
Performance Evaluation of Redirection Schemes

in Content Distribution Networks

Jussi Kangasharju Keith W. Ross

Institut Eur�ecom, B.P. 193

Sophia Antipolis, France

James W. Roberts

France T�el�ecom R&D

Issy les Moulineaux, France

Abstract

Content distribution on the Web is moving from an architecture where objects are

placed on a single, designated server to an architecture where objects are replicated

on geographically distributed servers and clients transparently access a nearby copy

of an object. In this paper we study how the di�erent redirection schemes used in

modern content distribution networks a�ect the user-perceived performance in normal

Web page viewing. Using both simulations and experiments with real Web servers we

show that redirection schemes that require clients to retrieve di�erent parts of a Web

page from di�erent servers yield sub-optimal performance compared to schemes where

a client accesses only one server for all the parts of a Web page. This implies that

when replicating Web pages, we should treat the whole page (HTML and images) as

a single entity.

1 Introduction

Content distribution on the Web is moving from an architecture where objects are placed

on a single, designated server to an architecture where objects are replicated on geo-

graphically distributed servers and clients transparently access a nearby copy of an ob-

ject [1, 2, 6, 11, 12]. The new architectures are constructed from a set of servers, which

we call content servers, that contain copies of the objects. These copies can be created

statically using some pre-determined rules, or dynamically on-demand depending on the

load and client request patterns. When a client wants to retrieve an object, it contacts

a mapping service that provides the client with an address of a content server that has a

copy of the requested object. There have already been some proposals for such architec-

tures [4, 10, 15] and several companies have started to o�er dynamic content distribution

services over their own networks [1, 2, 6, 11].

A vital component of a content distribution architecture is a method for redirecting

clients to the content servers. What is common to most of the proposed architectures

is that the client is redirected to the content server by the system. This means that the

system must contain mechanisms for determining what is the best content server for each

client. On the other hand, the proposed architectures are transparent to the client, i.e.,

they do not require modifying the clients or installing new software at client-side. We will

discuss the details of di�erent redirection methods in Section 2.

In this paper we study how di�erent redirection schemes a�ect the user-perceived

performance. As the measure for performance we use the total time to download all

objects on a Web page, i.e., both the HTML and embedded images. Some redirection

schemes require that the client retrieves some part of a Web page (e.g., the HTML-part)
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from one server, and other parts (e.g., embedded images) from another server. If the

client is using persistent connections of HTTP/1.1 [7], this means that the client cannot

bene�t from previous requests that have opened the underlying TCP-congestion window;

instead the client must open a new connection to another server and this connection will

initially su�er from a small congestion window. Of course, if the new server is signi�cantly

closer than the old server, the client can retrieve the remaining objects faster from the

new server.

Using simulations and experiments on the Web we will evaluate the performance of

di�erent redirection strategies and how they a�ect the download time of the whole Web

page in di�erent situations. We will evaluate the performance of redirection strategies

using both multiple parallel connections and persistent connections with pipelining.

1.1 Related Work

Nielsen et al. [14] studied the performance of persistent connections and pipelining and

their results show that pipelining is essential to make persistent connections perform better

than multiple, non-persistent connections in parallel. Although modern browsers imple-

ment persistent connections, they do not implement pipelining [18]. For this reason the

popular browsers open several persistent connections in parallel to a server.

Recently several companies [1, 2, 6, 11] have begun to o�er content distribution services.

In their services, the content is distributed over several, geographically dispersed servers

and clients are directed to one of these servers using DNS redirection. We will discuss

DNS redirection in more detail in Section 2.

Rodriguez et al. [16] study parallel access schemes where the client requests di�erent

parts of one object from di�erent servers. Their scheme is designed for large objects

and is not well suited for typical web page viewing; also it requires modi�cations to client

software. In our work we study the performance of currently employed redirection schemes

which redirect the client to a single server but require no modi�cations to client software.

This paper is organized as follows. Section 2 presents the di�erent redirection schemes

used in real world systems. Section 3 describes the model used in our simulations and

Section 4 presents the results obtained in the simulations. Section 5 presents the results

obtained in experiments on the real network. Section 6 discusses the implications of our

results. Finally, Section 7 concludes the paper and presents directions for future work.

