
Privacy Preserving Delegated Word Search in the Cloud

Kaoutar Elkhiyaoui, Melek Önen and and Refik Molva
EURECOM, Sophia-Antipolis, France
{elkhiyao, onen, molva}@eurecom.fr

Keywords: Privacy preserving keyword search, delegation, cloud

Abstract: In this paper, we address the problem of privacy preserving delegated word search in the cloud. We consider
a scenario where a data owner outsources its data to a cloud server and delegates the search capabilities to a
set of third party users. In the face of semi-honest cloud servers, the data owner does not want to disclose any
information about the outsourced data; yet it still wants to benefit from the highly parallel cloud environment.
In addition, the data owner wants to ensure that delegating the search functionality to third parties does not
allow these third parties to jeopardize the confidentiality of the outsourced data, neither does it prevent the
data owner from efficiently revoking the access of these authorized parties. To these ends, we propose a word
search protocol that builds upon techniques of keyed hash functions, oblivious pseudo-random functions and
Cuckoo hashing to construct a searchable index for the outsourced data, and uses private information retrieval
of short information to guarantee that word search queries do not reveal any information about the data to
the cloud server. Moreover, we combine attribute-based encryption and oblivious pseudo-random functions to
achieve an efficient revocation of authorized third parties. The proposed scheme is suitable for the cloud as it
can be easily parallelized.

1 INTRODUCTION

The cloud computing paradigm offers clients the
ease of outsourcing the storage of their massive data
with the advantage of reducing cost and assuring
availability. Large-scale cloud infrastructures bring
up severe security and privacy issues: Apart from tra-
ditional security challenges, the outsourced storage of
”big data” raises the challenge of processing it at the
cloud in a secure and privacy preserving manner while
considering the cloud provider itself as a potential ad-
versary.

While data owners (i.e. clients) can simply en-
crypt their data before outsourcing it to the cloud, tra-
ditional confidentiality mechanisms fall short when
it comes to mining/processing the data. Recently,
several solutions have been proposed to allow the
search of words over encrypted data. In this paper
however, we address the problem of delegated word
search whereby in addition to the data owner itself,
some authorized third-parties can perform search op-
erations over private data. In addition to security and
privacy properties that classical search solutions as-
sure under a semi-honest (i.e., honest-but-curious) se-
curity model, a privacy preserving delegated word
search mechanism includes the delegation and revo-

cation operations: The data owner should be able to
remove the search capability of a third party at any
point in time through an efficient revocation mecha-
nism.

We propose a new privacy preserving word search
solution whereby as in [5], the data owner constructs
a searchable index with all words listed in its files and
similarly to [3], it applies a private information re-
trieval to guarantee that the adversary including the
cloud itself does not discover any information about
the search query and its result. The newly proposed
solution outperforms existing ones thanks to a com-
bination of Cuckoo hashing with private information
retrieval for the search operation. The use of Cuckoo
hashing helps in assigning one word to a unique po-
sition in the index, thus removing the probability of
collisions within the index: The data owner first con-
structs a confidential index where each particular el-
ement corresponds to a unique word and fills it in
with some private information derived from the actual
word. The search operation consists of the computa-
tion of the position corresponding to the queried word
using Cuckoo hashing, and building the correspond-
ing PIR query to be sent to the cloud provider.

Moreover, the delegation operation is assured
thanks to the use of attribute based encryption (ABE)

which only allows users holding certain ”attributes”
to search over the data. For example, when compa-
nies outsource their logs over the cloud, they can al-
low some data protection commissioner to search over
them under an audit operation. Whereas efficient re-
vocation is achieved by a combination of ABE and
oblivious pseudo random functions. The revocation
operation does not imply the re-encryption of the out-
sourced data and only requires an update of the access
policy by the data owner which can be considered as
a negligible cost.

The major contributions of the paper can be sum-
marized as follows:

• We propose a new word search protocol which
is based on an efficient word-index construction
thanks to the use of Cuckoo hashing and the trans-
formation of PIR into privacy preserving word
search.

• The newly proposed solution also includes del-
egation and revocation capabilities thanks to the
use of Attribute Based Encryption and Oblivious
Pseudo Random Functions. The revocation oper-
ation does not incur any cost except for the update
of the access policy by the data owner.

• We define the main privacy requirements and fur-
ther provide a formal analysis of these properties.

Section 2 introduces the generic problem of pri-
vacy preserving delegated word search and the appli-
cation scenario. The different privacy requirements
are formally defined in section 3. The first version
of the privacy preserving word search solution is de-
scribed in section 4. The entire solution including the
delegation and revocation operations is presented in
section 5. We analyze the new solution in terms of se-
curity and performance in Sections 6 and 7. Finally,
Section 8 reviews the state of the art.

2 BACKGROUND

We consider a scenario where a data owner out-
sources some privacy sensitive data to a cloud server
and wishes to later on perform some operations over
it without revealing any details about the data. The
operation we are focusing on is word search over en-
crypted data and in our scenario the data owner may
wish to delegate part of the search operations to au-
thorized third parties. An illustrative example of such
a requirement can be a scenario wherein due to regu-
latory matters, some data (such as logs) still need to
be searchable by third parties such as data protection
commissioners. The three entities involved in a pri-
vacy preserving delegated word search and the main

algorithms are formally defined in the following sec-
tions.

2.1 Entities

A privacy preserving delegated word search involves
the following entities:

• Data owner O: It possesses a large file F that it
outsources to the cloud server S . Without loss of
generality, we assume that the number of distinct
words in F is n and the corresponding set is de-
fined as Lω = {ω1,ω2, ...,ωn}. Similarly to pre-
vious work such as [3, 6], we assume that once O
outsources a file F , it will no longer modify it.

• Cloud server S : It stores an encrypted version of
the outsourced file F and a searchable index I of
the set Lω of “distinct” words present in F .

• Authorized user U: It has access to a set of cre-
dentials that enable it to perform search queries on
F . This authorized user could be an auditor which
as part of its auditing task has to search the ac-
tivity logs of O. We also note that in some cases
an authorized user could correspond to the data
owner that wants to perform word search on its
outsourced data.

2.2 Privacy Preserving Delegated
Word-Search

In accordance with the work of Curtmola et al. [6], a
privacy preserving delegated word-search comprises
the following algorithms:

• Setup(ζ) → (MK,P): It is a randomized algo-
rithm that is executed by the data owner O. It
takes as input the security parameter ζ, and out-
puts a master key MK and a set of public parame-
ters P that will be used by subsequent algorithms
to perform the word-search.

• Encrypt(MK,F)→ C: This algorithm is run by
O. It has as input the master key MK and the file
F , and outputs an encryption C of file F .

• BuildIndex(MK,F)→ I : This algorithm has as
input the master key MK and a file F and outputs
an index I of distinct words ωi present in F . This
algorithm is generally run by the data owner O.

• Delegate(MK,Sto, idu)→ Ku: This algorithm is
executed by O to delegate the search capabilities
on its files to some third party user. On input of the
master key MK, the current state Sto of O and the
identifier idu of some user U, Delegate outputs a
secret key Ku that will be provided to U.

• Token(ω,Stu,Ku) → τ: This algorithm is exe-
cuted by authorized users or the data owner O to
generate a search token for some word ω. It takes
as input the word ω, the current state Stu of autho-
rized user U and the key Ku and outputs a search
token τ.

• Query(τ)→ Q : It is a randomized algorithm that
is run by authorized users to generate word search
queries. On input of a token τ, Query outputs a
word search query Q that will be forwarded to
cloud server S .

• Response(Q ,I)→ R : This algorithm is invoked
by S whenever S receives a word search query Q .
It takes as input Q and the index I and outputs a
word search response R .

• Verify(R ,Stu)→ b: It is a deterministic algorithm
run by authorized users to verify S ’s responses.
On input of S ’s response R and the current state
Stu of authorized user U, Verify outputs a bit b =
1 if ω ∈ F and b = 0 otherwise.

• Revoke(MK,Sto, idu) → (St′o,St′s): This algo-
rithm is run by the data owner O to revoke the
access of previously authorized users. It has as
input the master key MK, the current state Sto of
data owner O and the identifier idu of some previ-
ously authorized user U, and it outputs an updated
state St′o for O and an updated state St′s for cloud
server S .

3 ADVERSARY MODEL

The crucial privacy challenge to address when de-
signing a privacy preserving delegated word search is
assuring privacy against a misbehaving cloud server.
Indeed, the cloud server may attempt to infer sensitive
information about the outsourced files (and their own-
ers thereof) from the ciphertexts and indexes it keeps.
It may also try to derive information about those files
from the word search queries it processes. Thus, it
is of utmost importance to ensure that the ciphertexts
and the indexes that the cloud stores together with the
word search queries it processes do not leak any in-
formation about the data owners’ files.

