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ABSTRACT

Mobile users are envisioned to exploit direct communication oppor-
tunities between their portable devices, in order to enrich the set of
services they can access through cellular or WiFi networks. Shar-
ing contents of common interest or providing access to resources
or services between peers can enhance a mobile node’s capabili-
ties, offload the cellular network, and disseminate information to
nodes without internet access. Interest patterns, i.e. how many
nodes are interested in each content or service (popularity), as well
as how many users can provide a content or service (availability)
impact the performance and feasibility of envisioned applications.
In this paper, we establish an analytical framework to study the
effects of these factors on the delay and success probability of a
content/service access request through opportunistic communica-
tion. We also apply our framework to the data offloading problem
and provide insights for its optimization.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Store and forward net-
works, Wireless communication; C.4 [Performance of Systems]:
Modeling techniques

Keywords

Performance analysis; Opportunistic networks; Mobile data offload-
ing

1. INTRODUCTION
Opportunistic or Delay Tolerant Networks (DTNs) consist of

mobile devices (e.g. smartphones, laptops) that can exchange data
using direct communication (e.g. Bluetooth, WiFi Direct) when
they are within transmission range. While initially proposed for
communication in extreme environments, the proliferation of “smart”
mobile devices has led researchers to consider opportunistic net-
works as a way to support existing infrastructure and/or novel ap-
plications, like file sharing [1, 2], crowd sensing [3, 4], collabo-
rative computing [5, 6], offloading of cellular networks [7, 8, 9],
etc.
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This trend is also shifting the focus from end-to-end to content-

centric communications. Some content- centric applications for
which opportunistic networking has been considered are: (i) con-
tent sharing [1, 10, 11]: the source(s) of a "content" (e.g. multime-
dia file, web page) might want to distribute it (e.g. user generated
content) or is willing to share it with other nodes (e.g. content
downloaded earlier); (ii) service or resource access [5, 6]: nodes
offer access to resources (e.g. Internet access) or services (e.g.
computing resources); (iii) mobile data offloading [7, 8, 9]: the
cellular network provider, instead of serving separately each node
requesting a given "content" (e.g. a popular video, or software up-
date), distributes a few copies of the "content" in some relay nodes
(or holders) and they can further forward it to any other node that
makes a request for it.

The performance of these mechanisms highly depends on who is
interested, in what, and where it can be found (i.e. which other
nodes have it). While the effect of node mobility has been ex-
tensively considered (e.g. [1, 10, 12]) content popularity has been
mainly considered from an algorithmic perspective (e.g [9, 11]),
and in the context of a specific application. Despite the inherent
interest of these studies, some questions remain: Would a given al-
location policy work well in a different network setting? Are there
interest patterns that would make a scheme generally better than
others? Key factors like content popularity and content availability
might impact the performance or even decide the feasibility of a
given application altogether. In this paper, we try to provide some
initial insight into these questions, by contributing along the fol-
lowing key directions:

• We propose a simple analytical framework that is applica-
ble to a range of mobility and content popularity patterns
seen in real networks; to our best knowledge, this is the first
application-independent effort in this direction (Section 2).

• We provide closed form expressions for important metrics
that require few statistics about the aggregate node mobil-
ity and content popularity; these results facilitate online per-
formance prediction and protocol tuning, compared to ap-
proaches requiring detailed per node statistics, as e.g. [9]
(Section 3).

• While a detailed application-specific optimization is beyond
the scope of this paper, we demonstrate how our analysis can
be applied to an example application, mobile data offloading,
and can help optimize its performance in a generic setting
(Section 4).

Finally, we discuss related work in Section 5, and conclude our
paper in Section 6.



2. NETWORKMODEL

2.1 Mobility Model
We consider a network N , where N nodes move in an area,

much larger than their transmission range. Data packet exchanges
between a pair of nodes can take place only when they are in prox-
imity (in contact). Hence, the time points, when the contact events
take place, and the nodes involved, determine the dissemination of
a message.

We assume that the sequence of the contact events between nodes
i and j is given by a random point process with rate λij

1. Analy-
ses of real-world traces suggest that the times between consecutive
contacts for a given pair can often be approximated (completely
or in the tail) as either exponentially [13, 14] or power-law (e.g.
pareto) distributed [15]. Both distributions can be described with
a main parameter λij (the contact rate), and our analysis will be
applied to both.

Hence, we can describe the networkN with the contact (or meet-
ing) rates matrix Λ = {λij}. Depending on the underlying mobil-
ity process, there might be large differences between the different
λij values in this matrix. Furthermore, it is often quite difficult,
in a DTN context, to know Λ exactly, or estimates might be rather
noisy. For these reasons, we consider the following simple model
for Λ:

Assumption 1. The contact rates λij are drawn from an arbitrary

distribution with probability density function fλ(λ) with known

mean µλ and variance σ2
λ (CVλ = σλ

µλ
).

By choosing the right function fλ the above model can capture
heterogeneity in the pairwise contact rates, or noise in the esti-
mates. In practice, one would fit the empirical distribution observed

in a given measurement trace with an f̂λ and use it in the analysis.

2.2 Content Traffic Model
We assume that each node might be interested in one or more

“contents”. A content of interest might refer to (i) a single piece
of data (e.g. a multimedia file, a google map) [7], (ii) all mes-
sages/data belonging to a category of interests (e.g. local events,
financial news) [2, 16], (iii) updates and feeds (e.g. weather fore-
cast, latest news) [17], etc.

