Q in the exponent. Namely, for each coefficient qi of polyno-

mial Q, algorithm Setup computes qi “ gqi . Finally, algorithm Setup defines the

evaluation key EKA “ pA,q0,q1, ...,qd´1q.

At the end of this step, client C stores SKA securely, transfers EKA to server S

and publishes paramA.

Problem Generation To evaluate polynomial A at point x P Fp, client C invokes

algorithm ProbGen with secret key SKA “ pg,B,Rq and x. As a result, algorithm

ProbGen calculates Bpxq “ b1x ` b0 mod p and checks whether Bpxq “ 0

mod p1. If it is the case, then algorithm ProbGen halts and returns Apxq “ R.

Otherwise, it computes VKpx,Bq “ epg, hqBpxq´1

and VKpx,Rq “ epg, hqRBpxq´1

.

Finally, ProbGen outputs the public encoding σx “ x and the public verification

key VKx “ pVKpx,Bq,VKpx,Rqq.

Computation Given σx “ x and the evaluation key EKA “ pA,q0,q1, ...,qd´1q,

server S executes algorithm Compute. Accordingly, algorithm Compute evaluates

y “ Apxq “
řd

i“0
aix

i
mod p, generates the exponent encoding π “

śd´1

i“0
qxi

i

of Qpxq and finally outputs the encoding σy “ py, πq.

Verification Provided with encoding σy “ py, πq and verification key VKx “
pVKpx,Bq,VKx,Rq, verifier V invokes algorithm Verify which checks whether the

following equation holds:

VK
y
px,Bq

?
“ epπ, hqVKpx,Rq (1)

If so, then Verify outputs y meaning that Apxq “ y; otherwise it outputs K.

3.4 Security Analysis

Here we state the main security theorems pertaining to our protocol for publicly

verifiable polynomial evaluation.

Theorem 1. The scheme proposed above for publicly verifiable polynomial evalu-

ation is correct.

Proof. If on a client C’s query σx “ x P Fp, server S follows the instructions of

the Computation step correctly, then server S’s response σy “ py, πq is equal to

pApxq, gQpxqq. Indeed, we have:

π “
d´1ź

i“0

qxi

i “
d´1ź

i“0

gqix
i

“ g
řd´1

i“0
qix

i

“ gQpxq

1Polynomial B has one root in Fp.
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Protocol Phase Computation Client’s storage Server’s storage

Setup 2 prng and d mul in Fp Op1q Opdq
d exp in G1

Problem Generation 1 mul and 1 inv in Fp – –

2 exp in GT

Computation d ` pd ´ 2q mul in Fp – –

d exp and d ´ 1 mul in G2

Verification 1 exp and 1 mul in GT – –

1 pairing

Table 1: Computation and storage requirements of our protocol for publicly verifi-

able polynomial evaluation

Given that A “ QB ` R in FprXs and that the order of epg, hq is equal to p, we

get:

epg, hqApxq “ epg, hqQpxqBpxq`R “ epgQpxq, hqBpxqepg, hqR

As pApxq, gQpxqq “ py, πq we have:

epg, hqy “ epπ, hqBpxqepg, hqR

Thus since Bpxq ‰ 0 epg, hqyBpxq´1

“ epπ, hqepg, hqRBpxq´1

.

By recalling that pVKpx,Bq,VKpx,Rqq “ pepg, hqBpxq´1

, epg, hqRBpxq´1

q, we

conclude that VK
y
px,Bq “ epπ, hqVKpx,Rq.

Theorem 2. The scheme proposed above for publicly verifiable polynomial evalu-

ation is sound under the co-CDH assumption in G1.

For ease of exposition, the proof of this theorem is deferred to Appendix A.

3.5 Performance Analysis

To outsource the evaluation of a polynomial A in FprXs to a cloud server S,

client C first generates two random coefficients b0, b1 P Fp to construct polynomial

B. Afterwards client C conducts an Euclidean division of polynomial A by poly-

nomial B which consists of d multiplications and additions, where d is the degree

of polynomial A. Once the Euclidean division is performed, client C computes

d´ 1 exponentiations to encode the coefficients qi of the quotient polynomial Q as

qi “ gqi P G1. Although computationally expensive, the Setup phase is executed

only once by client C, and as a result, its computational cost is amortized over the

large number of verifications that verifier V can carry out.

At the end of the Setup phase, client C stores the coefficients of polynomial B

and remainder R, which corresponds to storing 3 coefficients in Fp. Server S on
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the other hand, keeps the d ` 1 coefficients ai P Fp of polynomial A and the d

encodings qi P G1.

When client C wants to evaluate polynomial A at a point x P Fp, it computes

the verification key VKx “ pVKpx,Bq,VKpx,Rqq which demands a constant number

of operations that does not depend on the degree of polynomial A. More precisely,

the Problem Generation phase consists of an evaluation of polynomial B at point

x in Fp, an inversion in Fp, and 2 exponentiations in GT .

Upon receipt of a client C’s query σx “ x, server S enters the Computation

phase which comprises two steps: i.) the evaluation of polynomial A at point

x which requires at most d additions and multiplications in Fp if server S uses

Horner’s rule; and ii.) the generation of the proof π which involves d´ 2 multipli-

cations in Fp and d exponentiations and d ´ 1 multiplications in G1.

Finally, the Verification phase at verifier V only calls for 1 exponentiation and

1 multiplication in GT and the computation of one bilinear pairing.

Table 1 depicts the performances of our protocol for publicly verifiable poly-

nomial evaluation.

4 Publicly Verifiable Matrix Multiplication

4.1 Protocol Overview

The protocol we introduce in this section relies on the intuition already ex-

pressed in [3] which states that in order to verify that a server S correctly multi-

plies an pn,mq-matrix M of elements Mij P Fp (where p is a large prime) with

some column vector ~x “ px1, x2, ..., xmq⊺ P F
m
p , it suffices that client C randomly

picks a secret pn,mq-matrix R of elements Rij , and supplies server S with pn,mq-

matrix M and pn,mq-matrix N such that Nij “ g̃MijgRij (where g̃ “ gδ for some

randomly generated δ).

When client C prompts server S to multiply matrix M with vector ~x, server S

returns a pair of column vectors ~y “ M~x “ py1, y2, ..., ynq⊺ and ~π “ pπ1, π2, ...,

πnq⊺, such that: πi “ g̃yig
řm

j“1
Rijxj . If we denote ~z “ pz1, z2, ..., znq⊺ “ R~x,

then the verification process would consist of checking whether πi actually equals

g̃yigzi .

Now to transform this intuition into a viable solution, one must ensure that the

matrix multiplication R~x (and therewith the verification process) is much less com-

putationally demanding than the matrix multiplication M~x for all vectors ~x. Along

these lines, we suggest a base protocol (cf. Section 4.2) which similarly to the work

of [3] generates the secret matrix R in a way that optimizes the multiplication R~x.

However instead of using algebraic PRF as in [3], we construct the matrix R as the

product of randomly generated column vector ~a “ pa1, a2, ..., anq⊺ and row vector
~b “ pb1, b2, ..., bmq (i.e. R “ ~a~b and Rij “ aibj). Therefore, the matrix multipli-

cation R~x requires Opn`mq operations rather than Opnmq – which is comparable
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to [3]. Indeed, if R “ ~a~b and ~z “ R~x, then zi “
řm

j“1
Rijxj “ aip~b ¨ ~x⊺q (where

~b ¨ ~x⊺ “
řm

j“1
bjxj is the dot product of~b and ~x⊺).