Furthermore, the delegation of search capabilities
to third party users inherently raises the requirements
of access authorization and revocation, and therewith
the requirement of privacy against revoked users. For
example, a previously authorized user may exploit the
information it collected during its word search oper-
ations that occurred when it was still authorized to
conduct lookup operation after its revocation so as
to learn new information about the outsourced files.

Therefore, one should ensure that even if revoked
users can still issue valid search queries to the cloud
server, they should not be able to decode the cloud
server’s responses.

Along these lines, we provide in the subsequent
sections formal models for the notions of both pri-
vacy against cloud servers and privacy against re-
voked users, which we will employ to assess the se-
curity of our scheme in the appendix of this paper.
Of course, solutions protected against misbehaving
clouds and revoked users are inherently secure against
any other type of external adversaries.

3.1 Privacy against Cloud Server

In accordance with the work of Blass et al. [3] and
Curtmola et al. [6], we assume that the cloud server S
is semi-honest: Although interested in discovering the
content of the data and the queries, S still performs all
the required operations correctly.

A privacy preserving delegated word search
should ensure that the semi-honest cloud server S
does not discover any information about the content
of an outsourced file from either its encryption or its
index. This means that in addition to not being able
to break the confidentiality of the outsourced data, S
should neither be able to mount statistical attacks on
the outsourced files (e.g. occurrence of words) nor
to tell whether two files contain (or do not contain)
the same words. In compliance with the work of [3],
we refer to this requirement as storage privacy. More-
over, a solution for privacy preserving delegated word
search should as well guarantee query privacy: during
the lookup phase, cloud server S should not be able to
derive any useful information about the queries of au-
thorized users. Namely, S should not be able to tell
whether any two word search queries were issued for
the same word or not (cf. [3]).

To formally capture the adversarial capabilities of
S in the subsequent privacy definitions, we assume
that S is given access to the following oracles:

• Oencrypt(F,MK)→ C: This oracle takes a file F
and the master key MK of some data owner O as
inputs and computes an encryption C of file F by
calling the algorithm Encrypt.

• Oindex(F,MK)→ I : On inputs of file F and the
master key MK, this oracle executes the algorithm
BuildIndex and returns the index I associated with
file F .

• Osearch,s(I ,ω)→ views: Cloud server S invokes
this oracle whenever it wants to receive and pro-
cess a word search query. On inputs of index
I and word ω, this oracle starts an execution of

Algorithm 1: Learning phase of the storage pri-
vacy game

// S calls oracles Oencrypt and Oindex a polynomial
// number of times
Fi← S ;
Ci← Oencrypt(Fi,MK);
Ii← Oindex(Fi,MK);
//S returns a challenge word
ω∗← S ;

Algorithm 2: Challenge phase of the storage
privacy game

// Let F∗0 and F∗1 be two files s.t. F∗1 contains ω∗

// while F∗0 does not
b←{0,1};
C∗b ← Oencrypt(F∗b ,MK);
I ∗b ← Oindex(F∗b ,MK);
b∗← S ;

the word search protocol with cloud server S to
check whether ω is in I or not. At the end of the
word search operation, Osearch,s returns the view
views = (Sts, rands,M1,s,M2,s, ...,Ml,s) of cloud
server S during the word search, where Sts is the
current state of cloud server S , rands is its inter-
nal randomness that it used to generate its word
search response and Mi,s is the ith message that
S received during the word search from oracle
Osearch,s.

3.1.1 Storage Privacy

We define storage privacy using an
indistinguishability-based game that comprises
two phases: A learning phase (cf. Algorithm 1) and a
challenge phase (cf. Algorithm 2). The goal of cloud
server S in this game is to tell whether a challenge
file F∗b contains some word ω∗. To this effect, cloud
server S calls the oracles Oencrypt and Oindex for a
polynomial number of times in the learning phase.
By the end of this phase, S outputs a challenge word
ω∗.

Let F∗0 and F∗1 be two files such that F∗1 contains
ω∗ while F∗0 does not.

Now in the challenge phase, cloud server S is pro-
vided with the encryption C∗b and the index I ∗b of file
F∗b where b is picked randomly from {0,1}. At the
end of the challenge phase, S outputs its guess b∗ for
the bit b. We say that S succeeds in the storage pri-
vacy game if b = b∗.

Definition 1 (Storage privacy). Let ΠS
success denote

the probability that S succeeds in the storage pri-

Algorithm 3: Learning phase of the query pri-
vacy game

// S calls oracles Oencrypt, Oindex, and Osearch,s

// a polynomial number of times
(Fi,ωi)← S ;
Ci← Oencrypt(Fi,MK);
Ii← Oindex(Fi,MK);
views,i← Osearch,s(I ,ωi);
//S outputs achallenge file F∗ and two distinct
// words ω0 and ω1

(F∗,ω∗0,ω
∗
1)← S ;

Algorithm 4: Challenge phase of the query pri-
vacy game

C∗← Oencrypt(F∗,MK);
I ∗← Oindex(F∗,MK);
b←{0,1};
view∗s ← Osearch,s(I ∗,ω∗b);
b∗← S ;

vacy game. We say that a word search protocol as-
sures storage privacy, iff for any cloud server S ,
ΠS

success ≤ 1
2 + ε, where ε is a negligible function in

the security parameter ζ.

3.1.2 Query Privacy

Similarly to storage privacy, we formalize query pri-
vacy through an indistinguishability-based game that
runs in two phases: A learning phase and a challenge
phase. In the learning phase as depicted in Algo-
rithm 3, cloud server S picks adaptively a polynomial
number of file and word pairs (Fi,ωi). For each se-
lected pair (Fi,ωi), S calls first the oracles Oencrypt

and Oindex to encrypt F and build the corresponding
index respectively, then it queries the oracle Osearch,s
to receive and process a search query for word ωi in
Fi. At the end of the learning phase, S outputs a chal-
lenge file F∗ and two challenge words ω∗0 and ω∗1.

In the challenge phase (cf. Algorithm 4), cloud
server S queries the oracles Oencrypt and Oindex which
provide S with the encryption and the index of the
challenge file F∗ respectively. Then, the oracle
Osearch,s executes an instance of the word search pro-
tocol for word ω∗b with S , where b is a randomly se-
lected bit. Finally, S outputs its guess b∗ for the bit b.
We say that S succeeds in the query privacy game if
b = b∗.

Definition 2. Let ΠS
success denote the probability that

S succeeds in the query privacy game. We say that
a word search protocol ensures query privacy, iff for

any cloud server S , ΠS
success ≤ 1

2 +ε, where ε is a neg-
ligible function in the security parameter ζ.

3.2 Privacy against Revoked Users
(”forward privacy”)

Ideally, a privacy preserving delegated word search
should assure that when an authorized user is revoked,
it can no longer look for words in the cloud server’s
files (this does not imply that the revoked user can-
not query the server’s database, rather it means that
it cannot successfully interpret the cloud server’s re-
sponses). In other words, a privacy preserving dele-
gated word search should make sure that even if a re-
voked user is able to issue word search queries, it can-
not infer any new information about the outsourced
files that it did not learn before its revocation. This
requirement resembles the notion of forward secrecy
whereby a user cannot have access to any data after its
revocation. In the context of word search in addition
to the content of the data, the revoked user should not
infer any additional information from future queries
as well.

Since in this paper we only focus on static data
(i.e. the data owner does not update its file once out-
sourced to the cloud server), we argue that the above
intuition can be captured by assuring that revoked
users cannot look up a word for which they did not
issue a search query when they were still authorized.

Without loss of generality, we assume that there
is a data owner O that outsources its file F and the
corresponding index I to cloud server S , and that a
user U is interested in searching the file F even after
its revocation. To this effect, U may behave mali-
ciously during the execution of the word search pro-
tocol. Namely, U may provide bogus word search
queries to cloud server S .

In order to formalize privacy against revoked
users, we use a privacy game that similarly to the two
previous games consists of a learning and a challenge
phase. In addition to the oracles Oencrypt and Oindex,
user U has access to the following oracles.

• Odelegate(MK)→ Ku: On input of the data owner
O’s master key MK, the oracle Odelegate executes
the algorithm Delegate to allow U to perform
word search on O’s file F and outputs the secret
key Ku.

• Orevoke: This oracle revokes the right of U to
search the file F by executing the algorithm
Revoke which updates the states of data owner O
and cloud server S .

