Algorithms for MapReduce and Beyond 2014

Determining the k in k-means with MapReduce

Thibault Debatty, Pietro Michiardi, Wim Mees & Olivier Thonnard

Clustering & k-means

Clustering

K-means

[Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28:129–137, 1982.]

- 1982 (a great year!)
- But still largely used
- Drawbacks (amongst others):
 - Local minimum
 - K is a parameter!

Clustering & k-means

- Determine k:
 - VERY difficult
 [Anil K Jain. Data Clustering : 50 Years Beyond K-Means. Pattern Recognition Letters, 2009]
 - Using cluster evaluation metrics:
 Dunn's index, Elbow, Silhouette, "jump method" (based on information theory), "Gap statistic",...

O(k²)

G-means

[Greg Hamerly and Charles Elkan. Learning the k in kmeans. In Neural Information Processing Systems. MIT Press, 2003]

• K-means : points in each cluster are spherically distributed around the center

G-means

[Greg Hamerly and Charles Elkan. Learning the k in kmeans. In Neural Information Processing Systems. MIT Press, 2003]

• K-means : points in each cluster are spherically distributed around the center

normality test & recursion

- Challenges:
 - 1. Reduce I/O operations
 - 2. Reduce number of jobs
 - 3. Maximize parallelism
 - 4. Limit memory usage

• Challenges:

1. Reduce I/O operations

- 2. Reduce number of jobs
- 3. Maximize parallelism
- 4. Limit memory usage

2. Reduce number of jobs

```
PickInitialCenters
while Not ClusteringCompleted do
KMeans
KMeansAndFindNewCenters
TestClusters
end while
```

Maximize parallelism Limit memory

usage

TestClusters

Map(key, point)
 Find cluster
 Find vector
 Project point on vector
 Emit(cluster, projection)
end procedure

Reduce(cluster, projections)
 Build a vector
 ADtest(vector)
 if normal then
 Mark cluster
 end if
end procedure

3. Maximize parallelism

4. Limit memory USage (risk of crash)

TestClusters

Map(key, point)
 Find cluster
 Find vector
 Project point on vector
 Emit(cluster, projection)
end procedure

Reduce(*cluster*, *projections*) Build a *vector* ADtest(*vector*) if normal then Mark *cluster* end if end procedure Bottleneck

Test**Few**Clusters

```
Map(key, point)
   Find cluster
   Find vector
   Project point on vector
   Add projection to list
end procedure
```

```
Close()

For each list do

Build a vector

A2 = ADtest(vector)

Emit(cluster, A2)

End for each

end procedure

In memory combiner
```

TestClusters

```
Map(key, point)
   Find cluster
   Find vector
   Project point on vector
   Emit(cluster, projection)
end procedure
```

Reduce(*cluster*, *projections*) Build a *vector* ADtest(*vector*) if normal then Mark *cluster* end if end procedure

Comparison

	MR multi-k-means		MR G-means	
Speed				
		all possible values of k in a single job		
Quality				

Comparison

	MR multi-k-means	MR G-means
Speed	O(nk ²) computations	O(nk) computations
		<pre>But: • more iterations • more dataset reads • log₂(k)</pre>
Quality		New centers added if and where needed
		But: tends to overestimate k!

Experimental results : Speed

- Hadoop
 Synthetic dataset
 10M points in R¹⁰
 Euclidean distance
 - 8 machines

Experimental results : Quality

k	100	200	400					
				x ~1.5				
k _{found}	150	279	639					
Within Cluster Sum of Square								
(less is better)								
MR G-means	3.34	3.33	3.23					
multi-k-means	3.71	3.6	3.39					
(with same k)								

- Hadoop
 Synthetic dataset
 10M points in R¹⁰
 Euclidean distance
- 8 machines

Conclusions & future work...

- MapReduce algorithm to determine k
- Running time proportional to k
- Future:
 - Overestimation of k
 - Test on real data
 - Test scalability
 - Reduce I/O (using Spark)
 - Consider skewed data
 - Consider impact of machine failure

Thank you!