Although the cost of computing the vector R~x is considerably diminished, the

verification process still calls for Opnq exponentiations and bilinear pairings to

check whether πi “ g̃yigzi , which can be computationally prohibitive to lightweight

verifiers. Hence, we propose an optimization of the base protocol (cf. Section 4.3)

which – at the cost of a slightly more expensive Setup algorithm – empowers the

verifier to assess the correctness of the results sent by the server by only perform-

ing Opnq multiplications and Op1q exponentiations and bilinear pairings. Besides

ensuring an efficient verification process, our solution also gives way to an efficient

problem generation that outperforms existing work [3]. Namely, the problem gen-

eration in our scheme consists of performing Opmq multiplications to compute the

dot product~b ¨ ~x⊺ and Op1q exponentiations, instead of Opn`mq exponentiations

and Opnq bilinear pairings in the case of [3].

Finally, we point out that the soundness of our solution is based on co-computational

Diffie-Hellman (co-CDH) assumption and external Diffie Hellman (XDH) assump-

tion in bilinear groups.

Definition 5 (XDH Assumption). Let G1, G2 and GT be three cyclic groups of the

same finite prime order p such that there exists a bilinear pairing e : G1 ˆ G2 Ñ
GT .

We say that the external Diffie-Hellman assumption (XDH) holds, if the de-

cisional Diffie-Hellman assumption (DDH) holds in G1.

4.2 Base Protocol

Our solution for publicly verifiable matrix multiplication consists of the fol-

lowing four phases:

Setup Without loss of generality, we assume that client C wants to outsource

the multiplication operations involving an pn,mq-matrix M of elements Mij P Fp

(1 ď i ď n and 1 ď j ď m) where p is a large prime.

In this respect, client C invokes the algorithm Setup with matrix M and prime

p.

Algorithm Setup selects two cyclic groups G1 and G2 of prime order p that

admit a bilinear pairing e : G1 ˆ G2 Ñ GT , picks a generator g and a generator h

of groups G1 and G2 respectively, and computes g̃ “ gδ and h̃ “ hδ such that δ is

randomly selected from F
˚
p . Next, it defines the set of public parameters:

paramM “ pp,G1,G2,GT , e, g, h, h̃q

Algorithm Setup thereafter picks two random vectors ~a “ pa1, a2, ..., anq⊺ P F
n
p

and~b “ pb1, b2, ..., bmq P F
m
p and sets the secret key SKM associated with matrix

M to SKM “ pδ,~a,~bq.
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To generate the evaluation key EKM corresponding to secret key SKM , algo-

rithm Setup first computes the pn,mq-matrix R “ ~a~b (i.e. for all 1 ď i ď n

and 1 ď j ď m: Rij “ aibj mod p) and generates another pn,mq-matrix N of

elements Nij P G1 such that Nij “ g̃MijgRij , @ 1 ď i ď n, 1 ď j ď m, then

defines the evaluation key EKM associated with matrix M as EKM “ pM,Nq.

At the end of this phase, client C stores SKM securely, publishes paramM and

transfers EKM to server S.

Problem Generation To multiply a column vector ~x “ px1, x2..., xmq⊺ with

matrix M , client C executes the algorithm ProbGen. On input of secret key SKM “
pδ,~a,~bq and vector ~x, algorithm ProbGen evaluates the dot product τx “ ~b ¨ ~x⊺ “řm

j“1
bjxj mod p, computes VKi,x “ epg, hqaiτx (for all 1 ď i ď n), and finally

returns the encoding σx “ ~x and the verification key VKx “ pVK1,x,VK2,x, ...,

VKn,xq

Computation Provided with encoding σx “ ~x “ px1, x2, ..., xmq⊺ and evalua-

tion key EKM “ pM,Nq, server S calls algorithm Compute. Algorithm Compute

multiplies matrix M with vector ~x which yields a column vector ~y “ py1, y2, ..., ynq⊺

(i.e. yi “
řm

j“1
Mijxj mod p), computes a vector ~π “ pπ1, π2, ..., πnq⊺ such

that: πi “
śm

j“1
N

xj

ij ,@ 1 ď i ď n, and finally outputs the encoding σy “ p~y, ~πq.

Verification Given σy “ p~y, ~πq and verification key VKx “ pVK1,x,VK2,x, ...,

VKn,xq, verifier V runs algorithm Verify which checks whether the following equal-

ity holds:

epπi, hq
?
“ epg, h̃qyiVKi,x , @ 1 ď i ď n (2)

If so, then algorithm Verify outputs ~y meaning that M~x “ ~y; otherwise it outputs

K.

Notice here that if server S executes the computation phase correctly, then

Equation 2 always holds. Notably, we have ~y “ py1, y2, ..., ynq⊺ “ M~x which

implies that for all 1 ď i ď n: yi “
řm

j“1
Mijxj mod p. Moreover, as the order

of g and g̃ is p, we have for all 1 ď i ď n:

πi “
mź

j“1

N
xj

ij “
mź

j“1

`
g̃MijgRij

˘xj

“ g̃
řm

j“1
Mijxjg

řm
j“1

Rijxj “ g̃yig
řm

j“1
aibjxj

“ g̃yigai
řm

j“1
bjxj “ g̃yigaip~b¨~x⊺q “ g̃yigaiτx

As g̃ “ gδ and h̃ “ hδ, we obtain:

epπi, hq “ epg̃yigaiτx , hq “ epgδyi , hqepgaiτx , hq

“ epg, hδqyiepg, hqaiτx “ epg, h̃qyiVKi,x

11



Although correct, the above protocol is computationally demanding for clients and

verifiers. Clients have to perform Opnq exponentiations in GT to compute verifi-

cation keys, whereas verifiers need to carry out Opnq exponentiations in GT and

Opnq bilinear pairings to assess the correctness of the outsourced computation. To

address this issue, we propose an optimization to this protocol which, at the price of

a slightly more expensive Setup phase, allows clients to generate verification keys

with a constant number of exponentiations, and enables verifiers to check the cor-

rectness of the delegated computation with a constant number of exponentiations

and bilinear pairings.

4.3 Optimized Protocol for Verifiable Matrix Multiplication

Similarly to the base protocol, our optimized solution for verifiable matrix mul-

tiplication runs in four phases:

Setup Client C calls algorithm Setup with pn,mq-matrix M and prime number

p.

Algorithm Setup as before chooses two cyclic groups G1 and G2 of prime

order p that admit a bilinear pairing e : G1 ˆ G2 Ñ GT , selects a generator g and

a generator h of groups G1 and G2 respectively, computes g̃ “ gδ and h̃ “ hδ for

a randomly selected δ in F
˚
p , picks a random vector ~γ “ pγ1, γ2, ..., γnq P F

n
p , and

subsequently defines the public parameters associated with matrix M as:

paramM “ pp,~γ,G1,G2,GT , e, g, h, h̃q

Afterwards, algorithm Setup randomly selects a vector ~a “ pa1, a2, ..., anq⊺ P F
n
p

and evaluates the dot product: ν “ ~γ ¨ ~a⊺ “
řn

i“1
γiai mod p. Then algorithm

Setup selects another random vector ~b “ pb1, b2, ..., bmq P F
m
p and sets the secret

key SKM associated with matrix M to SKM “ pδ, ν,~bq.