• Osearch,u(I ,ω) → viewu: U calls this oracle
whenever it wants to perform a word search

on the index I . It takes as input an index I
and a word ω and outputs the view viewu =
(Stu, randu,M1,u,M2,u, ...,Ml′,u) of user U during
the word search, where Stu is the current state of
user U and randu is its internal randomness that it
used to generate its word search query, whereas
Mi,u corresponds to the ith message that U re-
ceived from Osearch,u during the word search.

• Ochal,u(I ,ω) → chalu,b: When called with an
index I and word ω, this oracle flips a
random coin b ∈ {0,1}. If b = 1, then
Ochal,u returns the actual view chalu,1 = viewu =
(Stu, randu,M1

1,u,M
1
2,u, ...,M

1
l′,u) of user U during

the word search for ω, such that Stu is the current
state of user U and randu is its internal random-
ness, whereas Mi,u corresponds to the ith message
that U received from Osearch,u during the word
search. If b = 0, then Ochal,u outputs chalu,0 =
(Stu, randu,M0

1,u,M
0
2,u, ...,M

0
l′,u), where Stu is the

current state of user U and randu is its internal
randomness, and M0

i,u are generated randomly by
Ochal,u.

Once user U enters the learning phase of the pri-
vacy game (see Algorithm 5), it first calls the oracle
Oindex with a file F of its choosing to get the cor-
responding index I . Next user U invokes the ora-
cle Odelegate which supplies U with the secret key
Ku. This key will enable U to execute the word
search protocol with cloud server S on the index I
and therewith on file F . Then user U queries the or-
acle Osearch,u for a polynomial number of words ωi
of its choosing. Next, the oracle Orevoke revokes U.
After the revocation, U can still issue a polynomial
number of word search queries on file F by calling
Osearch,u. Finally, U outputs a challenge word ω∗ that
is not present in file F .

In the challenge phase (see Algorithm 6), U
queries the oracle Ochal,u with the word ω∗ and the
index I ∗ that corresponds to F ∪ {ω∗}. The oracle
Ochal,u in turn flips a random coin b ∈ {0,1} and out-
puts the challenge view chal∗u,b. At the end of the chal-
lenge phase, revoked user U outputs a guess b∗ for bit
b.

We say that U succeeds in the game of privacy
against revoked users if i.) b = b∗ and if ii.) U did not
issue a search query for the challenge word ω∗ before
calling the oracle Orevoke (i.e. ω∗ 6= ωi, ∀i).
Definition 3. Let ΠU

success denote the probability that
U succeeds in the privacy game against revoked
users. We say that a delegated word search mech-
anism provides privacy against revoked users iff for
any revoked user U, ΠU

success ≤ 1
2 + ε, where ε is a

negligible function in the security parameter ζ.

Algorithm 5: Learning phase of the privacy
game against revoked users

I ← Oindex(F,MK);
Ku← Odelegate(I);
// U calls Osearch,u for a polynomial number of
// times
ωi←U;
viewu,i← Osearch,u(I ,ωi);
Orevoke(U);
// U calls Osearch,u for a polynomial number of
// times after revocation
ω′i←U;
view′u,i← Osearch,u(I ,ω′i);
//U returns a challenge word that is not in file F
ω∗←U ;

Algorithm 6: Challenge phase of the privacy
game against revoked users

I ∗← Oindex(F ∪{ω∗},MK);
chal∗u,b← Ochal,u(I ∗,ω∗);
b∗←U;

4 PRIVACY PRESERVING WORD
SEARCH

In this section, we describe the first version of the
proposed word search solution which does not offer
any delegation capabilities and therefore only assures
privacy against honest-but-curious cloud providers.
Similarly to [3, 5], to assure query privacy against a
semi-honest cloud server, we rely on Private Informa-
tion Retrieval (PIR) to build our word-search scheme.
Actually, PIR allows a user to retrieve a data block
from a server’s database without disclosing any infor-
mation about the sought block. However, PIR proto-
cols assume that the user know beforehand the posi-
tion in the database of the data block to be retrieved,
and therefore, they cannot be used directly in privacy
preserving word search wherein a user only holds a
list of words to look for. Fortunately, Chor et al. [5]
proposed a technique that transforms any PIR mech-
anism into a protocol for private information retrieval
by keyword, and thereby, into a privacy preserving
word-search. The main idea is to first construct an in-
dex of all the distinct words present in the outsourced
data and then apply a PIR to this index. As shown
in [5], this can be achieved by representing the index
by a hash-table that maps each word to a unique po-
sition in the table. During the search phase, the user
first computes the position of the requested word in
the hashtable (i.e. the index) and further runs PIR to

fetch the block stored at that position. While the con-
struction of [5] can be easily transformed into a pri-
vacy preserving word search, we believe that it can be
further optimized by using Cuckoo hashing to build
the hashtables (i.e. the indexes) of the words in the
outsourced files.

Along these lines, we first formalize and describe
the PIR and the Cuckoo hashing algorithms that will
underpin our word search solution.

4.1 Building Blocks

4.1.1 Trapdoor Private Information Retrieval

For efficiency purposes, we opt for a PIR mechanism
called trapdoor PIR which was proposed by Trostle
and Parrish [16], and whose security is based on the
trapdoor group assumption. We stress however that
this particular PIR can be interchanged by any other
efficient PIR algorithm.

In compliance with the work of Trostle and Par-
rish [16], we model the server’s database on which
private information retrieval is performed by a binary
(k, l)−matrix M . Trapdoor PIR allows a user to re-
trieve the bit b at position (x,y) in M as follows:

• PIRQuery(x)→~α: The user picks a secret large
number p (typically |p| = 200 bits) and selects
randomly u∈Z∗p and k other values ai ∈Zp. Next,
it computes the k following values: ex = 1+2 ·ax
and ∀ i 6= x, ei = 2 · ai, and sends the vector
~α = (αi)k

i=1 = (u · ei mod p)k
i=1 to the cloud.

• PIRResponse(~α,M) → ~β: On receiving ~α,
the server computes the matrix product ~β =
(β1,β2, ...,βl) =~α ·M .

• PIRAnalysis(~β,y) → b: After receiving the
server’s response ~β = (β1,β2, ...,βl), the user
computes γy = βy · u−1 mod p, and retrieves b by
computing γy mod 2.

4.1.2 Cuckoo Hashing

Cuckoo hashing was first proposed by Pagh and
Rodler [14] to build efficient and practical data in-
dexes. It ensures worst-case constant look-up and
deletion time and amortized constant insertion time
while minimizing the storage requirements.

In order to store n elements in some index I ,
Cuckoo hashing uses two hash tables T and T ′ con-
taining L entries each, and two hash functions H :
{0,1}∗→{1,2, ...,L} and H ′ : {0,1}∗→{1,2, ...,L}.
Now, an element τi is either stored in entry H(τi) in
hash table T , or in entry H ′(τi) in hash table T ′ but
never in both.

The lookup operation in I is therefore simple:
When given an element τ ∈ {0,1}∗, the two entries
at positions H(τi) and H ′(τi) are queried in tables T
and T ′ respectively. To delete an element τi from I ,
the entry corresponding to τi is removed. Finally, to
insert a new element τi ∈ {0,1}∗ into I , we first check
whether the entry of T at position H(τi) is empty. If
it is the case, then τi is inserted in this entry of T and
the insertion algorithm converges. Otherwise, if that
entry is already occupied by another element τ j, then
τ j will be removed from its current entry in T and re-
located to its other possible entry H ′(τ j) in T ′. Now,
if there is an element τk in the entry H ′(τ j) of T ′, then
τ j will be inserted in entry H ′(τ j) in table T ′ while
τk will be moved to its other possible entry H(τk) in
T . This insertion process is repeated iteratively until
the insertion of all elements in either T or T ′. If this
process of insertion does not converge (i.e., there is an
element that cannot be inserted), or it takes too long to
converge, then all the elements in I will be rehashed
with new hash functions H and H′.

An analysis of Cuckoo hashing [13] shows that if
L ≥ n, then there is a family of universal hash func-
tions that guarantees a small rehashing probability of
order O(1

n) and a constant expected time for inser-
tion. For a more comprehensive analysis of the per-
formance of Cuckoo hashing, the reader may refer to
[14].

4.2 Protocol Description

We recall that in this first version, the data owner O
wants to upload a large file F to cloud server S and
once its data uploaded O wants to further search for
some words within the file without revealing any in-
formation to the semi-honest cloud server. The set
of all distinct words within F is defined as Lω =
{ω1,ω2, ...,ωn}. The proposed protocol can be di-
vided into two main phases:

• During the upload phase, before outsourcing its
data, O builds the index corresponding to the n
distinct words present in file F and encrypts F us-
ing a semantically secure symmetric encryption.