A number of content-sharing applications and mechanisms have
been proposed in previous literature, from publish-subscribe mech-
anisms to “channel”-based sharing and device-to-device offloading,
etc., (e.g. [2, 3, 4, 17]). To proceed with our analysis we need to
setup a simple model of content/service access that can yet capture
different (but of course not all) content-centric applications and ap-
proaches.

The main notation we use in our model and analysis is summa-
rized in Table 1.

2.2.1 Content Popularity

We assume that when a node is interested in a content or service,
it queries other nodes it directly encounters for it. We denote the
event that a node i ∈ N is interested in a contentM (or, equiv-
alently, i requestsM) as: i → M. We further denote the set of
all the contents that nodes are interested in, as: M = {M : ∃i ∈
N , i→M}. |M| = M , where | · | denotes the cardinality of a set.

1We ignore the contact duration and assume infinite bandwidth;
assumptions that are common (e.g. [1, 9]) and orthogonal to the
problem we consider here.

Definition 1 (Content Popularity). We define the popularity of a

contentM as the number of nodesN
(M)
p that are interested in it2:

N
(M)
p = |C(M)

p |, where C(M)
p = {i ∈ N : i→M} (1)

We further denote the percentage of contents with a given popular-

ity value n as

Pp(n) =
1

M

∑

M∈M

I
N

(M)
p =n

, n ∈ [0, N ] (2)

where I
N

(M)
p =n

= 1 when N
(M)
p = n and 0 otherwise.

In other words, Pp(n) defines a probability distribution over the
different contents and associated popularities. In practice, it can be
chosen according to common practices (e.g. skewed, pareto) [1, 9,
11], or be fitted to real data, if available.

2.2.2 Content Availability

We assume that a request for a content or service is completed,
when (and if) a node that holds (a copy of) the requested content
is directly encountered. We denote the event that a node i holds (a
copy of) a contentM as i ← M, and we define the availability

N
(M)
a of a contentM as

Definition 2 (Content Availability). The availability of a content

messageM is defined as the number of nodes N
(M)
a that hold a

copy of it.

N
(M)
a = |C(M)

a |, where C(M)
a = {i ∈ N : i←M} (3)

The availability of a given content might often (although not al-
ways) be correlated with the popularity of that content. A cellu-
lar network provider might allocate more holders for popular con-
tents [9]. In a content-sharing setting, where some nodes might be
more willing than others to maintain and share (“seed”) a content
after they’ve downloaded and “consumed” it, popular content will
end up being shared by more nodes. We will model such correla-
tions in a probabilistic way, as follows.

Definition 3 (Availability vs. Popularity). The availability of any
content messageM is related to its popularity through the relation

P{N (M)
a = m|N (M)

p = n} = g(m|n) (4)

The above conditional probabilities can describe a wide range
of cases where availability depends on popularity, and some ad-
ditional randomness might be present due to factors like: natural
churn in the nodes sharing the content, content-dependent differ-
ences in the sharing policies applied by nodes, estimation noise,
etc. Some special cases of this model include: (i) uncorrelated
availability, where g(m|n) ≡ g(m); (ii) deterministic availability,
where:

N
(M)
a = ρ

(

N
(M)
p

)

⇔ g(m|n) =
{

1, m = ρ(n)
0, otherwise

where ρ(n) : [1, N ] → [0, N ] can be an arbitrary function. One
such example could be a deterministic approximation of g(m|n)
with its average value, namely ρ(n) = ḡ(n) ≡∑m m · g(m|n).

3. ANALYSIS OF CONTENT REQUESTS
We will now analyze how different popularity, availability, and

mobility patterns (possibly arising from different applications, poli-
cies, and network settings) affect key metrics like: (i) the delay to

2This could be an average, calculated over some time window.



Table 1: Important Notation

MOBILITY (Section 2.1)

λij Contact rate between nodes i and j

fλ(λ) Contact rates distribution

µλ, σ
2
λ Mean value/ variance of contact rates, CVλ =

σλ
µλ

CONTENT TRAFFIC (Section 2.2)

i→M Node i is interested / requests contentM
M Set of contents in the network, |M| = M .

N(M)
p Popularity of contentM Def. 1

C(M)
p Set of nodes interested in contentM Def. 1

Pp(n) Probability distribution of content popularity Eq. (2)

i←M Node i holds a copy of contentM

N(M)
a Availability of contentM Def. 2

C(M)
a Set of nodes that hold a copy of contentM Def. 2

g(m|n) Availability - Popularity relation Def. 3

ρ(n) Deterministic case for g(m|n)
g(n) The average value of g(·|n)
ANALYSIS (Section 3.1)

P req.
p (n) Popularity distribution of a random request Lemma 3.1

P req.
a (n) Availability distribution of a random request Lemma 3.2

Tij Time of next meeting between nodes i and j

TM Content access time

XM Sum of meeting rates of j and nodes ∈ C(M)
a Eq. (6)

access a content of interest, (ii) the probability to retrieve a content
before a deadline. A key parameter for these metrics is the number
of holders for the requested content (availability). The higher this
number, the sooner a requesting node will encounter one of them.

While content availability might sometimes be time dependent [11],
or the content holders might be chosen based on their mobility
properties [9], we first make two additional assumptions that allow
us to derive simple, useful expressions. In Section 3.3, we relax
both these assumptions.

Assumption 2. The popularity N
(M)
p and availability N

(M)
a of a

contentM do not change over time.

