EURECOM

S op hia

EURECOM
Department of Networking and Security
Campus SophiaTech
CS 50193

06904 Sophia Antipolis cedex
FRANCE

Research Report RR-13-280

StealthGuard: Proofs of Retrievability
with Hidden Watchdogs

April 70, 2014
Last update June 24 2014

Monir Azraoui , Kaoutar Elkhiyaoui , Refik Molva and Meléknen

Tel : (+33) 4 93 00 81 00

Fax: (+33) 4 93 00 82 00
Email : {monir.azraoui,kaoutar.elkhiyaoui,refik.molva,melek.cr@eurecom.fr

'EURECOM’s research is partially supported by its industrial membersiWBBtoup Research
and Technology, IABG, Monaco Telecom, Orange, Principaut deddonSAP, SFR, ST Microelec

tronics, Symantec.

StealthGuard: Proofs of Retrievability
with Hidden Watchdogs

Monir Azraoui , Kaoutar Elkhiyaoui , Refik Molva and Mel€knen

Abstract

This paper preseng&tealthGuard, an efficient and provably secure proof
of retrievabillity (POR) scheme.StealthGuard makes use of a privacy-
preserving word search (WS) algorithm to search, as part &R §uery, for
randomly-valued blocks called watchdogs that are inséntélde file before
outsourcing. Thanks to the privacy-preserving featureefWs, neither
the cloud provider nor a third party intruder can guess whielichdog is
queried in each POR query. Similarly, the responses to P@Reguare also
obfuscated. Hence to answer correctly to every new set of f@Res, the
cloud provider has to retain the file in its entireBtealthGuard stands out
from the earlier sentinel-based POR scheme proposed by dodlKaliski
(JK), due to the use of WS and the support for an unlimited nummtsueries
by StealthGuard. The paper also presents a formal security analysis of the
protocol.

Index Terms

Proofs of Retrievability, Cloud Computing, Privacy-Pneseg Word Search

Contents

1

2

Introduction

Background
21 Entities
22 POR . . . e

Adversary models
3.1 Completeness
3.2 Soundness

Overview
4.1 Idea e
4.2 StealthGuardphases.

StealthGuard
5.1 Setup e

5.2 WDSearch

5.3 \Verification e
5.4 Dynamic StealthGuard

Security Analysis
6.1 Completeness e
6.2 Soundness

Discussion
Related Work
Conclusion

Proof of Theorem 2

18

20

N

1 Introduction

Nowadays outsourcing, that is, delegating one’s computing to exterrtega
is a well established trend in cloud computing. Along with unprecedentedhadva
tages such as lower cost of ownership, adaptivity, and increasadiggputsourc-
ing also raises new security and privacy concerns in that critical dategsing and
storage operations are performed remotely by potentially untrusted pantibss
paper we focus on data retrievability, a security requirement akin to auetu
data storage services like Dropbband Amazon Simple Storage ServiceData
retrievability provides the customer of a storage service with the assuthatce
a data segment is actually present in the remote storage. Data retrievability is a
new form of integrity requirement in that the customer of the storage or ttze da
owner does not need to keep or get a copy of the data segment in ogkrttee
assurance of retrievability thereof. A cryptographic building block cafeabf of
Retrievability (POR) was first developed by Juels and Kaliski [1] (JK) tentieis
requirement. In the definition of [1], a successful execution of the PE)iRrae
assures a verifier that it can retriekan its entirety. Classical integrity techniques
such as transferring’ with some integrity check value are not practical since they
incur very high communication or computational costs that are linear with the size
of F. POR schemes aim at much lower cost both in terms of communications and
processing by avoiding transmission or handlingah its entirety. To that effect,
POR schemes require the prover to perform some operations on sonoenfgnd
selected parts af' and the verifier is able to check the result returned by the prover
with the knowledge of very brief reference about the data like a seeyetMost
POR schemes thus are probabilistic and their performance is measured autie tr
off between the bandwidth and processing overhead and the rateieVability
assurance.
In this paper we developtealthGuard, a new POR scheme that achieves good re-
trievability assurance with acceptable costs. The main idea behind the nemesch
is a combination of a privacy-preserving word search (WS) algorithitedto
large datastores with the insertion in data segments of randomly generatéd sho
bit sequences callegtatchdogs In StealthGuard, the user inserts these watch-
dogs in randomly chosen locations of the fleand stores the resulting file in the
cloud. In order to check the retrievability éf the user issues lookup queries for
selected values of watchdogs using the WS scheme. The user decrypSthe
replies from the cloud server in order to get the proof of retrievabilityefach
segment targeted by the WS queries. Each positive result is the prosdsenee
for the corresponding data segment. Thanks to the features of the if&rribe
cloud server nor a third party intruder can guess which watchdogsrgeded by
each WS query or response.
Even though there is an analogy between the watchdogs ustedhithGuard and

'Dropbox - https://www.dropbox.com/
2Amazon Simple Storage Service - http://aws.amazon.com/fr/s3/

the sentinels akin to the JK scheme [1], there is a major difference betwesvothe
schemes due to the use of WS $tealthGuard: the number of POR queries that
can be issued istealthGuard without requiring any update of the watchdogs is
unbounded whereas in the JK scheme a given set of sentinels canddeuadi-

nite number of POR queries onigtealthGuard only requires the transfer of some
additional data that is a small percentage-oh size and a good POR rate can be
achieved by only processing a fraction®f In addition to the description of our
proposal, we give a new security model that enhances existing seceifiitjtions

of POR schemes [1, 2]. We state a generic definition of the soundngserfyrthat
applies to any POR scheme.

Contributions. To summarize, this paper offers two main contributions:

— We presenStealthGuard, a new POR scheme based on the insertion of watch-
dogs that requires a light file preprocessing and on a privacy+piage/VNsS that
allows a user to issue an unbounded number of POR queries. Besidasetlie
stateless since it only needs to keep a secret key to be able to run the ®O¢dpr

— We propose a new security model which improves existing security definitions
[1, 2]. We also provide a formal proof of our proposal under this seaurity
model.

The rest of the paper is organized as follows. Section 2 defines the eatitighe
algorithms involved in a POR scheme. Section 3 describes the adversarismode
that are considered in this paper. Section 4 provides an overvi8teafthGuard

and Section 5 gives details of the protocol. Section 6 analyses its secupgrpr
ties. Section 7 evaluates its security and its efficiency. We review the state of th
art in Section 8.

2 Background

Before presenting the formal definition of PORs and the related secufity-de
tions, we introduce the entities that we will refer to in the remainder of this paper

2.1 Entities

A POR scheme comprises the following entities:

e ClientC: It possesses a set of fil&sthat it outsources to the cloud sengr
Without loss of generality, we assume that eachffile F is composed of.
splits{.S1, Ss, ..., Sy, } of equal sizel. bits. In practice, if the size af' is not
a multiple of L, then padding bits will be added #. We also suppose that
each splitS; comprisesn blocks ofi bits {b; 1,b; 2, ..., bim }, i.€.,L = m 1.

e Cloud ServerS (a potentially malicious prover): For each fife € F, the
cloud serverS stores an “enlarged” verifiable versidn of that file, that
enables it to prove to a verifigt that the client can still retrieve its original
file F.

e Verifier V: Itis an entity which via an interactive protocol can check whether
the cloud serves (i.e., the prover) is still storing some filE € F or not.
The verifier can be either the client itself or any othathorizedentity, such
as an auditor.