• During the search phase, O computes the posi-
tion of the requested word ω in F’s index and
perform a PIR query to retrieve the information
stored at that position in the index. Upon recep-
tion of server S ’s PIR response, O verifies this
response and decides accordingly whether ω is
present in F or not.

4.2.1 Setup

The data owner O calls the Setup algorithm which
takes as input the security parameter ζ and outputs a
master key MK and a set of public parameters P such
that:

• The master key MK is composed of a symmetric
encryption key Kenc and a MAC key Kmac.

• The public parameters P comprise a MAC Hmac :
{0,1}ζ ×{0,1}∗ → {0,1}κ and a cryptographic
hash function H : {0,1}∗→{0,1}t .

4.2.2 Upload

The file upload phase consists of i.) Encrypting the
file F using a semantically secure encryption such as
AES in counter mode (cf. Encrypt) and ii.) building
a searchable index for Lω (cf. BuildIndex).

The data owner O first generates a unique file
identifier fid for file F and then encrypts F by call-
ing the algorithm Encrypt. This algorithm takes
as inputs secret key Kenc and file F and outputs
a semantically secure encryption C = Enc(Kenc,F)
of F . Next, O invokes the algorithm BuildIndex
which on input of master key MK (more precisely
MAC key Kmac), file identifier fid and the list of dis-
tinct words Lω = {ω1,ω2, ...,ωn} present in F out-
puts a list of MACs LH = {h1,h2...,hn}, such that
hi = Hmac(Kmac,ωi||fid) where || denotes concatena-
tion. Then the algorithm BuildIndex constructs an
index I for LH = {h1,h2...,hn} using Cuckoo hash-
ing. In order to optimize the performance of the
PIR underlying our word-search scheme, our index
will differ from traditional Cuckoo hashing indexes
by comprising two sets of t binary (rectangular) ma-
trices {M j}t

j=1,{M ′
j}t

j=1 of size (k, l) rather than
two hash-tables T and T ′. Namely, instead of us-
ing two hash functions that hash into {1,2, ...,L}, we
employ two hash functions H and H ′ that hash into
{1,2, ...,k}×{1,2, ..., l}. For an element h ∈ {0,1}∗,
the hash function H (H ′ resp.) returns a position (x,y)
((x′,y′) resp.) in matrices {M j} ({M ′

j} resp.). More
precisely, the algorithm BuildIndex executes the fol-
lowing:

• First BuildIndex generates two sets of t binary ma-
trices {M j} and {M ′

j} (1 ≤ j ≤ t) of size (k, l)
each, where each element is initialized to 0.

• BuildIndex then picks two hashes H and H ′ that
map each element hi in LH to either a position
(xi,yi) = H(hi) in matrices {M j} or to a position
(x′i,y

′
i) = H ′(hi) in matrices {M ′

j}, by following
the Cuckoo hashing algorithm described in Sec-
tion 4.1.2. We recall that in order to ensure worst-
case constant look-up using Cuckoo hashing, k

and l have to be chosen such that kl ≥ n, where
n is the size of LH .

• BuildIndex subsequently fills the binary matrices
{M j} and {M ′

j} (1≤ j ≤ t) as follows:

– For each hi, BuildIndex computes H(hi) =
(bi,1,bi,2, ...,bi,t), where H is a t−bits crypto-
graphic hash function.

– Now, if hi is mapped to a position (xi,yi) =
H(hi) in M j (or to a position (x′i,y

′
i) = H ′(hi)

in M ′
j resp.), then the bit at position (xi,yi) in

M j (the bit at position (x′i,y
′
i) in M ′

j resp.) will
be set to bi, j. Hence, if hi is mapped to a posi-
tion (xi,yi) = H(hi) in {M j} (1≤ j ≤ t), then:

H(hi) = (M1(xi,yi),M2(xi,yi), ...,Mt (xi,yi))

• Finally, BuildIndex outputs the searchable
index I = {H,H ′,M,M′} such that M =
{M1,M2, ...,Mt} and M′ = {M ′

1 ,M ′
2 , ...,M ′

t }.
At the end of this phase, data owner O sends the

file identifier fid, the encryption C and the index I to
cloud server S .

4.2.3 Word Search

The search phase is divided into the three following
steps:

Search Query To look for a word ω in file F , O
calls the algorithm Token which computes the MAC
h = Hmac(Kmac,ω||fid). Further, O runs the algorithm
Query which computes H(h) = (x,y) and H ′(h) =
(x′,y′). We recall that (x,y) and (x′,y′) correspond
to the potential position of h in {M j} and {M ′

j} re-
spectively. Next, algorithm Query outputs two PIR
queries ~α = PIRQuery(x) = (α1,α2, ...,αk) and ~α′ =
PIRQuery(x′) = (α′1,α

′
2, ...,α

′
k) that will allow O to

retrieve the xth and x′th rows respectively of (k, l) bi-
nary matrices, as depicted in Section 4.1.1. Finally, O
sends its search query Q = (~α, ~α′) to server S .

Search response On receiving O’s search
query Q = (~α,~α′), S runs algorithm Response
which on input of Q , M = {M1,M2, ...,Mt}
and M′ = {M ′

1 ,M ′
2 , ...,M ′

t }, computes two
sets of t PIR responses R = {~β1,~β2, ...,~βt} and
R′ = {~β′1,~β′2, ...,~β′t} such that for all 1≤ j ≤ t:

~β j = PIRResponse(~α,M j) =~α ·M j

~β′ j = PIRResponse(~α′,M ′
j) =~α′ ·M ′

j

S sends then its word search response R =
{R,R′} to O.

Verification To verify whether ω is in file F , the
data owner O runs the algorithm Verify. When called,
algorithm Verify unblinds the yth element of each vec-
tor ~β j by executing PIRAnalysis(y) and the y′th ele-
ment of each vector ~β′j by running PIRAnalysis(y′),
as was shown in Section 4.1.1. This allows Verify to
derive a bit b j from ~β j and a bit b′j from ~β′j respec-
tively for all 1≤ j ≤ t.

We denote by ~b and ~b′ the string of bits
(b1,b2, ...,bt) and (b′1,b

′
2, ...,b

′
t) respectively. After

obtaining ~b and ~b′, algorithm Verify computes the
hash H(h) and checks whether ~b = H(h) or ~b′ =
H(h). If so, then Verify outputs 1 meaning that ω∈F ;
otherwise, Verify outputs 0.

5 PRIVACY PRESERVING WORD
SEARCH WITH DELEGATION

In this section we describe the entire solution in-
cluding the delegation capabilities. We recall that data
owner O wants to: i.) upload a large file F that con-
tains n distinct words Lω = {ω1,ω2, ...,ωn} to cloud
server S , ii.) delegate the search capabilities on file F
to third party users and finally iii.) be able to revoke
these third party users at any point of time. There-
fore the final solution involves in addition to the pre-
viously mentioned two phases from the basic proto-
col (i.e. Upload and WdSearch), a Delegation and a
Revocation phase. We modify the Upload and Word
Search phases so as to allow the data owner to up-
load the necessary material that will enable authorized
users to perform search operations, whereas during
the newly defined Delegation phase, the data owner
provides authorized users with the MAC key used to
build the index. Finally, the Revocation phase is de-
fined in order to grant the data owner the capability to
revoke authorized users efficiently.

The additional two phases are defined thanks to
the use of Ciphertext-Policy Attribute-Based Encryp-
tion (CP-ABE) and Oblivious Pseudo Random Func-
tions (OPRF). We stress here that by combining
OPRF and ABE, we do not only allow for seamless
revocation but also we ensure the anonymity of autho-
rized users. As opposed to traditional access control
mechanisms, the proposed solution does not require
authorized users to identify and authenticate them-
selves to the cloud server.

Before providing a detailed description of our
scheme, we summarize and formalize in the next sec-
tion the algorithms underlying CP-ABE and OPRFs.

5.1 Building Blocks

5.1.1 Ciphertext-Policy Attribute-Based
Encryption

A ciphertext-policy attribute-based encryption allows
a user to encrypt a message M under some access pol-
icy AP in such a way that only parties possessing at-
tributes that match AP can derive M from the cipher-
text. Actually, a CP-ABE consists of the following
algorithms, cf. [2]:

• Setupabe(ζ)→ (MKabe,Pabe): It is a randomized
algorithm that takes as input a security parameter
ζ, and outputs a master key MKabe and a set of
public parameters Pabe that will be used by subse-
quent algorithms.

• Encabe(M,AP) → C: It is a randomized algo-
rithm that takes as input a message M and some
access policy AP, and outputs a ciphertext C =
Encabe(M,AP) such that only users holding the
attributes satisfying the access policy AP can de-
crypt C.

