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How much can large-scale Video-On-Demand
benefit from users’ cooperation?
Delia Ciullo, Valentina Martina, Michele Garetto, Emilio Leonardi(∗)

Abstract—We propose an analytical framework to tightly
characterize the scaling laws for the additional bandwidth
that servers must supply to guarantee perfect service in peer-
assisted Video-on-Demand systems, taking into account essential
aspects such as peer churn, bandwidth heterogeneity, and Zipf-
like video popularity. Our results reveal that the catalog size
and the content popularity distribution have a huge effect on
the system performance. We show that users’ cooperation can
effectively reduce the servers’ burden for a wide range of system
parameters, confirming to be an attractive solution to limit the
costs incurred by content providers as the system scales to large
populations of users.

Index Terms—Stochastic models, cooperative networking,
Video-On-Demand.

I. I NTRODUCTION

According to Cisco [1], by the end of 2016 the sum of all
forms of Internet video (TV, Video-on-Demand, P2P) will be
approximately 86% of global consumer traffic. In particular,
the traffic component due to Video-on-Demand is expected to
triple from 2011 to 2016, reaching the equivalent of 4 billion
DVDs per month.

Increasing traffic volumes force video providers to continu-
ously upgrade the Content Delivery Network (CDN) infras-
tructure that feeds the contents to local ISPs. To partially
alleviate this burden, a recent trend of VoD providers is to
exploit cloud services, which permit fine-grained resource
reservation [2]. As an example, in 2010 Netflix decided to
migrate its infrastructure into the Amazon EC2 cloud, as it
could not build data centers fast enough to keep pace with
growing demand.

However, any solution based on CDNs has severe limita-
tions in terms of scalability. CDNs can significantly reducethe
traffic in the Internet core and improve the user-perceived per-
formance (e.g., by reducing the latency) by “moving” contents
close to the users. Nevertheless, the aggregate resources re-
quired at data centers (bandwidth/storage/processing), and the
corresponding costs incurred by content providers, inevitably
scale linearly with the user demand and data volume.

The only scalable solution proposed so far is to exploit the
peer-to-peer paradigm, according to which users contribute
their resources (bandwidth/storage/processing) to the system
while they use it [3], [4]. Although the peer-assisted approach
is an attractive solution to the scalability problem, and ithas
already been experimented in several applications [5], it brings
with it several issues which tend to discourage its adoption
by many content providers: the unpredictable nature of users’
cooperation, the added complexity on the control plane due
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to signalling and chunk scheduling, and the need to provide
incentive mechanisms to the users [6].

Streaming architectures which primarily rely on users’
cooperation can hardly guarantee the strict quality-of-service
requirements of online video, where a steady download rate
no smaller than the video playback rate is necessary for a
smooth watching experience, and any interruption tends to be
very annoying to the user [7].

For this reasons, we argue that peer-assisted architectures
should be supported by properly dimensioned CDNs (or cloud
services) that intervene whenever the resources provided by
users are not enough to satisfy the current demand. In our
theoretical work, we are specifically interested in charac-
terizing the additional bandwidth that servers must supply
to guarantee ideal service to all users (i.e., requests are
immediately satisfied and videos can be watched without
interruptions till the end). Our main contribution is a stochastic
analytical framework that allows to derive general upper and
lower bounds to the bandwidth requested from the servers in
a peer-assisted VoD system, capturing essential aspects such
as peer churn, bandwidth heterogeneity, and Zipf-like video
popularity. Our analysis permits to tightly characterize the
system performance as the number of users (and the number
of available videos) grows large, and thus assess the scalability
of large-scale VoD exploiting users’ cooperation.

In our previous work [8] we have considered the case
of a single-video, providing for the first time an asymptotic
characterization of the servers’ bandwidth as the number of
watchers increases. Here we extend the analysis to a multi-
video system, in which users can browse a catalog of available
contents, and asynchronously issue requests to watch videos.

Our main contribution is a precise definition of the con-
ditions (related to physical system parameters such as the
growth rate of the catalog size, the Zipf’s exponent of video
popularity, videos’ characteristics and user behavior) under
which the additional bandwidth requested from the servers
asymptotically goes to zero as the size of the system grows
large. When such conditions are not met, we provide the
asymptotic laws for the required servers’ bandwidth.

We consider both the cases in which users can only assist the
distribution of the last video they have selected (we call this
thepassivesystem, because the utilization of peer resources is
tied to the video popularity distribution, which is not under the
system control), and the general case in which users can assist
the distribution of any video (we call this theactive system,
also referred to in the literature asuniversal streaming). For the
activesystem we also devise the resource allocation strategies
that permit to achieve the optimal theoretical performance.

We emphasize that a full exploitation of peers’ upload
bandwidth is not a trivial task in the presence of high degrees
of peer churn (i.e., when users tend to abandon the system after
watching a few videos), in consideration of the obvious fact
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that users can only upload data that they have previously down-
loaded. For the same reason unpopular videos, which tend
to be scarcely replicated among peers, can pose a significant
stress on the system. Hence another important contributionof
our work is the definition of suitable strategies to mitigatethe
joint impact of peer churn and heterogeneous video popularity.

II. SYSTEM ASSUMPTIONS

A. Service specification and users cooperation

We model a VoD system where users run applications that
allow them to browse an online catalog of videos. When a
user selects a video, we assume that the request is immediately
satisfied and the selected video can be watched uninterruptedly
till the end, i.e., the system is able to steadily provide to the
user a data flow greater than or equal to the video playback
rate. We consider that users watch at most one video at a time.

We assume that the system catalog containsK different
videos. Videok (1 ≤ k ≤ K) is characterized by: its size
lk ∈ [lmin, lmax], expressed in bytes; a selection probabilitypk,
which is the probability that a user selects videok among all
videos in the catalog; a minimum playback rate. We assume
that videok is downloaded at constant rate greater than or
equal to the minimum playback rate. Specifically, we denote
by dk the download rate, wheredk ∈ [dmin, dmax] (in bytes/s).

Users contribute with their available upload bandwidth to
the video distribution: they can retrieve part of a requested
video (or even the entire video) from other users, saving
servers resources.

We model the amount of available upload bandwidth at a
given time by a user by a random variableU with cumulative
distribution functionFU and meanU . In this way we can take
into account effects related to Internet access heterogeneity and
cross traffic fluctuations. The random variablesU ’s denoting
the upload bandwidths of the users are assumed to be i.i.d.

Users contribute to the system also a limited amount of
storage capacity. The exact amount of buffer space available
at each user is not important in our analysis. As a minimum
requirement, our schemes assume that users can store at least
one whole video in addition to the one currently played out.

B. User dynamics

Users join the system when they request the first video. We
denote byλu the arrival rate of new users. While they are in the
system, users can be in two states:{contributing, sleeping}.
The contributingstate is defined as the state in which a user
is contributing its upload bandwidth to the system. In the
contributing state, a user can download (and watch) video
contents. Notice that a user can be contributing its upload
bandwidth even if it is not currently downloading/watching
any video, but simply because it keeps its VoD application up
and running.

During the sleeping phase, the user’s application is not
running, hence it is neither downloading nor uploading data.
We assume that users download the entire requested videos
(aborted downloads could be easily included in our model
but we have preferred not to do so for simplicity). Note that,
since a video is retrieved at constant rate, its download time,
τk = lk/dk, is a deterministic attribute of videok, taking
values in range[τmin = lmin/dmax, τmax = lmax/dmin]. After
completing a download, users remain in thecontributingstate
for a random amount of timeTseed with mean T seed (part

of this time can be spent finishing to watch the video, if
the download rate is larger than the playback rate). Then,
they transit to thesleeping state, where they stay for a
random amount of time of meanT sleep. Users can choose
to abandon the system (i.e., to stop the VoD application and
never open it again) after watching just a single video. We
assume that, after watching a video, each user independently
decides to leave the system with probabilitypout. It follows
that the number of videos requested by a user is geometrically
distributed with meanm = 1/pout. Moreover, the average
time spent by a user in the system can be computed as
T = m · (

∑K
k=1 pkτk + T seed+ T sleep).

From the above assumptions, and the fact that the system
provides guaranteed service, the set of videos requested bya
user, the total time spent by a user in the system, as well as the
amounts of time spent by a user in thecontributing/sleeping
states are independent from user to user.

C. System scaling

Our goal is to asymptotically characterize the average
additional bandwidthS that servers must supply to guarantee
perfect service to all users, as the system grows large. Letn be
the average number of users in the system. By Little’s law, we
haven = λuT . Note thatT is a constant, hence our asymptotic
analysis for increasing number of users is performed by letting
λu (and thusn) go to infinite.

Since the catalog size is expected to grow, just like the
number of users, we consider that the numberK of videos
available in the catalog is tied to the number of users,
according to the lawK = Θ(nβ), with1 β ≤ 1.

As the system grows, new videos are made available to
the users. We assume that the characteristics of new videos
inserted into the catalog, in terms of file sizelk and download
ratedk, are random. Hencelk anddk should be regarded as
instances of i.i.d. random variablesLk andDk, respectively,
with assigned distributions (possibly correlated). Recall from
Section II-A that we (reasonably) assume that the distributions
of Lk, Dk have finite support independent ofn.

D. Content popularity

To specify the selection probabilities of videos, we need to
model the relative popularity of the videos in the catalog. For
this, we adopt the standard Zipf’s law, which has been fre-
quently observed in traffic measurements and widely adopted
in performance evaluation studies [9], [10]. More specifically,
having sorted the videos in decreasing order of popularity,a
request is directed to videok with probability

pk ,
H(K)

kα
, 1 ≤ k ≤ K (1)

where α is the Zipf’s law exponent, andH(K) ,

(
∑K

i=1 i
−α)−1 is a normalization constant. Depending on the

exponentα, we have:

H(K) =







Θ(1) if α > 1
Θ((logK)−1) if α = 1
Θ(Kα−1) if α < 1

(2)

1Note that the assumptionβ ≤ 1 is not particularly restrictive, as long
as the number of contents introduced into the catalog by eachuser can be
bounded by a constant. Indeed, in this case the total catalogsize scales at
most linearly with the number of users.
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Let Λ be the aggregate rate at which users request videos. By
constructionΛ = λum. The rate at which a specific videok
is requested isλk = Λpk.

Recalling thatΛ = Θ(n), and using (2), we have thatλk =
Θ(nH(K)k−α), and more precisely:

λk =







Θ(nk−α) if α > 1
Θ(n(k log n)−1) if α = 1
Θ(n1+β(α−1)k−α) if α < 1

(3)

In this work we ignore the evolution of contents’ popularity
over time by invoking a time-scale separation principle, i.e.,
by assuming that popularity dynamics occur at a time-scale
much slower than contents’ download time, which is fairly
acceptable in many cases of practical interest.