2.2 POR

A POR scheme consists of five polynomial-time algorithms (cf. [1, 2]):

e KeyGen(17) — K: This probabilistic key generation algorithm is executed
by clientC. It takes as input a security parameteand outputs aecret key
K for C.

e Encode(K, F) — (fid, F): Ittakes the keys and the fileF = {5}, Ss, ..., S, }
as inputs, and returns the file = {5, S,, ..., S, } and Fs uniqueidentifier
fid. Cloud servesS is required to storé” together withfid. F is obtained
by first applying toF' an error-correcting codg(ECC) which allows client
C to recover the file from minor corruptions that may go undetected by the
POR scheme, and further by adding soreéfiable redundancthat enables
clientC to check whether cloud servérstill stores aretrievableversion of
F or not.

Note that theEncode algorithm is invertible. Namely, there exists an algo-
rithm Decode that allows the clienf to recover its original fileF" from the
file F.

e Challenge(K, fid) — chal: The verifierV calls thisprobabilistic algorithm
to generate a challengdal for an execution of the POR protocol for some
file F. This algorithm takes as inputs the secret k&ynd the file identifier
fid, and returns the challeng®al that will be sent to cloud servet.

e ProofGen(fid, chal) — P: On receiving the challengghal and the file iden-
tifier fid, cloud servelS execute®roofGen to generate a proof of retrievabil-
ity P for the file 7 whose identifier isid. The proofP is then transmitted to
verifier V.

e ProofVerif(K, fid, chal, P) — b € {0,1}: Verifier V runs this algorithm to
check the validity of the proofs of retrievability sent by cloud seweiOn
input of the keyK, the file identifierfid, the challengehal, and the proof
P, theProofVerif algorithm outputs bib = 1 if the proofP is a valid proof,
andb = 0 otherwise.

3 Adversary models

A POR scheme should ensure that if cloud sevés storing the outsourced
files, then théroofVerif algorithm should always outpiit meaning thaProofVerif

3

does not yield any false negatives. This corresponds todhepletenesproperty

of the POR scheme. PORs should also guarantee tisapibvides a number (to
be determined) of valid proofs of retrievability for some e then verifier) can
deduce that servef is storing a retrievable version &f. This matches theound-
nessproperty of POR. These two properties are formally defined in the following
sections.

3.1 Completeness

If cloud serverS and verifier) are both honest, then on input of a challenge
chal and some file identifiefid sent by verifier), the ProofGen algorithm gener-
ates a proof of retrievabilit? that will be accepted by verifié? with probability
1.

Definition 1 (Completeness)A POR scheme isompleteif for any honest pair of
cloud serveiS and verifierV, and for any challengehal < Challenge(K, fid):

Pr(ProofVerif (K, fid, chal, P) — 1 | P < ProofGen(fid, chal)) =1

3.2 Soundness

A proof of retrievability is deemed sound, if for any malicious cloud seier
the only way to convince verifief that it is storing a fileF” is by actually keeping a
retrievable version of that file. This implies that any cloud sef/grat generates (a
polynomial number of) valid proofs of retrievability for some file must possess
a version of that file that can be used later by cliénbd recoverF'. To reflect the
intuition behind this definition of soundness, Juels and Kaliski [1] sugdehte
use of a file extractor algorithi@ that is able to retrieve the fil&' by interacting
with cloud serverS using thesoundPOR protocol. Along these lines, we present
a new and a more generic soundness definition that refines the formalination
Shacham and Waters [2] which in turn builds upon the work of Juels atidkKa
[1]. Although the definition of Shacham and Waters [2] captures thedstass of
POR schemes that empower the verifier with unlimited (i.e. exponential) number
of “possible” POR challenges [2—4], it does nhot define properly thmdoess of
POR schemes with limited number of “possible” POR challenges such as in [1, 5]
and in StealthGuard®. We recall that the formalization in [2] considers a POR
to be sound, if a file can be recovered whenever the cloud serveragesa valid
POR response for that file withreon-negligibleprobability. While this definition is
accurate in the case where the verifier is endowed with unlimited number of POR
challenges, it cannot be employed to evaluate the soundness of the mathan
introduced in [1, 5] or the solution we will present in this paper. For exanifohe
take the POR scheme in [5] and if we consider a scenario where the clougi se
corrupts randomly half of the outsourced files, then the cloud server evititie

Note that having a bounded number of POR challenges does not negéettthat the verifier
can perform unlimited number of POR queries with these same challesfggs,

4

to correctly answer half (which is non-negligible) of the POR challengedsthiea
verifier issues, yet the files are irretrievable. This implies that this POR mirha
is not secure in the model of Shacham and Waters [2], still it is arguablydso

The discrepancy between the soundness definition in [2] and the wfitkSjf
springs from the fact that in practice to check whether a file is correctipdtat
the cloud server, the verifier issues a polynomial number of POR quendsid¢h
the server has to respond correctly; otherwise, the verifier detectsuption at-
tack (the corruption attack could either be malicious or accidental) and flags th
server as malicious. This is actually what the PORs of [1, 5] @tsdlthGuard
aim to capture. In order to remedy this shortcoming, we propose augmenging th
definition of Shacham and Waters [2] (as will be shown in Algorithm 2) withén
ditional parametet that quantifies the number of POR queries that verifier should
issue to either be sure that a file is retrievable or to detect a corruption atiack o
that file.

Now in accordance with [2], we first formalizoundnessising a game that
describes the capabilities of an adversaryi.e., malicious cloud server) which
can deviate arbitrarily from the POR protocol, and then we define the extracto
algorithmé&.

To formally capture the capabilities of adversatywe assume that it has ac-
cess to the following oracles:

e Ogncode: This oracle takes as inputs a fife and :[he client’s keyK, and
returns a file identifiefid and a verifiable versio#’ of I that will be out-
sourced toA.

Note that adversaryl can corrupt the outsourced file either by modifying
or deletingF’s blocks.

e Ochallenge: On input of a file identifierfid and client’'s keyK, the oracle
Ochallenge returns a POR challenggal to adversaryA.

¢ Overiry: When queried with client’s keys, a file identifierfid, a challenge
chal and a proof of retrievability?, the oracleDy.ir, returns bitb such that:
b= 1if P is a valid proof of retrievability, and = 0 otherwise.