• CredGenabe(MKabe,Ai)→ credi: It is a random-
ized algorithm which on input of master key
MKabe and a set of attributes Ai, generates a set of
credentials credi that are associated with Ai. This
algorithm is generally executed by a trusted third
party (for instance a certification authority) whose
aim is to define a set of admissible attributes A
and to issue credentials credi to any user possess-
ing attributes Ai ⊂ A.

• Decabe(C,credi) → M̂: It is a deterministic al-
gorithm that takes as input a ciphertext C and
a set of credentials credi. Assume that C en-
crypts a message M under the access policy AP
(i.e., C = Encabe(M,AP)) and that the credentials
credi are associated with the set of attributes Ai.
If the attributes Ai satisfy the access policy AP,
then Decabe decrypts C successfully and outputs
M̂ = Decabe(C,credi) = M. Otherwise, the de-
cryption fails and Decabe outputs M̂ =⊥.

5.1.2 Oblivious Pseudo-Random Functions

An OPRF [9, 11] is a two-party protocol that allows a
sender S with input δ and a receiver R with input h to
compute jointly the function fδ(h) for some pseudo-
random function family fδ, in such a way that receiver
R only learns the value fδ(h), whereas sender S learns
nothing from the protocol interaction.

Definition 4 (Oblivious Pseudo-Random Function
[9]). A two-party protocol π between a sender S of
input δ and a receiver R of input h is said to be an

oblivious pseudo-random function (OPRF), if there is
some pseudo-random function family fδ such that at
the end of the execution of π:

• Receiver R gets fδ(h) while learning nothing
about S’s input δ.

• Sender S learns nothing about R’s input h or the
value of fδ(h).
In the following, we provide a quick overview of

the generic algorithms underpinning an OPRF that
evaluates the output of some pseudo-random function
family fδ:

• Setupoprf(ζ)→ (δ,Poprf): It is a randomized algo-
rithm that is run by the sender S. It takes as input
the security parameter ζ and outputs an OPRF se-
cret key δ and a set of public parameters Poprf that
will be used by subsequent algorithms.

• Queryoprf(h) → Qoprf : It is a randomized algo-
rithm that is executed by the receiver R when-
ever R wants to generate an OPRF query. This
algorithm has as input an element h ∈ {0,1}κ and
outputs a matching OPRF query Qoprf that will be
sent later to sender S.

• Responseoprf(Qoprf ,δ)→Roprf : It is a randomized
algorithm which is operated by sender S when-
ever S receives an OPRF query. On input of an
OPRF query Qoprf , the algorithm Responseoprf re-
turns the corresponding OPRF response Roprf that
will be forwarded to the receiver.

• Resultoprf(Roprf ,Str)→ fδ(h): It is deterministic
algorithm that is run by receiver R and takes as in-
put an OPRF response Roprf and the current state
Str of R. Without loss of generality, we assume
that R received the response Roprf as a follow-up
to a previous OPRF query that was generated for
h∈ {0,1}κ. Accordingly, the algorithm Resultoprf

outputs fδ(h), i.e. the evaluation of the pseudo-
random function fδ at point h.

In the remainder of this paper, we employ the
OPRF proposed by Jarecki and Liu [11] which al-
lows a receiver R and a sender S to compute jointly
the evaluation of the pseudo-random function fδ(h) =
g1/(δ+h) for any h∈Z∗N , where N is an RSA safe mod-
ulus and g is a random generator of a group G of order
N. However for ease of exposition, we will omit the
implementation details of this OPRF and we will only
refer to the generic OPRF algorithms when describing
our scheme.

5.2 Protocol Description

In the sequel of this paper and in accordance with the
work of Curtmola et al. [6], we assume that the cloud

server does not collude with revoked users. We indi-
cate that if such a collusion happens, then our protocol
will not be able to deter revoked users from searching
the outsourced files.

Without loss of generality, we also assume that
there is some certification authority which is in charge
of: i.) defining the universe of admissible attributes
A = {att1,att2, ...}, ii.) providing potential data own-
ers and potential authorized users with their creden-
tials credi that match their attributes Ai ⊂ A follow-
ing for instance the CP-ABE scheme proposed by
Bethencourt et al. [2].

5.2.1 Setup

As in the first version of the protocol, the data owner
O calls the Setup algorithm which takes as input the
security parameter ζ and outputs a master key MK and
a set of public parameters P such that:

• The master key MK is composed of a symmet-
ric encryption key Kenc, a MAC key Kmac and an
OPRF secret key δ.

• The new public parameters P comprise a MAC
Hmac : {0,1}ζ×{0,1}∗→ Z∗N (where N is a safe
RSA modulus), a cryptographic hash function H :
{0,1}∗→ {0,1}t and the public parameters Poprf

of the OPRF fδ(h) = g1/(δ+h).

5.2.2 Upload

The file upload phase amounts to i.) Encrypting
the file F using AES encryption (cf. Encrypt) ii.)
building a searchable index for Lω (cf. BuildIndex).
Now instead of building the index I based on LH =
{h1,h2...,hn} as was done previously, the index
will be constructed using the OPRF values fδ(hi) =
g1/(δ+hi). Since the computation of OPRF is deemed
to be demanding, we suggest that BuildIndex be exe-
cuted jointly by O and the semi-honest cloud server
S in such a way that O is only required to com-
pute symmetric operations (e.g. hash functions and
AES encryption) whereas the cloud server performs
the more computationally intensive operations (i.e.
OPRF and Cuckoo Hashing). Henceforth, we denote
BuildIndexO the sub-algorithm of BuildIndex that is
executed by data owner O and BuildIndexS the sub-
algorithm of BuildIndex that is operated by cloud
server S .

Processing at the data owner As in the previous
protocol, data owner O first generates a unique file
identifier fid for file F and then encrypts F by call-
ing the algorithm Encrypt which outputs an AES

encryption C = Enc(Kenc,F) of F . Then, O in-
vokes the algorithm BuildIndexO which outputs a
list of MACs LH = {h1,h2...,hn}, such that hi =
Hmac(Kmac,ωi||fid). Next, O defines the access pol-
icy AP that will be associated with file F and fi-
nally forwards (via a secure channel) the file iden-
tifier fid, the encryption C, the list of MACs LH =
{h1,h2, ...,hn}, the access policy AP and the OPRF
secret key δ to cloud server S .

Processing at the cloud The processing at the
cloud comprises two operations. The first one
is to compute OPRF over the MACs in LH =
{h1,h2, ...,hn} using the secret key δ. The second
operation is to build an index with the resulting val-
ues using Cuckoo hashing. More precisely, upon re-
ceipt of file identifier fid, ciphertext C, list of keyed
hashes LH = {h1,h2, ...,hn}, access policy AP associ-
ated with C and the OPRF key δ, S calls the algorithm
BuildIndexS which proceeds as explained below:

• First, BuildIndexS computes τi = fδ(hi) =
g1/(δ+hi) for all 1≤ i≤ n.

• BuildIndexS prepares an index I for T =
{τ1,τ2, ...,τn} using Cuckoo hashing. Namely,
BuildIndexS generates two sets of t binary ma-
trices {M j} and {M ′

j} (1 ≤ j ≤ t) of size (k, l)
each, where each element is initialized to 0.
BuildIndexS then selects two hashes H and H ′

that map each element τi in T to either a position
(xi,yi) = H(τi) in matrices {M j} or to a position
(x′i,y

′
i) = H ′(τi) in matrices {M ′

j}, by executing
the Cuckoo hashing algorithm.

• BuildIndexS fills the binary matrices {M j} and
{M ′

j} (1 ≤ j ≤ t) similarly to the previous ver-
sion of the protocol. The only difference is that
instead of storing the hashes H(hi) in {M j} and
{M ′

j}, we store the hashes H(τi).

• Finally, BuildIndexS outputs the searchable
index I = {H,H ′,M,M′} such that M =
{M1,M2, ...,Mt} and M′ = {M ′

1 ,M ′
2 , ...,M ′

t }.

5.2.3 Delegation

To delegate the word search capabilities on the en-
crypted file F to third party users, data owner O
encrypts its MAC key Kmac under its access pol-
icy AP using attribute-based encryption and provides
cloud server S with the resulting ciphertext Cmac =
Encabe(Kmac,AP). Thereafter, S publishes the cipher-
text Cmac and the file identifier fid.

We note that an authorized user U will in principle
possesses a set of attributes A (and therewith a set
of credentials cred) that satisfy the access policy AP.

Hence, U will be able to decrypt the ciphertext Cmac

using cred and derives the MAC key Kmac. This MAC
key Kmac will be then used by U to perform word
search on O’s file as will be shown in the next section.