Assumption 3. The set of requesters C(M)
p and holders C(M)

a of a

contentM are independent of node mobility.

Assumption 2 is valid (or a good approximation), for example,
when the number of holders is chosen by the cellular operator [8,
9] or content provider, and other nodes cannot act as holders or do
not have incentives to do so. It is also valid when a given service
(e.g. Internet access, or specific sensor) is offered only by a cer-
tain number of devices [6], or the “content” refers to a channel or
category and not a particular file [17]. Nevertheless, if a content
is disseminating and new nodes are willing to share it [7], then it’s
availability might change over time.

Assumption 3 is a reasonable approximation when a mobility

oblivious allocation policy is considered (e.g. [11], or the homo-
geneous algorithm of [9]) or when there is no knowledge of the
interests-mobility correlation, if any. Nevertheless, there exist sce-
narios where who holds what content might depend on the contact
rates with other nodes [10, 9].

3.1 Preliminary Analysis
Assume we observe the network for a long time, during which a

large number of requests have been made. Assume further that we
pick one such request randomly, which happens to be for content
M, and we want to predict its performance. We need to answer the
following two questions:

Q.1 What is the popularity ofM?

Q.2 How fast does a requesting node meetM’s holders?

Q.1 is needed to predict the availability forM, which according
to Assumption 2 does not depend on the exact time of the request.
Given the availability ofM, Q.2 will estimate the (sum of) contact
rates between the requesting node and the holders, according to
Assumptions 1 and 3.
Answering Q.1

It is easy to see that the popularity ofM should be proportional
to Pp(n): the higher the number of different contents with a popu-
larity value n, the higher the chance thatM will be of popularity
n. However, the higher the popularity of a content, the more the
requests made for it. Hence, a first important observation is that the
popularity of the content of such a random request is not distributed
as Pp(n) but is also proportional to the popularity value n.

Consider a stylized example, where only two contents exist in
the network, content A with popularity value 10 and content B
with popularity value 1. Hence, “half” the contents are of high
popularity (10), and “half” of low (1), or in other words Pp(10) =
Pp(1) =

1
2
. However, if we observe the network for a long time, 10

times more requests will be made, on average, for content A. Con-
sequently, if we select a request randomly, there is a 10× higher
chance that it will be for content A, that is, for the content of pop-
ularity 10. Normalizing to have a proper probability distribution
gives us the following lemma.

Lemma 3.1. The probability that a random request is for a content

of popularity equal to n is given by

P
req.
p (n) =

n

Ep[n]
· Pp(n)

where Ep[n] =
∑

n n · Pp(n) is the average content popularity
3.

Answering Q.2

The answer to question Q.2 consists of two separate steps: (i) we
calculate the number of holders ofM, and then (ii) we calculate
how fast the requesting node can meet these holders. Towards an-
swering (i), Lemma 3.2 maps the popularity of the content involved
in a random request (derived in Lemma 3.1) to the number of hold-
ers for this content. This number is a random variable dependent
both on the popularity distribution Pp(n), and on the availability
function g(m|n).

Lemma 3.2. The probability that a random request is for a content

of availability equal tom is given by

P
req.
a (m) =

Ep[n · g(m|n)]
Ep[n]

Proof. For a random request for contentM, using the property of
conditional expectation, we can write [18]:

P
req.
a (m) =

∑

n

P{N (M)
a = m|N (M)

p = n} · P req.
p (n)

where P req.
p (n) is defined in Lemma 3.1. Substituting, from Def. 3

and Lemma 3.1, the above terms, we successively get

P
req.
a (m) =

∑

n

g(m|n) · n

Ep[n]
· Pp(n)

=

∑

n g(m|n) · n · Pp(n)

Ep[n]
=

Ep[n · g(m|n)]
Ep[n]

which proves the Lemma.

3We use subscript p to denote an expectation over the popularity
distribution Pp(n), and n denotes the random popularity values.



Table 2: Performance Metrics when fλ ∼ Gamma with µλ, CVλ

and Pp(n) ∼ Pareto(n0, α = 2).

ρ(n) = c · n E[TM] = 1
µλ·CV 2

λ





c·n0

CV 2
λ

· ln





1

1−
CV 2

λ
c·n0



− 1





ρ(n) = c · ln(n) P{TM ≤ TTL} = 1− 1

(1+ln(γ))·γln(n0)

where γ = (1 + µλ · CV 2
λ
· TTL)

c

CV 2
λ

Having computed the statistics for the content availability, we
can now calculate how fast the requesting node, say j, meets any

of the holders i (i.e. nodes i ∈ C(M)
a ). As discussed in Section 2.1,

the inter-contact intervals are shown to be either exponentially or
pareto distributed:
Exponential Inter-Contact Times. Let Tij denote the inter-contact

times between node j and a node i ∈ C(M)
a , and let Tij be exponen-

tially distributed with rate λij . If we denote with TM the first time

until j meets any of the nodes i ∈ C(M)
a (and, thus, accesses the

content), then: TM = min
i∈C

(M)
a
{Tij}, i.e. TM is distributed as

a minimum of exponential random variables, and it holds that [18]:

TM ∼ exp (XM) ⇔ P{TM > t} = e
−XM·t

(5)

where

XM =
∑

i∈C
(M)
a

λij (6)

Pareto Inter-Contact Times. Inter-contact times between node j

and a node i ∈ C(M)
a are pareto distributed with shape and scale

parameters αij and t0, respectively:

Tij ∼ pareto(αij)⇔ P{Tij > t} =
(

t0
t

)αij (7)

Then, it can be shown for TM = min
i∈C

(M)
a
{Tij} that

TM ∼ pareto(AM)⇔ P{TM > t} =
(

t0
t

)AM (8)

where AM =
∑

i∈C
(M)
a

αij .

