
Object Components for Cooperation
A Highly Customizable Tutoring-System with Java-Beans

Jakob Hummes and Bernard Merialdo
Institute EURECOM, France

Jakob Hummes

Institut EURECOM
2229, route des Cretes B.P. 193
06904 Sophia Antipolis Cedex
FRANCE
+33 4.93.00.26.70
hummes@eurecom.fr

Bernard Merialdo

Institut EURECOM
2229, route des Cretes B.P. 193
06904 Sophia Antipolis Cedex
FRANCE
+33 4.93.00.26.29
merialdo@eurecom.fr

Submission to:
ECSCW’97 Workshop on Object Oriented Groupware Platforms

September 7, 1997, Lancaster, UK

Submission category: position paper

Primary contact person: Jakob Hummes

{this page is left blank intentionally}

ECSCW’97 OOGP workshop 1

Object Components for Cooperation
A Highly Customizable Tutoring-System with JavaBeans

Jakob Hummes and Bernard Merialdo
Institute EURECOM, France

{hummes,merialdo}@eurecom.fr

Abstract

This paper introduces five hypotheses for designing suc-
cessful groupware. The hypotheses can be met by using a
component model and add groupware-specific compo-
nents to form a groupware platform on top of that model.
We discuss the strengths and weaknesses of JavaBeans as
underlying model. A scenario from the remote teaching
domain highlights the usefulness of a component-based
approach.
From the hypotheses and the scenarios we draw the con-
clusion, what still needs to be investigated and developed
to create a component-based platform for highly custom-
izable, tailorable and extendable groupware.

1. Introduction

In contrast to stand-alone applications, most applica-
tions for cooperation are not very customizable, neither at
their user-interfaces nor at their cooperation structure.
While the need of radically customizable and tailorable
tools for CSCW is known for several years [1,3], only
some prototypes exist [1,4,5] that are in general not in-
teroperable with existing applications.

On the other side, object-oriented analysis and design
promises to create highly reusable software by modeling
the real world in a more natural way. With the outcome of
the standardized common object request broker architec-
ture (CORBA) and its standard wire protocol IIOP by the
Open Management Group (OMG), applications by differ-
ent vendors can interact over different object request
brokers [6].

While CORBA supports multi-language bindings in a
heterogeneous environment, the new object-oriented lan-
guage Java forms a homogeneous programming environ-
ment by running on a virtual machine, which abstracts
from the actual hardware. Java supports remote method
invocation and object migration through serialization.
Having the underlying architecture that allows to create
distributed object-oriented programs, the next step is to
isolate functionality into object components, which can be
easily hooked together. Those components are also called

business objects in the literature [8,9] and behave in the
analogy of « plug and play ». The OMG is currently re-
viewing the request for proposals on business objects [7]
and JavaSoft has launched with JavaBeans [2] a first in-
frastructure for component objects integrated within Java.

2. Five hypotheses for successful groupware

We believe that the following five hypotheses must be met
by successful groupware and thus should also be sup-
ported by groupware development tools.

• (Integratability) Groupware must not replace stan-
dard applications.

 In general, users seldom accept to replace their fa-
vorite applications (e.g. web browsers, word processors,
spreadsheets) to get group support. Instead, groupware
may offer separately additional functionality or should
encapsulate or be encapsulated within the favorite appli-
cations.

• (Local interoperability) Groupware must work with
component frameworks.

 On platforms that support component frameworks the
groupware must also be able to understand this compo-
nent model to support inter-application interoperability.
Objects may be dragged and dropped by the user from a
stand-alone application to a groupware application, and
vice-versa.

• (Distributed interoperability) Groupware must be
executable and interoperable on different platforms.

 Most groupware is inherently distributed. Different
platforms should be supported to not exclude some mem-
bers of the group. This also implies that the groupware
must be interoperable across platforms. Two different
approaches exist to solve the interoperability challenge. A
standardized distributed architecture uses an also stan-
dardized communications protocol (e.g. Corba), or a vir-
tual machine abstracts from the actual platform (e.g. Java
or interpreted languages). A virtual machine also enables
cross-platform code without the need of recompiling or
platform-specific adaptations.

ECSCW’97 OOGP workshop 2

• (Maintainability) Groupware must be easy upgrade-
able.