To derive the evaluation key EKM matching secret key SKM , algorithm Setup

computes for all 1 ď i ď n the pair pgi, g̃iq “ pgγi , g̃γiq “ pgi, g
δ
i q, then defines an

pn,mq-matrix N as Nij “ g̃
Mij

i g
aibj
i (@ 1 ď i ď n, 1 ď j ď m) and finally sets

the evaluation key EKM to pM,Nq.

As in the base protocol, client C stores SKM securely, publishes paramM and

sends EKM to server S.

Problem Generation To multiply a column vector ~x “ px1, x2, ..., xmq⊺ with

matrix M , client C calls algorithm ProbGen which on input of secret key SKM “
pδ, ν,~bq and ~x evaluates the dot product τx “ νp~b ¨ ~x⊺q, sets the verification key to

VKx “ epg, hqτx and outputs the public encoding σx “ ~x together with verification

key VKx.
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Computation On inputs of encoding σx “ ~x “ px1, x2, ..., xmq⊺ and eval-

uation key EKM “ pM,Nq, server S invokes algorithm Compute. Algorithm

Compute in turn multiplies matrix M with vector ~x which results in the column

vector ~y “ py1, y2, ..., ynq⊺ (i.e. yi “
řm

i“1
Mijxj mod p), evaluates the product

Π “
śn

i“1

śm
j“1

N
xj

ij and outputs the encoding σy “ p~y,Πq.

Verification Given encoding σy “ p~y,Πq and verification key VKx, verifier V

executes algorithm Verify which upon invocation checks whether the following

equation holds:

epΠ, hq
?
“ epg, h̃q~γ¨~y⊺VKx (3)

where ~γ ¨ ~y⊺ denotes the dot product of row vectors ~γ and ~y⊺.

If so, algorithm Verify outputs ~y meaning that M~x “ ~y; otherwise it outputs

K.

4.4 Security Analysis

In this section, we formally prove the security properties of our solution for

publicly verifiable matrix multiplication.

Theorem 3. The solution described above for publicly verifiable matrix multipli-

cation is correct.

Proof. If server S correctly performs the Computation phase when queried with

vector ~x “ px1, x2, ..., xnq⊺, then Equation 3 always holds. Actually in that case,

σy corresponds to the pair p~y,Πq such that ~y “ py1, y2, ..., ynq⊺ “ M~x and Π “śn
i“1

śm
j“1

N
xj

ij . This implies that for all 1 ď i ď n: yi “
řm

j“1
Mijxj mod p,

and as the order of gi and g̃i is p, it also implies that:

Π “
nź

i“1

mź

j“1

N
xj

ij “
nź

i“1

mź

j“1

´
g̃
Mij

i g
Rij

i

¯xj

“
nź

i“1

mź

j“1

´
g̃
Mij

i g
aibj
i

¯xj

“
nź

i“1

mź

j“1

g̃
Mijxj

i g
aibjxj

i

“
nź

i“1

g̃

řm
j“1

Mijxj

i

nź

i“1

g
ai

řm
j“1

bjxj

i “
nź

i“1

g̃
yi
i

nź

i“1

g
aip~b¨~x⊺q
i

Since for all 1 ď i ď n, gi “ gγi and g̃i “ g̃γi “ gδγi , then:

Π “
nź

i“1

gδγiyi
nź

i“1

gγiaip
~b¨~x⊺q “ gδ

řn
i“1

γiyigp~b¨~x⊺q
řn

i“1
γiai

“ gδp~γ¨~y⊺qgp~b¨~x⊺qp~γ¨~a⊺q “ gδp~γ¨~y⊺qgp~b¨~x⊺qν “ gδp~γ¨~y⊺qgτx

epΠ, hq “ epgδp~γ ¨~y⊺qgτx , hq “ epgδp~γ ¨~y⊺q, hqepgτx , hq

“ epg, hδq~γ¨~y⊺epg, hqτx
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Protocol Phase
Computation cost

Client’s Server’s

storage storage

Setup p2n ` mq prng in Fp Op1q Opnmq
np3m ` 1q mul in Fp

nm exp in G1

Problem Generation m prng and pm ` 1q mul in Fp – –

1 exp in GT

Computation nm mul in Fp – –

pn ´ 1qpm ´ 1q mul and nm exp in G1

Verification n prng and n mul in Fp – –

1 exp and 1 mul in GT

2 pairings

Table 2: Computation and storage requirements of our protocol for publicly verifi-

able matrix multiplication

As h̃ “ hδ and VKx “ epg, hqτx , we get: epΠ, hq “ epg, h̃q~γ¨~y⊺VKx

Theorem 4. The solution described above for publicly verifiable matrix multipli-

cation is sound under the DDH assumption in G1 and the co-CDH assumption in

G1.

For ease of exposition, the proof of this theorem is deferred to Appendix B.

4.5 Performance Analysis

To delegate the operations involving an pn,mq-matrix M of elements Mij in

Fp, client C first generates three random vectors ~a “ pa1, a2, ..., anq⊺ P F
n
p , ~b “

pb1, b2, ..., bmq P F
m
p and ~γ “ pγ1, γ2, ..., γnq P F

n
p , which calls for the generation

of 2n ` m random numbers in Fp. Then it evaluates the dot product ν “ ~γ ¨ ~a⊺ by

performing n multiplications and pn ´ 1q additions in Fp. Next client C computes

the pair pgi, g̃iq “ pgγi , gδγiq (1 ď i ď n) and uses these pairs to calculate Nij “

g̃
Mij

i g
aibj
i (1 ď i ď n and 1 ď j ď m). Notice that one can reduce the cost of

the Setup phase by directly computing Nij as gγipδMij`aibjq “ g̃
Mij

i g
aibj
i . This

requires 3nm multiplications and nm additions in Fp, and nm exponentiations in

G1. It should be noted that while the Setup phase involves expensive operations

such as exponentiations, it is executed only once by client C, and consequently, its

cost is amortized over the large number of verifications that verifier V can perform.

At the end of the Setup phase, server S stores the pn,mq-matrix M of elements

Mij P Fp and the pn,mq-matrix N of elements Nij P G1; whereas client C stores

the secret key SKM “ pδ, ν,~bq. Note that instead of storing pδ, ν,~bq, client C may

only store pδ, ν,Kbq, where Kb is the key employed by client C to generate vector~b.

In the same manner, instead of publishing vector ~γ, client C may choose to publish

the key Kγ used to generate ~γ. These two optimizations lead to a constant storage
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cost at the client, however, it demands that i.) client C generates ~b whenever it

wants to multiply a vector ~x with matrix M and that ii.) verifier V generates ~γ

whenever it would like to verify the server’s results. This yields a slightly more

expensive Problem Generation and Verification phases than the ones described

in the original protocol.