E. System load

For a given system catalog,i.e., for given video characteris-
tics {dk}k and{lk}k, we can compute a fundamental quantity
γ characterizing the global system load (i.e., the load induced
by all videos):

γ ,

∑K
k=1 pk lk

∑K
k=1 pk U (τk + T seed)

(4)

Indeed, consider a large time interval∆. During this time
interval, a videok will be requested on averageλk∆ times.
Each request for videok has a double effect on the system:
it requires an amount of byteslk to be downloaded; it lets
the requesting user potentially to upload an average amount
of dataU (τk +T seed). The ratio between the average amount
of downloaded data and the average amount of uploaded data
during interval∆, for ∆ → ∞, leads to the expression in (4).

We remark that (4) holds for bothpassiveandactivesystems
introduced in Section I. However, in the case ofactivesystems
it does not account for the additional data that users might be
instructed to download by the system (data bundling). The
effect of bundling on the system load will be considered later.
Borrowing the terminology adopted in previous work [3], [11]
we say2 that the system operates indeficitmode ifγ > 1, and
in surplusmode if γ < 1.

We emphasize that, since video characteristics are random,
γ should be itself interpreted as an instance of a random
variableΓ obtained de-conditioning (4) with respect to{dk}
and{lk}.

We will also use a video-specific notion of load, denoted
by γk, and its corresponding random variableΓk:

γk ,
dk τk

U (τk + T seed)
(5)

We observe thatγk would coincide withγ if all γk were equal.
With abuse of language, we say that a video is indeficitmode
if γk > 1, and insurplusmode if γk < 1.

Table I summarizes the notation introduced so far.

III. SUMMARY OF RESULTS

First we observe that, in the worst possible case, the servers
have to transmit at ratedmax to all downloading users. It
follows that a trivial upper bound to the bandwidth requested
from the servers isS = O(n). A trivial lower bound isS ≥ 0.

For thepassivesystem, we obtain the following results. If
the probability to include in the catalog a video with load

2In this paper we do not consider the special caseγ = 1.

TABLE I

Symbol Definition
λu user’s arrival rate
T average time spent by users in the system
n average number of users
K catalog size (number of available videos)
β scaling exponent ofK = nβ

Λ aggregate video request rate
λk request rate of videok
dk download rate of videok
τk download time of videok
U average user upload bandwidth
T seed average time spent in thecontributingstate

after downloading a video
Nd,k average number of users downloading videok

N seed,k average number ofseedsfor videok

S average bandwidth requested from the servers
γ system load
γk load associated to videok
m average number of videos requested by a user

γk > 1 is greater than zero,i.e., P(Γk > 1) > 0, we have
S = Θ(n). If, instead, there exists an arbitrarily small constant
σ such thatP(Γk < 1 − σ) = 1, we obtain the asymptotic
upper bounds reported in the second column of Table II, which
depend on the Zipf’s exponentα and the catalog growth rate
exponentβ.

For the active system, we obtain the following results. If
Γ > 1 with non vanishing probability as the system size
increases, we haveS = Θ(n). If Γ < 1 − σ (w.h.p.)3, for
someσ > 0, we obtain the asymptotic upper bounds reported
in the third column of Table II, which depend on the Zipf’s
exponentα and the catalog growth rate exponentβ, while δ
is an arbitrarily small positive number.

The fourth column of Table II reports corresponding lower
bounds forS, which are valid also for the extreme case in
which the user upload bandwidth is arbitrarily large.

In Fig. 1 we show a graphical representation of our upper
bounds, reportingS (on a logn scale) versus the parameter
α. The different line types (accompanied with labels) refer to
different values assumed by the parameterβ: top plot refers
to the passive system while bottom plot refers to the active
one.

Our results for theactive system provide the following
fundamental insights: ifβ < 1, i.e., if the number of contents
in the system scales sub-linearly with respect to the average
number of users, an active system operating (globally) in sur-
plus mode can asymptotically eliminate the need of additional
bandwidth from the servers (i.e., S tends to zero as the number
of users increases), for any value ofα. This can be done even
under the sequential delivery scheme (i.e., when downloading
users can only help future downloaders of the same file). We
remark that the only requirement to achieve this desirable
behavior is that the global system load is smaller than one,
which does not imply that all videos are individually in the
surplus mode.

If, instead,β = 1, (i.e., when the number of contents in the
system scales as fast as the number of users)4, the exploitation
of users’ cooperation is more difficult and depends on the
Zipf’s exponent: forα ≤ 1 we cannot do any better than
the worst caseS = Θ(n). For α > 1 (and Γ < 1 − σ),
we approximately needn2−α additional servers’ bandwidth
(notice that in this case upper and lower bounds differ only

3With high probability, i.e., with probability that tends to1 asn → ∞.
4Our results could be extended to the caseβ > 1, reaching identical

conclusions.
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TABLE II
AVERAGE BANDWIDTH REQUESTED FROM THE SERVERS,S

Upper bound Lower bound
Passivesystem Activesystem

Conditions P(Γk < 1− σ) = 1 P(Γ < 1− σ) → 1

(α ≤ 1 ∧ β < 1)
∨ (α > 1, β < 1/α) o(1) o(1) 0

α > 1 ∧ 1/α < β < 1 O(n1/α) o(1) 0

α > 1 ∧ β = 1 O(n1/α) O
(

n2−α(log n)
α−1
1−δ

)

Ω(n2−α)

α ≤ 1 ∧ β = 1 O(n) O(n) Θ(n)

by a poly-log term), which unfortunately goes to infinite
for any α < 2. Basically, this is due to the fact that, for
β = 1, there are too many contents available in the system
(whose aggregate data volume becomes comparable to the
total buffer space available at users). In this case, contents
cannot be distributed/replicated at peers in such a way that
the distribution of all of them can be effectively assisted by
the users, considering also the effect of peer churn.

Passive systems perform, obviously, worse than active sys-
tems. First of all, they can lead to something better than
S = Θ(n) only when all videos are in surplus mode, which
is a rather restrictive condition. Nevertheless, if this condition
is satisfied, forβ < 1 we still obtain thatS = o(1), provided
that α ≤ 1 or β < 1/α. Instead, the servers’ bandwidth goes
to infinite asn1/α for β > 1/α, and the same occurs ifβ = 1
(of course without exceeding the worst caseS = Θ(n)).

Fig. 1. logn S versus the parameterα: passive system (top plot) and active
system (bottom plot).

IV. PASSIVE SYSTEM

We start considering thepassivesystem, in which users are
constrained to assist only the distribution of the last selected
video. This means that, after requesting a video, they can
only download/upload data belonging to the selected video
(until they request a new content from the catalog). A passive
system is conceptually simple to implement and manage,
since swarms of different videos are decoupled, and can be
controlled independently of each other.

A. Preliminaries

We can describe the dynamics of users in the system by
the open queueing network illustrated in Fig. 2. We consider

a separate queue for all users downloading the same video.
When the download is complete, users who keep the applica-
tion running continue contributing their uploading bandwidth
to the system, transiting to queues arranged in the second
column of the network. Users who stop the application transit
to thesleepingstate, represented by a single queue on the right
hand side.

Lemma 1: At any time, the number of users who are
downloading a given video, the number of users who remain
in the contributing state after downloading a video, and the
number of users in thesleeping state, follow independent
Poisson distributions.

Proof: The dynamics of users in the open queueing
network (in terms of transitions among the queues and sojourn
times at queues) are decoupled, since users behave indepen-
dently of each other5. The resulting queueing network admits a
product-form solution by the BCMP theorem. Since all queues
have infinite servers, the numbers of users in the queues follow
independent Poisson distributions.

... ...

...

...

...

...

...
... ...

uλ Λ

Zipf

video 1 video 1

video 2 video 2

video K video K

uploading
downloading

uploading

SLEEPING

CONTRIBUTING

outp

1−pout

Fig. 2. Open network of·/G/∞ queues modeling users’ dynamics.

Let N(t) be the total number of users in the system at
time t. Note that N(t) is itself Poisson distributed, with
meann = λuT . We denote byNd,k = λkτk the average
number of users downloading filek, and byN seed,k = λkT seed
the average number of users remaining in thecontributing
state after downloading filek. In a passivesystem,N seed,k
represents also the average number of users acting as seeds
for video k.

B. Asymptotic results for single video system

Before considering the bandwidth requested from the
servers to support the distribution of all videos availablein
the catalog, we analyze the simple case in which there is just
one video (i.e., K = 1), whose request rateλ tends to infinite.
Notice that in this caseγ in (4) equalsγ1 in (5).

The following theorem characterizes how the servers’ band-
width S scales whenλ → ∞:

Theorem 1: Assume the following properties hold forU :
i) U > 0, ii) E[eθU ] is finite in a neighborhood of the origin,
iii) FU (w) > 0 for everyw > 0. If γ < 1−σ for someσ > 0,
uniformly overU , d andγ, a λ0 > 0 can be found such that:

S ≤ 4λδe−C1(U,τ,γ′)λ1−δ

∀δ ∈ (0, 1) andλ > λ0 (6)

5Notice that here we are not considering as part of user dynamics the data
downloaded/uploaded by a user, which obviously depend on which videos the
other users have requested.
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with γ′ = γ(1 + σ/2), and C1(U, τ, γ′) =

τ
U(1 − γ′)(1 + γ′)

4γ′
.

A detailed proof of Theorem 1 is reported in Appendix A.
The upper bound stated in Theorem 1 is valid forλ → ∞.

Whenλ remains finite or vanishes asn grows large, we can
apply the following rough bound based on the pessimistic
assumption that the entire bandwidth necessary to sustain
the downloads is provided by the servers (i.e., neglecting the
contribution of seeds and simultaneously downloading users):

Lemma 2: A universal upper bound to the bandwidth re-
quested from the servers is:S ≤ dτλ.

Combining Theorem 1 and Lemma 2, we get:
Corollary 1: Under the assumptions onU of Theorem 1,

if γ < 1 − σ, for someσ > 0, then uniformly overU , d and
γ a λ0 > 0 can be found such that

S ≤

{

dτλ if λ < λ0

4λδe−C1(U,τ,γ′)λ1−δ

∀δ ∈ (0, 1) if λ ≥ λ0
(7)

with γ′ = γ(1 + σ/2).