AdversaryA accesses the aforementioned oracles in two phases: a learning phase
and a challenge phase. In the learning phase, adversaay call oracle®gncode;
Ochallenge, @NdOverir, for a polynomial number of times in any interleaved order
as depicted in Algorithm 1. Then, at the end of the learning phase, thesadye
A specifies a file identifiefid* that was already output by oradi®:,code-

We note that the goal of adversa#yin the challenge phase (cf. Algorithm 2)
is to generatey valid proofs of retrievabilityP)* for file /™ associated with file
identifierfid*. To this end, adversaut first calls the oracl€cpaiienge that supplies
A with + challengeshal?, then it responds to these challenges by outputiing
proofsP;. Now, on input of client’s key¥,, file identifierfid*challengeghal; and
proofsP;, oracleOv.rig, OUtputsy bits b;. AdversaryA is said to be successful if

5

Y
b* = A bf = 1. Thatis, if A is able to generate proofs of retrievabilityP* for

file Fg‘ tlhat are accepted by orad®ci, -

Given the game described above and in line with [1, 2], we formalize thedsoun
ness of POR schemes through the definition of an extractor algoéittimat uses
adversaryA to recover/retrieve the filé™ by processing as follows:

e £ takes as inputs the client’s kéy and the file identifiefid*;

e £ is allowed to initiate a polynomial number of POR executions with adver-
sary A for the file F'*;

e £ is also allowed to rewind adversayy. This suggests in particular that
extractor€ can execute the challenge phase of the soundness game a poly-
nomial number of times, while the state of adversdrgemains unchanged.

Intuitively, a POR scheme is sound, if for any adversdrhat wins the sound-
ness game with a non-negligible probabilitythere exists an extractor algorithén
that succeeds in retrieving the challenge fitewith an overwhelming probability.
A probability is overwhelming if it is equal td — ¢, wheree is negligible.

Algorithm 1: Learning phase of the soundness Algorithm 2: Challenge phase of the

game soundness game
// A executes the following in any interleaved fori=1to~ydo
// order for a polynomial number of times chal} + Ochalienge (K, fid™);
(fid, F) <— OEncode(F, K); ’pl* — A;
chal « OChaIIenge(K, fld), b: <
P+ A; Overity (K, fid] , chaly, P;");
b+ Overify(K, fid,ChaLP); end
// A outputs a file identifiefid* ~
fid® « A; b= Abi

Definition 2 (Soundness)A POR scheme is said to i§&, v)-sound if for every
adversaryA that providesy valid proofs of retrievability in a row (i.e., succeeds
in the soundness game described above) with a non-negligible probabilitgre
exists an extractor algorithréi such that:

Pr(E(K, fid*) — F* | (K, fid*) "5 A) > 1—¢
Wheres is a negligible function in the security parameter

The definition above could be interpreted as follows: if verifieissues a
sufficient number of queries>(+) to which cloud servelS responds correctly,
then) can ascertain thaf is still storing a retrievable version of fil&™ with
high probability. It should be noted that whilecharacterizes the number dlid
proofs of retrievability thaf has to receive (successfully or in a row) to assert that
file F™* is still retrievableg quantifies the number of operations that the extragtor
has to execute and the amount of data that it has to download to first dé¢lase
retrievable and then to extract it. Actually, the computation and the communication
complexity of extracto€ will be of orderO(%).

6

4 Qverview

4.1 ldea

In StealthGuard, client(first injects some pseudo-randomly generatatch-
dogsinto random positions in the encrypted data. Once data is outsoutced,
launches lookup queries to check whether the watchdogs are storegedes
by the cloud. By relying on a privacy-preserving word search (WA®) ensure
that neither the cloud servet nor eavesdropping intruders can discover which
watchdog was targeted by search queries. As a reésaln launch an unbounded
number of POR queries (even for the same watchdog) without the nequtlaf-u
ing the data with new watchdogs in the future. The responses are alstat#d
thanks to the underlying WS scheme. This ensures that the only case in&vhich
returns a valid set of responses for the POR scheme is when it storegitedite
and executes the WS algorithm correctly (soundness property).

Besides, as in [1], in order to protect the data from small corruptieteslth-
Guard applies an ECC that enables the recovery of the corrupted data. Siddstan
damage to the data is detected via the watchdog search.

4.2 StealthGuard phases

A client C uploads to the cloud servet a file I which consists ofx splits
{51, ..., Sn}. Thereafter a verifiep’ checks the retrievability of’ using Stealth-
Guard.

The protocol is divided into three phases:

e Setup During this phase, clienf performs some transformations over the
file and inserts a certain number of watchdogs in each split. The resulting
file is sent to cloud serve§.

e WDSearch This phase consists in searching for some watchdoig a
privacy-preserving manner. Hence, verifleiprepares and sends a lookup
query forw; the cloudsS in turn processes the relevant split to generate a
correct response to the search and returns the output to

e Verification Verifier V checks the validity of the received response and
makes the decision about the existence of the watchdog in the outsourced
file.

We note that if) receives at least (v is a threshold determined in Section
6.2) correct responses from the cloud, then it can for sure decitlé tiea
retrievable. On the other hand,)ifreceives one response that is not valid,
then it is convinced either the file is corrupted or even lost.

Index Description
number of splitsS; in F'
number of blocks in a splif;
number of blocks in an encoded syt
number of watchdogs in one split
number of blocks in a spli§; with watchdogs
index of a splitc [1, n]
index of a block inS; € [1,C]
index of a watchdog [1, v]
size of a block
index of a block inF" € [1,n - D]
number of cloud’s matrices
index of a cloud’s matrixe [1, ¢]
(s,t) size of cloud’'s matrices
(z,y) | coordinates in a cloud’s matrix [1, s] x [1,]
Table 1:Notation used in the description of StealthGuard

5 StealthGuard

(B |~ ==|Qlc T3]3

w
~

This section details the phases of the protocol. Table 1 sums up the notation
used in the description. We also designed a dynamic versiSteaithGuard that
allows efficient POR even when data is updated. Due to space limitations lyve on
present in Section 5.4 an overview of dynarStealthGuard.

5.1 Setup

This phase prepares a verifiable versioof file F = {51, 52, ...,S,}. Client
C first runs theKeyGen algorithm to generate the master secret kéylt derives
n+3 additional keys, used for further operations in the protoéQl;,. = Hep(K),
Kwdog = wdog(K)f errmF = HpermF(K) and fori € Hlan]]aerrmS,i =
Hyerms(K, 1) With Hepe, Hydogr Hpermr and Hpe,m,s being four cryptographic
hash functionsK is the single information stored at the client.

Once all keying material is generat&truns theEncode algorithm which first
generates a pseudo-random and unique file idenfitidor file F', and then pro-
cessed’ as depicted in Figure 1.

1. Error correcting : The error-correcting code (ECC) assures the protection
of the file against small corruptions. This step applies to each Sphin
ECC that operates ovéibit symbols. It uses an efficiepts + d — 1, m, d]-
ECC, such as Reed-Solomon codes [6], that has the ability to correcgup to
errord. Each split is expanded wiith— 1 blocks of redundancy. Thus, the
new splits are made dd = m + d — 1 blocks.