To multiply a vector ~x “ px1, x2, ..., xmq⊺ with matrix M , client C first gener-

ates vector~b using key Kb, then evaluates the dot product τx “ νp~b ¨~x⊺q, computes

VKx “ epg, hqτx , and finally queries server S with vector ~x. This entails that the

Problem Generation phase involves the generation of m random numbers, m´ 1

additions and m ` 1 multiplications in Fp, and one exponentiation in GT . This is

considerably cheaper than the solutions presented in [3] and [7].

After receipt of a multiplication query σx “ ~x, server S proceeds with the

Computation phase which consists of two operations: i.) the matrix multiplication

~y “ M~x which requires nm multiplications and additions in Fp; and ii.) the

generation of the proof Π which involves nm exponentiations and pn´ 1qpm ´ 1q
multiplications in G1.

In order to verify the validity of the result σy “ p~y,Πq output by server S,

verifier V generates vector ~γ using the key Kγ , evaluates the dot product ~γ ¨ ~y⊺ in

Fp, and computes one bilinear pairing, one exponentiation, and one multiplication

in GT . As a result, the Verification phase of our protocol is much more efficient

than the solutions introduced in [3] and [7], since it only requires a constant number

of exponentiations and bilinear pairings.

Table 2 summarizes the performance analysis of our scheme for publicly veri-

fiable matrix multiplication.

5 Related Work

Outsourced verifiable computation has recently spurred the interest of the re-

search community. Early work on verifiable computation propose protocols for

interactive proofs [8, 9] such as probabilistically checkable proofs (PCP) [10], ef-

ficient arguments [11, 12] or muggle proofs [13, 14]. In such protocols, a prover

interacts with a verifier as long as necessary, such that the former convinces the

latter about the evaluation of arbitrary functions. In contrast with these proposals,

our paper focuses on non-interactive solutions that are more practical in real-world

scenarios.

Non-Interactive Proofs for Arbitrary Functions. Micali defines computa-

tionally sound proofs [15] that enable a prover to output a short certificate of the

correctness of computation of a statement. This construction relies on the random

oracle model and uses PCP and Merkle hash trees [16] as building blocks.

Gennaro et al. [1] first formalize the notion of non-interactive verifiable compu-

tation in the amortized model. Their solution combines the use of garbled boolean

circuits with fully-homomorphic encryption (FHE). Other work described in [17,

18] also propose FHE-based schemes. However, FHE does not have any practical
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relevance yet and [1] only allows private verification. In comparison, we propose

two efficient protocols for public verification that can be implemented in current

settings inducing lower computational and storage costs than the ones incurred by

FHE-based solutions.

In [6], Parno et al. proposes a solution for public delegation and verification

of computation using Attribute-Based Encryption (ABE). However, this scheme

is limited to the computation of Boolean functions that output a single bit. For

functions with more than one output bit, the client has to repeatedly (for each output

bit) launch several instances of the protocol.

Pinocchio [5] applies succinct non-interactive arguments of knowledge (SNARK)

[19] to the problem of public verifiable computation of arbitrary functions. Pinoc-

chio converts the outsourced function into an arithmetic circuit which is then trans-

lated into a Quadratic Arithmetic Program. This yields a verification that is linear

in the number of inputs and outputs of the outsourced function. In our protocol

however, the setup and verification costs are lower than the one induced by the pro-

tocol in [5]. Furthermore, their construction relies on non-standard cryptographic

assumptions, whereas in this paper we use weaker standard assumptions (XDH and

co-CDH).

Another type of solutions use homomorphic MACs [20–22] or homomorphic

signatures [23, 24]. These solutions generally induce a verification as costly as the

computation of the outsourced function itself. Homomorphic MACs proposed by

Backes et al. [22] take advantage of algebraic PRFs inducing efficient verification

provided that the data is indexed and labeled. This solution however is suitable

only for quadratic functions. Similarly, Catalano et al. [24] propose homomorphic

signatures with efficient verification for a publicly verifiable computation scheme.

Nevertheless, their construction uses expensive multilinear pairings and requires,

as in [22], the indexation of data.

Verifiable Polynomial Evaluation. Benabbas et al. [2] propose two proto-

cols for private verification based on small-domain algebraic PRFs, which render

their solutions suitable for small inputs only. The first solution is secure under d-

Strong Diffie-Hellman assumption, whereas the second is sound under DDH but is

much less efficient. In comparison, our solution allows public verification and is

secure under standard assumptions (co-CDH). In the same line of work, Fiore and

Gennaro [3] combine new algebraic PRFs and bilinear pairings to design a pub-

licly verifiable solution. Compared to [3], our protocol induces less computation

both at the client during the setup phase and at the server for the evaluation of the

polynomial. As a follow-up to the work of [3], the authors in [7] propose a solu-

tion that trades off the server’s storage and the client’s verification computation:

They use algebraic PRFs (similar to those introduced in [3]) and break the del-

egated computation into several sub-computations verifiable with a single proof.

The storage overhead is reduced, but the verification remains more expensive than

our scheme. Another solution for public verification considers signatures for cor-

rect computation [4], and uses polynomial commitments [25] to construct these

signatures. The cost of the verification depends on the degree d of the outsourced
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Client Server Verifier Hardness

Setup Problem Generation Computation Computation Assumptions

Fiore and Gennaro 1 pairing 1 pairing d ` 1 exp 1 pairing co-CDH

[3] 2pd ` 1q exp 1 exp 1 exp DLin

Our scheme d ´ 1 exp 2 exp d ´ 1 exp 1 pairings co-CDH

1 exp

Table 3: Comparison of computation complexity with existing work for polynomial evaluation

Client Server Verifier Hardness

Setup Problem Generation Computation Computation Assumptions

Fiore and Gennaro 3nm exp n pairings nm exp n pairings co-CDH

[3] 2pn ` mq exp n exp DLin

Our scheme nm exp 1 exp nm exp 2 pairings co-CDH

1 exp DDH

Table 4: Comparison of computation complexity with existing work for matrix multiplication

polynomial whereas our verification requires a constant amount of computation.

Besides, the solution is secure under the d-Strong Diffie-Hellman assumption. In

Table3 3, we compare our work with the only solution we know is sound under

standard assumptions. That is, the construction proposed in [3], which relies on

the decisional linear (DLin) assumption and the co-computational Diffie-Hellman

(co-CDH) assumption.

Verifiable Matrix Multiplication. Fiore and Gennaro [3] propose algebraic

PRFs for publicly verifiable delegation of matrix multiplications. The problem

generation and the verification in [3] perform a linear number of exponentiations

and bilinear pairings. In contrast, our protocol for verifiable matrix multiplication

only computes dot products and a constant number of exponentiations. The authors

in [7] propose a publicly verifiable scheme for vector-matrix multiplication: It tai-

lors an algebraic PRFs (also used in [3]) and divides the delegated computation to

a subset of smaller computations, all verifiable with a single proof. However, the

computation costs for the problem generation and the verification are higher than

the ones induced by our scheme. Table3 4 depicts a comparison of our proposal

with the solution proposed in [3] which as ours is secure under standard assump-

tions.