2 Redirection to Servers

Clients can be redirected to servers with several di�erent methods. For example, the origin

server could redirect clients using the appropriate HTTP-reply codes, the client could be

given a list of alternative content servers, or the system could use other mechanisms,

such as DNS redirection. These di�erent mechanisms have all di�erent overheads on the

user-perceived performance which we will discuss in Section 6. For the remainder of this

paper we assume that the system uses DNS redirection (or a similar method) because of

its wide-spread use in the real world.

Currently the content distribution companies redirect clients using DNS redirection

in two di�erent ways. In both redirection schemes the client sends a DNS query to the

authoritative DNS server of the content distribution company which replies with an IP-

address for a content server that the authoritative DNS server deems to be the best for the

client. (The reply can include IP-addresses of multiple servers but modern clients use only
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one of them.) The client then contacts the content server and requests the object from it.

The advantage of using DNS redirection is that it does not require any modi�cations to

the client software because typically URLs identify hosts by their names.

The two di�erent schemes are as follows. In the �rst scheme, which we call full redi-

rection, the content distributor has complete control over the DNS mapping of the origin

server. When a client requests any object from the origin server, it will get redirected

to a content server. This scheme requires that either all content servers replicate all the

content from the origin server, or that the content servers act as surrogate proxies for the

origin server. A major advantage of full redirection is that it adapts dynamically to new

hot-spots because all client requests are redirected to geographically dispersed content

servers.

The second scheme, which we call selective redirection, goes as follows. The references

to replicated objects are changed to point to a server in the content distribution network.

When the client wants to retrieve a replicated object, it resolves the hostname which

redirects it to a content server. In this scheme, the replicated objects appear to be simply

objects that are served from another server. An advantage of this scheme is that the

content servers only need to have the content that has been replicated. In modern content

distribution networks that use selective redirection, the burden of deciding which objects

to replicate is placed on the content provider. A system using selective redirection is

slower to adapt to hot-spots because it must �rst identify them, change the references to

the new hot objects, and possibly replicate the objects to content servers. In addition,

clients that have cached references to the new hot objects (e.g., caching the HTML page

referencing a hot image) would not be redirected, but would instead go to the origin server

thus negating the bene�ts of using a content distribution network.

3 Simulation Model

For the simulations we used the NS network simulator [13]. We used a very simple network

topology and it is shown in Figure 1. In Figure 1, C is the client, S is the server, and L is

the link between the two. To represent di�erent network conditions we varied the delay,

bandwidth, and loss rate on the link L. We used FullTCP-agents at both the client and

server and we set the MSS to 1460 bytes. This is the MSS that an Ethernet-connected

machine would obtain and we have obtained the same MSS on real connections to distant

servers from our local Ethernet. As suggested in [14], we disabled Nagle's algorithm on

the server's TCP agent.

C S
L

Figure 1: Simulation model

In all of our simulations, the client �rst sent a request to the server, the server replied

with one �le (the HTML-�le). When the client had received all of this �le, it requested

the images from the server.

We observed that because all our HTTP-connections were short, the underlying TCP

connection never progressed beyond slow-start. Therefore the bandwidth of the link had

only minimal e�ect on the overall download time. This is also shown by the graphs
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in Figure 2 which show that the total download time stays almost constant once the

bandwidth is greater than 1 Mbit/s. This is also true in the case when the loss rate on

the link is high (Figure 2b, averaged over 3000 simulation runs).
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Figure 2: E�ect of bandwidth on download time

Because of the negligible e�ect of the bandwidth, we compared the di�erent redirection

schemes only by varying the round-trip times and loss rates. Our simulation model does

not account for server loads or how the client obtains the redirection; we will discuss these

issues in Section 6.

3.1 Redirection Schemes

We compared the redirection schemes for two di�erent clients. The �rst one was a client

that does not implement pipelining and opens several persistent connections in parallel

and the second client implemented pipelining. Given the typical number of embedded

images on a page (see Section 3.2) and the number of persistent connections opened by

popular browsers (2 or 6, see [18]), we assumed that the client opening parallel connections

cannot retrieve all images with one set of connections. Instead, it �rst sends one batch of

requests and when it receives the replies, it requests the second batch; this matches the

behavior of a client implementing persistent connections without pipelining.