2. File block permutation: StealthGuard applies a pseudo-random permuta-
tion to permute all the blocks in the file. This operation conceals the depen-
dencies between the original data blocks and the corresponding eetiynd

“dis even

blocks within a split. Without this permutation, the corresponding redun-
dancy blocks are just appended to this split. An attacker could for instance
delete all the redundancy blocks and a single data block from this split and
thus render the file irretrievable. Such an attack would not easily be ditecte
since the malicious server could still be able to respond with valid proofs to a
given POR query targeting other splits in the file. The permutation prevents
this attack since data blocks and redundancy blocks are mixed up among all
splits. Letllp : {0,1}” x [1,n - D] — [1,n - D] be a pseudo-random
permutation: for eacp € [1,n - D], the block at current positiop will be

at positionl (K yermr, p) in the permuted file that we denoke F is then
divided inton splits{S1, Ss, ..., S, } of equal sizeD.

3. Encryption: StealthGuard uses a semantically secure encryptibrthat
operates ovel-bit blocks to encrypt the data. An encryption scheme like
AES in counter mode [7] can be used. The encrypfibis applied to each
block of £ using K epe.

4. Watchdog creatiort For each encrypted split, /-bit watchdogs are gener-
ated using a pseudo-random functipn {0, 1}” x[1,n] x[1,v] x {0, 1}* —
{0,1}!. Hence, forj € [1,v], wij = ®(Kuwdog, i, J,fid). The use offid
guarantees that two different files belonging to the same client have-differ
ent watchdogs. Since the watchdogs are pseudo-randomly genenated a
the blocks in the split are encrypted, a malicious cloud cannot distinguish
watchdogs from data blocks.

5. Watchdog insertion: Thewv watchdogs are appended to each split. Cet
D+ be the size of the new splits. A split-level pseudo-random permutation
IIs : {0,1}" x[1,C] — [1, C] is then applied to the blocks within the same
split in order to randomize the location of the watchdogs: ife [1,n],
the block at current positiok will be at positionIls(Kperms,i, k) in the
permuted split. Note that in practice, the permutation is only applied to the
lastv blocks: fork € [D, C1], this step swaps block at current positiofor
block at positionlls (K perms,i, k). We denoteS;, i € [1,n], the permuted
splitandb; x, k € [1, C] its blocks.

These operations yield file. The client uploads the splil{s?l»}?:1 andfid to the
cloud.

5.2 WDSearch

Verifier YV wants to check the retrievability of'. Hence, it issues lookup
queries for randomly selected watchdog, one watchdog for one splieigoery.
Cloud serverS processes these queries without knowing what the values of the
watchdogs are and where they are located in the splits. We progb$earch, a

SPractically,! will be 128 or 256 bits.

ST [T -7 7]

—_—
Split-level ECC m blocks

T (T
l File-level permutation I1

JEE B CIEEE EREE - UEE N
Encryption E(K g, ;)
‘Watchdog creation and insertion

4//‘//

Spllt -level permutation I'[S C v walchdngs

Flgure 1:Setup phase in StealthGuard

privacy-preserving WS solution derived from PRISM in [8]. Ourposal is a sim-
pler version of PRISM and improves its performance in the particular cbofex
StealthGuard. Note that this proposed building block is only an example and any
existing privacy-preserving WS mechanism assuring the confidentialigtbfthe
query and the result can be usedStealthGuard. PRISM and thusVDSearch
are based on Private Information Retrieval (PIR). To process agbi@onstructs
q (s,t)-binary matrices such that- t = C. Each element in the matrices is filled
with the witness (a very short information) of the corresponding block irsfitie
Based on the PIR query sent by the verifier, the server retrieves in thicesa
the witnesses corresponding to the requested watchdogs. We insistfantttieat
WDSearch is not a PIR solution: the server does not retrieve the watchdog itself
but only the witness.

WDSearch consists of two steps:

e WDQuery: Verifier V executes th€hallenge algorithm to generate a chal-
lengechal that is transmitted to cloud servér. Challenge takes as input
master keyK and file identifierfid and it is executed in three phases. In
the first phaseChallenge randomly selects a split indexand a watchdog
indexj (i € [1,n] andj € [1,v]), and computes the positigros; of the
watchdoguw; ; in the splitS; by applying the permutation performed during
the watchdog insertion stepos; = I15(Kperms,i, D + j). Then,Challenge
maps the positiopos; to a unique positioriz;, ;) in an(s, t)-matrix:

pos;
t

0S;
1 yj:pOij[LtJ}Xt+t

zj =
In the second phase, givénm;,y;) and using any efficient PIR algorithm,
Challenge computes a PIR query, denotédtnessQuery, to retrieve the wit-
ness (and not the watchdog) at positiary, y;) in the matrix. In the last
phaseChallenge generates a random numbe(this nonce will be used by
the cloud when filling the binary matrices to guarantee freshness), and out-
puts the challengehal = (WitnessQuery, r, 7). Eventually, verifie)) sends
the challengehal and file identifierfid to cloud serves.

10

Algorithm 3: Filling the cloud matrices

I For a given(s, t)-matrix M., a given split5; and a given random number
Il k is the index of a block in splif;
k=1,
for z = 1to sdo
for y=1totdo
M [z, y] + & bit of H (b ,7);
k=k+1;
end
end

e WDResponse: Upon receiving the challeng#al = (WitnessQuery, r, 7)
and file identifieffid, cloud serves runsProofGen to process the query. The
cloud createg binary matrices of sizés, t). For each bIocIéiJC in S;, the
cloud computesh; ,, = H(Bi,ka r), wherek € [1,C]. Here, H denotes
a cryptographic hash function. The useroforces the cloud to store the
actual data block. Otherwise it could drop the block, only store the hash an

respond to the query using that hash.

Let h; 1|, be the firstg bits of h; ;. Fork € [1,¢], let M, be one of the
matrices created by the cloud. It fills th€" matrix with thex” bit of h; 1|,

as Algorithm 3 shows. It should be noted that according to the assignment
process described in Algorithm 3, the witness at positiony;) in M, is
associated with watchdag, ;: it is the k" bit of H (w; j, 7).

Once all theg binary matrices are filled, the cloud proces®ésnessQuery
by executing a PIR operation that retrieves one bit from each mattix

€ [1,q]. We denoteWitnessResponse,, the result of the PIR on matrix
M,;. TheProofGen algorithm outputsP, i.e. the proof of retrievability that
consists in the séP = {WitnessResponse,, ..., WitnessResponse, }. Cloud
serverS sends the prodP to verifier)).

5.3 \Verification

Verifier V runs ProofVerif to analyze the received pro@®. This algorithm
takes as input master kdy, proof P, split indexi, watchdog indexj, and file
identifierfid. ProofVerif outputs a bit equal to 1 if the proof is valid or O otherwise.

V processes theWitnessResponse,, in order to retrieve the bitse,, at position
(x,y;) inthe matrixM,, for k € [1,¢] . Leth denotee;es...€,.