5.2.4 Word Search

To search the encrypted file C for some word ω, the
authorized user U performs the following operations:

Token generation The token generation phase con-
sists of executing an OPRF protocol between the au-
thorized user U and the cloud server S , where U cor-
responds to the receiver R and S to the sender S (fol-
lowing the notations in Section 5.1.2). Consequently,
to generate a token τ for word ω, U executes algo-
rithm Token as follows:

• On inputs of the word ω, the file identifier fid
and the MAC key Kmac, the algorithm Token first
computes h = Hmac(Kmac,ω||fid). Then it calls
the algorithm Queryoprf which on input of h out-
puts an OPRF query Qoprf to evaluate fδ(h) =
g1/(δ+h). Next, the algorithm Token forwards the
OPRF query Qoprf to cloud server S .

• Upon receipt of Qoprf , S calls the OPRF algo-
rithm Responseoprf . This algorithm uses the secret
OPRF key δ and the OPRF query Qoprf to output
an OPRF response Roprf .
Here instead of sending the OPRF response Roprf

in clear to U, S will obfuscate it in such a way
that only an authorized (i.e. non-revoked) user
will be able to derive Roprf . This obfuscation is
performed as follows:

– S picks randomly a symmetric encryption key
K′enc and encrypts the OPRF response Roprf us-
ing K′enc and the semantically secure encryp-
tion Enc. This will result in a ciphertext C′ =
Enc(K′enc,Roprf).

– Then it computes a CP attribute-based encryp-
tion Cenc = Encabe(K′enc,AP) of the encryption
key K′enc under the access policy AP of the data
owner O.

Notice that in this manner, we make sure that
only authorized users will be able to decrypt the
OPRF response and therewith obtain the token
τ = fδ(h) = g1/(δ+h) necessary to perform the
word search.
At the end of this step, S forwards the ciphertexts
C′ and Cenc to authorized user U.

• On receiving the ciphertexts C′ and Cenc, the al-
gorithm Token first decrypts Cenc using the cre-
dentials cred that U obtained from the CA and

gets K′enc = Decabe(Cenc,cred). Then it computes
the OPRF response Roprf by decrypting the ci-
phertext Cenc using the secret key K′enc. Next,
the algorithm Token calls the OPRF algorithm
Responseoprf which takes as input Roprf and out-
puts consequently the word search token τ =
fδ(h) = g1/(δ+h).

Search Query After obtaining the token τ cor-
responding to the word ω, U runs the algorithm
Query which first computes H(τ) = (x,y) and H ′(τ) =
(x′,y′). Then, as in the previous solution, it computes
two PIR queries (~α, ~α′) to retrieve the xth and the x′th

row of a (k, l) binary matrix and sends the word search
query Q = (~α, ~α′) to cloud server S .

Search response On receiving U’s search query
Q = (~α,~α′), cloud server S runs algorithm Response
which computes the two sets of t PIR responses R =
{~β1,~β2, ...,~βt} and R′= {~β′1,~β′2, ...,~β′t} such that for
all 1≤ j ≤ t:

~β j = PIRResponse(~α,M j) =~α ·M j

~β′ j = PIRResponse(~α′,M ′
j) =~α′ ·M ′

j

S sends then its word search response R =
{R,R′} to U.

Verification To verify whether ω is in the encrypted
file C, the authorized user U runs the original algo-
rithm Verify as described in Section 4.2.3. But af-
ter obtaining~b and ~b′, algorithm Verify computes the
hash H(τ) instead of the hash H(h) and checks ac-
cordingly whether~b = H(τ) or ~b′ = H(τ). If it is the
case, then Verify outputs 1 meaning that ω ∈ F ; oth-
erwise, Verify outputs 0.

5.2.5 Revocation

For sake of simplicity, we assume that the data owner
O revokes attributes atti ∈ A instead of individual
users U. We believe that this assumption is suffi-
cient in the context of our application as described in
Section 2, where the data owner delegates the word
search capabilities to regulators or auditors that are
not identified by their identities but by their attributes.

Now to revoke an attribute atti, O runs the algo-
rithm Revoke which outputs a new access policy AP′

that will be given to the cloud server S . For instance,
if we assume that the initial access policy AP of O
states that auditors from EU and the US can perform
word search on O’s files, then a revocation of attribute
US will lead to a new access policy AP′ that says that

only auditors from the EU can perform word search.
In this manner, auditors from the US will no longer
have access to O’s file.

6 PRIVACY ANALYSIS

In this section, we briefly analyze the privacy
properties of the proposed scheme. The interested
reader may refer to the appendix for a more formal
analysis.

6.1 Storage Privacy

Our scheme insures storage privacy thanks to the use
of semantically secure encryption and message au-
thentication code during the upload phase. Actually,
the semantically secure encryption assures that cloud
server S cannot derive any information about the file
F from its encryption C. In addition, by computing
MACs that not only depend on the words present in
the file but also on its unique identifier, we ensure that
the index I does not leak any information about the
outsourced file. Notably, cloud server S cannot tell
whether two outsourced files have words in common
or not, based on their indexes.

6.2 Query Privacy

Query privacy is assured by the use of both OPRF and
PIR. On the one hand, OPRF allows authorized user
U to generate a word search token τ without disclos-
ing anything to cloud server S about the word ω that
U is interested in. On the other hand, PIR enables U
to preform word search on S ’s database while mak-
ing sure that S learns nothing about the word search
queries or their corresponding results.

6.3 Privacy against Revoked Users

Since in this paper, we only focus on the case where
data owner O revokes attributes instead of individual
users, it follows that using for instance the CP-ABE
scheme proposed by Bethencourt et al. [2] suffices to
ensure efficient revocation. As shown in the previous
section, revocation is achieved by updating the access
policy associated with file F and by exploiting the
properties of OPRF: Obfuscating S ’s responses dur-
ing the token generation phase (cf. Section 5.2) stops
a revoked user from deriving new word search tokens
and consequently from verifying S ’s responses.

Note also that even if revoked users gain access to
the cloud server’s database, they cannot decrypt the

content of the outsourced files as they do not have ac-
cess to the encryption key Kenc. All they can achieve
is performing a dictionary attack on the index I using
the MAC key Kmac and the OPRF secret key δ, which
can be computationally intensive.

7 PERFORMANCE EVALUATION

During the upload phase, the data owner is only
required to encrypt the file to be outsourced using a
symmetric encryption and to compute a MAC hi for
each word ωi ∈ Lω. On the other hand, the cloud
server computes the OPRFs (i.e. tokens) τi = fδ(hi)
and builds the corresponding index I by following the
algorithm of Cuckoo hashing. Although the compu-
tation of the OPRF proposed in [11] may be deemed
computationally demanding as it calls for exponenti-
ations, it can be efficiently parallelized at the cloud
server. Actually, if the cloud server possesses N ma-
chines for instance, it can provide each one of its
machines with 1

N fraction of the list of MACs LH =
{h1,h2, ...,hn} supplied by the data owner. Each ma-
chine will consequently compute n

N exponentiations
whose results will be given back to the cloud server
to construct the index I .

While some would argue that using PIR to com-
pute the responses of the cloud server to word search
queries is computationally intensive, we note that this
computation consists of matrix multiplications which
can easily be parallelized. Actually, the cloud server
can store at each one of its machine 1

N -fraction of the
binary matrices {M j} and {M ′

j}. Upon receipt of a
word search query, S forwards the PIR queries it re-
ceives to its N machines which accordingly compute
the corresponding PIR responses.

Furthermore, we emphasize that in this paper we
employ PIR to retrieve a hash of word search tokens
instead of their actual values. This fact drastically en-
hances the computation and the communication per-
formances of our scheme. For example, if we instan-
tiate the OPRF in the token generation phase with the
OPRF presented in [11], then we will end up with to-
kens of size 1024 bits. This means that if we retrieve
the actual values of the token to perform word search,
then each search query will consist of retrieving 1024
bits which is far from being practical. Instead in our
protocol, each search operation consists of fetching
t-bit (t is typically 80) hash. We note also that set-
ting the size (k, l) of the matrices {M j} and {M ′

j} to
(
√

tn,
√ n

t) results in a minimal communication cost
of O(

√
tn).

Finally, we stress that contrary to related work [6],
revocation in our protocol does not require the re-

encryption of the outsourced files. Rather, it only calls
for an update of the access policy of the data owner at
the cloud server.