 Distributed applications need easy versioning control
or update functionality to ensure that they can interoperate
after a change in one component. Versioning control is
offered as a Corba service, while Java supports down-
loadable classes to address this issue.

• (Customization support) Groupware development
tools must support all target groups, i.e. the initial
programmer, the application designer, the experi-
enced user (power-user), and the end-user.

All mentioned points should be supported by devel-
opment tools. Groupware specific support should thus be
included in existing tools. However, the strong division
into software programmer and end-users is more and more
disappearing. To gain a higher productivity not only code
libraries must be reused, but also whole components that
can be assembled by specialized third parties to applica-
tions. These applications may then be customized to the
user’s needs by the user itself.

3. Java Beans as component model for
groupware

JavaBeans is the software component model for Java. « A
bean is a reusable component that can be manipulated
visually in a builder tool » [2]. Beans support therefore
introspection by tools, customization and properties,
events as wiring mechanism, and persistence. This section
shows how JavaBeans as component model correspond to
the hypotheses for groupware given in the last section.

Java is today the language for the Internet and sup-
ported by the leading Web browser manufactures, as
Netscape and Microsoft. So, Java Beans are supported
inside applets. Assuming that in future other standard
software will eventually include a virtual machine to in-
corporate Java objects, they will also form a framework.
Through the release of the ActiveX bridge it is already
possible to include Java Beans as ActiveX components in
the framework by Microsoft. Beans can therefore be con-
tained by standard applications and perform inside their
specialized group tasks.

While Java Beans may be today incorporated as Ac-
tiveX controls in a framework, a framework which is built
for beans support is yet not available. Java Beans as com-
ponent architecture is also still evolving. Rules for nesting
beans and their interaction with the surrounding contain-
ers are not defined yet, but the specification is announced
for the end of this year (aka. Glasgow spec.).

Java’s virtual machine forms a uniform platform for
all Java programs. Java works well with Corba to support
communication with remote Corba objects that may also
be implemented in other languages. Additionally, Java-to-

Java communication is supported by the remote method
invocation (RMI) facility. With RMI it is also possible to
ship behavior, i.e. classes and their states.

Since groupware is inherently distributed, automati-
cally update of the remote peers is an issue to ensure the
communication also after the communication establisher
has upgraded their versions. Corba offers with versioning
control at least that older clients may still communicate
with upgraded servers, if the interface contains only addi-
tional definitions. With the possibility to easily download
code within Java (as applets or via RMI), clients can
automatically download the new functionality from the
server. However, the problem remains how this code can
then also meaningfully being inserted into the existing
groupware application, if not the whole application is
downloaded each time. A well designed component-based
application could do the job, but further research is re-
quired to specify standard patterns for this usage.

Integrated development environments (IDE) for com-
ponents are able to support the whole development cycle,
from the developer to the end-user. Since groupware must
often be adapted to the specific needs of the environment,
where it is used, it should be extendable and customiza-
ble. IDEs for Java and its component architecture Java
Beans already exist and can be used to develop beans for
cooperation, assemble them to applications, and custom-
ize their properties and interactions visually. However all
available IDEs only support the local interactions between
Beans, but not interactions that cross the borders of their
framework, i.e. Java’s virtual machine. To set up distrib-
uted components in an IDE, it optimally should support
meaning for connecting beans across machine and frame-
work boundaries and expose it visually to the user.

4. Scenarios with component objects for co-
operation

We developed some scenarios, where groupware gains
through using the component approach. Our scenarios are
located in the domain of remote teaching.

In a traditional laboratory course, computer science
students are working with an application in front of their
terminals. They are guided and supervised by one ore
more tutors, who react on questions by the students. Be-
fore a student asks a question, he searches the tutor’s
awareness by hand-raising. The tutor moves then to the
student and solves the problem cooperatively.

In a remote lab course, the students and tutors are
spatially separated. Tutoring is ensured by a groupware
system. This tutoring system needs a natural means for a
hand-raising analogy and for the student-tutor interaction.
However, the analogy does not limit the system to per-
form further tasks that are impossible in a non-computer

ECSCW’97 OOGP workshop 3

supported environment. This section will give some sce-
narios to show the strengths of a component architecture
for the problem to call a tutor.