C. Asymptotic results for multi-video system

Corollary 1 can be readily exploited to compute the ag-
gregate bandwidth requested from the servers in the case of
multi-video systems. Indeed, we basically have to add up the
contributions of individual videos (as predicted by Corollary 1)
to obtain an upper-bound on the overall bandwidth requested
from the servers. Thus, we can divide the video catalog into
two portions: thehottest portion of the catalog comprises
videos whose request rate tends to infinite asn → ∞; the
coldestportion of the catalog (which could be empty) com-
prises videos whose request rate remains constant or vanishes
asn → ∞. For the former portion, Corollary 1 (from Theorem
1) provides a tight bound to the bandwidth requested from the
server. For the latter portion we limit ourselves to apply the
bound in Lemma 2 (repeated in Corollary 1). Although this
bound may appear particularly coarse, it correctly captures (in
order sense) the impact that cold videos have on the aggregate
bandwidth requested from the servers. This because, for any
cold video, peer assistance is rather ineffective (in a passive
system). Indeed, since the average number of available seeds
for any cold video keeps bounded also whenn grows large, it
is possible (with a non vanishing probability) that at a given
time either there are no seeds supporting its distribution or
all the seeds are sleeping. In this case (occurring with non-
vanishing probability) a minimum amount of bandwidth equal
to d is needed from the servers to sustain the distribution of
a video. At last observe thatd constitutes a finite fraction of
the whole bandwidth needed by peers, since the number of
concurrently downloaders is finite. We obtain:

Theorem 2: Under the same assumptions onU of The-
orem 1, if there exists an arbitrarily small constantσ > 0
such thatP(Γk < 1 − σ) = 1, than the average bandwidthS
requested from the servers satisfies the following asymptotic
bound w.h.p. as the number of usersn tends to∞:

S =







O(n1/α) if α > 1, 1/α < β ≤ 1
o(1) if (α ≤ 1, β < 1) ∨ (α > 1, β < 1/α)
O(n) if α ≤ 1, β = 1

If, instead,P(Γk ≥ 1) > 0, thenS = Θ(n) w.h.p.,∀β > 0.
A detailed proof is reported in Appendix C.

Remarks. We emphasize that when all videos are in the
surplus mode, the dominant contribution to the bandwidth
requested from the servers is always due to the coldest portion
of the video catalog, as it clearly emerges from the proof of
Theorem 2. In particular, whenα > 1, 1/α < β < 1, the
scaling law ofS is determined by videos whose request rate
either remains constant or decays to zero.

Although a passive system is conceptually simple to imple-
ment and manage, it is a very rigid (and potentially subopti-
mal) scheme, since users are constrained to devote their entire
upload bandwidth to the last requested video, and by so doing
their resources might not be fully utilized. In the next section,
guided by the insights gained from the analysis of passive
systems, we will investigate the performance achievable by
active systems.

V. ACTIVE SYSTEMS

In active systems, users can be instructed to essentially
download/upload data belonging to arbitrary videos, with the
obvious constraints that: i) they must at least download (at
constant rate) the videos that they want to watch; ii) they can
upload only data previously downloaded. In particular, users
can download/upload chunks or stripes belonging to videos
they have not requested (data bundling). However, we will not
consider the extreme case in which chunks/stripes can be made
arbitrarily small (fluid limit), i.e., chunks/stripes whose size
asymptotically goes to zero, because this is not implementable
in practice.

We will show that, even with this restriction (i.e., the
size of chunks/stripes can not go to zero) we can devise
efficient active strategies that can overcome the fundamental
limitations of passive systems. In particular, we need to solve
two orthogonal problems: i) the possible presence of videosin
deficit mode, which prevent any passive system to scale (we
call this theload balancingproblem); the possible presence of
cold videos, which are especially detrimental to the system(we
call this thecatalog warmingproblem). For each problem, we
will present more than one solution, reporting the main results
and the basic intuition about how they work. We anticipate
that, once we solve both problems above, the computation of
the resulting system performance will be an easy task.

Before describing the proposed techniques, we want to
emphasize that, also for the active systems, the dynamics of
users can be described by an open network of infinite servers
queues, which turns out to be a BCMP queue as specified by
the following lemma.

Lemma 3: The dynamics of users in the system are repre-
sented by a BCMP (i.e., product-form) open queuing network
in which a different queue corresponds to a possible user
configuration.
Also in this case system evolution can be represented by
a network of infinite servers queues associated to different
user states. However, the resulting queuing network is more
complex than in the passive case, since the number of possible
states in which a user can be and to which a queue corresponds
is much larger than in the passive case. For example a user
can download a content while hosting a different content to
which it is assigned as seed.

A. Load balancing by seed reallocation

The goal of video equalization is to make the loads induced
by individual videos equal to the global system load (4). The
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simplest approach to redistribute the peer upload resources
to achieve this goal is to remove the constraint that peers
must act as seed only for the last downloaded video. Here
we note that videos for which the video rate is small (dk < U
ideally) do not need seeds, while video contents with large
video rate (dk > U ) and long duration are much more critical.
A good performing strategy is to concentrate most of the seeds
among the videos that are more critical. This goal can be
achieved in a fairly natural way by allowing peers to offer
service (as seed) for an arbitrary video content that has been
previously downloaded. To implement such a scheme, peers
are only requested to keep in memory the content for which
they act as seed. Essentially, we can allocate extra seeds to
those videos havingγk > γ in the passive system. Although
the approach is simple (it does not require any chunk/stripe
bundling), the performance of this strategy is clearly limited
by the fact that users download only a finite number of videos
m before leaving the system, hence they cannot act as seed
for arbitrary videos.

At the same time, videok for which dk/U < γ may be
cause of potential bandwidth wastage for the system, since
it may subtract excessive amount of bandwidth resources to
other videos. Observe, indeed, that thek-th video load remains
too small (smaller thanγ) even when we subtract to it all
the seeds. One remedial action, in this case, is to artificially
increase the nominal download rate of contentk, decreasing
simultaneously the download time. So doing, as side effect we
increase the average time during which peers may act as seed
after downloading videok. Thus, by increasing the download
speed of low loaded contents, we can spare more bandwidth
resources for other videos.

In according to previous considerations, we propose a seed
reallocation strategy that works as follows: i) all videos are
downloaded at the same speeddmax; this way we decrease
the download time (that becomesτ

′

k = lk/dmax) and increase
the average time during which peers may act as seed after
downloading videok (we denote this quantity byT cont,k =
T seed+τk−τ

′

k). ii) Peers acting as seeds are divided intoK+1
categories: seeds assigned to a specific video and unassigned
seeds. Seeds assigned to videok act as seed for videok for all
their residual lifetime in the system; unassigned seeds, instead,
act as seeds for the last downloaded video. Every fresh new
peer joining the system is initially unassigned. An unassigned
peer, after downloading videok, is assigned to videok with
probability qk, while it remains unassigned with probability
1− qk.

Theorem 3: Given{dk}k, {lk}k, the proposed seed reallo-
cation strategy guarantees perfect load balancing (by properly
selecting probabilitiesqk), iff γ < 1, and the following
condition onτ

′

k, T cont,k is satisfied:

max
k

[

τ
′

k ·max
h

[

T cont,h

τ
′

h

]

− T cont,k

]

≤ (m− 1)T cont (8)

whereT cont =
∑

k pkT cont,k.
De-conditioning with respect todk and lk we obtain that a
perfect balance of video loads is feasible w.h.p. iff

lmax

(

T seed

lmin
−

T seed

lmax
+

1

dmin
−

1

dmax

)

≤ (m− 1) E
Lk,Dk

[T cont]

The proof is reported in Appendix D.
Note that, if users stayed indefinitely in the system, they

would sooner or later download any video that requires ad-

ditional seeds, hence by properly setting probabilitiesqk we
would surely be able to equalize the loads. Theorem 3 provides
the sufficient and necessary condition on the average number
of videosm downloaded by a user (which is proportional to
average residence time in the system) such that perfect load
balancing is still possible. Previous approach can be further
boosted by allowing view-upload decoupling,i.e., by letting
users assigned to videok to act as seed for it also while they
are downloading a different video.

Theorem 4: Adding universal streaming boost to the previ-
ous described seed reallocation policy we are able to perfectly
equalize the load for different videos iffγ < 1, andτ

′

k, T cont,k
satisfy the following condition:

max
k

[

τ
′

k ·max
h

[

T cont,h

τ
′

h

]

− T cont,k

]

≤ (m− 1)(T cont+ τ
′

)

(9)
whereτ

′

,
∑

pklk/dmax.
We omit the proof of Theorem 4 since it follows exactly

the same lines of the proof of Theorem 3.

B. Load balancing by stripe bundling

This technique is based on the following idea: each video
is divided into M stripes (substreams), which have to be
downloaded in parallel by a user requesting the video (the
distribution of each stripe can be assisted by a different set
of peers), and re-assembled by the decoder. Users who are
downloading a video withγk < γ are forced to download
also one stripe of a video withγk ≥ γ, and devote a fraction
of their upload bandwidth (actually, all of their excess upload
bandwidth with respect to the target average system load) to
the additional bundled stripe.

The upcoming Theorem 5 guarantees that, by makingM
large enough (but not infinite), we can approximately equalize
all videos bringing all of them in surplus mode.

Before going into technical details, we provide an intuitive
understanding of why this strategy turns out to be very
effective to balance the video loads while minimally increasing
the global system load. Indeed, while on the one hand some
users (those requesting a video withγk < γ) have to download
additional unwanted data (but this additional amount of data,
corresponding to a single stripe, can be made smaller and
smaller by increasingM ), on the other hand these users can
exploit all of their excess upload bandwidth to assist the dis-
tribution of the bundled stripe, typically retransmittingmany
copies of it to other peers before leaving the system, with an
obvious gain in terms of system performance. This technique
is more complex to implement than the previous one based
only on seed reallocation. However, it has the great advantage
that it does not require any additional condition on the system
parameters. In particular, it works also in the extreme casein
which users leave the system after downloading just one video
(m = 1).

We now describe in more details the proposed load balanc-
ing technique, and then provide the main result characterizing
its performance.

Definition 1: For each videok we define the amount of
bandwidth∆Uk:

∆Uk = U
γ − γk

γ
(10)

It can be easily verified that∆Uk is the amount of band-
width that, if subtracted to the average upload bandwidth ofa
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peer, would make the load of videok equal toγ, i.e.,
dkτk

(U −∆Uk)T k

= γ,

whereT k = τk + T seed. We observe that∆Uk is positive for
videos with γk < γ, and negative for videos withγk ≥ γ.
Moreover, the following equation holds:

K
∑

k=1

λkT k∆Uk = 0 (11)

which suggests that, for a proper equalization, we have to
consider the weighted contribution of each video to the overall
system load, which requires to multiply∆Uk both by the
average stay in the system of users downloading videok
and by the request rateλk. Before thinking about a scheme
to distribute the aggregate excess bandwidth of videos with
γk < γ to videos with γk ≥ γ, we need to address the
fundamental problem that a peer can help another peer only
if it already stores (or it is concurrently downloading) data of
interest to the other peer. In the extreme case, peers leave the
system after downloading just one video, hence they cannot
assist any other video distribution unless we force them to
download at least one piece of another video (bundling), which
can be done as soon as they enter the system.