The baseline for our comparisons was a scheme where the client retrieves all object

from the origin server. We compared this baseline scheme to other schemes where the

client retrieves the HTML from the origin server and is redirected to another server for

the images. To model the second server, we simply used two models from Figure 1 in

parallel and the only connection between them was when the �rst model had completed

its download and it triggered the second model. We used six di�erent round-trip time

values for the servers, 10, 20, 60, 100, 120, and 160 ms. We have observed that the value

of 160 ms is quite typical from Europe to popular web sites in the US, and the smaller

values reect conditions within the US.

Our model does not account for the delay caused by a potential DNS lookup to get

the address of the second server. We also assume that the parallel connections do not

interfere with one another and represent them by one connection which retrieves one �fth

of the image data on the page. In reality, the download time of the parallel client would
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be dictated by the largest image because the client could not divide the images equally

between all the parallel connections. Modern clients also start requesting embedded images

as soon as they have seen the references to them instead of waiting for the whole HTML

page to download. Our model does not take this fully into account, but the behavior of

our model is appropriate for images that are referenced near the end of the HTML page.

3.2 Files

To estimate the size of a Web page, we downloaded all the homepages of the most popular

sites from Hot100.com [8]. We found that the mean �le size is 20 KB. This only includes

the actual HTML for the page and does not include any embedded objects. The mean

amount of embedded image data on a page is 40 KB, the mean number of embedded

images on a page is 15.5, and the mean size of a single embedded image is 2.5 KB. Most of

the HTML pages are at least 5 KB and almost none of the HTML pages are larger than

45 KB. To retrieve a typical homepage with all the embedded images we need to transfer

around 50{60 KB and the total amount of data (HTML and images) can be as high as

250 KB. We constructed four di�erent sized pages in order to cover as many di�erent real

pages as possible. Table 1 shows the di�erent pages and the amount of HTML and image

data on each of them. We also show the amount of image data retrieved by the parallel

client which was equal to one �fth of the total image data.

Page HTML Images Parallel

Small 5 KB 10 KB 2 KB

Medium 10 KB 20 KB 4 KB

Large 20 KB 40 KB 8 KB

X-Large 40 KB 80 KB 16 KB

Table 1: Di�erent pages used in simulations

4 Simulation Results

In this section we will present the results from our simulations. We ran simulations for

all the di�erent parameter values (RTT and loss rate) but because of space limitations we

only show some of the combinations here. The results for the simulation runs not shown

here were similar.

4.1 Loss Free Conditions

We �rst simulated retrievals under completely loss free conditions. In Figure 3 we show

the performance of the baseline scheme, i.e., retrieving everything from one server. We

plot one curve for each di�erent origin server (RTTo), and a point on a curve shows the

download time relative to the download time from the origin server if we had used a server

with RTT given by the x-axis value for all the objects. The plot shows the download times

for a client using parallel connections. We observed only very small di�erences between

di�erent �le sizes.

In Figure 4 we show the relative download time of the selective redirection scheme

for a client using parallel connections and for the Medium and Large pages. We plot one
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Figure 3: Performance of the baseline scheme

curve for each di�erent origin server (RTTo). A point on a curve shows the download time

relative to the baseline that a client would obtain if the origin server had a round-trip

time of RTTo and the new server had the RTT on the x-axis. The baseline in these graphs

refers to retrieving all object from the origin server with round-trip time RTTo. As we can

see, typically we need the RTT to the new server to be less than 75% of RTTo in order

for it to worth it to switch to the new server. In Figure 5 we show the results for a client

using pipelining. We can see that in this case, the RTT to the new server should be less

than 50% of RTTo.
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Figure 4: Download times with parallel connections

Comparing Figures 4 and 5 we see that for parallel connections the slope of the curves

is smaller, meaning that a small reduction in RTT only gets small reductions in total

download time. For pipelining the slope is larger meaning larger gains for small reductions

in RTT. Overall, we see that the maximum gain in download time is around 30% of the

baseline. This is achieved when the new server is extremely close (RTT around 10 ms).