4.1 Base scenario: Call a tutor

The base scenario consists of two groups : the students
and the tutors. The basic facility is delivered by a student
bean to call a tutor, which resides in an application or
related compound document (e.g. an HTML page), and a
bean that informs a tutor about a help request inside the
tutor’s control application.

The student bean to call a tutor consists itself of
beans, which form the human-computer interface, process
the user’s input, and sends the help request to the tutors.
The user’s interface bean may consist of a simple Call-
Tutor button, which fires an event, when it is pressed. The
bean that processes the help request has registered its
interest in that event and sends an help request event to a
SendHelpRequest bean that forwards the event to the
group of tutors.

Even in this simple scenario, customization of the
student bean (and its contained beans) is feasible. The
simplest customization is to change the appearance to-
wards the user, e.g. to change the button’s properties (e.g.
label, color) or to use another GUI element, which fires
the needed event ; this simple tailoring may also be of-
fered to the students. The SendHelpRequest bean needs to
know, which tutors are available. Therefore all tutors must
register at start-up at a group address. The address may be
changed by the properties at design-time. By locally im-
plementing the interaction with the remote tutors in a
separate bean, it can be exchanged easily to change the
communication protocol (e.g. from Java RMI to Corba).

4.2 Extensions

The simple scenario to call a tutor can be extended by
inserting new beans that perform additional tasks. Instead
of informing all tutors about a help request, a trader can
be included to choose a tutor. Additional information may
be gathered by specialized beans at the student side and
be used to find the best suited tutor and to be preproc-
essed by a component in the tutor’s application.

The trader is a third part of the system, which inter-
cepts the events that are sent to the group of tutors, proc-
esses the information on basis of the registered character-
istics and availability of the tutors and forward the request
to the best suited tutor (or a subgroup).

In general, additional information can be gathered
from three different actors : the application or compound
document, in which the student bean resides, the student
himself, and a repository, where statistics about the appli-
cation and its usage are stored and periodically updated.

If the embedding application supports an interface to
the student bean, to be asked about its current state this
information can be used to specialize the query of the
trader and also to point the finally contacted tutor to the
origin of the student’s problem. The bean, which proc-
esses the help request, examines the state of the student
application before it triggers the SendHelpRequest bean.
Instead of implementing the means of interrogating the
application itself, a new GetInfo bean is inserted that
offers a standard interface to the student bean ; for each
application a different GetInfo bean may exist.

The student is also a good information source. A Get-
Info bean may present the student a questionnaire that is
linked with this instance of the student bean. The ques-
tionnaire pops up, when the student calls a tutor to specify
his question or problem. The questionnaire itself is stati-
cally available (i.e. known at design time of the student
bean) or may be created on the fly. Instead of being pre-
sented each time the student calls a tutor, the student bean
can be designed thus that the presentation of the question-
naire is triggered by the tutor to get more information.

Static information, such as the name of the student
and of the application, is stored. The GetInfo bean may
also query a bean that gets periodically events from the
application (e.g. when the student has finished a task).

4.3 Mobile code

The scenarios, but also the fact to work with distributed
object components, lead to the consideration of mobile
code. A trivial example is, if the student bean is inserted
in HTML pages and downloaded with a server ; then the
bean comes as Java applet. A more complex scenario
requires the remote installation of an additional bean in
the Student bean.

The scenario, where a questionnaire is presented to
the student, leads also to the following idea : The tutor
maintains a set of prepared questionnaires and sends the
calling student one of them to get the needed information.
Since the questionnaire does not need to consist only of
textual data, but may also comprise active GUI elements
that may be displayed differently (e.g. language, expertise
level), the actual code must be sent to the student and be
executed in his environment. The student can then switch
the context at run-time.

Another example, where mobile code can be used, is
the serialization of the student application and sending it
to the tutor for further investigation. This scenario is ap-
plicable, if the tutor needs the state of the application and
must be able to manipulate it in order to help the student.
It can also be used to distribute exams on-line and urge
the exam to close itself after the time limit and return to
the tutor.

ECSCW’97 OOGP workshop 4

5. Requirements for component based
groupware platforms

This paper has introduced hypotheses that should be met
by groupware systems to be successful. We showed that
JavaBeans is suitable as component platform and devel-
oped scenarios built upon this new component model.
However, developing and implementing the scenarios, we
encountered some limitations that we will discuss in this
section.