We recall that verified) queried watchdog; ; for split S; and that by having
access to the master kéy, V can recompute the value of ; = ® (K yq0g, 4, J, fid)
and its position in the splif;, posj = Ils(Kperms.i, D + j). Thereafter) com-
putes the hash of the watchdbgp.s, = H (w; j,7), with the same- chosen dur-
ing the challenge and considers thédirst bits of ; y.5,. Based on the value of
h = €1€...6q andh; o5, V checks whetheh = hi,posqu. If it is the case, they

11

judges the proof valid and returns 1, otherwise it interprets the invalid piothe
occurrence of an attack and outputs 0.

As mentioned in section 4.2, in order to acknowledge the retrievabilitl/,of
verifier V needs to initiate at least POR querie$from randomly selected splits
in order to either ascertain thatis retrievable or detect a corruption attack)if
receivesy valid POR responses, then it can conclude that cloud séhatores a
retrievable version of’, otherwise, it concludes tha has corrupted part of the
file.

5.4 Dynamic StealthGuard

The previously described protocol does not consider update opesdtiat the
client can perform over its data. Similarly to the work in [5, 9-17], we psapo
a scheme that handles these updates. Due to space limitations we present only
an idea of how dynamiStealthGuard operates. Any update in the data impacts
the security of our protocol. For example, if the client modifies the same block
several times then the cloud can discover that this particular block is notch-wa
dog. Therefore, dynamistealthGuard updates the watchdogs in a split each time
an update occurs on that split. Besides, the verifier must be ensurdtidhde
stored at the server is actually the latest version. Dyn&tealthGuard offers a
versioning solution to assure that the cloud always correctly applies guéred
update operations and that it always stores the latest version of the fitepr®
posal uses Counting Bloom Filters [18] and Message Authentication CBUES)
[19]. Each time a split is updated, some information regarding the split numbder a
the version number is added into the counting Bloom filter which is authenticated
using a MAC that can only be computed by the client and the verifier. Additigna
to guarantee the freshness of the response at each update quen\VEAG key is
generated. This protocol does not imply any additional cost at the veriapt
of storing an additional MAC symmetric key.

Another challenging issue is that updating a data block requires to update the
corresponding redundancy blocks, resulting in the disclosure to the slewver
of the dependencies between the data blocks and the redundancy. bidweks-
fore, the file permutation in th8etupphase becomes ineffective. Some techniques
are available to conceal these dependencies such as batch updatestBlious
RAM [16]. However, these approaches are expensive in terms of wiatgn and
communication costs. Hence, we choose to trade off between POR seautity a
update efficiency by omitting the file permutation.

6 Security Analysis

In this section, we state the security theoremStafalthGuard.

5The value ofy will be determined in Section 6.2.

12

6.1 Completeness
Theorem 1. StealthGuard is complete.

Proof. Without loss of generality, we assume that the honest veiifiems a POR
for a file F'. To this end, verifie)) sends a challengghal = (WitnessQuery, 7, 1)
for watchdogw; ;, and the file identifiefid of . Upon receiving challengehal
and file identifierfid, the cloud server generates a proof of retrievabifitfor F'.

According toStealthGuard, the verification of POR consists of first retrieving
the firstq bits of a hashhi,posj, then verifying Whethehi,posj |g corresponds to the
first ¢-bits of the hashi (w; j, 7). Since the cloud serve$ is honest, then this
entails that it stores); ;, and therewith, can always computgposj = H(w; ;7).

ConsequentlyProofVerif (K, fid, chal, P) = 1.

O

6.2 Soundness

As in Section 5, we assume that each sflitin a file F' is composed ofn
blocks, and that th&ncode algorithm employs aD, m, d]-ECC that corrects up
to g errors per split (i.e.D = m + d — 1). We also assume that at the end of its
execution, th&ncode algorithm outputs the encoded filéwhich consists of a set
of splits S; each comprising’ = (D + v) blocks (we recall that is the number
of watchdogs per split).

In the following, we state the main security theorem$tealthGuard.

Theorem 2. Let 7 be the security parameter &tealthGuard and letp denote
d

@.
StealthGuard ig6, v)-sound in the random oracle model, for ahy> 0, and

Y > Yneg, Where

1
5neg 27
In(2)1
Treg = [Preg]
P 2 3'“(2)7
1-— = ———and <
(pneg) Preg D Preg = P

Actually if v > vneg, then there exists an extractérthat recovers a filel” with
a probability 1 — 5%, such thatr is the number of splits i, by interacting with
an adversaryA against StealthGuard who succeeds in the soundness game with a

probability § > 5-.

Due to space limitations, a proof sketch of this theorem is provided in Ap-
pendix A. We note that the results derived above can be interpreted@ssoif
verifier V issuesy > vneg POR queries for some fil&' to which the cloud server
S responds correctly, thew can declard” as retrievable with probability — .

13

Also, we recall that a POR execution for a filé in StealthGuard consists of
fetching (obliviously) a witness of a watchdog from the encodfﬁg»f that file.
Consequently, to ensure a security Ievelz-lpfthe clientC must insert at least,eg

watchdogs inF'. That is, if file F' comprisesn splits, themv > 7neg (v is the
number of watchdogs per split).

7 Discussion

StealthGuard requires the client to generate > 1*¢ watchdogs per split
wheren is the number of splits angl.¢ is the threshold of the number of queries
that verifier) should issue to check the retrievability of the outsourced data. As
shown in Theorem 2, this threshold does not depend on the size of datg€s).
Instead,yneg is defined solely by the security parametethe numberD = m +
d — 1 of data blocks and redundancy block per split and theﬁﬁe% of errors
that the underlying ECC can correct. Nameiye, is inversely proportional to
both D andp. This means that by increasing the number of bloEkger split
or the correctableerror ratep, the number of queries that the client should issue
decreases. However, having a lagg@ould increase the size of data that client
C has to outsource to cloud serw§r which can be inconvenient for the client.
Besides, increasind leads to an increase of the number of blo€ks- s-t per split
S; which has a direct impact on the communication cost and the computation load
per queryat both the verifiep’ and the cloud serves. It follows that when defining
the parameters dbtealthGuard, one should consider the tradeoff between the
affordable storage cost and the computation and communication complexity per
POR query.

To enhance the computation performancesStdalthGuard, we suggest to
use theTrapdoor Group Private Information Retrieval which was proposed
in [20] to implement the PIR instance WDSearch. This PIR enables the ver-
ifier in StealthGuard to fetch a row from ar(s,¢) matrix (representing a split)
without revealing to the cloud which row the verifier is querying. One importan
feature of this PIR is that it only involves random number generationstiauisl
and multiplications irZ, (wherep is a prime of sizgp| = 200 bits) which are
not computationally intensive and could be performed by a lightweight verifie
addition, we emphasize that PIR 8tealthGuard is not employed to retrieve a
watchdog, but rather to retrievegabit hash of the watchdog (typically = 80),
and that it is not performed on the entire file, but it is instead executedaos@lit.
Finally, we indicate that when employifgapdoor Group Private Information
Retrieval, the communication cost @tealthGuard is minimal whens ~ /Cq

andt ~ \/g This results in a computation and a communication complexity (per

query) at the verifier oO(,/Cq) and a computation and communication complex-
ity at the server 0O (C') andO(,/Cq) respectively.