As we can see in Figure 3, if the origin server is slow (100 ms or more), we can get

impressive gains if we were able to access a nearby server for all of the page. By choosing to

go to a nearby server instead of the origin server for all the of the page we can download
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(a) Medium page
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(b) Large page

Figure 5: Download times with pipelining

it in 10% of the time it would have taken to get the page from the origin server. The

possible gains of going to a nearby fast server are much greater than the achievable gains

obtained with schemes where the client must switch servers during the download. This

holds for both parallel persistent connections and pipelining connections. We also see that

the schemes which switch servers (Figures 4 and 5) can obtain at maximum only a 30%

reduction in download time. In the same situation, by going directly to the nearby fast

server, the client would reduce the download time by 90%. In other words, even if the new

server would be fast enough to warrant switching to it, the client would be much better o�

by going to that fast server already for all the objects. We can conclude that under good

network conditions, switching servers during download will give sub-optimal performance

compared to a scheme which redirects the clients to a good server for all the objects.

4.2 Simulations with Loss in Network

We then ran the same simulations using a 2% loss rate on all the links in the simulation.

The results in all cases were similar to the ones obtained under loss free conditions. Figure 6

shows the performance of the baseline scheme, i.e., retrieving everything from the origin

server with round-trip time RTTo. As with the no-loss situation, the di�erences between

di�erent �le sizes were very small.

When we compare Figures 3 and 6, we see that in the no-loss situation, the maximum

gains are larger than in the situation where there is loss on the link. We believe this

is because the underlying TCP connection is still in slow-start and therefore its RTT-

estimate has not yet adapted well enough to the link RTT. Hence, the RTT-estimates for

the links with small RTTs are too high and discovering a lost packet takes more time than

it would if the TCP connection knew the RTT better.

In Figure 7 we show the relative download times of the selective redirection scheme

for a client using parallel connections and Medium and Large pages averaged over 3000

simulation runs.

As we can see, the general form of the curves matches those obtained in loss free

conditions (Figures 4 and 5). The only di�erence is that the point where switching servers

would become useful is lower than in the loss free case. Furthermore, the maximum gain in
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Figure 6: Performance of the baseline scheme with loss
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Figure 7: Download times with parallel connections with loss

download time is less than 20% and for Small pages switching servers always resulted in a

slower download. We believe that the reason for the stricter RTT requirement for the new

server is due to the possibility of losing TCP SYN packets when opening the connection

to the new server. Most of the downloads took less than 2 seconds from start to �nish, but

a lost SYN packet caused a 6 second timeout. This slows down the connection to the new

server considerably and gives a substantial advantage to using the persistent connection

to the old server. Also, the TCP connections are in slow-start and do not therefore have

an accurate estimate of the RTT and discovering lost packets will take longer on the

new connection. If a packet on the persistent connection is lost, it will be discovered

faster, either because of duplicate ACKs or because the TCP agents have an idea of the

connection round-trip time and know when to expect packets.

The results con�rm our conclusions from the loss free case. It is preferable not to

switch servers during download of a single page. Switching servers greatly limits the gains

in performance obtained from using a nearby server for all the objects. This means that

a system which forces clients to switch servers during the download of a single page will

provide clients with sub-optimal service; either the new server is not fast enough, or even

if it is, the client should have been redirected to the fast server for all the objects.
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5 Experiments

To validate the results obtained from our simulations, we ran several experiments in

which we retrieved objects from real, replicated web sites. We used three di�erent sites,

Apache [3], Debian [5], and Squid [17], and chose several mirror servers of those sites for

our experiments. From each of the three main sites we selected some �les that matched

the �les in our simulations as closely as possible. For Apache and Squid our �les were

close to the Small page in Table 1, and for Debian they were similar to the Medium page.

Our goal was to have our client run like a modern browser, i.e., no pipelining. We chose

one HTML �le and one image �le from each site and divided the servers in pairs. The

client would �rst request the both �les from both servers in the pair and then request the

HTML from the �rst server the image from the other server in the pair. Before requesting

the objects we performed a DNS query on the hostnames in order to eliminate the e�ects

of long DNS lookups. We ran our experiments several hundred times during di�erent

times of day and on several days.