To minimize the amount of bundled data, we divide each
video k into M stripes, which are downloaded at constant
ratedk/M . We can treat a stripe exactly in the same way as
a full video, and view the system catalog as being composed
by KM independent contents corresponding to the set of all
stripes. Users independently retrieve theM stripes of each
requested video in parallel, and devote an equal fraction of
their upload bandwidthU to assist the distribution of each
stripe. By so doing, the load associated to each stripe equals
the load of the entire video.

If a video k has some excess bandwidth (i.e.,γk < γ), a
peer downloading it acts as follows: as soon as it requests
the video, it starts concurrently to download also a stripe
of a video havingγk ≥ γ (to be specified later). Then, it
devotes a fractionU−∆Uk

U
U
M of its upload bandwidth to each

stripe of the originally requested video. The remaining upload
bandwidth U·∆Uk

U
is devoted to assist the distribution of the

bundled stripe. Notice that, on average, a peer requesting a
video with γk < γ reduces the upload bandwidth devoted to
this video by∆Uk. It follows that the new load associated to
a video withγk < γ (and to any of its stripes) exactly equals
the target loadγ.

We still need to specify which stripe is bundled to peers
downloading a video withγk < γ. This is done by the
following water-filling-like algorithm. Initially, we putin a
setS all indexes of videos withγk < γ. Moreover,∀j ∈ S,
we initialize to λ∗

j = λj the arrival rate of users requesting
file j who have not yet been assigned a bundled stripe.

We then consider (in arbitrary sequence) all of the stripes
belonging to videos withγk ≥ γ, one at a time. For each
of them (say stripei), let k be the index of the video it
belongs to. We initialize toQk = |λkT k∆Uk/M | a quantity
representing the residual impact that this stripe has on the
system unbalance. As long asQk > 0, we perform this step:
we randomly extract an indexj from setS, and consider the
(positive) quantityQj = λ∗

jT j∆Uj . Two cases are possible:
if Qj ≤ Qk, we need to use the bandwidth of all remaining
users requesting filej. This means that peers requesting file

j have to download stripei with probability λ∗
j/λj (notice

that this quantity equals 1, ifλ∗
j is still maintaining its initial

value). Furthermore, indexj is removed from setS, and
Qk is diminished toQk − Qj . We extract a new indexj
from S, and repeat the same step; ifQj > Qk, it means
that a subset of peers downloading videoj are enough to
fill the remaining bandwidth deficit of stripei: in particular
peers requesting filej are forced to download stripei with
probability pj,i = Qk

λjT j∆Uj
. At last, before considering the

next stripe withγk ≥ γ, we updateλ∗
j to λ∗

j − pj,iλj .
Equation (11) guarantees that the above algorithm termi-

nates after handling all stripes withγk ≥ γ, finding for each of
them enough peers downloading videos withγk < γ to fill its
deficit of bandwidth. At the same time, all peers downloading
a video withγk < γ are assigned exactly one bundled stripe
to download. Notice that, if the bundling mechanism were
for free (i.e., no need for any peer to download additional
data), after the redistribution of upload bandwidth performed
by previous algorithm we would have all stripes with equal
load γ. However, we need to consider the cost of bundling.
The following Theorem guarantees that such additional cost
can be made arbitrarily small by increasingM , by employing a
slightly modified version of the previously described bundling
scheme:

Theorem 5: For any valueγ′ such thatγ < γ′ < 1, there
exists a valueM∗ < ∞ for the number of stripes such that
for all M > M∗ a stripe bundling scheme can be found that
brings the system to operate at global load smaller thanγ′.
At the same time, the load associated to each video becomes
smaller than or equal toγ′ (the same holds considering the
load induced by individual stripes).

The proof is reported in Appendix E.
Remark. Comparing the two previously proposed tech-

niques to achieve load balancing we can say that seed re-
location is much simpler to implement. Indeed, it does not
require any major modification to the system architecture
and protocols. The only actions requested to peers for the
implementation of such technique are: i) to download videos
at maximum ratedmax; ii) to become seed of a video in
a predetermined/coordinated fashion. The implementationof
the stripe bundling mechanism is, instead, more complex, as
it requires the application of both video striping and video
bundling techniques. On the other end stripe bundling turnsout
to be significantly more effective in highly dynamic scenarios
in which peers download only few videos (in the limit, just
one video) before disappearing from the system.

C. Catalog warming by video bundling

While analyzing the case of a passive system, we learnt
that cold videos (videos whose request rate does not increase
with n) are responsible for the dominant component of the
bandwidth requested from the servers. Hence, if we could
artificially increase the request rate of cold videos, we would
expect to get a significant reduction ofS. Now, it turns out that
we do not need to warm up the coldest portion of the catalog
too much: optimal performance is already achieved when the
request rate of videos go to infinite at least as fast as a poly-
log function, i.e., whenλk = Ω((logn)z), ∀k (actually, this
is needed only for a ‘critical’ portion of the catalog) where
z is a suitable constant. Provided thatβ < 1, the amount of
data bundling necessary to achieve this goal is rather small,
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hence it is possible to warm the catalog up enough, while at
the same time increasing the global system load to a valueγ′

such that
γ′ − γ = ∆γ → 0, for n → ∞ (12)

as it will be shown in the proof of Theorem 6.
The simplest approach to achieve this goal is to make some

peers in thecontributingstate to download entire (unrequested)
videos while they are not downloading any other content. This
mechanism does not require any video chunking/striping, and
can be superposed to the load balancing strategy described
in Section V-A. In essence, the strategy works as follows.
Let λ′

k be the target new rate at which videok should be
downloaded in the active system. Peers who have just finished
to download a hot videoh ≤ K0 (for a specific constant
K0), without been assigned to it by the seed reallocation
strategy, are induced to start the download of a cold video
k > K0 with probability p′k =

(λ′
k−λk)

∑

h≤K0
λuph(1−qh)

(note that,

by construction,pd =
∑

k>K0
p′k → 0 asn → ∞, whenever

β < 1 6. If the download of the bundled video is interrupted
because the peer goes into the sleeping state, the download is
promptly resumed as soon as the peer restarts contributing
to the system without concurrently downloading any other
video (they can not be, as it will be shown in the proof of
Theorem 6, assigned to any video they possibly download
in the meanwhile). Sincepd → 0, the negative effect that
this strategy has on the load induced by hot videos (those
videos whose request rate is not increased, and from which
the mechanism subtracts some seeds) becomes negligible for
n → ∞. Our strategy has a potential effect also on the load of
videos whose request rate is artificially increased. However, it
guarantees that the new loadγ′

k of such videos is maintained
less than 1, provided that the average upload bandwidth
of adjoint seeds exceeds the average bandwidth consumed
to download them,i.e., dk min(mT cont, lk/dk) < UmT cont.
When this condition is met with probability 1,i.e.,

P

(

dmaxmin(mT cont, lmax/dmax)

mUT cont
> 1

)

= 1, (13)

the above scheme can be effectively employed, in sufficiently
large systems, without bringing any video in deficit mode.

D. Catalog warming by chunk bundling

The previous technique imposes again a constraint on the
system parameters (13). When (13) is violated, the same
approach can be applied to individual pieces of cold videos
(chunks), instead of entire videos, with less stringent con-
straint. Indeed, peers who are forced to contribute to an
unrequested video, neither need to completely retrieve it,nor
to download it sequentially. Thus, we can cut a cold video in
M chunks, and ask some peers to download just a randomly
chosen chunk contributing to its distribution. Chunkization re-
duces the bandwidth that every artificial downloader consumes
by a factorM , while keeping constant its potential contribution
on the upload.

E. Catalog warming by stripe bundling

A similar idea can be applied to stripes, instead of chunks,
and superposed to the load balancing technique proposed

6Whenβ = 1 only a portion of the coldest video collection can be warmed
up while guaranteeingpd → 0, as shown in the proof of Theorem 6.

in Section V-B. Essentially, peers who request for the first
time a hot contenth ≤ K0 (for some constantK0), with
probability p′k =

λ′
k−λk

∑

h≤K0
λh

are forced to download also a

randomly chosen stripe of cold videok, of sizelk/M (where
M is a suitable constant), contributing to its distribution for the
rest of their stay into the system, with an opportunely chosen
fraction fk of their upload bandwidth.

To properly choose fractionfk and constantM , we need to
evaluate the impact that the proposed bundling scheme has on
the load induced by individual videos (or stripes), guaranteeing
that such load remains smaller than 1.

To do this, let us assume that, after applying (if necessary)
the load balancing technique proposed in Section V-B, all
videos (or stripes) induce a load smaller thanγ′ < 1. In
particular, letγk = a/b (with a < γ′b) be the load induced by
a generic cold videok. After applying the catalog warming
technique by stripe bundling, the new load induced by each
stripe of videok can be upper bounded by

a+ (λ′
k − λk)lk/M

b+ (λ′
k − λk)fkU(τmin + T seed)

(14)

under the pessimistic assumption that all bundled downloads
of hot videos last for the minimum durationτmin + T seed.
Moreover, considering the worst case in which all cold videos
have sizelk = lmax, we can guarantee that the r.h.s. of (14)
is smaller thanγ′ by selecting a fraction of upload bandwidth

fk >
lmax

Mγ′U(τmin + T seed)
= fmin

where fmin, which no longer depends onk, can be made
arbitrarily small by increasingM . Sincefmin must be smaller
than 1, we also need to select

M >
lmax

γ′U(τmin + T seed)

At last, observe that the load increase for hot videos (due
to the subtraction of some upload bandwidth) vanishes as the
system size increases, sincep′d =

∑

k>K0
p′k → 0 asn → ∞.

As consequence the proposed scheme can always be applied
in sufficiently large systems.

F. Discussion on implementation issues and overheads

We emphasize that previously proposed techniques to
achieve load balancing and catalog warming incur very differ-
ent costs in terms of system complexity and overhead. Load
balancing by seed relocation has a marginal cost on the system,
since peers need just to be instructed about which content
to become seed of (except for this, they behave exactly as
in a passive system). Such information can be computed in
a centralized fashion by one or more servers that oversee
the overall downloading process and periodically send control
messages to peers (these servers essentially mimic the roleof
trackers in Bit-Torrent).

Load balancing by stripe bundling is significant more com-
plex since it requires the system to support video striping.This
mechanism also has an unavoidable overhead, since peers are
forced to download stripes of unwanted videos, as discussed
in Section V-B.