ExampleAfile F of 4GB is divided inton = 32768 splitsF' = {S1, Sa, ..., Sn}s
and each splis; is composed 0f096 blocks of size256 bits. StealthGuard in-

14

serts8 watchdogs per split and applies an ECC that corrects @2&aorrupted
blocks (i.e.,p = 5%). We obtain thug” = {5}, S,, ..., S, }, whereS; is composed
of 4560 blocks of size256 bits. This results in a redundancy =f 11.3%, where
11.1% redundancy is due to the use of ECC, @an2D% redundancy is caused by
the use of watchdogs.

If (s,t) = (570, 8), ¢ = 80 andStealthGuard implements the Trapdoor Group
PIR [20] wherelp| = 200 bits, then the verifier's query will be of size 13.9 KB,
whereas the cloud server’s response will be of size5.6KB. In addition, if the
cloud server still stores the filg, then the verifier will declare the file as retrievable
with probabilityl — 555 ~ 1— 2%5 by executing the POR protocb?19 times. That
is, by downloadin@6.2MB which corresponds 10.64% of the size of the original
file F.

8 Related Work

The approach that is the closestStealthGuard is the sentinel-based POR
introduced by Juels and Kaliski [1]. As fatealthGuard, before outsourcing the
file to the server, the client applies an ECC and inserts in the encrypteddie sp
cial blocks,sentinelsthat are indistinguishable from encrypted blocks. However,
during the challenge, the verifier asks the prover for randomly-chseetinels,
disclosing their positions and values to the prover. Thus, this schemestsigge
limited number of POR queries. Therefore, the client may need to download the
file in order to insert new sentinels and upload it again to the cloud. [1] mexntion
without giving any further details, a PIR-based POR scheme that would alo
unlimited number of challenges by keeping the positions of sentinels privélbe a
price of high computational cost equivalent in practice to downloadingntieee
file. In comparisonStealthGuard uses a PIR within the WS technique to retrieve
a witness of the watchdog (a certain number of bits instead of the entire wegichd
and does not limit the number of POR verifications.

Ateniese et al. [21] define the concept of Provable Data Possesdiét),(Rhich
is weaker than POR in that it assures that the server possesses (phetdilef but
does not guarantee its full recovery. PDP uses RSA-based homamtagh as
check-values for each file block. To verify possession, the verifiks the server
for tags for randomly chosen blocks. The server generates a pasefilon the
selected blocks and their respective tags. This scheme provides puiflebiy
meaning that any third party can verify the retrievability of a client’s file. Haeve
this proposal suffers from an initial expensive tag generation leadihggtocom-
putational cost at the client. The same authors later propose ingBliat auditing
protocol by incorporating erasure codes in their initial PDP scheme [2&ftver
from small data corruption. To prevent an adversary from distinguisfédun-
dancy blocks from original blocks, the latter are further permuted and/pted.
Another permutation and encryption are performed on the redundantkstaoly
which are then concatenated to the file. This solution suffers from thetfatt

15

a malicious cloud can selectively delete redundant blocks and still genalate
proofs. Even though these proofs are valid, they do not guarantethéhéile is
retrievable.

Shacham and Waters in [2] introduce the concept of Compact POR li€heap-
plies an erasure code and for each file block, it genetdsenticatorgsimilar

to tags in [21]), with BLS signatures [22], for public verifiability, or with Mes
sage Authentication Codes (MAC) [19], for private verifiability. The gtion

of these values are computationally expensive. Moreover, the numiaertiodn-
ticators stored at the server is linear to the number of data blocks, leadimg to a
important storage overhead. Xu and Chang [4] propose to enhansehbme in

[2] using the technique of polynomial commitment [23] which leads to light com-
munication costs. These two schemes employ erasure codes in conjunction with
authentication tags, which induces high costs at the time of retrieving the file. In
deed, erasure coding does not inform the verifier about the posittbe abrrupted
blocks. Thus, the verifier has to check each tag individually to determim¢heh

it is correct or not. When a tag is detected as invalid, meaning that the pones

ing block is corrupted, the verifier applies the decoding to recover thaligata
block.

A recent work of Stefanov et al. [5], Iris, proposes a POR protogel authenti-
cated file systems subject to frequent changes. Each block of a file engigtted
using a MAC to provide file-block integrity which makes the tag generation very
expensive.

Compared to all these schem8¢ealthGuard performs computationally lightweight
operations at the client, since the generation of watchdogs is less expémen

the generation of tags like in [2, 21]. In addition, the storage overheaataulby

the storage of watchdogs is less important than in the previous work. Abgtet
more bits transmitted during the POR challenge-respd@isalthGuard ensures

a better probability of detecting adversarial corruption.

Table 2 depicts the performance resultStéalthGuard and compares it with
previous work. We analyze our proposal compared to other schemépith
respect to a file of size 4 GB. The comparison is made on the basis of thef20R a
surance 01—?%5 computed in Section 7. We assume that all the compared schemes
have three initial operations in ttf&etupphase: the application of an ECC, the en-
cryption and the file-level permutation of data and redundancy blockse $irese
three initial operations have comparable costs for all the schemes, we omit the
in the table. Computation costs are represented @i for exponentiationmrul
for multiplication, PRF for pseudo-random function d?RP for pseudo-random
permutation. FofStealthGuard, we compute the different costs according to the
values provided in Section 7. For the other schemes, all initial parametére de
from the respective papers. In [2] since the information on the numbd@ooks in
a split is missing, we choose the same one as in [4]

Setup. In our scheme, the client compuB2y68 x 8 ~ 2.6x10° PRF an.6 x 10°
PRP for the generation and the insertion of watchdogs. One of the adearaé
StealthGuard is having a more lightweight setup phase when the client prepro-

16

Parameter Setup cost Storage Server cost Verifier cost Comm.
overhead cost

[3] block size: 4.4 x 10%exp | tags: 764 PRP challenge: challenge:
2KB 2.2 x 10 mul | 267 MB 764 PRF 1exp 168 B
tag size: 765 exp verif: 766 exp | response:
128 B 1528 mul 764 PRP 148B

[1] block size: 2 x 10° PRF sentinels: | L challenge: challenge:
128 bits 30.6 MB 1719 PRP 6 KB
number of sen- verif: L response:
tinels: 26.9 MB
2 x 106

[2] block size: lenc tags: 7245 mul challenge: challenge:
80 bits 5.4 x 108 PRF | 51 MB lenc,1MAC | 1.9KB
number of | 1.1 x 10° mul verif: 45 PRF, | response:
blocks in one 160 + 205 mul | 1.6 KB
split: 160
tag size:
80 bhits

[4] block size: 2.2 x 108 mul | tags: 160 exp challengel challenge:
160 bits 1.4 x 10 PRF | 26 MB 2.6 % 10° mul | verif: 2 exp, | 36 KB
number of 1639 PRF,| response:
blocks in one 1639 mul 60 B
split: 160

SG || block size: 2.6 x 10° PRF | watchdogs] 6.2 x 103 mul | challenge: challenge:
256 bits 2.6 x 10° PRP | 8 MB 2.0 x 105 mul | 23.3 MB
number of verif: response:
blocks in one 1.4 x 105 mul | 26.2 MB
split: 4096

Table 2:Comparison of relevant related work wiltealthGuard (SG).

cesses large files. Indeed, the setup phase in most of previous waik gjuires
the client to compute an authentication tag for each block of data in the file which
is computationally demanding in the case of large files.