Remark: In this case the contact rates will be λij = 1
E[Tij ]

=

1
t0
·
(

1− 1
αij

)

, αij > 1. However, for simplicity, we can use

the parameters αij instead of the rates λij , and, correspondingly, a
distribution fα(α), instead of fλ(λ).

Clearly, knowingXM (resp. AM) is needed to proceed with the
desired metric derivation. Based on the preceding discussion, XM

(resp. AM) is a random variable that depends on: (i) the number of

content holders m (i.e. the cardinality of set C(M)
a in Eq.(6)), and

(ii) the meeting rates with the holders. Applying Assumption 3, it
holds that, conditioning on m, XM (Eq. (6)) is a sum of m i.i.d.
random variables λij ∼ fλ(λ), i.e

XM ∼ fmλ(x) = (fλ ∗ fλ · · · ∗ fλ)m , (9)

where ∗ denotes convolution, and mean value [18]:

E[XM|N (M)
a = m] = Emλ[x] = m · µλ (10)

Similarly, for Pareto intervals (fa(α), µα):

AM ∼ fmα(x) = (fα ∗ · · · ∗ fα)m , Emα[x] = m · µα

Due to space limitations, the remaining analysis will refer to the
case of exponential inter-contact times. The analysis for the Pareto
case is similar; when necessary, we might highlight if there are any

major differences. We refer the interested reader to [19] for the
detailed results of the Pareto case.

3.2 Performance Metrics
We consider two main performance metrics: the average delay

and delivery probability. Based on the analysis of Section 3.1, we
derive results under generic content traffic (i.e. Pp(n) and g(m|n))
and mobility (i.e. fλ(λ)) patterns.

3.2.1 Content Access Delay

Result 1. The expected content access delay can be computed with

the expression

E[TM] =
1

Ep[n]
·Ep

[

n ·
∑

m

Emλ

[

1

x

]

· g(m|n)
]

Proof. The time TM a node j needs to access a contentM is ex-
ponentially distributed with rate XM. However, XM is a random
variable itself, distributed with fmλ(x) (Eq. (9)). Thus, we can
write for the expected content access delay:

E[TM] =
∑

m

E[TM|N (M)
a = m] · P req.

a (m)

=
∑

m

∫

E[TM|XM = x,N
(M)
a = m] · fmλ(x)dx · P req.

a (m)

=
∑

m

∫

1

x
· fmλ(x)dx · P req.

a (m) (11)

The last equality follows from the fact that the expectation of an
exponential4 random variable with rate x is 1

x
.

Expressing the integral in Eq. (11) as an expectation over the
fmλ(x) and substituting P req.

a (m) from Lemma 3.2, gives

E[TM] =
∑

m

Emλ

[

1

x

]

· Ep[n · g(m|n)]
Ep[n]

=
1

Ep[n]
·
∑

m

Emλ

[

1

x

]

·Ep[n · g(m|n)] (12)

Rearranging the expectations and summation in Eq. (12) we get the
expression of Result 1.

If the functions fλ(λ), g(m|n) and Pp(n) are known, the ex-
pected delay E[TM] can be computed directly from Result 1, as
shown in the following example.

Example Scenario: The contact rates (fλ) follow a gamma dis-

tribution, as suggested in [20], with µλ and CVλ. Content popu-
larity Pp(n) is Pareto distributed, as observed in [21], with scale

and shape parameters n0 and α = 2, respectively. Finally, we
consider a (deterministic) allocation of holders, ρ(n) = c · n (see
Section 2.2.2). Then a closed form expression for E[TM ] is given
in the first row of Table 2.

However, in a real implementation, it might not be always possi-
ble to know the exact distributions of the contact rates (fλ) and/or
the availabilities (g(m|n)), needed to compute the expression of
Result 1. In the following theorem, we derive an expression for
E[TM ] that requires only the average statistics (which are much
easier to estimate or measure in a real scenario), namely (i) the
mean value of the contact rates, µλ, and (ii) the average availability
for contents of a given popularity, g(n).

4Considering Pareto intervals, one only needs to change the inte-

gral in Eq. (11) as:
∫

x·t0
x−1
· fmα(x)dx.



Theorem 3.3. A lower bound for the expected content access delay

is given by

E[TM] ≥ 1

µλ ·Ep[n]
·Ep

[

n

g(n)

]

Proof. In Result 1 we can express Emλ

[

1
x

]

as Emλ[h(x)], where

h(x) = 1
x
. Since h(x) is a convex function, applying Jensen’s

inequality, i.e. h (E[x]) ≤ E[h(x)], gives

Emλ

[

1

x

]

≥ 1

Emλ[x]
=

1

m · µλ

(13)

where, in the equality, we used Eq. (10).
Substituting Eq. (13) in the expression of Result 1, gives

E[TM] ≥ 1

µλ ·Ep[n]
·Ep

[

n ·
∑

m

1

m
· g(m|n)

]

(14)

The sum in Eq. (14) is the expectation over g(·|n), i.e.
∑

m

1

m
· g(m|n) = Eg

[

1

m

]

(15)

Applying, as before, Jensen’s inequality, we get

∑

m

1

m
· g(m|n) = Eg

[

1

m

]

≥ 1

Eg[m]
=

1

g(n)
(16)

where we used for Eg[m] the notation g(n).
Combining Eq. (16) and Eq. (14), the expression of the theorem

follows directly.