We show the results from 7 of our experiments in Table 2. In each experiment we used

a di�erent pair of servers to get as many di�erent combinations as possible. The RTTs

to the two servers shown in columns RTTA and RTTB reect typical RTT values from

our client machine to the servers in the experiment. We used server A as the baseline and

show the relative download times for two other download schemes in columns AB and

BB. Column AB refers to experiments where the client retrieved the HTML from server

A and the image data from server B. In column BB we show the relative download time

when the client retrieved everything from server B.

Experiment RTTA RTTB AB BB

Apache-1 80 ms 25 ms 0.77 0.14

Apache-2 60 ms 50 ms 1.34 0.58

Debian-1 100 ms 40 ms 0.98 0.25

Debian-2 180 ms 90 ms 0.97 0.72

Debian-3 80 ms 65 ms 1.26 0.79

Squid-1 200 ms 45 ms 0.73 0.20

Squid-2 70 ms 45 ms 1.03 0.59

Table 2: Results from experiments

The results we obtained in our experiments closely match those we obtained in our

simulations. In fact, for all the experiments shown in Table 2, our simulations correctly

estimated whether switching servers would result in a gain in relative download time or

not.

6 Discussion

Our results show that the client can download a whole web page fastest if it is using persis-

tent connections to a nearby content server (possibly using parallel persistent connections

for embedded images). Of the two redirection schemes, full and selective redirection, full

redirection achieves this goal easily since all requests to the origin server are redirected to

a nearby content server.
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With selective redirection it is possible to achieve the same e�ect by ensuring that

all objects on a web page are replicated in the same way and thus client requests for the

objects would be redirected to the same content server. This puts the burden of ensuring

eÆciency on the party deciding the replicated objects. Some modern systems put this

responsibility on the content provider by allowing the content provider to tag individual

objects for replication. We feel that ensuring eÆcient delivery of content to the clients

should be the responsibility of the content distributor ; in fact, eÆcient delivery of content

is exactly the reason why content providers enlist the services of content distributors.

Our work is based on the assumption that the client is able to open persistent connec-

tions to all servers, although we do not assume pipelining of requests. Even though the

content provider may run a web server that does not implement persistent connections,

the content distributor can implement persistent connections in its own content servers.

If the content provider's web server does not implement persistent connections then the

RTT threshold for switching servers would be higher (because new connections to the

origin server would go through slow-start again). If a suitable content server exists, the

client would be better o� using that server for all objects.

Our simulation model does not account for two important factors, namely server loads

and redirection costs. A major reason for distributing content on several servers is to take

o� load from the origin server and distribute it among the content servers. Increasing the

load on the origin server in our model would have the e�ect of making it more attractive

to switch servers, i.e., it would make the RTT-threshold for switching lower. On the other

hand, our model assumes that the client knows the address of the new content server. In

reality, the client would have to obtain this address somehow before contacting the server.

This would make switching servers less attractive, i.e., raise the RTT-threshold.

The cost of getting the redirection depends on the redirection technique used. If the

system is using DNS redirection, then the client can expect to spend at least 200 ms for

getting the address of the content server [9]. In the worst case, the DNS lookup can take

several seconds to resolve. In our simulations and experiments all the downloads took

only a few seconds at maximum and a long DNS lookup would have caused a signi�cant

slow-down for switching servers. If the client needs to contact the origin server to get the

redirection, this would add at least one round-trip time to the origin server.

7 Conclusion

In this paper we have evaluated the performance of the di�erent client redirection schemes

used in modern content distribution networks. Using both simulations and experiments

on the real network we have found that redirection schemes, which force clients to retrieve

objects on a web page from multiple servers, always yields sub-optimal performance in

terms of the overall client download time compared to schemes which allow the client to

retrieve all objects from one, good server. This implies that when replicating web pages, we

must treat the HTML-page and the embedded images as a single entity and replicate either

all or none of them. Full redirection achieves this goal and yields superior performance

compared to selective redirection which may split the web page between several servers.

In our future work we will expand our simulation models to include several clients and

explore the e�ects of di�erent network topologies on the results. We will improve our

simulation models by including other parameters, such as server load. We will also do a

more extensive set of experiments to validate our conclusions.
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