6 Conclusion

In this paper, we introduced two protocols for publicly verifiable delegation of

computation which enable a client to outsource securely the evaluation of arbitrary

degree univariate polynomials and the multiplication of large matrices. Instead

3Tables 3 and 4 compare the computational complexity of our solution and the solution in [3]

only in terms of exponentiations and bilinear pairings which are the most computationally prohibitive

operations.
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of employing algebraic pseudo-random functions, we built our protocols upon the

mathematical properties of polynomials and matrices. This paved the way for ef-

ficient and practical solutions that are provably secure against adaptive adversaries

under the co-CDH and the DDH assumptions.
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A Proof of Theorem 2

Theorem. The solution proposed in Section 3.3 for publicly verifiable polynomial

evaluation is sound under the co-CDH assumption in G1.

Proof. Assume there is an adversary A that breaks the soundness of our protocol

for publicly verifiable polynomial evaluation with a non-negligible advantage ǫ.

We demonstrate in what follows that there exists another adversary B that breaks

the co-CDH assumption in G1 with a non-negligible advantage ǫ1.

The proof of soundness of our solution for publicly verifiable polynomial eval-

uation involves three games:

Game 0 This game corresponds to the soundness game (cf. Section 2.2) of our

protocol for verifiable polynomial evaluation.

Game 1 In this game, adversary B simulates the soundness game to adversary A

as follows:

When adversary A calls the oracle OSetup with polynomial ApXq “
řd

i“0
aiX

i

in FprXs, adversary B simulates OSetup as follows:

i.) It sets the public parameters of the evaluation of A to {paramA “ pp,G1,G2,GT ,

e, hq as in Game 0;

ii.) it picks a random polynomial BpXq “ b1X ` b0 that does not divide A and

performs the Euclidean division of A by B. This yields a quotient polynomial

QpXq “
řd´1

i“0
qiX

i and a remainder polynomial R ‰ 0;

iii.) it computes qi “ gqi for all 0 ď i ď d ´ 1;

iv.) it defines the keys xSKA “ pg,A,B, tqiu
d´1

i“0
q and xEKA “ pA, tqiu

d´1

i“0
q, then

returns {paramA and xEKA to adversary A.
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We point out here that the output of oracle OSetup in this game is identical to

the output of OSetup in Game 0.

If adversary A calls oracle OProbGen with input x P Fp and evaluation key

xEKA, adversary B simulates oracle OProbGen by first computing Bpxq “ b1x ` b0.

If Bpxq “ 0, then adversary B aborts the game; otherwise adversary B proceeds

as follows:

i.) It randomly selects r P F
˚
p and computes xVKpx,Bq “ epg, hqr ;

ii.) it computes Apxq “
řd

i“0
aix

i
mod p and sets xVKpx,Rq “

yVKApxq

px,Bq

ep
śd´1

i“0
q
xi

i ,hq
;

iii.) it provides adversary A with the encoding σx “ x and the verification key
xVKx “ pxVKpx,Bq, xVKpx,Rqq.

Note that if adversary B does not abort the game, then the output of oracle

OProbGen in this game is statistically indistinguishable from the output of OProbGen

in Game 0.

Indeed, given that epg, hqApxq “ epg, hqQpxqBpxqepg, hqR , whereby epg, hqR is

unknown and B is a random polynomial, adversary A cannot distinguish between

epg, hqBpxq´1

and epg, hqr for some randomly generated r. Therefore, adversary

A cannot tell whether verification key xVKx “ pxVKpx,Bq,
xVKpx,Rqq is computed

correctly or not.

Game 2 The goal of adversary B in this game is to break the co-CDH assumption

in G2 using adversary A.

Let Oco´cdh be an oracle which when queried returns the pair pg, gαq in G1 and

the pair ph, hβq in G2 for randomly generated α, β in Fp.

To break co-CDH, adversary B first calls oracle Oco´cdh to obtain a tuple

pg, gα, h, hβq; then simulates the soundness game to adversary A as depicted be-

low:

Learning Phase When adversary A calls the oracle OSetup with polynomial ApXq

“
řd

i“0
aiX

i in FprXs, adversary B simulates OSetup as in Game 1 as follows:

i.) It sets the public parameters ­paramA to pp,G1,G2,GT , e, hq;

ii.) it computes qqi “ qgqi for all 0 ď i ď d ´ 1, where qg “ gα;

iii.) it defines the keys |SKA “ pqg,A,B, tqqiu
d´1

i“0
q and |EKA “ pA, tqqiu

d´1

i“0
q;

iv.) it returns the public parameters ­paramA and |EKA to adversary A.

The distribution of the public parameters ­paramA and the evaluation key |EKA

returned by adversary B is statistically indistinguishable to the distribution of

{paramA and xEKA in Game 1.
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If adversary A calls oracle OProbGen with input x P Fp and evaluation key

|EKA, then adversary B first checks whether Bpxq “ 0 mod p. If so, adversary B

aborts the soundness game; otherwise it simulates oracle OProbGen as in Game 1 as

depicted below:

i.) It computes |VKpx,Bq as epqg, hβqr for some randomly generated r P F
˚
p ;

ii.) it sets |VKpx,Rq to
}VKApxq

px,Bq

ep
śd´1

i“0
qqxi

i ,hq
.

Notice that for all x P Fp such that Bpxq ‰ 0, |VKpx,Bq “ epqg, hβqBpxq´1

is

statistically indistinguishable from xVKpx,Bq from Game 1. In addition,tqqiu
d´1

i“0
are

statistically indistinguishable from tqiu
d´1

i“0
defined in Game 1. Hence, |VKpx,Rq

as computed in this game is also statistically indistinguishable from xVKpx,Rq com-

puted in Game 1.

Challenge Phase Adversary A first picks a challenge input x˚ and queries oracle

OProbGen. Accordingly, adversary B simulates OProbGen by first evaluating polyno-

mial B at point x˚. If Bpx˚q “ 0, then adversary B aborts the game; otherwise it

proceeds as following:

i.) It computes |VKpx˚,Bq as epqg, hβqBpx˚q´1

;

ii.) it sets |VKpx˚,Rq to
}VKApx˚q

px˚,Bq

ep
śd´1

i“0
qqx˚i

i ,hq
.

Thereafter, adversary A outputs a response σy˚ “ py˚, π˚q such that y˚ ‰ Apx˚q.

Upon receipt of pair σy˚ “ py˚, π˚q, adversary B checks whether the follow-

ing equality holds:

|VKy˚

px˚,Bq “ epπ˚, hq|VKpx˚,Rq

If so, then adversary B breaks co-CDH in G1 by computing:

gαβ “

˜
π˚Bpx˚q

p
śd´1

i“0
qqx˚i

i qBpx˚q

¸py˚´Apx˚qq´1

Here we show that

ˆ
π˚

śd´1

i“0
qqx˚i

i

˙Bpx˚qpy˚´Apx˚qq´1

is indeed equal to gαβ .