3.2.2 Content Access Probability

One often needs to also know the probability that a node can
access a content by some deadline, i.e. P{TM ≤ TTL}. E.g, a
node might lose its interest in a content (e.g. news) after some time,
or in an offloading scenario a node might decide to access a content
directly to the base station.

Result 2. The probability a content to be accessed before a time

TTL can be computed with the expression

P{TM ≤ TTL} = 1− Ep

[

n ·∑m Emλ

[

e−x·TTL
]

g(m|n)
]

Ep[n]

Proof. Conditioning on the values ofN
(M)
a andXM, as in Eq. (11),

we can write:

P{TM ≤ TTL} =

=
∑

m

∫

P{TM ≤ TTL|XM = x,N
(M)
a = m} · fmλ(x)dx · P req.

a (m)

= 1−
∑

m

∫

e−x·TTL · fmλ(x)dx · P req.
a (m) (17)

where the last equality follows because TM is exponentially5 dis-
tributed with rate XM = x. After some similar steps as in Theo-
rem 3.3, the final result follows.

The expression of Result 2 for the example scenario of Sec-
tion 3.2.1, with a different allocation function ρ(n) = c · ln(n),
is given in the second row of Table 2.

5In the Pareto case, the integral in Eq. (17) changes as:
∫ (

t0
TTL

)x ·
fmα(x)dx, for TTL ≥ t0.

Figure 1: Markov Chain for the dissemination of a content with
initial popularity and availability n and m, respectively.

Theorem 3.4. An upper bound for the probability to access a con-

tent by a time TTL is given by

P{TM ≤ TTL} ≤ 1− 1

Ep[n]
· Ep

[

n · e−g(n)·µλ·TTL
]

Proof. The bound follows easily by observing that h(x) = e−x·TTL

is a convex function, and applying Jensen’s inequality and the method-
ology of Theorem 3.3.

3.3 Extensions
In this section, we study how the results of Section 3.2 can be

modified, when we remove the Assumptions 2 and 3. Due to space
limitations, we state only the main findings; the detailed proofs can
be found in [19].

3.3.1 Popularity / Availability Time Dependence

Let us assume a scenario where, initially, some nodes hold some
content items (e.g. data files), in which some other nodes are in-
terested. This can be, for example, a content sharing scenario with
contents being, e.g., some google maps. When a node interested in
a content item, meets a holder and gets the content, it can hold it in
its memory and act as a holder too. Specifically, we describe such
scenarios as:

Definition 4.

I. When a requester accesses a content, acts as a holder for it.

II. The initial content popularity and availability patterns are given
by Pp(n) and g(m|n).

Result 3. Under time changing availability / popularity (Def. 4),

the expected content access delay is approximately given by

E[TM] =
1

µλ ·Ep[n]
·Ep

[

ln

(

1 +
n

g(n)

)]

Sketch of proof: Let us consider a contentM of initial popularity

N
(M)
p (0) = n and availability N

(M)
a (0) = m. When the first

requester accesses the content, the number of holders will increase
to m + 1 and the remaining requesters will be n − 1. Building a
Markov Chain as in Fig. 1, where each state denotes the number
of holders, it can be shown for the expected delay of moving from
statem+k to statem+k+1, k ∈ [0, 1], that it holdsE[Tk,k+1] ≈

1
(m+k)·(n−k)·µλ

. Computing the times E[Tk,k+1] and averaging

over all the contents, gives the expected delay.
The model of Def. 4 can be further extended, e.g. for scenarios

where nodesmight act as holders (with some probability) or holders
can also drop some contents. We defer such a study as a part of a
future work.

3.3.2 Mobility Dependent Allocation

Definition 5 (Mobility Dependent Allocation). The probability πij

a node i to be a holder for a content in which a node j is interested,
is related to their contact rate λij such that πij = π(λij), where
π(·) is a function from R+ to [0, 1].



Result 4. Under Def. 5, Theorems 3.3 and 3.4 and Result 3 hold if

we replace µλ with µ
(π)
λ , where

µ
(π)
λ =

Eλ[λ · π(λ)]
Eλ[π(λ)]

where Eλ[·] denotes an expectation taken over the contact rates

distribution fλ(λ) (Assumption 1).

Sketch of proof: Since the requesters-holders contact rates are
mobility dependent, the contact rates between them are not dis-
tributed with the contact rates distribution fλ(λ), but with a modi-
fied version of it, i.e. with a distribution:

fπ(λ) =
1

Eλ[π(λ)]
· π(λ) · fλ(λ)

Hence, Eq. (9) and Eq. (10) need to be modified as:

XM ∼ fmπ(x) = (fπ ∗ fπ · · · ∗ fπ)m
E[XM|N (M)

a = m] = Emπ[x] = m · Eλ[λ · π(λ)]
Eλ[π(λ)]

= m · µ(π)
λ

Example Scenario. The holders of a contentM are selected
taking into account their contact rates with the requesters, as fol-
lowing: Each node i (candidate to be a holder) is assigned a weight
wi =

∏

j∈C
(M)
p

λij . Using such weights, the selection of holders

that rarely meet the requesters is avoided. Then, each node is se-

lected to be one of theN
(M)
a holders with probability pi =

wi∑
i wi

.