Storage Overhead The insertion of watchdogs BtealthGuardinduces a smaller
storage overhead compared to other schemes that employ authentication tags
Proof Generation and Verification. For StealthGuard, we consider the PIR op-
erations as multiplications of elementsZp where|p| = 200 bits. To get the
server and verifier computational costs of existing work, based on tiaengsers
and the bounds given in their respective papers, we compute the numieer o
guested blocks in one challenge to obtain a probabilit}/ef?% to declare the file

as irretrievable: 764 blocks in [3], 1719 sentinels in [1], 45 blocks irefi] 1639
blocks in [4]. StealthGuard induces high cost compared to existing work but is
still acceptable.

Communication. Even if its communication cost is relatively low compared to
StealthGuard, JK POR [1] suffers from the limited number of challenges, that
causes the client to download the whole file to regenerate new sentinelsugtitho
we realize thatStealthGuard's communication cost is much higher than [2—4],
such schemes would induce additional cost at the file retrieval step, d®nesh
earlier.

To summarizeStealthGuard trades off between light computation at the client,
small storage overhead at the cloud and significant but still acceptable commu
nication cost. Nevertheless, we believe tB#talthGuard’s advantages pay off

17

when processing large files. The difference between the costs indyeadisting
schemes and those induced®igalthGuard may become negligible if the size of
the outsourced file increases.

9 Conclusion

StealthGuard is a new POR scheme which combines the use of randomly
generated watchdogs with a lightweight privacy-preserving wordchemecha-
nism to achieve high retrievability assurance. As a result, a verifier czargie an
unbounded number of queries without decreasing the security of thecpt@and
thus without the need for updating the watchddgtealthGuard has been proved
to be complete and sound.

As future work, we plan to impleme&tealthGuard in order to not only eval-
uate its efficiency in a real-world cloud computing environment but also toelefi
optimal values for system parameters.

References

[1] A. Juels and B. S. K. Jr., “Pors: proofs of retrievability for largkedi’
in ACM Conference on Computer and Communications Se¢RitiNing,
S. D. C. di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp. 584-59
[Online]. Available: http://dblp.uni-trier.de/db/conf/ccs/ccs2007.html

[2] Shacham, Hovav and Waters, Brent, “Compact proofs of retribyeb
in Proceedings of the 14th International Conference on the Theory
and Application of Cryptology and Information Security: Advances
in Cryptology ser. ASIACRYPT '08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 90-107. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-89255-7

[3] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, O. Khan, L. Késs
Z. N. J. Peterson, and D. Song, “Remote data checking using provatale d
possession ACM Trans. Inf. Syst. Secuvol. 14, no. 1, p. 12, 2011.

[4] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievahflitg ASI-
ACCS 2012, pp. 79-80.

[5] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: a scalatitaud file
system with efficient integrity checks,” ®MCSAC 2012, pp. 229-238.

[6] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields
Journal of the Society of Industrial and Applied Mathematicd. 8, no. 2, p.
300-304, 06/1960 1960.

18

[7] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Meth-
ods and TechniguesNational Institute of Standards and Technology. Special
Publication 800-38A, 2001.

[8] E.-O. Blass, R. di Pietro, R. Molva, and MDnen, “PRISM - Privacy-
Preserving Search in MapReduce,”Pnoceedings of the 12th Privacy En-
hancing Technologies Symposium (PETS 2012NCS, July 2012.

[9] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalabld aft
ficient provable data possession,” Hroceedings of the 4th international
conference on Security and privacy in communication netwosks Se-
cureComm '08. New York, NY, USA: ACM, 2008, pp. 9:1-9:10.

[10] C. Erway, A. Kupdl, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” iProceedings of the 16th ACM Conference
on Computer and Communications Secyritger. CCS '09. New
York, NY, USA: ACM, 2009, pp. 213-222. [Online]. Available: http:
//doi.acm.org/10.1145/1653662.1653688

[11] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling publicifiability
and data dynamics for storage security in cloud computingProteedings
of the 14th European conference on Research in computer se@eityES-
ORICS’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 35%-37

[12] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,” G®-
DASPY 2011, pp. 237-248.

[13] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public itaility
and data dynamics for storage security in cloud computitgEZE Trans.
Parallel Distrib. Syst.vol. 22, no. 5, pp. 847-859, 2011.

[14] Z. Mo, Y. Zhou, and S. Chen, “A dynamic proof of retrievability (pecheme
with o(logn) complexity,” inlICC, 2012, pp. 912-916.

[15] B. Chen and R. Curtmola, “Robust dynamic provable data possgsgio
ICDCS Workshop2012, pp. 515-525.

[16] D. Cash, A. Kipdi, and D. Wichs, “Dynamic proofs of retrievability via
oblivious ram,” inEUROCRYPT2013, pp. 279-295.

[17] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamidpuaiae-
trievability,” in ACM Conference on Computer and Communications Segurity
2013, pp. 325-336.

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cachecalable
Wide-Area Web Cache Sharing ProtocdEEEE/ACM Trans. Netw.vol. 8,
no. 3, pp. 281-293, Jun. 2000.

19

[19] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash FunctioosMes-
sage Authentication,” ifProceedings of the 16th Annual International Cryp-
tology conference on Advances in Cryptology, CRYPTO'&NCS, August
1996, pp. 1-15.

[20] J. Trostle and A. Parrish, “Efficient Computationally Private Infation Re-
trieval from Anonymity or Trapdoor Groups,” iRroceedings of Conference
on Information SecurityBoca Raton, USA, 2010, pp. 114-128.

[21] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. KissnerNZ.J.
Peterson, and D. Song, “Provable data possession at untrustesl.’sitore
ACM Conference on Computer and Communications SecurityNing,
S. D. C. di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp. 598-60
[Online]. Available: http://dblp.uni-trier.de/db/conf/ccs/ccs2007.html

[22] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures fromed Pair-
ing,” J. Cryptology vol. 17, no. 4, pp. 297-319, Sep. 2004.

[23] A.Kate, G. Zaverucha, and |. Goldberg, “Constant-size commitntemisly-
nomials and their applicationsfdvances in Cryptology-ASIACRYPT 2010
pp. 177-194, 2010.

A Proof of Theorem 2

Proof. Assume that there is an adversatythat corrupts on averaggq, fraction
of the outsourced files, and succeeds in the soundness game (cfitiigarand
Algorithm 2) with some probabilitys. In the following proof sketch, we show
that if 6 > Oneg = 2% then there exists an extractor algorittéirthat retrieves
the challenge filg™ by interacting with adversaryl and by controlling aandom
oracle.