Similarly, catalog warming requires peers to download
possible unwanted data (peers must be instructed to do so
by a central authority, as before). Such intrinsic overhead
can be mitigated/made more efficient by employing chunk-
ing/striping, as discussed in Section V-C, which however adds
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complexity to the control plane. Observe that chunk and
stripe bundling are conceptually similar and require peersto
execute essentially the same high level operations. On the one
hand video chunking/unchunking are very simple operations
typically supported by every peer assisted system (and most
CDN), while video striping/reconstruction are more complex.
On the other hand video striping, once supported, can be
advantageously exploited also for load balancing.

At last, we remark that in our analysis we have ignored the
effects of protocol overheads and signaling bandwidth (neces-
sary to coordinate the peers). The impact of protocol overheads
and signaling, once quantified for a given application, can
be easily incorporated in the model by redefining the peer
upload bandwidth (i.e., subtracting from it the fraction devoted
to signaling/overhead). Our paper also ignores: 1) possible
constraints on the number of peers from which a peers can
download data; 2) the effects of possible congestions inside
the network. Although these issues can have an impact on the
system performance, we have preferred not to consider them
for the sake of simplicity and analytical tractability.

G. Asymptotic bandwidth requested from the servers

At last, we can evaluate the asymptotic performance achiev-
able by applying the active schemes described in previous
sections.

Theorem 6: Under the same assumptions onU of Theo-
rem 1, if there exists an arbitrarily small constantσ > 0 such
that P(Γ < 1 − σ) → 1 for someσ > 0, the bandwidthS
requested from the servers satisfies the following asymptotic
bound w.h.p. as the number of usersn tends to∞:

S =

{

o(1) if α > 1, β < 1

O(n2−α(logn)
α−1
1−δ ) if α > 1, β = 1

(15)

provided that a suitable combination of active techniques is
employed i) to balance the loads induce by individual videos;
ii) to sufficiently increase the download rate of cold videos.
The proof of Theorem 6 is reported in Appendix F.

VI. L OWER BOUND

Here we present a simple universal lower bound to the
bandwidth requested from the servers. Notice however that this
bound holds under the assumption that the size of chunk/stripe
cannot go to zero. Consider first the case in which videos are
not divided into chunk/stripes. For any videok the servers
must provide at least a bandwidth equal todk when the
following two conditions jointly occur: i) there is at leastone
user downloading the video; ii) there are no seeds assistingits
distribution. Thus, we can write:

S ≥
∑K

k=1 dkP(Nd,k > 0)P(Nseed,k = 0) (16)

Previous argument can be extended to the case in which videos
are divided into a finite number of chunks/stripes, considering
every chunk/stripe as an individual object. By algebraically
manipulating (16), we obtain:

Theorem 7: The average bandwidth requested from the
servers,S, satisfies the following asymptotic bound as the
number of active usersn tends to∞:

S =







Ω
(

n2−α
)

if α > 1, β = 1
Θ(n) if α ≤ 1, β = 1
0 if β < 1

(17)

The proof is reported in Appendix G. Essentially the proof
consists in finding a lower bound for (16), that uniformly

holds under any possible distribution of seeds to videos (i.e.,
satisfying

∑

k N seed,k = O(N)).

VII. R ELATED WORK

A stochastic fluid model showing fundamental characteris-
tics and limitations of P2P streaming systems was proposed in
[12]. In [13], performance bounds on the minimum server load,
maximum streaming rate, and minimum tree depth under dif-
ferent peer selection constraints are derived. However, the two
papers above focus only on single-channel streaming system.
Universal streaming architectures have been analyticallystud-
ied in [9], where authors develop queueing network models to
describe multi-channel live streaming systems incorporating
peer churn, bandwidth heterogeneity, and Zipf-like popularity.
We remark that VoD systems are different from live streaming
systems in which users join the distribution of a given TV
channel at random points in time, but peers connected to
the same channel watch the content almost synchronously.
In VoD, a given video is watched asynchronously by users,
and downloading peers can only help peers who have started
the download later on in time (sequential delivery). Moreover,
asymptotic results in [9] are restricted to the case of two
values of peer upload bandwidth (low and high), and require
finding the solution (if any) to a set of linear equations. In
contrast to [9], we consider VoD systems, and obtain a simpler
characterization of the asymptotic system performance for
general upload bandwidth distribution. In [14] authors propose
an algorithm to allocate server bandwidth which can predict
the minimum server bandwidth requested for each channel,
based on historical information. However, this work focuses
only on live streaming systems.

The first mathematical formulation of the server bandwidth
needed by a VoD system based on sequential delivery appeared
in [4], in which authors resort to a Monte Carlo approach to
get basic insights into the system behavior (like surplus and
deficit modes). The same formulation has been considered in
[11], where authors explore by simulation the effectiveness of
different replication strategies to minimize the server load in
the slightly surplus mode, as well as distributed replacement
algorithms to achieve it. In [15], upper and lower bounds to the
server load are derived. However, detailed information about
the movie set stored by each peer and its upload capacity
must be collected by the server. In [16] authors propose a
queuing model to predict the dynamic demand of the users in
a P2P VoD system and provide on-the-fly elastic amounts of
processing/bandwidth resources with a minimum cost.

Paper [17] presents a trace-driven evaluation of server
load savings for VoD streaming. Specifically, it shows the
potential savings by using hybrid CDN-P2P systems for two
major CDNs: Akamai and Limelight. [18] defines a per-
chunk capacity model focusing on the allocation of upload
bandwidth resources among different chunks. In particular, it
points out the fundamental trade-offs that exist among system
throughput, sequentiality of downloaded data and robustness
to heterogeneous network conditions. In [19] authors develop
an analysis of peer-assisted VoD systems with scalable video
streams. Analytical models that estimate the number of peers
that can be admitted into the system in the case of flash
crowds are provided. Similarly to [20], that focuses on P2P
live streaming only, [21] studies the achievable streaming
capacity of large-scale P2P VoD systems with sparse con-
nectivity among peers, and investigate P2P control strategies
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that can achieve close-to-optimal streaming capacity. With
respect to all previous work, in this paper we propose a
general framework that allows us to analytically estimate the
potential benefits in terms of scalability of peer-assistedVoD
architectures, revealing under which conditions gains (interms
of servers’ bandwidth savings) can be significant or limited.

An interesting implementation of the kind of systems
considered in our work is Xunlei [22], a download accel-
eration application that is becoming enormously popular in
China. Xunlei combines both peer-assisted and server-assisted
techniques, letting users download portions of the requested
contents from other peers while also downloading portions
from independent servers. Recently, the Xunlei network started
also a peer-assisted VoD service (Kankan), which generated
massive-scale swarms.

VIII. C ONCLUSIONS

Our results indicate that users’ cooperation can dramatically
reduce the servers’ burden in large-scale VoD systems. Al-
though peer-assisted architectures incur several issues related
to the added complexity on the control plane, the need to
provide incentive mechanism to the users and to protect
the system against attacks and misbehavior, nevertheless we
believe they should be taken seriously into consideration in the
coming years, as they are the only known solution (up to now)
to make VoD systems arbitrarily scalable. However, we have
shown that the potential gains deriving by users’ cooperation
are reduced when the service is targeted to the distribution
of user-generated contents (especially for small values ofthe
Zipf’s law exponent), since in this case the number of videos
intrinsically scales linearly with the number of users.
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APPENDIX A
PROOF OFTHEOREM 1

For the proof of this theorem we need to state a preliminary
result.

Lemma 4: Assume the following properties hold forU : i)
U > 0, ii) E[eθU ] is finite in a neighborhood of the origin,
iii) FU (w) > 0 for every w > 0. The average bandwidth
requested from the servers,S, satisfies the following bound:
if γ < 1, for any δ ∈ (0, 1), there existsλ0 ∈ R

+ such that

S ≤

{

4λδe−C1λ
1−δ

if d > U, λ > λ0

C3e
−C2λ if d ≤ U,

(18)

with C1 = τ U(1−γ)(1+γ)
4γ , C2 =

(

d
Uγ

− 1
)

τ(1 − e−θ∗d),

C3 = (d+ 1/θ∗)eθ
∗d, whereθ∗ is the only strictly positive

solution of the equationE[eθ(d−U)] = 1. Furthermore in (18),
λ0 can be found uniformly with respect tōU , d andγ as long
asγ < 1− σ for anyσ > 0. If, on the other hand,γ > 1, the
average bandwidth requested from the servers grows linearly
with the number of users, namely,S = Θ(λ).

The proof of Lemma 4 can be found in Appendix B, and it
is based on some results that we proved in [8].

Considering the constants specified in Lemma 4, we observe
thatC1 is insensitive to the distribution ofU , and it does not
depend explicitly fromU . Actually, its dependency fromU is
mediated byγ. As consequence, the expression of the bound
for d > U is robust to the distribution ofU and its mean,
provided thatγ < 1− σ. Instead,C2 andC3 are sensitive to
the distribution ofU , through the quantityθ∗. For this reason,
the upper bound onS for d ≤ U is more delicate. In particular,
note that if θ∗ becomes arbitrarily small or large the bound
C3e

−C2λ becomes arbitrarily weak. For these reasons we need
to strengthen the bound ford ≤ U , which is exactly the result
in Theorem 1.

We state now the last preliminary result that we need for
proving Theorem 1. The following proposition states that,
given all the other system parameters, the average bandwidth
requested to serverS is, by construction, monotonically non-
increasing with respect to the available upload bandwidth of
peers. More formally we can state:

Proposition 1: Whenever we compare two systems, 1 and
2, with identical system parameters(d, τ, Tseed) except for the
available peer upload bandwidth, then:

S
(1)

≤ S
(2)

whenever the available bandwidth in the first systemU (1)

is stochastically greater than the available bandwidth in the
second systemU (2).
This property directly descends from the observation that peers
in the first system can always contribute to the redistribution
with only a fraction of their available bandwidth, properly



11

choosing the fraction so that the contributed bandwidth to the
P2P system is distributed asU (2).