With respect to Def. 5, it turns out that this mechanism is (approx-
imately) described by π(λ) = c · λ. Substituting π(λ) in Result 4,
gives

µ
(π)
λ =

Eλ[λ · π(λ)]
Eλ[π(λ)]

=
Eλ[λ

2]

Eλ[λ]
= µλ · (1 + CV

2
λ ) (18)

3.4 Model Validation
As a first validation step, we compare our theoretical predictions

to synthetic simulation scenarios conforming to the models of Sec-
tion 2, in order to consider (a) various mobility and content traffic
patterns, and (b) large networks.

Simulation Scenarios: We assign to each pair {i, j} a contact
rate λij , which we draw randomly from a distribution fλ(λ), and
create a sequence of contact events (Poisson process with rate λij).
Then, we create M contents and assign to each of them a popu-

larity value (N
(M)
p ), drawn from the distribution Pp(n). Accord-

ing to the given function g(m|n), we assign the availability values

(N
(M)
a ). Finally, for each content M, we randomly choose the

N
(M)
p nodes that are interested in it and itsN

(M)
a holders.

Mobility / Popularity patterns: In most of the scenarios we present,
we use the gamma distribution for the contact rates (i.e. fλ(λ)),
since it has been shown to match well characteristics of real con-
tact patterns [20]. Also, content popularity in mobile social net-
works has been shown to follow a power-law distribution, e.g. [21].
Therefore, we select Pp(n) to follow Discrete (Bounded) Pareto or
Zipf distributions, similarly to the majority of related works [11, 9,
1].

In Fig. 2 we present the simulation results, along with our theo-
retical predictions, in scenarios of N = 10000 nodes with varying
mobility and content popularity patterns. The mean contact rate is
µλ = 1 and content popularity follows a Bounded Pareto distribu-
tion with shape parameter (i.e. exponent) α and n ∈ [50, 1000].
The availability function is ρ(n) = 0.2 · n (i.e. deterministic).
An almost perfect match between simulation results (markers) and
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Figure 2: (a) E[TM] and (b) P{TM ≤ TTL} in scenarios with
varying content popularity (α: shape parameter) and ρ(n) = 0.2·n.
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Figure 3: (a) E[TM] in scenarios under Def. 4 and (b) P{TM ≤
TTL} in scenarios under Def. 5. ρ(n) = 0.2 · n.

the theoretical predictions (dashed lines) of Results 1 and 2 can be
observed. In Fig. 2(a), the lower bound (continuous line) of The-
orem 3.3 is very tight for low mobility (i.e. small CVλ) and/or
content popularity (i.e. small α) heterogeneity. For the delivery
probability P{TM ≤ TTL} (Fig. 2(b)), we present the results for
two different values of TTL in scenarios with CVλ = 2. Here, the
upper bound (continuous line) of Theorem 3.4 is very close to the
simulation results, despite the very heterogeneous mobility.

In Fig .3(a) we compare Result 3 with simulations on scenarios
conforming to Def. 4: Pp(n) is a Bounded Pareto distribution with
α = 2, and fλ(λ) ∼ Pareto. It can be seen that our theoretical
prediction (approximation) achieves good accuracy even in these
very heterogeneous mobility scenarios.

Results for scenarios with mobility-dependent availability (Def. 5)
are presented in Fig. 3(b). Pp(n) is selected as before and fλ(λ) ∼
Gamma with µλ = 1, CVλ = 0.5. The allocation of holders is
made as in the example in Section 3.3.2. The upper bounds of
Result 4 are tight in all scenarios, similarly to the case without mo-
bility dependence (Fig. 2(b)).

Finally, we need to mention that we have also performed a large
number of other scenarios, with similar conclusions.

4. CASE STUDY:MOBILEDATAOFFLOAD-

ING
The results of Section 3 can be used to predict the performance

of a given content allocation policy or content-sharing scheme. In
this section, we show how these results could be also used to de-
sign / optimize policies. We focus on an application that has re-
cently attracted attention, that of mobile data offloading using op-
portunistic networking [7, 8, 9]. Nevertheless, the same methodol-
ogy applies for a range of other applications where the number of
content/service providers must be chosen.



In a mobile data offloading scenario, the cellular network provider
distributes content copies only to some of the nodes interested in
this content (holders), in order to reduce the cellular traffic (pos-
sibly offering some incentives to the holder nodes). The remain-
ing (interested) nodes must then retrieve the content from the des-
ignated holders during direct encounters. A tradeoff is involved
between the amount of traffic offloaded and the average delay for
non-holders. In some cases, an additional QoS constraint might ex-
ist: if the delay to access a content exceeds a TTL, a requesting
node will download it from the infrastructure [7, 8, 9].

Hence, the objective in offloading optimization problems is how
the cellular network provider should choose the set of holders for

each content in order to optimize a performance metric, under a
given constraint (e.g. energy or buffer size) and a given popularity
distribution Pp(n).

We study cases with and withoutQoS constraints in Sections 4.1
and 4.2, respectively. For simplicity, we use the expressions of
Theorems 3.3 and 3.4 as approximations for E[TM] and P{TM ≤
TTL}. Since, these expressions imply that (a) the exact mobility
patterns are not known (i.e. only µλ is needed) and (b) contents
with the same popularity are equivalent, our goal is to select the
number of holders for each content with a given popularity. In
other words, we try to find the optimal allocation function g(m|n).