We remark that if σy˚ “ py˚, π˚q passes the verification then:

|VKy˚

px˚,Bq “ epπ˚, hq|VKpx˚,Rq (4)

By construction, we also have:

|VKApx˚q

px˚,Bq “ ep
d´1ź

i“0

qqx˚i

i , hq|VKpx˚,Rq (5)
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By dividing Equation 4 with Equation 5, we obtain:

|VKpy˚´Apx˚qq

px˚,Bq “ e

˜
π˚

śd´1

i“0
qqx˚i

i

, h

¸

As |VKpx˚,Bq “ epqg, hβqBpx˚q´1

“ epgα, hβqBpx˚q´1

, we get:

epgαβ , hqBpx˚q´1

“ ep
π˚

śd´1

i“0
qqx˚i

i

, hq

epgαβ , hq “ e

˜
π˚Bpx˚q

p
śd´1

i“0
qqx˚i

i qBpx˚q
, h

¸

and thus:

gαβ “

˜
π˚

śd´1

i“0
qqx˚i

i

¸Bpx˚qpy˚´Apx˚qq´1

In conclusion, if there is an adversary A that breaks the soundness of our pro-

tocol for publicly verifiable computation of polynomials with a non-negligible ad-

vantage ǫ, then there exists an adversary B that breaks the co-CDH assumption in

G1 with some advantage ǫ1 as long as adversary B does not abort the soundness

game.

Here we quantify the advantage ǫ1 of adversary B in breaking the co-CDH

assumption in G1:

Let EB denote event that adversary B breaks the co-CDH assumption and

Eabort the event that adversary B aborts the soundness game.

ǫ1 “ PrpEBq “ PrpEB | Eabortq.P rpEabortq ` PrpEB | Eabortq.PrpEabortq

ě PrpEB | Eabortq.PrpEabortq

If ǫ is the advantage of adversary A in breaking the soundness of our protocol

for verifiable delegation of polynomial evaluation, then PrpEB | Eabortq “ ǫ and

therewith ǫ1 ě ǫPrpEabortq.

We recall that adversary B aborts the soundness game if and only if adversary

A queries oracle OProbGen with x such that Bpxq “ 0 mod p. If we assume that

adversary A makes at most t ` 1 queries to OProbGen during the soundness game

and given that B has one root in Fp, then the probability that adversary B does not

abort the soundness game is PrpEabortq “ p1 ´ 1{pqt`1 » 1 ´ t{p.

Hence, adversary B breaks co-CDH in G1 with a non-negligible advantage

ǫ1 ě ǫ ´ ǫt
p

.
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B Proof of Theorem 4

Theorem. The solution described in Section 4.3 for publicly verifiable matrix mul-

tiplication is sound under the DDH assumption in G1 and the co-CDH assumption

in G1.

Proof. Assume there is an adversary A that breaks the soundness of our protocol

for publicly verifiable delegation of matrix multiplication with a non-negligible

advantage ǫ. We build below another adversary B that uses adversary A to break

the co-CDH assumption in G1 with a non-negligible advantage ǫ1, provided that

the DDH assumption holds in G1.

The proof of the soundness of our protocol for publicly verifiable matrix mul-

tiplication comprises the following sequence of games:

Game 0 This corresponds to the soundness game of the protocol described in

Section 4.3.

Game 1 In this game, adversary B simulates the soundness game to adversary A

as follows:

When adversary A calls the oracle OSetup with some matrix M of elements

Mij in Fp, adversary B proceeds as algorithm Setup in Game 0 except for the

following:

i.) It randomly generates the elements Rij of matrix R, instead of computing

them as Rij “ aibj mod p;

ii.) it defines the elements in matrix pN as pNij “ g̃
Mij

i g
Rij

i ;

iii.) it sets the secret key associated with matrix M to xSKM “ pδ,M, pNq.

Adversary B then ends the simulation of oracle OSetup by outputting the public

parameters {paramM “ pp,~γ,G1,G2,GT , e, g, h, h̃q and the public evaluation key
xEKM “ pM, pNq.

Note that given the public parameters {paramM and evaluation key xEKM “

pM, pNq, adversary A cannot distinguish between Nij “ g̃
Mij

i g
aibj
i (see Section

4.3) or pNij “ g̃
Mij

i g
Rij

i where Rij are randomly generated as long as the DDH

assumption holds in G1 (cf. Lemma 1). Therefore, adversary A cannot tell if it is

actually interacting with oracle OSetup or with a simulation of oracle OSetup.

Lemma 1. Under the DDH assumption in G1, adversary A cannot distinguish

between Nij “ g̃Mijgaibj and pNij “ g̃
Mij

i g
Rij

i , where Rij are randomly generated

for all 1 ď i ď n and 1 ď j ď m.

For ease of exposition, the proof of Lemma 1 is deferred to Appendix C.

Now if adversary A queries the oracle OProbGen with some column vector

~x “ px1, x2, ..., xmq⊺ and evaluation key xEKM , then adversary B (provided with
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secret key SKM “ pδ,M, pNq) simulates oracle OProbGen by outputting the public

encoding σx “ ~x and the corresponding verification key:

xVKx “
e
´śn

i“1

śm
j“1

pNxj

ij , h
¯

e
´
g~γ¨pM~xq⊺ , h̃

¯ (6)

Notice that according to the description of the protocol in Section 4.3, the ver-

ification key VKx that would be output by oracle OProbGen in Game 0 verifies the

following equation for all ~x P F
n
p :

VKx “
e
´śn

i“1

śm
j“1

N
xj

ij , h
¯

e
´
g~γ¨pM~xq⊺ , h̃

¯

Since Nij and pNij are computationally indistinguishable under the DDH as-

sumption, so are VKx and xVKx. Thus, the output of oracle OProbGen in this game

is computationally indistinguishable from the output of the actual oracle OProbeGen

in Game 0, under the DDH assumption in G1.

Game 2 In this game adversary B simulates the soundness game to adversary A

as follows:

When adversary A calls the oracle OSetup with some matrix M of elements

Mij in Fp, adversary B simulates OSetup as in Game 1, except that it generates a

matrix qN of elements qNij “ gNij , where Nij are generated randomly in Fp for all

1 ď i ď n and 1 ď j ď m, and accordingly defines the secret key as |SKM “
pδ,M, qNq and the corresponding evaluation key as |EKM “ pM, qNq. Adversary B

concludes its simulation of the oracle OSetup by outputting the public parameters

­paramM “ pp,~γ,G1,G2,GT , e, g, h, h̃q and the public evaluation key |EKM .

We indicate here that matrix qN is statistically indistinguishable from matrix pN
constructed in Game 1. As a result, the output of the simulation of oracle OSetup in

this game is statistically indistinguishable from the output of the simulated oracle

OSetup in Game 1.

If adversary A invokes oracle OProbGen with some column vector ~x “ px1, x2, ...,

xmq⊺ and evaluation key |EKM , then adversary B simulates oracle OProbGen by out-

putting the encoding σx “ ~x and the corresponding verification key:

|VKx “
e
´śn

i“1

śm
j“1

qNxj

ij , h
¯

e
´
g~γ¨pM~xq⊺ , h̃

¯ (7)

Given that xVKx from Game 1 verifies equation 6 for all ~x P F
n
p and given that

matrix pN has the same statistical distribution as matrix qN defined in this game, we

infer that xVKx is statistically identical to |VKx. Hence, the simulated response of

oracle OProbGen in this game is statistically indistinguishable from the simulated

response of oracle OProbGen in Game 1.
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Game 3 In this game, adversary B would like to break the co-CDH assumption in

G1 with the help of adversary A. To this end, adversary B calls the oracle Oco´cdh

which in turn outputs the pair pg, gαq P G
2
1 and the pair ph, hβq P G

2
2.