8 RELATED WORK

As opposed to the proposed solution, most of ex-
isting word search mechanisms be them asymmet-
ric [1, 4, 17] or symmetric [6, 10, 12, 15] seem to
guarantee query privacy partially: Indeed, in these
solutions, although the outsourced data and queries
are encrypted, the cloud can discover the response to
any encrypted query. Furthermore very few of cur-
rent solutions [6, 7] propose the ability to delegate
the search operation; unfortunately, these solutions
provide the authorized user with the data encryption
key and therefore revocation of a user requires the re-
encryption of the entirely outsourced data and the dis-
tribution of this new key to the authorized users.

The first solution which transforms an original
PIR mechanism into a privacy preserving word-search
solution is proposed by Chor et. al. in [5]. Similarly
to our solution, in [5], the owner of the data constructs
an index based on all distinct words in the outsourced
file. This index is a hash-table that is filled according
to the perfect hashing algorithm of Fredman et al. [8].
Our solution outperforms the solution in [5] thanks to
the use of Cuckoo hashing instead of perfect hashing.
Namely, in the scheme of [5], a word search query
consists of three PIR queries, whereas in our protocol
it is composed of two PIR queries. Additionally, the
PIR queries in the case of Cuckoo hashing are inde-
pendent. This implies that the server can execute the
two PIR instances in parallel to respond to the word
search query.

Another solution that resembles the proposed so-
lution is PRISM [3] where the cloud constructs some
binary matrices in which each cell represents one
or more words without knowing their content and
the owner sends PIR requests to retrieve the con-
tent of one of these cells. Thanks to the use of
Cuckoo hashing, our solution outperforms the origi-
nal PRISM mechanism without lowering the security
level. PRISM defines a matrix in which each cell cor-
responds to one or more words; therefore, two words
can turn out to be represented by the same cell. In
order to decrease the probability of such collisions,
the data owner send multiple (q) queries for the same
word. In the newly proposed mechanism, the prob-
ability of collisions within the binary matrices is 0
and the data owner and/or the authorized user need
to send a single query for each word. Additionally,
PRISM does not offer any delegation capability and

a straightforward delegation operation would require
the distribution of the data encryption key to autho-
rized users which can increase privacy risks.

9 CONCLUSION

We introduced a protocol for privacy preserving
delegated word search in the cloud. This protocol
allows a data owner to outsource its encrypted data
to a cloud server, while empowering the data owner
with the capability to delegate word search opera-
tions to third parties. By employing keyed hash func-
tions and oblivious pseudo-random functions, we en-
sure that authorized users only learn whether a given
word is in the outsourced files or not. In addition,
we use private information retrieval to make sure that
the cloud server cannot infer any information about
the outsourced files from the execution of the word
search protocol. Furthermore, we combine attribute-
based encryption and oblivious pseudo-random func-
tions to accommodate efficient revocation. Finally,
the data owner in our protocol is only required to
perform symmetric operations, whereas the computa-
tionally intensive computations are performed by the
cloud server, and they can easily be parallelized.

Bibliography
[1] M. Bellare, A. Boldyreva, and A. O’Neill. De-

terministic and efficiently searchable encryption.
In Proceedings of the 27th Annual International
Cryprology Conference on Advances in Cryptology,
(CRYPTO’07), pages 535–552, 2007.

[2] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-
policy attribute-based encryption. In Security and Pri-
vacy, 2007. SP ’07. IEEE Symposium on, pages 321–
334, 2007.

[3] E.-O. Blass, R. di Pietro, R. Molva, and M. Önen.
PRISM - Privacy-Preserving Search in MapReduce.
In Proceedings of the 12th Privacy Enhancing Tech-
nologies Symposium (PETS 2012). LNCS, July 2012.

[4] D. Boneh, G. G. Crescenzo, R. Ostrovsky, and G. Per-
siano. Public key encryption with keyword search. In
Proceedings of Eurocrypt 2004, volume 3027, pages
506–522. LNCS, 2004.

[5] B. Chor, N. Gilboa, and M. Naor. Private information
retrieval by keywords, 1997.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved defini-
tions and efficient constructions. In Proceedings of
the 13th ACM conference on Computer and communi-
cations security, CCS ’06, pages 79–88. ACM, 2006.
ISBN 1-59593-518-5.

[7] C. Dong, G. Russello, and N. Dulay. Shared and
searchable encrypted data for untrusted servers. In
Proceeedings of the 22nd annual IFIP WG 11.3 work-
ing conference on Data and Applications Security,
pages 127–143, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-70566-6. doi: 10.1007/
978-3-540-70567-3 10. URL http://dx.doi.org/
10.1007/978-3-540-70567-3_10.

[8] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a Sparse Table with 0(1) Worst Case Access Time. J.
ACM, 31(3):538–544, June 1984. ISSN 0004-5411.

[9] M.J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword search and oblivious pseudorandom func-
tions. In Proceedings of the Second international con-
ference on Theory of Cryptography, TCC’05, pages
303–324, Berlin, Heidelberg, 2005. Springer-Verlag.
ISBN 3-540-24573-1, 978-3-540-24573-5.

[10] P. Golle, J. Staddon, and B. Waters. Secure conjunc-
tive keyword search over encrypted data. In M. Jakob-
sson, M. Yung, and J. Zhou, editors, Proc. of the 2004
Applied Cryptography and Network Security Confer-
ence, pages 31–45. LNCS 3089, 2004.

[11] S. Jarecki and X. Liu. Efficient Oblivious Pseudo-
random Function with Applications to Adaptive OT
and Secure Computation of Set Intersection. In The-
ory of Cryptography, volume 5444 of Lecture Notes
in Computer Science, pages 577–594. Springer Berlin
Heidelberg, 2009. ISBN 978-3-642-00456-8.

[12] S. Kamara, C. Papamanthou, and T. Roeder. Dy-
namic searchable symmetric encryption. In Proceed-
ings of the 2012 ACM conference on Computer and
communications security, CCS ’12, pages 965–976,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1651-4. doi: 10.1145/2382196.2382298. URL http:
//doi.acm.org/10.1145/2382196.2382298.

[13] R. Pagh. On the cell probe complexity of member-
ship and perfect hashing. In Proceedings of the thirty-
third annual ACM symposium on Theory of comput-
ing, STOC ’01, pages 425–432, New York, NY, USA,
2001. ACM. ISBN 1-58113-349-9.

[14] R. Pagh and F.F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[15] D. X. Song, D. Wagner, and A. Perrig. Practical tech-
niques for searches on encrypted data. In Proceed-
ings of the 2000 IEEE Symposium on Security and
Privacy, SP ’00, pages 44–, Washington, DC, USA,
2000. IEEE Computer Society. ISBN 0-7695-0665-
8. URL http://dl.acm.org/citation.cfm?id=
882494.884426.

[16] J. Trostle and A. Parrish. Efficient Computation-
ally Private Information Retrieval from Anonymity
or Trapdoor Groups. In Proceedings of Conference
on Information Security, pages 114–128, Boca Raton,
USA, 2010.

[17] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smet-
ters. Building an encrypted and searchable audit log.
In Proceedings of NDSS’04, 2004.

APPENDIX

Storage Privacy

Theorem 1. The protocol presented in Section 5 pro-
vides storage privacy under the semantic security of
the encryption Enc and the security of the MAC Hmac

employed during the upload phase to encrypt the out-
sourced files and to build the corresponding indexes
respectively.

Due to space limitation, we omit the proof of this
theorem. Notice that all the server has access to is the
semantically secure encryption and the indexes that
are computed using keyed hashes. Therefore, as dis-
cussed in Section 6, the cloud server cannot derive
any information about the outsourced files.

Query Privacy

Theorem 2. The protocol described in Section 5
achieves query privacy under the security of the trap-
door PIR and the security of the OPRF.

Before introducing the full proof of the above
theorem, we present here briefly a formal definition
of the security properties of Private Information Re-
trieval.

Private Information Retrieval. Let Opir be an or-
acle that takes as input an (k, l) binary matrix M
and two positions (x0,y0) and (x1,y1), flips a coin
bpir ∈ {0,1} and returns a PIR query to fetch the bit
at position (xbpir

,ybpir
) from M as depicted in Section

4.1.1.
Let S be an adversary that submits two positions

pos∗0 = (x∗0,y
∗
0) and pos∗1 = (x∗1,y

∗
1) to Opir to get a PIR

query for pos∗bpir
. Upon receipt of the PIR query, S

outputs a guess b∗pir for the bit bpir.
Let ΠA

success denote the probability that S outputs
a correct guess for bpir (i.e. b∗pir = bpir). We say
that a PIR scheme is secure if for any adversary S ,
ΠA

success ≤ 1
2 +εpir, where εpir is a negligible function.

Proof. Assume there exists an adversary S which is
able to break the query privacy of our protocol with
a non-negligible advantage ε. We here describe an
adversary A which uses S to break the security of the
PIR with a non-negligible εpir as long as the OPRF
used in the token generation phase is secure.