4.1 Case 1: no QoS constraints
When noQoS constraints exist, the cellular operator decides the

maximum amount of traffic that it wishes to serve directly over the
infrastructure. Under this constraint, which can be translated as
a constraint on the number of holders for different contents, the
objective is to minimize the expected delay E[TM]. The following
result, formalizes this optimization problem and provides with the
optimal solution for g(m|n).

Result 5. The minimum expected content access delay, under the

constraint of an average number of cM copies per content, i.e.:

min{E[TM]} s.t.
∑

M

N
(M)
a = M · cM , N

(M)
a ≥ 0

can be achieved when the allocation function, g(m|n), is determin-
istic and equal to

ρ
∗(n) =

cM

Ep[
√
n]
· √n

Proof. Using as an approximation for E[TM] the expression of
Theorem 3.3, we can write

E[TM] = 1
µλ·Ep[n]

·Ep

[

n
g(n)

]

Jensen’s inequality used in Eq. (16), becomes equality when g(m|n)
is deterministic. This suggests that among all the functions g(m|n)
with the same average value g(n), the minimum delay can be achieved
in the case: ρ(n) = g(n). Thus, the E[TM] minimization problem
becomes equivalent to

min{Ep

[

n

ρ(n)

]

} =
∑

n

n

ρ(n)
· Pp(n) =

∑

n

n

ρn
· Pp(n) (19)

where we expressed the expectation as a sum and denoted ρn =
ρ(n).

Moreover, we can express the content copies constraint as

cM =
∑

M
N

(M)
a

M
= Ep[ρ(n)] =

∑

n ρn · Pp(n) (20)

Using Eq. (19) and Eq. (20), the optimization problem becomes

min
ρ
{
∑

n

n

ρn
· Pp(n)} s.t.

∑

n

ρn · Pp(n) = cM (21)

where ρ denotes the vector with components ρn.
The optimization problem of Eq. (21) is convex and, thus, it can

be solved with the method of Lagrange multipliers [22]. Hence, we
need to find the values of ρ for which it holds that

∇
(

∑

n

n

ρn
· Pp(n)

)

+∇λ0

(

∑

n

ρn · Pp(n) − cM

)

= 0

where λ0 is the langrangian multiplier. Here, the constraint ρn ≥ 0
needs also to be taken into account. However, it is proved to be
an inactive constraint (the solution satisfies it) and thus we omit
it at this step for simplicity. Similarly, we assume a large enough
network, i.e. always holds ρn ≤ N .

The differentiation over ρn gives

ρn =
1√
λ0

· √n (22)

Substituting Eq. (22) in the constraint expression
∑

n ρn ·Pp(n) =
cM (Eq. (21)), we can easily get

√
λ0 =

∑

n

√
n · Pp(n)

cM
=

Ep[
√
n]

cM
(23)

Then, substituting Eq. (23) in Eq. (22), gives

ρ(n) = ρn =
cM

Ep[
√
n]
· √n (24)

Finally, the values of Eq. (24) satisfy the Karush-Kuhn-Tucker con-
ditions, which means that the solution of Eq. (24) is a global mini-
mum [22].

Result 5 is a generic result, since it holds under any content popu-
larity pattern. We also note that an allocation policy of ρ(n) ∝ √n
has also been shown to achieve optimal results in (conventional)
peer-to-peer networks [23]. This is an interesting finding, given the
inherent differences between the two settings (e.g. node mobility).

Finally, our result is also consistent in scenarios withmobility de-
pendent holders allocation. For example, after choosing the num-
ber of copies for a content (Result 5), the selection of holders can
be made, taking into account mobility utility metrics, e.g. meeting
frequency [10] or node centrality [1].

4.2 Case 2: QoS constraints
In cases where a maximum delay TTL is required, the objective

is to minimize the traffic load served by the infrastructure. The
metric used in related work, e.g. [9], is the data offloading ratio,
Roff., which is defined as the percentage of content requests that
are served by nodes. Since requests are served by the infrastructure
only after the time TTL elapses, it follows that in our framework:
Roff. = P{TM ≤ TTL}.

Hence the optimization problem is equivalent to

maxP{TM ≤ TTL} s.t.
∑

M

N
(M)
a = M · cM, N

(M)
a ≥ 0

Using the same notation and arguments as in the Section 4.1 and
the expression of Theorem 3.4 as an approximation for P{TM ≤
TTL}, the above optimization problem becomes:

min
ρ(n)
{Ep

[

n · e−ρ(n)·µλ·TTL
]

} s.t. Ep[ρ(n)] = cM (25)
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Figure 4: Content access delay E[TM] of different allocation poli-
cies ρ(n) = ck · nk, where ck = cM

Ep[nk ]
.

with ρ(n) ≥ 0, or, equivalently:

minρ {
∑

n n · e−ρn·µλ·TTL · Pp(n)}
s.t.

∑

n ρn · Pp(n) = cM , ρn ≥ 0 (26)

The optimization problem of Eq. (26) is convex. Although a closed
form solution, as in Result 5, cannot be derived6, it can be solved
numerically, using well known methods.

4.3 Performance Evaluation
To investigate whether the policies suggested as optimal by our

theory indeed perform better, we conducted simulations on various
synthetic scenarios and on traces of real networks, where node mo-
bility patterns usually involve much more complex characteristics
than our model (Assumption 1).