To simulate the soundness game to adversary A, adversary B proceeds as fol-

lowing:

Learning phase When adversary A calls oracle OSetup with some pn,mq-matrix

M , adversary B acts as in Game 2 except for the following:

i.) It computes pg̃, h̃q “ ppgαqδ, phβqδq and sets the public parameters to ĞparamM “
pp,~γ,G1,G2,GT , e, sg “ gα, h, h̃q;

ii.) it generates a matrix sN of elements sNij “ psgqNij , where Nij are generated

randomly in Fp for all 1 ď i ď n and 1 ď j ď m.

Adversary B ends the simulation of oracle OSetup by setting the secret key to
ĎSKM “ pδ,M, sNq, and outputting the public parameters ĞparamM and the pub-

lic evaluation key ĎEKM .

It is clear that the simulations of oracle OSetup in Game 2 and in Game 3 are

indistinguishable.

If adversary A queries oracle OProbGen with some vector ~x “ px1, x2, ..., xmq⊺

and evaluation key ĎEKM , then similarly to Game 2 adversary B outputs the public

encoding σx “ ~x and the verification key:

ĎVKx “
e
´śn

i“1

śm
j“1

sNxj

ij , h
¯

e
´
sg~γ¨pM~xq⊺ , h̃

¯ (8)

Given that verification key |VKx satisfies equation 7 for all ~x P F
n
p , and that matrix

qN defined in Game 2 has the same statistical distribution as matrix sN, we deduce

that |VKx and ĎVKx are statistically identical, and therewith, the simulated response

of oracle OProbGen in this game is statistically indistinguishable from the simulated

response of oracle OProbGen in Game 2.

Challenge phase Adversary A first picks a challenge vector ~x˚ “ px˚
1 , x

˚
2 , ..., x

˚
mq⊺

which it gives to oracle OProbGen along with evaluation key ĎEKM . Adversary B

simulates oracle OProbGen as before by outputting the public encoding σx˚ “ ~x˚

and verification key:

ĎVKx˚ “

e

ˆśn
i“1

śm
j“1

sNx˚
j

ij , h

˙

e
´
sg~γ¨pM ~x˚q⊺ , h̃

¯

Afterwards, adversary A returns a response σy˚ “ p~y˚,Π˚q such that ~y˚ ‰
M~x˚.
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To break the co-CDH assumption in G1, adversary B verifies whether ~γ ¨ ~y˚ “
~γ ¨ pM ~x˚q⊺ mod p. If so, adversary B aborts the game; otherwise it breaks co-

CDH by returning:

gαβ “

¨
˝ Π

˚

śn
i“1

śm
j“1

sNx˚
j

ij

˛
‚

pδ~γ¨p ~y˚´M ~x˚q⊺q´1

Indeed, if σy˚ “ p~y˚,Π˚q passes the verification, then this implies that the follow-

ing equation holds:

epΠ˚, hq “ epsg~γ¨ ~y˚
⊺

, h̃qĎVKx˚ (9)

Also by construction, we have:

ep
nź

i“1

mź

j“1

sNx˚
j

ij , hq “ epsg~γ¨pM ~x˚q⊺ , h̃qĎVKx˚ (10)

By dividing Equation 9 with Equation 10, we obtain:

e

¨
˝ Π

˚

śn
i“1

śm
j“1

sNx˚
j

ij

, h

˛
‚“

˜
sg~γ¨ ~y˚

⊺

sg~γ¨pM ~x˚q⊺
, h̃

¸

As sg “ gα and h̃ “ hβδ, we deduce that

e

¨
˝ Π

˚

śn
i“1

śm
j“1

N
x˚
j

ij

, h

˛
‚“

˜
gα~γ¨ ~y˚

⊺

gα~γ¨pM ~x˚q⊺
, hβδ

¸

“
´
gαβ , h

¯δp~γ¨p ~y˚´M ~x˚q⊺q

Therefore if ~γ ¨ p ~y˚ ´ M ~x˚q⊺ ‰ 0 mod p, then δ~γ ¨ p ~y˚ ´ M ~x˚q⊺ ‰ 0 mod p

and we can compute:

gαβ “

¨
˝ Π

˚

śn
i“1

śm
j“1

sNx˚
j

ij

˛
‚

pδ~γ¨p ~y˚´M ~x˚q⊺q´1

Hence, adversary B breaks the co-CDH assumption in G1 as long as ~γ ¨ ~y˚⊺ ‰ ~γ ¨
pM ~x˚q⊺ mod p. Fortunately, as stated in Lemma 2, the probability that ~γ ¨ ~y˚⊺ “
~γ ¨ pM ~x˚q⊺ is equal to 1

p
which is negligible.

Lemma 2. The probability that ~γ ¨ ~y˚⊺ “ ~γ ¨ pM ~x˚q⊺ is 1

p
.

The proof of this lemma can be found in Appendix D.

To summarize, if there is an adversary A that breaks the soundness of our pro-

tocol for publicly verifiable matrix multiplication with a non-negligible advantage

ǫ, then there exists an adversary B that breaks the co-CDH assumption in G1 with

a non-negligible advantage ǫ1 ě ǫp1´ 1

p
q, provided that the DDH assumption holds

in G1.
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C Proof of Lemma 1

Lemma. Under the DDH assumption in G1, adversary A cannot distinguish be-

tween g̃Mijgaibj and g̃
Mij

i g
Rij

i , where Rij are randomly generated for all 1 ď i ď
n and 1 ď j ď m.

Proof Sketch. To prove Lemma 1, we proceed in two steps. i.) We first use a se-

quence of m games to show that the distribution D “
 

pgaib1 , gaib2 , ..., gaibmq
(
iPt1,2u

and the random distribution qD “
 

pgRi1 , gRi2 , ..., gRim q
(
iPt1,2u

are computation-

ally indistinguishable under the DDH assumption in G1. ii.) Then we show

that if there exists an adversary A that distinguishes between distribution D “ 
pgaib1 , gaib2 , ..., gaibmq

(
1ďiďn

and distribution qD “
 

pgRi1 , gRi2 , ..., gRim q
(
1ďiďn

,

then there exists another adversary B that distinguishes between D and qD, which

leads to a contradiction under the DDH assumption.

For ease of exposition, we denote ĝi “ gaib1 and we assume w.l.o.g. that

b1 ‰ 0 mod p. This leads to the following simplifications:

D “
!

pĝi, ĝ
β11

i , ..., ĝ
β1m´1

i q
)
iPt1,2u

D “
!

pĝi, ĝ
β11

i , ..., ĝ
β1m´1

i q
)
1ďiďn

where β1j “ bj`1{b1 for all 1 ď j ď m ´ 1.

Similarly, if we denote gRi1 “ ĝi and if we assume that Ri1 ‰ 0 mod p, then
qD and qD can be rewritten as:

qD “
!

pĝi, ĝ
βi1

i , ..., ĝ
βim´1

i q
)
iPt1,2u

qD “
!

pĝi, ĝ
βi1

i , ..., ĝ
βim´1

i q
)
1ďiďn

where βij “ Rij`1{Ri1 for all 1 ď i ď n and 1 ď j ď m ´ 1.

i.) Distributions D and qD are indistinguishable In the rest of this section, we

denote PrpApDkq “ 1q the probability that a distinguisher A outputs 1 on input of

a distribution Dk.