Finally, we can prove Theorem 1.
Exploiting the definition ofθ∗, we can derive the following

lower and upper bound forθ∗: θ∗ > 2E[U−d]
E[(U−d)2] and θ∗ <

supx<d−
log P(U<d−x)

x , which guarantees thatθ∗ can not be
arbitrarily small or large whend is sufficiently smaller than
U , let us say whend(1 + σ/2) ≤ U . Therefore, whenever
U > d(1+ σ/2), in Lemma 4 we can jointly lower boundC2

by a positive constant, and upper boundC3 by a constant.
It follows that C3e

−C2λ = o(λδe−C1λ
1−δ

), as λ → ∞,
∀δ ∈ (0, 1). When U → d from the right, θ∗ → 0
and the bound in Lemma 4 becomes arbitrarily weak (it
tends to infinite). To overcome this problem, we exploit the
monotonicity property ofS with respect to the peers upload
bandwidth (Proposition 1) obtaining a useful bound also for
d ≤ U < d(1 + σ/2). We consider a system in which the
available upload bandwidth of all peers has been reduced of
a factor 2

2+σ . In this new system the average effective upload
bandwidth is smaller thand and the video load is equal to
γ′ = γ(1 + σ/2) < 1. For this system, we can boundS by
the expression valid ford > U , obtaining a bound that clearly
applies in the original case thanks to Proposition 1.

APPENDIX B
PROOF OFLEMMA 4

We recall the following two propositions from [8]. They
establish important properties ofθ∗ as function7 of ǫ:

Proposition 2: If d > U , the equationE[eθ(U−U−ǫ)] = 1
(in θ) admits a unique solution forǫ ∈ (0, U). Further-
more, θ∗(ǫ) = argθ>0(e

−θǫ
E[eθ(U−U)] = 1) is strictly

increasing andC1 on the interval(0, U). Moreover, it holds
limǫ→0 θ

∗(ǫ) = 0.
Proposition 3: Provided thatd > U , andU is not constant,

the image ofθ∗(ǫ) for 0 < ǫ < U is R
+ \ {0}.

We recall also the following upper bound for the bandwidth
requested from the servers from [8]:

S ≤ (d+
1

θ∗
e−θ∗AeNd(e

θ∗A
−1)) e−Nseed(1−φU (−θ∗))eθ

∗d (19)

whereφU be the moment generating function ofU , ǫ is an
arbitrary positive constant smaller thanU andA , d−U + ǫ.
Moreover,θ∗ is the unique strictly positive solution to the
equationE[eθ(d−U−A)] = E[eθ(U−U−ǫ)] = 1.

Using Proposition 2 and 3, and the bound in (19) we
can prove the lemma. We emphasize that Lemma 4 is not a
straightforward extension of the results in [8], where we have
only shown thatS → 0 as λ → ∞ (provided thatγ < 1).
Indeed, Lemma 4 characterizes alsohow fastS scales to 0 as
λ grows large, providing a basic building block of our analysis.

Our goal is to tightly characterize the asymptotic behavior
of bound (19) asλ → ∞. We first focus on the cased > U .
In this case we will makeǫ → 0 as λ → ∞, exploiting
Propositions 2 and 3.

Consider, first, quantitye−θ∗AeNd(e
θ∗A

−1) in (19). Note
that e−θ∗A ≤ 1, and eθ

∗A − 1 > θ∗A. Thus, for all
η ∈ (0, 1), there existsθ∗1(η,A) > 0 such that ifθ∗ ∈ (0, θ∗1)
then eθ

∗A − 1 ≤ θ∗A/(1 − η). In particular, θ∗1(η,A) =

− 1−η+W((η−1)eη−1)
A , where W(·) is the Lambert function.

7In the following, whenever not necessary, we useθ∗ instead ofθ∗(ǫ).

SinceA = d − U + ǫ, we defineθ∗2(η) , infǫ∈(0,U) θ
∗
1 =

− 1−η+W((η−1)eη−1)

d−U
. We obtain: ifθ∗ ∈ (0, θ∗2)

e−θ∗AeNd(e
θ∗A−1) ≤ eNd

θ∗A
1−η . (20)

Consider now quantitye−N seed(1−φU (−θ∗)) in (19). Since for
ǫ → 0 we haveθ∗ → 0 (Proposition 2),1 − φU (−θ∗) =
1 − E[e−θ∗U ] = θ∗U + R(θ∗), whereR(θ∗) is the Taylor
remainder. If we expressR(θ∗) in the Lagrange form we
immediately obtain:|R(θ∗)| ≤ E[U2]θ∗2/2.

After some elementary algebra it is possible to show that
for every η′ > 0, definingθ∗3(η

′) ,
η′

1+η′
2U

E[U2] we have that

if θ∗ ∈ (0, θ∗3) it holds: 1− η′ ≤
θ∗U

1− φU (−θ∗)
≤ 1+ η′, and

therefore

1− φU (−θ∗) ≥
θ∗U

1 + η′
. (21)

Consider now quantityeθ
∗d in (19): definingθ∗4 , (log 2)/d,

it is immediate to see that forθ∗ ∈ (0, θ∗4), it holds:
eθ

∗d ≤ 2. (22)

By (19), (20), (21) and (22), we can conclude that for all
θ∗ ∈ (0, θ∗5 , min{θ∗2 , θ

∗
3 , θ

∗
4}), it holds

S ≤ 2

(

d+
eNd

θ∗A
1−η

θ∗

)

e
−Nseed

θ∗U
1+η′ (23)

From (4) we can derive a relation between the number of
downloaders,Nd = λτ , and the number of seeds:

N seed=

(

d

Uγ
− 1

)

Nd =

(

d

Uγ
− 1

)

λτ (24)

Substituting (24) in (23) we get:

S ≤ 2

(

d+
eλτ

θ∗A
1−η

θ∗

)

e
−

(

d
Uγ

−1
)

λτ θ∗U
1+η′ (25)

Recall from Proposition 2 that, ford > U andǫ → 0, we have
θ∗ → 0. Moreover, by Propositions 2 and 3, asλ → ∞, we
can setθ∗ = λ−δ (i.e., we can find the proper law forǫ that
leads toθ∗ = λ−δ) for all δ ∈ (0, 1).

Thus, there exists aλ1 > 0 such that∀λ > λ1, we have
that θ∗ ∈ (0, θ∗5 , min{θ∗2 , θ

∗
3 , θ

∗
4}). Then, if λ > λ1, for all

η, η′ > 0 we have:

S ≤ 2
(

d+ λδeλ
1−δτ A

1−η

)

e
−

(

d
Uγ

−1
)

τ U
1+η′ λ

1−δ

=

= 2 d e
−λ1−δτ d−Uγ

γ(1+η′) + 2λδe
−λ1−δτ (d−Uγ)(1−η)−Aγ(1+η′)

(1+η′)(1−η)γ (26)

Now we prove that the first term in (26) is negligible with
respect to the second one. First, note that ifλ > λ1, d < λδ:
indeed, by (22), we have thatd ≤ log 2

θ∗
5

= log 2 · λδ
1 < λδ.

Remembering thatA , d−U + ǫ ≥ 0, we can say that the
exponent in the second term is larger than the exponent in the
first one. Thus, we can say that, forλ > λ1, we have

S ≤ 4λδe
−λ1−δτ (d−Uγ)(1−η)−Aγ(1+η′)

(1+η′)(1−η)γ (27)

Remembering thatA , d−U+ǫ, for all ǫ > 0, η, η′ ∈ (0, 1)
we define the quantity

f(ǫ, η, η′, d, γ, U) , τ
(d− Uγ)(1− η)−Aγ(1 + η′)

(1 + η′)(1− η)γ
(28)

that appears in (27).
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We compute nowf(ǫ, η, η′, d, γ, U) for ǫ → 0 and η =
η′ = 1−γ

1+γ :

limǫ→0 f(ǫ, d, γ, U) = τ
(d−Uγ) 2γ

1+γ −(d−U)γ 2
1+γ

(4γ2)/(1+γ)2

= τ U(1−γ)(1+γ)
2γ > 0.

Since f(ǫ, d, γ, U) for γ 6= 0 is a continuous function and
hence a uniformly continuous one over compact sets that do
not contain points withγ = 0, a strictly positive constant̃ǫ > 0
can be found such that, for all0 < ǫ < ǫ̃, we have

f(ǫ, d, γ, U) > τ
U(1− γ)(1 + γ)

4γ
> 0.

uniformly with respect to parametersd, γ andU as long as
they take values over a compact set that does not contain the
points withγ = 0 (as in our case). Letλ2 be the value ofλ
that corresponds tõǫ. Defining the constant

C1 , τ
U(1− γ)(1 + γ)

4γ
, (29)

we can conclude that, ford > U it holds:
S ≤ 4λδe−C1λ

1−δ

asλ > λ0 , max{λ1, λ2}. (30)

Consider now the cased < U . From Theorem 1 in paper
[8], we have thatθ∗ is a constant asλ → ∞, and we can set
ǫ in such a way thatA = 0. Thus, in this case the bound in
(19) becomes

S ≤ (d+ 1/θ∗)e−N seed(1−φU (−θ∗))eθ
∗d

= (d+ 1/θ∗)e
−

(

d
Uγ

−1
)

λτ(1−φU (−θ∗))
eθ

∗d

= C3e
−

(

d
Uγ

−1
)

λτ(1−φU (−θ∗))
,

(31)

whereC3 , (d + 1/θ∗)eθ
∗d. Sinceθ∗ is a constant, we can

conclude that, ifd < U , it holds
S ≤ C3e

−C2λ asλ → ∞, (32)

whereC2 ,

(

d
Uγ

− 1
)

τ(1 − φU (−θ∗))) =
(

d
Uγ

− 1
)

τ(1 −

e−θ∗d) since, by construction,φU (−θ∗) = e−θ∗d.
At last we consider the caseγ > 1 (i.e., the deficit mode).

In this case the bandwidth requested from servers scales as
Θ(n), as shown in [8]. Indeed, the servers have to provide at
least the bandwidth deficit.

APPENDIX C
PROOF OFTHEOREM 2

First we assumeP(Γk < 1− σ) = 1. In this case allγk are
deterministically smaller than1 − σ, and by Corollary 1 for
each video we get:

Sk ≤

{

dkτkλk if λk < λ0

4λδ
ke

−C1,kλ
1−δ
k ∀δ ∈ (0, 1) if λk ≥ λ0,

(33)

whereC1,k , C1(Uk, τk, γ
′
k), γ

′
k = (1 + σ/2)γk. We divide

videos in two categories, depending on the request rateλk.
Video k belongs to the first category if0 ≤ k ≤ K1, with
K1 such thatλK1 = λ0, whereλ0 is the threshold defined in
Corollary 1. We thus obtain thatK1 = λ

−1/α
0 n1/αH(K)1/α.