The results in the majority of scenarios considered have been
encouragingly consistent with our theoretical predictions. Hence,
we only present here a small, representative sample, due to space
limitations. Specifically, we consider the following traces coming
from state-of-the-art mobility models or collected in experiments.
TVCM mobility model [24]: Scenario with 100 nodes divided in
4 communities of unequal size. Nodes move mainly inside their
community and leave it for a few short periods.
SLAW mobility model [25]: Network with 200 nodes moving in a
square area of 2000m (the other parameters are set as in the source
code provided in [25]).
Cabspotting trace [26]: GPS coordinates from 536 taxi cabs col-
lected over 30 days in San Francisco. A range of 100m is assumed.
Infocom trace [27]: Bluetooth sightings of 98 mobile and static
nodes (iMotes) collected in an experiment during Infocom 2006.

4.3.1 Case 1: no QoS constraints

In each scenario, we compare different allocation functions ρ(n) =
ck · nk, where ck = cM

Ep[nk ]
is a normalization factor such that the

constraint Ep[ρ(n)] = cM is satisfied.
In Fig. 4 we present simulation results in scenarios for the TVCM

(Fig. 4(a)) and Cabspotting (Fig. 4(b)) traces. Content popularity
(Pp(n)) follows a Zipf distribution with n ≤ 30 and exponent α =
{1, 2, 3}. The availability constraint is set to cM = 10. It can
be seen that the optimal delay E[TM] is achieved for k = 0.5, as
Result 5 predicts (despite the fact that we used the expression of the
lower bound as an approximation for the expected delay E[TM]).

4.3.2 Case 2: QoS constraints

To evaluate the performance of the allocation function ρ(n) that
follows after solving Eq. (26) (i.e. optimal allocation), we compare

6The difference here is that the constraint ρn ≥ 0 is active.
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Figure 5: Offloading Ratio Roff. of different allocation policies
ρ(n).

the offloading ratio Roff it achieves with the offloading ratios of
the following policies:
Random: We randomly select a content and give a copy of it to a
node. We repeat M · cM times.
Square Root: We select ρ(n) ∝ √n (i.e. the allocation that
achieves the minimum expected delay E[TM ]).
Log: We select ρ(n) ∝ log n.

Random policy has been used in related work as a baseline [9]
and square root policy is the optimal policy when the metric of
interest is the content access delay (Section 4.1). Finally, we ob-
served that the optimal policy (Eq. (26)), in the scenarios consid-
ered, allocated copies only to the 10% − 20% highest popularity
contents. The log policy allocates in a similar manner the copies
(e.g. no copies to contents with low popularity).

Simulation results on the SLAW and Infocom scenarios are pre-
sented in Fig. 5(a) and 5(b), respectively. The parameters in these
scenarios are: M = 50 messages, Pp ∼ Zipf with n ∈ [1, 30]
and α = 1, total copies M · cM = {50, 100}. As it can be seen
our optimal policy (leftmost bar) achieves the highest offloading
ratio Roff.. The random policy is clearly inferior than the others.
Between square root and log policies, it is the latter that achieves
better performance. These results indicate that, to maximizeRoff.,
it is better to allocate the available resources only for popular con-
tents, and serve the non-popular exclusively through the infrastruc-
ture.

5. RELATED WORK
Content-centric applications were introduced in opportunistic net-

working under the publish - subscribe paradigm [2, 17, 16, 10], for
which several data dissemination techniques have been proposed.
In [2], authors propose a mechanism that identifies social com-
munities and the nodes-“hubs”, and builds an overlay network be-
tween them in order to efficiently disseminate data. SocialCast [16]
based on information about nodes interests, social relationships and
movement predictions, selects the set of holders. Similarly to the
above approaches, ContentPlace [10] uses both community detec-
tion and nodes social relationships information, to improve the per-
formance of the content distribution.

Under a different setting, [1, 11] study content sharing mecha-
nisms with limited resources (e.g. buffer sizes, number of hold-
ers). In [1], authors analytically investigate the data dissemination
cost-effectiveness tradeoffs, and propose techniques based on con-
tact patterns (i.e. λij ) and nodes interests. Similarly, CEDO [11]
aims at maximizing the total content delivery rate: by maintaining
a utility per content, nodes make appropriate drop and scheduling
decisions.

Recently, further novel content-centric application have been pro-
posed, like location-based applications [3, 4] and mobile data of-



floading [7, 8, 9]. The latter category, due to the rapid increase of
mobile data demand, has attracted a lot of attention. In the setting
of [7], content copies are initially distributed (through the infras-
tructure) to a subset of mobile nodes, which then start propagating
the contents epidemically. Differently, in [8] the authors consider a
limited number of holders, and study how to select the best holders-
target-set for each message. In [9], the same problem is considered,
and (centralized) optimization algorithms are proposed that take
into account more information about the network: namely, size and
lifetimes of different contents, and interests, privacy policies and
buffer sizes of each node.

In the majority of previous studies, although node interests and
content popularity are taken into account, the focus has been on the
algorithms and the applications themselves. We believe that our
study complements existing work, by providing a common analyt-
ical framework for a number of these approaches that can be used
both for predicting the performance of proposed schemes, as well
as proposing improved ones.

6. CONCLUSION
The increasing number of mobile devices and traffic demand,

renders content-centric applications through opportunistic commu-
nication very promising. Hence, motivated by the lack of a com-
mon analytical framework, we modeled and analyzed the effects
of content popularity / availability patterns in the performance of
content-centric mechanisms.

As a part of future work we intend to study, in more detail, ex-
tensions of our model and to investigate further characteristics of
content traffic patterns, like traffic locality in location based social
networks, and their performance effects.
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