Game 0 In this game, we set D0 “ D.

Game 1 In this game, we define:

D1 “
!

pĝ1, ĝ
β11

1
, ĝ

β12

1
, ..., ĝ

β1m´1

1
q, pĝ2, ĝ

β21

2
, ĝ

β12

2
..., ĝ

β1m´1

2
q
)

where β1j and β21 are randomly generated in Fp.
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Under the DDH assumption in G1, distributions D1 and D0 are computation-

ally indistinguishable. More formally, if A is a distinguisher between D1 and D0,

then

|PrpApD1q “ 1q ´ PrpApD0q “ 1q| ď ǫ

where ǫ is the negligible advantage to solve the DDH problem in G1.

Game k In this game, we set:

Dk´1 “
!

pĝ1, ĝ
β11

1
, ..., ĝ

β1m´1

1
q, pĝ2, ĝ

β21

2
, ..., ĝ

β2k´1

2
, ĝ

β1k

2
, ĝ

β1k`1

2
..., ĝ

β1m´1

2
q
)

Dk “
!

pĝ1, ĝ
β11

1
, ..., ĝ

β1m´1

1
q, pĝ2, ĝ

β21

2
, ..., ĝ

β2k´1

2
, ĝ

β2k

2
, ĝ

β1k`1

2
, ..., ĝ

β1m´1

2
q
)

Again under the DDH assumption:

|Pr pApDkq “ 1q ´ Pr pApDk´1q “ 1q | ď ǫ

and accordingly:

|Pr pApDkq “ 1q ´ Pr pApD0q “ 1q | ď kǫ

Game m ´ 1 Let in this game

Dm´2 “
!

pĝ1, ĝ
β11

1
, ..., ĝ

β1m´1

1
q, pĝ2, ĝ

β21

2
, ..., ĝ

β2m´2

2
, ĝ

β1m´1

2
q
)

Dm´1 “
!

pĝ1, ĝ
β11

1
, ..., ĝ

β1m´1

1
q, pĝ2, ĝ

β21

2
, ..., ĝ

β2m´2

2
, ĝ

β2m´1

2
q
)

(i.e. Dm´1 “ qD).

Similarly to GAME 0 and GAME k and under the DDH assumption:

|Pr pApDm´1q “ 1q ´ Pr pApDm´2q “ 1q | ď ǫ

Thus the advantage adv of distinguishing between distribution D and distribution
qD satisfies the following inequality:

adv “ |PrpApqDq “ 1q ´ Pr pApDq “ 1q |

“ |PrpApDm´1q “ 1q ´ PrpApD0q “ 1q|

ď pm ´ 1qǫ

Hence, we deduce that D and qD are computationally indistinguishable under the

DDH assumption.
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ii.) Distributions D and qD are indistinguishable Let B be a distinguisher be-

tween D and qD such that when given a distribution D1 “
!

pĝ1
i, ĝ

1βi1

i , ..., ĝ
1βim´1

i q
)
iPt1,2u

,

B outputs b “ 1 if it thinks that β1j “ β2j for all 1 ď j ď m, and outputs b “ 0 if

it thinks that β1j and β2j are randomly generated for all 1 ď j ď m.

Suppose that there is a distinguisher A that distinguishes between D and qD
with a non-negligible advantage ǫ. More formally, given a distribution D1 “!

pĝ1
i, ĝ

1βi1

i , ..., ĝ
1βim´1

i q
)
1ďiďn

, A outputs b “ 1 if it believes that β1j “ βij for

all 2 ď i ď n and 1 ď j ď m, and outputs b “ 0 otherwise.

In the following, we show how to construct a distinguisher B that uses A to

distinguish between D and qD.

Without loss of generality, assume that distinguisher B is given a distribution

D1 “
!

pĝ1
i, ĝ

1βi1

i , ..., ĝ
1βim´1

i q
)
iPt1,2u

and has to determine whether for all 1 ď j ď

m β1j “ β2j .

From distribution D1, adversary B builds new distribution D1 “
!

pĝ1
i, ĝ

1βi1

i , ..., ĝ
1βim´1

i q
)
1ďiďn

as follows:

• for i ‰ 1 and i ‰ 2, B selects two random numbers δi1 and δi2 in Fp and

computes ĝ1
i “ ĝ1δi1

1
ĝ1δi2
2

;

• for i ‰ 1 and i ‰ 2, adversary B computes ĝ
1βij

i “ pĝ
1β1j

1
qδi1pĝ

1β2j

2
qδi2 “

ĝ
1δi1β1j

1
ĝ

1δi2β2j

2
.

To decide given D1 “
!

pĝ1
i, ĝ

1βi1

i , ..., ĝ
1βim´1

i q
)
iPt1,2u

if β1j “ β2j for all 1 ď j ď

m, adversary B feeds adversary Awith distribution D1 “
!

pĝ1
i, ĝ

1βi1

i , ..., ĝ
1βim´1

i q
)
1ďiďn

defined above. Adversary A in turn outputs a bit b such that b “ 1 if it believes

that βij “ β1j for all 2 ď i ď n and 1 ď j ď m, and b “ 0 otherwise.

We note now that if we assume that ĝ1
2 “ ĝ1α

1 for some α P F
˚
p , then this entails

that for all i ‰ 1, 2 and 1 ď j ď m:

βij “
δi1β1j ` αδi2β2j

δi1 ` αδ2i

By the same token, if β1j “ β2j , then this means that βij “ β1j for all 2 ď i ď n

and 1 ď j ď m2.

It follows that if adversary A returns b “ 1, then this implies that β1j “ β2j
(1 ď j ď m). Otherwise, adversary B concludes that β1j and β2j are randomly

generated for all 1 ď j ď m.

2Notice that δi1 ` αδ2i ‰ 0 mod p with probability 1 ´ 1

p
.
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D Proof of Lemma 2

Lemma. If ~γ “ pγ1, γ2, ..., γnq is a random vector in F
n
p , then for any pair of

distinct column vectors ~y1 and ~y2 in F
n
p the probability that ~γ ¨ p~y1 ´ ~y2q⊺ “ 0

mod p is 1

p
.

Proof. Let ~z denote ~y1 ´ ~y2 and φ : F
n
p Ñ Fp denote the linear form defined as:

@~x P F
n
p , φp~xq “ ~x ¨ ~z⊺.

Let Kerφ “ t~x P F
n
p , φp~xq “ 0u (i.e. Kerφ is the kernel of the linear form φ).

Since φ is a linear form, the dimension of kernel Kerφ is n ´ 1. This means

that Kerφ is isomorphic to F
n´1
p and that the cardinality of Kerφ is equal to pn´1.

Now the probability that ~γ ¨ ~z⊺ “ φp~γq “ 0 mod p corresponds to the prob-

ability that ~γ is in Kerφ. Since ~γ is a random vector in F
n
p , the probability that

~γ P Kerφ equals:

|Kerφ|

|Fn
p |

“
pn´1

pn
“

1

p
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