We distinguish the following cases depending onα:

K1 =







Θ(n1/α) if α > 1
Θ(n/ logn) if α = 1

Θ(n
1+β(α−1)

α ) if α < 1

(34)

Videos k such thatK1 ≤ k ≤ K belong to the second
category. Comparing asymptoticallyK1 with K, we obtain:

K1 = o(K) if α ≥ 1, 1/α < β ≤ 1
K1 = ω(K) if α ≥ 1, β ≤ 1/α or α < 1, β ≤ 1

(35)

Therefore, whenα < 1, we setK1 ≡ K, and we have only
one video category. Now, to computeS we can just sum up
the contributions of all videos, obtaining:

S =
∑K

k=1 Sk

≤
∑K1−1

k=1 4λδ
ke

−C1,kλ
1−δ
k +

∑K
k=K1

dkτkλk.
(36)

We defineC , dmaxτmax, and substituteλk with its value
npk = nH(K)k−α. We obtain:

S ≤ 4(nH(K))δ
∑K1−1

k=1 k−αδe−C1,k(nH(K)k−α)1−δ

+C nH(K)
∑K

k=K1
k−α.

(37)
Let Sup,1 be the first term in (37). Furthermore, since by

(29) C1,k , τk
Uk(1−γk)(1+γk)

4γk
, we haveC1,inf , infk C1,k =

τminUmin
σ(2−σ)
4(1−σ) . Thus, we have:

Sup,1 , 4(nH(K))δ
∑K1−1

k=1 k−αδe−C1(dk,τk,γk)(nH(K)k−α)1−δ

≤ 4
∑K1−1

k=1 (nH(K)k−α)δe−C1,inf(nH(K)k−α)1−δ

< Θ
(

∫K1−1

1 (nH(K)x−α)δe−C1,inf(nH(K)x−α)1−δ

dx
)

(38)
Now we make the substitutiony = (nH(K)x−α)1−δ and get

dx = (nH(K))
1
α

α(1−δ)y
1+ 1

α(1−δ)
dy. We have:

Sup,1 < Θ

(

(nH(K))
1
α

α(1−δ)

∫ (nH(K))1−δ

(nH(K)(K1(n)−1)−α)1−δ

e−yC1,inf
y

δ
1−δ

y1+
1

α(1−δ)

dy

)

If y
2αδ−α−1
α(1−δ) < 1, that is if δ < 1/(2α) + 1/2, we obtain

Sup,1 < Θ

(

(nH(K))
1
α

α(1−δ)

∫ (nH(K))1−δ

(nH(K)(K1−1)−α)1−δ

e−yC1,infy
2αδ−α−1
α(1−δ) dy

)

< Θ

(

(nH(K))
1
α

α(1−δ)

∫ (nH(K))1−δ

(nH(K)(K1−1)−α)1−δ

e−yC1,infdy

)

< Θ
(

(nH(K))
1
α e−C1,inf(nH(K)(K1(n))

−α)1−δ
)

From (34) and (35), we get:

Sup,1 <























































Θ(n
1
α e

−C1,inf ) = O(n1/α) if α > 1, β > 1/α

Θ(n
1
α e

−C1,infn
(1−αβ)(1−δ)

) = o(1) if α > 1, β < 1/α

Θ(n log ne
−C1,inf ) = O(n log n) if α = 1, β = 1

Θ(n log nβe
−C1,inf (n

1−β log nβ)(1−δ)
) = o(1) if α = 1, β < 1

Θ(ne
−C1,inf ) = O(n) if α < 1, β = 1

Θ(nβ(α−1)+1e
−C1,infn

1−β
) = o(1) if α < 1, β < 1

Now we consider the second term in (37),Sup,2 ,

CnH(K)
∑K

k=K1
k−α. Note that this term exists only when

K1 = o(K), see (35). Since functionf(x) = x−α is
decreasing, by the integral test for series we obtain, forα > 1,

Sup,2 < nH(K)
(

K−α
1 +

∫K

K1
x−α dx

)

= nH(K)

(

K−α
1 +

K1−α
1 −K1−α

α− 1

)

≤ nH(K)
(

K−α
1 +K1−α

1 /(α− 1)
)

= Θ
(

nn−1 + nn
1−α
α

)

= Θ
(

n
1
α

)
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If α = 1, with the same calculation as above we obtain

Sup,2 < nH(K)
(

K−1
1 +

∫ K

K1
x−1 dx

)

= nH(K)
(

K−1
1 + logK − logK1

)

≤ nH(K)
(

K−1
1 + logK

)

= Θ
(

n log−1 n(n−1 log−1 n+ logn)
)

= Θ(n)

(39)

SummingSup,1 andSup,2, we obtain:

S =







O(n1/α) if α > 1, β > 1/α
o(1) if (α > 1, β < 1/α) ∨ (α ≤ 1, β < 1)
O(n) if α ≤ 1, β = 1

When, instead,P(Γk ≤ 1) < 1, for any β > 0 standard
concentration arguments allow to say that for any function
f(n) → ∞, a finite fraction of videos with indexk ≤ f(n)
will have w.h.p. an associated loadγk > 1. Since the
associated request rate for such videos scales linearly with n
(i.e., it scales faster that any sub-linear function), as immediate
consequenceS scales also linearly withn.

APPENDIX D
PROOF OFTHEOREM 3

First observe that ifdmax ≤ U , we do not really need load
equalization sinceγk < 1 ∀k even when we setqk = 0
∀k, thus we focus on the casedmax ≤ U (we emphasize,
however, that also in this case it is possible to devise a
scheme that equalizes the load following the same lines as
for the casedmax ≤ U ). Assumingdmax > U , observe that
to perfectly balance the load among all videos we need to
make the average number of seeds for a video proportional
to the average content downloading time. Indeed, resolving

the equationγk =
dmaxN

′

d,k

U(N
′

d,k+N
′

seed,k)
with respect toN

′

seed,k, we

obtainN
′

seed,k = dmax−γkU

γkU
N

′

d,k, thus to achieveγk = γ, ∀k

we need to enforce:N
′

seed,k = dmax−γU

γU
N

′

d,k. Now since the
distribution of downloaders among the videos is proportional,
by construction, to the average content downloading timeτ

′

k,
we get the assert.

Now according to the seed-freezing scheme, the average

number of seeds for videok, N
′

seed,k, can be partitioned
into two components: the average number of unassigned
peers which are currently acting as seeds for contentk, and
the average number ofk-content assigned seeds which are
currently seeding.

For what concerns the average number of unassigned seeds,
we can easily obtain it, applying Little law as the average
between the rate at which unassigned peers become seeds for
contentk times the average time they spend seeding content
k: (Λ + Λ1)pk(1 − qk)T cont,k, where Λ1 =

Λ(1−
∑

k pkqk)
∑

k pkqk
represents the aggregate rate of unassigned peers in the system
starting/ending a download. Similarly, the average numberof
assigned seeds can be computed again exploiting Little law as
the rate at which peers are assigned to contentk, (Λ+Λ1)pkqk
times the average time they spend seeding contentk as
assigned seeds which is givenT cont,k + (m− 1)T cont; in this
regard observe that the number of contents downloaded by
peers follows a geometric memoryless distribution.

Now considering any pair of different videosk, h, we can
balance the load between them if we are able to find values
0 ≤ qk ≤ 1 and 0 ≤ qh ≤ 1, in correspondence of which

ratio between seeds
N

′

seed,k

N
′

seed,h

becomes equal to the ratio between

downloadersτ
′

k

τ
′

h

, i.e., we have to force:

N
′

seed,k

N
′

seed,h

=
T cont,k + qk[(m− 1)T cont]

T cont,h + qh[(m− 1)T cont]
=

τ
′

k

τ
′

h

To achieve our goal under (8) first we sort all videos according

to the associated metric τ
′

k

T cont,k
. Let k0 be the video that

minimizes the associated metric:k0 = argmink
τ
′

k

T cont,k
. We

set qk0 = 0, for any other videok we obtainqk as solution
of:

T cont,k + qk[(m− 1)T cont]

T cont,k0

=
τ

′

k

τ
′

k0

i.e., qk = 1
(D−1)T cont

(

τ
′

kT cont,k0

τ
′

k0

− T cont,k

)

. Observe how-

ever thatqk is feasible only if it lies in the interval[0, 1];

qk ≥ 0, since by construction

(

τ
′

kT cont,k0

τ
′

k0

− T cont,k

)

≥
(

τ
′

k
T cont,k

τ
′

k

− T cont,k

)

= 0, furthermore, it turns out thatqk ≤ 1,

∀k iff (8) is satisfied.

APPENDIX E
PROOF OFTHEOREM 5

We first consider the load associated to individual stripes
(or videos). Note that we need to worry only about stripes re-
quiring bundling (i.e., those belonging to videos withγk ≥ γ),
since, by construction, the load of stripes initially having load
γk < γ, becomes, after applying the proposed equalization
technique, exactly equal toγ < γ′.

Consider a generic stripei belonging to a videok having
an initial loadγk ≥ γ. Let Si be the set of indexes of videos
(having initial load smaller thanγ) which are assigned (in total
or in part) to assist the distribution of stripei by the bundling
algorithm. After equalization, the new load induced by stripe
i (or, equivalently, by videok) is

γi =
λk

lk
M +

∑

j∈Si
λjpj,i

lk
M

λk
lk
Mγ

= γ

(

1 +

∑

j∈Si
λjpj,i

λk

)

(40)

wherepj,i is the probability that a peer dowloading videoj has
concurrently to download stripei (see scheme in Section V-B).
Unfortunately, the r.h.s. of (40) cannot always be made smaller
than γ′ by increasingM . Indeed, in the worst possible case
all videos (except videok) are assigned to videok, obtaining
the bound

∑

j∈Si
λjpj,i ≤ Λ/M (notice that theM stripes

of video k are equally bundled). However, the resulting ratio
Λ/(Mλk) can, in some cases, go to infinite as the system size
increases (for any finiteM ), especially for very unpopular
videos k. Note that this worst case can only happen when
videos j ∈ Si contribute a vanishing amount of bandwidth
∆Uj to the bundled stripe, making the scheme inefficient.