The proof sketch is organized into four main parts:

1.) Computation of the probability of success): Here we quantify the probabil-
ity 0 that adversaryd succeeds in the soundness game as a functipgyef

Without loss of generality, we assume that the fileis composed of. splits
{S%, S5, ..., 8¢} and that its encoding™ consists ofz splits {S¥, S, ..., S }.

For each spIiS;*, we denoteX; ;, the random variable that corresponds to the
event that adversary corrupts the:!” block of spIitS‘j, such thatX;; = 1if A
corrupts thek'" block of the split, andy; » = 0 otherwise.

For the sake of simplicity, we assume that foralK i < nandl < k <
C, the random variableX; ;. follows a Bernoulli process of parameteyq,, i.e.,
Pr(X;, = 1) = pagy andPr(X;, = 0) = 1 — paqy. This implies thatX; ;s are
independent identical binary random variables. That is, the probabiityathlock
is corrupted byA is the same for all blocksf £*. We stress that this assumption
is valid for StealthGuard thanks to the use of secure random permutations and

20

the semantically secure encryption in the second step and the third step of the
Encode algorithm (see Section 5). Therefore, adversdrgucceeds in providing
a valid proof of retrievability for some challengeal; in the soundness game (cf.
Algorithm 2), if i.) it does not corrupt the watchdog associated with that challenge;
or if ii.) it corrupts the watchdog, but still is able to provide theéits that are
expected by the oracl@yeis, -

Accordingly, the probability thatd succeeds in providing a valid proof of re-
trievability for challenge-hal; is defined asPéuccess’i) = (1 — padv) + 229.

24
We remind the reader that adversafysucceeds in the challenge phase, if it

succeeds in supplying the orack.ir, With -y valid proofs of retrievability. There-
fore, the probability that adversay succeeds in the soundness game depicted in
Algorithm 1 is:

T oA L YPadv(l = pagy)? ! 1
0 = HP(Success,i) = (1 - padv) + 24 + O(E)
1=

¢

We note that ify is large enough, for instange= 80, then(is negligible. There-
fore to simplify, we assume > 80 and that) ~ (1 — paqv)”-
2.) Retrievability: In this part of the proof, we derive a threshqigl, for the
corruption ratep,q, that guarantees that jf,q, < pneg then the probability that
extractor€ fails in recovering the filg™ is negligible.

Let S; denote the D, m, d)-ECC encoding of the splif;.

We recall that extractof fails in retrieving file F™* if there is a splitS; such
that.4 corrupts more thapD = g blocks of its ECC encoding;. We also recall
that the probability that a block; ;. in the file F* is corrupted by adversany is

Padv i.e.,Pr(Xi,k = 1) = Padv-

Let P(gFan 0 be the probability thaf fails in recovering splitS;. This event
happens if the ECC encodirfyj of S} receives more thapD = % errors.

Using Chernoff bounds, we found that the probabilﬁeiail) is bounded as

follows: P, ;) < exp(—242(1 — -2-)2).
Note that the probabilit;P(fFaM) < 5 (i.e. negligible) for any.q, that satis-

fies the inequality(1 — pﬁ)%adv > W. Namely, for anypaqy < pneg, Where

Preg IS defined as:

p 3In(2)T
7)2pneg =\

1—
(Pneg D

andpneg < p

3.) Bounding the number of queriesy: In order to insure that a file is retrievable
whenever adversaryl succeeds in the soundness game, we have te seta
threshold valuey,eg, such that if adversaryl corrupts more tham,eg fraction
of the encoded fil&™, it will be detected by extractaf with an overwhelming
probability. In other words, we want to assure thaj it v,e; and the probability
of corruptionp,q, is larger tharp,eg, then the probability that adversaryd wins

21

the soundness game will be negligible, i@+ (1 — pagv)” < (1 — pagy) e <
Sneg = 2=

To fulfill the above condition whenevery, > pneg, it Suffices to definey,eg

as:
[In(Q)T > —In(2)7 > —In(2)7

Preg In(1 — pneg) — In(1 — paav)

4.) File extraction: In order to be able to recover file*, extractor€ simulates the

output of the hash functiod/ (H is employed inStealthGuard to generate and

verify the proofs of retrievability) by controlling a random oraéieas depicted

below.

Simulation of the random oracle . To respond to the queries of the random

oracle?, the extracto€ keeps a tabl@y of tuples(5;, H(3;)) as follows: on a

query H (3;), extractor€ checks if there is a tuplés;, H(5;)) that corresponds to

Bi. If so, then€ returnsH (3;). Otherwise, extractaf picks a random numbeéy;,

returnsH (5;) = h; and add the entry3;, H(p;)) to its tableT.

Assume here that adversaflysucceeds in the soundness game with probability
0 > Oneg. In What follows we show that iy > ., then& will be able to recover
the file F* with an overwhelming probability. We denotég the probability
that& extracts fileF™ by interacting withA4.

Notice that ify > vyneg, then succeeding in the soundness game implies4hat
corrupts less thap,, fraction of the file encodind™*. This means that the prob-
ability that an ECC encoding_*?‘ receives more thapD = % errors is negligible,
and so is the probabilitys (Fail.q) that € fails in retrieving splitS;. Now we show
how extracto€ recovers flleF*

Yneg =

uccess

e & simulates the oracl®chpalienge t0 issue a challengghal = (WitnessQuery, 7, 7)
for the challenge filé™*, wherer is the random number that will be used by
the adversaryd to generate its POR response darnid the index of the split
5*;‘ that€ is interested in extracting. We note that to extr&tté‘ employs
WitnessQuery to retrieve the hash values of the blocks compo§ij‘|gWith-
out loss of generality, we assume t@atvants to retrieve th&t" block of the
split S* (i.e. b; k). Accordingly, if the proof sent by for challengechal IS
valid, then& will be able to recover the first bitsh; 5, of the hashH(bZ,k, T)

(i.e. by = H(bp,7)|q).

e Provided withh; ;, the extracto identifies the block3 € Ty for which
H(B,r)|q = h; if there is any. If it is the case; outputslBi,k = 3. Other-
wise, £ declares the bIoclEcL-JC as missing.

Extractor€ repeats the above procedure until retrievingsreplits S;* of file F*.

Once then splits S*;* are retrieved, extractdf uses the secret kdy to decrypt the

splits, then uses the ECC to correct the errors in the splits if there are any.
Note that& fails in retrieving the filef™ if it does not succeed in retrieving

at least one of the splitS;. The probability of this event ifl¢,, < Z (Fa|l i

22

Henceé‘ recovers fileF’* with the following probability:11§, .. = 1 — IIE,, >
Z PFaI 0 Since adversaryd corrupts less thap,e, fraction of file F*

the probablllty that a spli&; in the file F'* is |rretr|evable is negligible, namely,

Pz < 57 and thereforell§ . >1—c=1- . O
[

23