Construction. To simulate the query privacy game
for adversary S , A picks an encryption key Kenc, a
MAC key Kmac and an OPRF secret key δ which it
provides to S .

When S enters the learning phase, A simulates the
oracles Oencrypt, Oindex and Osearch,s using the secret
keys Kenc and Kmac.

At the end of the learning phase as shown in Al-
gorithm 3, S outputs a challenge file F∗ and a pair of
challenge words (ω∗0,ω

∗
1).

In the challenge phase (see Algorithm 4), A first
encrypts and builds the index of file F∗. Without loss
of generality, we denote the resulting ciphertext and
index C∗ and I ∗ = {M∗,M′∗,H∗,H ′∗} respectively.

Now to simulate the oracle Oview,s in the challenge
phase, A executes the following steps:

• First A engages in a token generation with S by
performing the OPRF protocol for word ω∗0.

• Then, it provides the oracle Opir with a binary ma-
trix M of size (k, l) and two positions (x∗0,y

∗
0) =

H(fδ(h∗0)) and (x∗1,y
∗
1) = H(fδ(h∗1)), where h∗i =

H(Kmac,ω
∗
i ||fid), i∈ {0,1}. The PIR oracle picks

randomly a bit bpir ∈ {0,1} and returns a PIR
query for the position (x∗b,y

∗
b). This PIR will be

used by adversary A to fetch a bit from the matri-
ces M∗.

• Finally, A prepares another PIR query to retrieve
the element at position (x′∗0 ,y′∗0) = H ′(fδ(h∗0))
from the matrices M′∗.

At the end of the challenge phase, adversary S out-
puts a bit b∗, such that b∗ = 0 if S thinks that it has
been queried for word ω∗0; b∗ = 1 otherwise.

Notice that since we use OPRF to generate search
tokens, the token generation phase does not leak any
information about the queried word ω∗0. Therefore, to
break query privacy S has to rely on the PIR queries
it receives during the word search phase.

We remark also that when the PIR oracle chooses
the bit bpir = 0, then the view view∗s of S that A
simulates above is indistinguishable from the view of
S during a word search protocol execution for word
ω∗0 with an actual authorized user. This implies that
whenever bpir = 0, S will be able to output a cor-
rect guess for the queried word ω∗0 (i.e. S will out-
put b∗ = 0) with a non-negligible advantage ε. How-
ever, if Opir picks bpir = 1, then the view of S will
correspond to an OPRF execution for ω∗0 and two PIR
queries one for ω∗0 and the other for ω∗1.

Assume that adversary S can detect with some
probability π that the PIR queries it receives when
bpir = 1 do not correspond to the same word, and as a
result, it aborts the query privacy game.

It follows that to break the security of the PIR, A
outputs b∗pir = b∗ when S does not stop the query pri-
vacy game; otherwise, A outputs b∗pir = 1. Actually,
when S aborts the game, this means that S has re-
ceived two incompatible PIR queries, i.e., the query

generated by the PIR oracle Opir correspond to posi-
tion (x∗1,y

∗
1) = H(fδ(h∗1)).

Privacy against Revoked Users

Theorem 3. The protocol presented in Section 5 en-
sures privacy against revoked users under the indis-
tinguishability of the OPRF, the security of CP-ABE
and the semantic security of encryption Enc.

Before presenting the formal proof of the above
theorem, we provide below a brief formalization of
OPRF indistinguishability.

OPRF indistinguishability. Let A be an adversary
against the indistinguishability of the OPRF. The goal
of adversary A is given h∗ ∈ {0,1}κ and σ∗, it should
be able to tell whether σ∗ = fδ(h∗) or not.

Accordingly, A is given access to the following
oracles:

• OF
oprf(h)→ Roprf : It is an oracle that acts as the

sender in the OPRF protocol. It takes as input an
OPRF query Qoprf for some h ∈ {0,1}κ and out-
puts an OPRF response Roprf .

• OI
oprf(h)→ σ: It is an oracle that on input of h,

selects randomly a bit boprf ∈ {0,1}. If b = 1, then
OI

oprf outputs σ = fδ(h); otherwise it sets σ to a
randomly generated value.

To break the indistinguishability of the OPRF fδ,
A is allowed to issue OPRF queries to the oracle
OF

oprf for a polynomial number of values hi. Next, A
chooses h∗ 6∈ {hi} and submits h∗ to the oracle OI

oprf .
Upon receipt of h∗, OI

oprf selects a random bit boprf

and outputs σ∗ as shown above.
We say that A succeeds in breaking the indistin-

guishability of the OPRF if given h∗ and σ∗, A is able
to output a correct guess b∗oprf for the bit boprf . That
is, if A is able to tell whether σ∗ = fδ(h) or whether
it was randomly generated. Hereafter, let ΠA

success de-
note the probability that A outputs a correct guess for
boprf (i.e. the probability that b∗oprf = boprf).

We recall that an OPRF is said to insure indistin-
guishability if for any adversary A , ΠA

success ≤ 1
2 +

εoprf , where εoprf is a negligible function.

Proof. Assume there exists a user U that breaks the
privacy against revoked users with a non-negligible
advantage ε. We show in the following how to con-
struct an adversary A which uses U to break the in-
distinguishability of the OPRF with a non-negligible
advantage εoprf .

Construction. To break the indistinguishability
property of the OPRF, adversary A picks a symmet-
ric encryption key Kenc and a MAC key Kmac that it
uses to encrypt file F and to compute the MACs nec-
essary to build the index I respectively. Without loss
of generality, we denote C the encryption of the chal-
lenge file F and LH = {h1,h2, ...,hn} the MACs of the
words present in F . To complete the construction of
the index I , adversary A invokes the oracle OF

oprf for
each hi ∈LH . This oracle returns for each hi ∈LH the
corresponding OPRF response from which A derives
fδ(hi).

When U enters the learning phase, A first simu-
lates the oracle Odelegate by giving U the MAC key
Kmac and the public parameters of the OPRF. Besides
to simulate the oracle Osearch,u, A proceeds as follows:

• If Osearch,u receives an OPRF query for some
MAC hi = Hmac(Kmac,ωi||fid) before the revoca-
tion of U, then A forwards this query to the oracle
OF

oprf which in turn outputs a matching OPRF re-
sponse. Next, A obfuscates this OPRF response
using CP-ABE and the encryption Enc as was
shown in the protocol.

• If Osearch,u receives an OPRF query after the revo-
cation of U, then A generates randomly an OPRF
response which it obfuscates using CP-ABE and
the semantically secure encryption Enc. By com-
bining CP-ABE and semantically secure symmet-
ric encryption, A makes sure that revoked user U
cannot tell whether it is receiving an actual OPRF
response or a randomly generated one.

Then, when U issues a PIR query to perform word
search, then A computes its PIR response as expected
by U.

Finally, A simulates Orevoke by modifying the ac-
cess policy in such a way that U is no longer allowed
to perform lookups.

At the end of the learning phase, U outputs a chal-
lenge word ω∗ for which it did not issue a search
query when it was still authorized.

Now if ω∗ was already in the challenge file F ,
then A aborts the game, otherwise it proceeds with
the challenge phase. In the challenge phase, A simu-
lates the oracle Ochal,u as depicted below:

• A first computes the MAC h∗ =
Hmac(Kmac,ω

∗||fid) and calls the oracle OI
oprf

with h∗. This oracle flips a coin boprf and returns
σ∗ as depicted above. A then inserts σ∗ into index
the challenge index I ∗.

• Upon receipt of the OPRF query from U, A gen-
erates randomly an OPRF response which it ob-
fuscates using CP-ABE and the encryption Enc.

• When A receives the PIR queries from U, it com-
putes its PIR response on index I ∗ as expected by
U.

At the end of the challenge phase, U outputs a
bit b∗. To break the indistinguishability of OPRF, A
outputs b∗oprf = b∗.

Note that on the one hand, if b∗ = 1 then this
means that fδ(h∗) is in I ∗ (i.e. σ∗ = fδ(h∗)). On the
other hand if b∗ = 0 then this entails that σ∗ 6= fδ(h∗)
(i.e. σ∗ was generated randomly).

We point out here that A breaks the indistin-
guishability of OPRF if it does not abort the game
of privacy against revoked users and if U outputs a
correct guess b∗. This occurs with probability 1

2 +επ,
where π is the probability that A does not stop the
game.

To summarize, if there is an adversary U which
breaks the privacy against revoked users with a non-
negligible advantage ε, then there exists another ad-
versary A which breaks the indistinguishability of
OPRF with a non-negligible advantage εoprf = επ.