To overcome this problem, we need to modify the amount
of bandwidth devoted to the distribution of bundled data8.
Specifically, for each videoj havingγj < γ we compute the
amount of bandwidth∆U ′

j that, if subtracted to the average

8We preferred to describe this necessary modification of our scheme only
in this proof, and not in Section V-B, for the sake of a better presentation.
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upload bandwidth of a peer, makes the load of videoj equal
to (γ + γ′)/2:

djτj

(U −∆U ′
j)T j

=
γ + γ′

2

We remark that, under the modified scheme, the selection
of the stripe to be bundled to videos with an excess of
bandwidth is still performed by the algorithm described in
Section V-B, which is based on the original values of∆Uj.
Simple calculations lead to the following equation,

∆U ′
j = ∆Uj + U

γj
γ′

γ′ − γ

γ′ + γ

which permits to rewrite (40) as,

γi =
λk

lk
M +

∑

j∈Si
λjpj,i

lk
M

λk
lk
Mγ +

∑

j∈Si
λjpj,i

lj
γ′

γ′−γ
γ′+γ

(41)

Sinceγ < γ′, and using the fact thatlk ≤ lmax andlj ≥ lmin,
∀j, a sufficient condition such that the r.h.s. of (41) is smaller
thanγ′ is,

M >
lmax

lmin

γ′ + γ

γ′ − γ
= M1 (42)

At last, we show that also the overall system load, including
the impact of bundling, can be kept smaller thanγ′ by a proper
selection ofM . Indeed, in the worst possible case all peers
downloading a video have to additionally download a stripe of
the largest video. Hence the overall system load, after applying
the equalization scheme, can be upper bounded by

∑K
k=1 λklk +

lmax

M
∑K

k=1 λkU(τk + T seed)

The above quantity is smaller thanγ′ whenever

M >
lmax

lmin

γ

γ′ − γ
= M2

Since M1 > M2, by selectingM∗ = M1 we satisfy all
requirements about global, video-specific and stripe-specific
loads.
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For the sake of clarity we prove the theorem in the case of
a load balancing strategy by seed allocation (as described in
Section V-A), so that the system works at global loadγ′ such
that for all filek, γk < γ′ < 1. We suppose also to apply a full
video catalog warming approach (Section V-C). The proof can
be easily extended in the other cases, for example using stripe
bundling (Section V-B). Note that in this case each video is
divided intoM stripes, and thatUk becomes the users upload
bandwidth devoted to stripek.

In particular, we increase artificially the popularity of file
whoseλk is smaller than a polylog function of the number of
active usersn. More precisely, we impose the following new
request rate: for a certainz > 0 andc > 0,

λ
′

k = max{λk, c(log n)
z}, ∀k ≤ K

′

2, (43)

where K
′

2 is a threshold on the number of videos with
increased popularity, such that the system loadγ is still
smaller than1. Moreover, there exists a thresholdK

′

1 such
that λ

′

K
′

1

= c(logn)z . Thus we have that

K
′

1 = c−1/α(log n)−z/αn1/αH(K)1/α

= Θ(c−1/α(logn)−z/αn1/α)

where the last equality follows from the fact thatH(K) =
Θ(1) if α > 1. To sum up, we can distinguish among three
video categories:

λ
′

k =







λk if 1 ≤ k < K
′

1

c(logn)z if K
′

1 ≤ k < K
′

2

λk if K
′

2 ≤ k ≤ K

(44)

By formula (4) we know that system loadγ is proportional
to Λ = Θ(n). Thus we need to verify that the modified
popularitiesλ

′

k do not change the asymptotical behavior of
Λ. We have

∑K
′

2

k=K
′

1

λ
′

k = c(K
′

2 −K
′

1)(log n)
z

≤ cK
′

2(logn)
z

If β < 1, andK
′

2 ≡ K, the previous formula becomes
K

′

2
∑

k=K
′

1

λ
′

k = O(nβ(logn)z) = o(n),

thus we can conclude that the asymptotical behavior ofΛ is
the same as the passive strategy, and so the system load is still
smaller than1.

On the other hand, ifβ = 1, we cannot setK
′

2 ≡ K,
because we would obtainΛ = ω(n). The maximum value for
K

′

2 is thusK
′

2 ≡ n/(logn)z, so that we obtain:
K

′

2
∑

k=K
′

1

λ
′

k = O(n).

Now we can compute the bandwidth requested from servers,
and show that it tends to zero as the number of users
n grows to infinity. Essentially, we use the reasonings
in the proof of Theorem 2, in Appendix C. Note that
K

′

1 = Θ(c−1/α(log n)−z/αn1/α) is asymptotically smaller
than K1 = Θ(n1/α). As in equation (36), we computeS
as the sum of the contributions for all the videos in the three
categories:

S = S
′

up,1 + S
′

up,2 + S
′

up,3

≤
∑K

′

1−1
k=1 4λδ

ke
−C1,infλ

1−δ
k +

∑K
′

2−1

k=K
′

1

4cδ(logn)zδe−C1,infc
(1−δ)(logn)z(1−δ)

+
∑K

k=K
′

2
dkτkλk.

For the first sum in the previous equation, we can use the same
computation as in (38), and we obtain:

S
′

up,1 ≤ Θ
(

(nH(K))
1
α e−C1,inf(nH(K)(K

′

1(n))
−α)1−δ

)

= Θ
(

n
1
α e−C1,infc

1−δ(logn)z(1−δ)
)

(45)

Now we can setc =
(

C−1
1,inf(1 + ǫ)

)
1

1−δ

andz = 1
1−δ , for an

ǫ > 0, and we get:

S
′

up,1 = O
(

n
1
αn−(1+ǫ) = o(1).

)

(46)

For the second sum, we obtain:

S
′

up,2 < K
′

24c
δ(logn)zδe−C1,infc

1−δ(logn)z(1−δ) (47)

If β < 1, we have thatK
′

2 ≡ K = Θ(nβ), thusS
′

up,3 = 0,
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and we get

S
′

up,2 = O
(

nβcδ(log n)zδn−(1+ǫ)
)

= o(1) (48)

Thus, whenα > 1, 1/α < β < 1, we conclude thatS = o(1).
If α > 1 andβ = 1, we get:

S
′

up,2 = O

(

n

(logn)z
cδ(logn)zδn−(1+ǫ)

)

= o(1) (49)

For the third part, analogously to eq. (39) we obtain:

S
′

up,3 = O
(

nH(K)
(

(K
′

2)
1−α/(α− 1)

))

= O
(

n( n
(logn)z )

1−α
)

= O
(

n2−α(logn)
α−1
1−δ

)

(50)

Thus, we conclude thatS = Θ(S
′

up,3) when α > 1 and
β = 1 andS = o(1) whenα > 1, β < 1.
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We want to compute a lower bound onS based on (16). By
Lemma 1, we know thatNd,k is a Poisson distributed random
variable with parameterλk. We have that

P(Nd,k > 0) = 1− e−λkτk .

If λkτk → 0, we can use the Taylor expansion for the previous
expression, and we get:

P(Nd,k > 0) = 1− e−λkτk = λkτk + o(λkτk),

thus we obtain thatP(Nd,k > 0) = Θ(λkτk) if λkτk → 0.
On the other hand, whenλkτk does not tend to zero, we can
always say thatP(Nd,k > 0) = Θ(1). In the end we obtain

P(Nd,k > 0) = Θ (min(1, λkτk)) (51)

Consider now the probabilityP(Nseed,k = 0), that is the
probability that no peer is acting as a seed for filek: a peer is
not acting as a seed if it is in sleeping mode. We know that
the number of seedNseed,k is a Poisson distributed random
variable with parameterN seed,k:

P(Nseed,k = 0) = e−Nseed,k . (52)

We use now (51) and (52), and therefore (16) becomes:
S ≥

∑K
k=1 dkP(Nd,k > 0)P(Nseed,k = 0)

= Θ
(

∑K
k=1 dk (min(1, λkτk)) e

−N seed,k

)

(53)

Remembering that the minimumλk is equal to

λK = infk λk

= Θ(K−αnH(K))

=







Θ(n1−βα) if α > 1
Θ(n1−β logn) if α = 1
Θ(n1−β) if α < 1

(54)

and that the quantitiesdmin andτmin do not depend onn, we
obtain that

S ≥ Θ
(

dminλKτmin
∑K

k=1 e
−N seed,k

)

= Θ
(

dminλKτmin
∑K

k=1 e
−N seed,k

)

≥ Θ
(

dminλKτmin
∫K+1

1 e−N seed(x) dx
)

(55)

We use now Jensen’s inequality in the following form. Letϕ
be a convex function on the real line and letf : [a, b] ⊆ R →

R be a non-negative real-valued function that is Lebesgue-
integrable. Then it holds:
∫ b

a

ϕ((b− a)f(x)) dx ≥ (b− a)ϕ

(

∫ b

a

f(x) dx

)

(56)

We make use of (56) witha = 1, b = K + 1, f(x) =
N seed(x)/K, ϕ(x) = e−x and we get

S ≥ Θ
(

dminτminλKKe−
∫ K+1
1

N seed(x)/K dx
)

= Θ
(

dminτminλKKe−n/K
)

= Θ
(

dminτminλKnβe−n1−β
)

=



















Θ
(

dminτminn
1−βαnβe−n1−β

)

if α > 1

Θ
(

dminτminn logne−n1−β
)

if α = 1

Θ
(

dminτminne
−n1−β

)

if α = 1

(57)
In the previous formula, every timeβ < 1, the exponential

functione−n1−β

goes to zero asn → ∞, and we get a trivial
lower boundS ≥ 0. On the other hand, ifβ = 1, we obtain:

S ≥







Θ
(

n2−α
)

if α > 1, β = 1
Θ (n logn) if α = 1 β = 1
Θ (n) if α = 1, β = 1

(58)

Note that, beingn a trivial upper bound toS, in the end
we obtain the following result:

S ≥ Θ
(

n2−αe−1
)

if α > 1, β = 1
S = Θ(n) if α ≤ 1, β = 1

(59)

Delia Ciullo received the Master degree in Telecom-
munications Engineering and the Ph.D. degree in
Electronics and Communications Engineering, both
from Politecnico di Torino in 2007 and 2011, re-
spectively. In 2009, she has been a visiting student
at the CNRG group of MIT. Between 2012 and 2013
she was a post-doc ERCIM fellow at INRIA Sophia
Antipolis. She is currently a post-doc researcher at
EURECOM Sophia-Antipolis, France.

Valentina Martina received the Master degree
in Mathematical modeling in Engineering and the
Ph.D. degree in Electronics and Communication
Engineering, both from Politecnico di Torino in 2007
and 2011, respectively. In 2010, she has been a
visiting student at the Technicolor Paris Research
Lab. She is currently a post-doc at Politecnico di
Torino.

Michele Garetto (M’04) received the Dr.Ing. degree
in Telecommunication Engineering and the Ph.D. de-
gree in Electronic and Telecommunication Engineer-
ing, both from Politecnico di Torino, Italy, in 2000
and 2004, respectively. In 2002, he was a visiting
scholar with the Networks Group of the University
of Massachusetts, Amherst, and in 2004 he held
a postdoctoral position at the ECE department of
Rice University, Houston. He is currently assistant
professor at the University of Torino, Italy.

Emilio Leonardi (M’99, SM’09) is an Associate
Professor at the Dipartimento di Elettronica of Po-
litecnico di Torino. He received a Dr.Ing degree
in Electronics Engineering in 1991 and a Ph.D.
in Telecommunications Engineering in 1995 both
from Politecnico di Torino. His research interests are
in the field of performance evaluation of wireless
networks, P2P systems, packet switching.