5.1 Component model and IDE

A component-based groupware platform needs, of course,
a component model. This model must be supported by
IDEs to support all involved development groups : from
the programmer to the end-user.

JavaBeans offer such a component model and IDEs
for creating, plugging and customizing beans are commer-
cially available. However, JavaBeans still lacks standard-
ized means for nested components and interaction with the
surrounding containers and frameworks.

5.2 Remote introspection

To use components in a not foreseeable way, it is neces-
sary to analyze their capabilities. JavaBeans offer intro-
spection to locally analyze beans.

Since groupware is inherently distributed, it is needed
to analyze also remote beans, if they should be integrated
in a seamless manner. The connections between remotely
located beans do not need to be transparent ; instead the
different locations should be visible to the application
designer. Supported by an IDE for remote components,
the designer can connect the events between the beans
across the boundaries of the virtual machines.

A visualized group metaphor for configuring the sys-
tem (e.g. events from a student to the group of tutors)
should also be supported by an IDE for groupware.

5.3 Code shipment

In monolithic groupware applications, all possible inter-
action types between the group members is known in
advance. On a component-based groupware platform, it is
also desirable to extend the functionality at runtime, i.e. to
distribute a component, which is then inserted correctly in
the existing groupware applications.

6. Conclusion and outlook

Driven by our five hypotheses for successful groupware,
we found that JavaBeans is a promising component model
for stand-alone applications. We argue that a groupware

platform can be built on top of this component model and
will so inherit the benefits of a widely accepted platform.

Our research strategy is to develop groupware sce-
narios in the tele-teaching domain, to identify the reusable
object components and implement some example scenar-
ios.

From the presented scenarios, the base system for the
student and the tutor is currently being implemented.
Some of the extensions are also foreseen for implementa-
tion. We are using Java RMI to fire events to remote lis-
teners and have developed beans for the group abstrac-
tion. However, we are also discussing to use Corba and its
services. As example, the trader in the given scenario may
be a service built with JavaBeans, but it is also in the
discussion to use the Corba trading service. If we choose
to build our own trader, then because of the need to im-
plement other functionality than the Corba service speci-
fies.

At the same time we have developed further scenar-
ios, which can reuse some of the implemented beans, but
also offer new challenges, as code distribution and object
customization at run-time.

7. Acknowledgments

The described work is part of the ACOST research proj-
ect, which is funded by the research institute CNET Lan-
nion of France Telecom.

References

[1] Dourish, P., Open implementation and flexibility in CSCW
toolkits. Ph.D. Thesis, University College London, 1996,
ftp://cs.ucl.ac.uk/darpa/jpd/dourish-thesis.ps.gz.

[2] JavaSoft, Java Beans 1.0 API specification, Sun Micro-
systems JavaSoft, Mountain View, CA, Oct. 1996,
http ://java.sun.com/beans

[3] Malone T.W., K.R. Grant, K-Y Lai, R. Rao, and D. Rosen-
blitt, ‘Semistructured messages are suprisingly useful for
computer-supported coordination’. In Irene Greif (ed.),
Computer-supported cooperative work - A book of read-
ings. Morgan Kaufman, 1988, p. 311-331.

[4] Malone T.W., K-Y Lai, and C. Fry, Experiments with
Oval : a radically tailorable tool for cooperative work
ACM Transactions on Information Systems, 1995, 13(2), p.
175-205.

[5] Mines R.F., J.A. Friesen, and C.L. Yang DAVE : a plug
and play model for distributed multimedia application d e-
velopment, ACM Multimedia, 1994, (10), p 59-66.

[6] Mowbray, T.J. and R. Zahavi Essential CORBA - Systems
integration using distributed objects. Wiley, NY, 1995.

[7] Object Management Group Common facilities RFP-4 :
Common Business Objects and Business Object Facility
Object Management Group, Framingham, MA, USA, 1996,
http ://www.omg.org/library/schedule/CF_RFP4.htm

[8] Orfali, R., D. Harkey and J. Edwards, The essential distrib-
uted objects survival guide. Wiley, NY, 1996.

[9] Sims, O. Business objects - Delivering cooperative objects
for client-server McGraw-Hill, 1994

