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Abstract

The past decade have seen the rise of data-intensive scalable computing (DISC) systems,
such as Hadoop, and the consequent demand for scheduling policies to manage their
resources, so that they can provide quick response times as well as fairness. Schedulers
for DISC systems are usually focused on the fairness, without optimizing the response
times. The best practices to overcome this problem include a manual and ad-hoc control
of the scheduling policy, which is error-prone and di�cult to adapt to changes.
In this thesis we focus on size-based scheduling for DISC systems. The main contri-
bution of this work is the Hadoop Fair Sojourn Protocol (HFSP) scheduler, a size-based
preemptive scheduler with aging; it provides fairness and achieves reduced response
times thanks to its size-based nature. In DISC systems, job sizes are not known a-priori:
therefore, HFSP includes a job size estimation module, which computes approximated
job sizes and re�nes these estimations as jobs progress.
We show that the impact of estimation errors on the size-based policies is not signi�-
cant, under conditions which are veri�ed in a system such as Hadoop. Because of this,
and by virtue of being designed around the idea of working with estimated sizes, HFSP
is largely tolerant to job size estimation errors. Our experimental results show that,
in a real Hadoop deployment and with realistic workloads, HFSP performs better than
the built-in scheduling policies, achieving both fairness and small mean response time.
Moreover, HFSP maintains its good performance even when the cluster is heavily loaded,
by focusing the resources to few selected jobs with the smallest size.
HFSP is a preemptive policy: preemption in a DISC system can be implemented with
di�erent techniques. Approaches currently available in Hadoop have shortcomings that
impact on the system performance. Therefore, we have implemented a new preemption
technique, called suspension, that exploits the operating system primitives to implement
preemption in a way that guarantees low latency without penalizing low-priority jobs.
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Chapter 1

Introduction

Scheduling is one of the most studied problems in many �elds, and in particular in com-
puter science. From an abstract perspective, the scheduling problem can be seen as
follows: given a set of resources and a set of jobs, where a job needs a subset of the
resources to progress, how can they be assigned to the jobs such that all the jobs will
eventually complete while optimizing some metric? Instances of this problem are com-
mon for operating systems, databases, networking, cloud computing systems and many
others. Scheduling plays a fundamental role since the performance of a system greatly
varies based on the adopted policy. The impact of a scheduling policy is usually mea-
sured through a performance index: the most commonly used metrics are, for instance,
the mean response time (also referred to as sojourn time), which is the time a job stayed in
the system until it is completely served, or the mean waiting time, i.e. the time spent in
the waiting line before receiving service, or the fairness, which indicates how fairly a job
is treated. Some metrics are sometimes di�cult to optimize at the same time, therefore
a scheduling policy may need to face a trade-o�. For instance, the Processor Sharing (PS)
scheduling policy, which equally divides the resources among the jobs currently in the
system, provides fairness, but it brings to high mean response times.

Scheduling policies can be classi�ed in four families, based on whether a policy is size-
based or blind to size, or if a policy is preemptive or non-preemptive – we consider work-
conserving policies, meaning that, if there are jobs to be served, the server is always
busy working on a job, and no work that is done is lost. A size-based scheduling policy
is a policy that takes scheduling decisions by considering the size of a job. For instance,
the Shortest Remaining Processing Time (SRPT) policy is size-based because it schedules
the job with the smallest remaining processing time �rst. The First-In-First-Out (FIFO)
scheduler is, instead, blind to the size since it schedules jobs based on their arrival time.
A preemptive scheduling policy is a policy that can suspend a job in service before it
completes, i.e. it can remove resources previously granted to a job. Preemptive sched-
ulers are known in literature to o�er better performance, since a large job in service may
block the system, while preemption may suspend the execution of such a large job in
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16 CHAPTER 1. INTRODUCTION

case of arrival of a small job. For example, PS is a preemptive scheduler while FIFO is
not.
Among the four families, the scheduling policies that are size-based and preemptive are
known to provide the best performance: the SRPT policy, for instance, is optimal in
terms of mean response time [78], while the Fair Sojourn Protocol (FSP) [75] guarantees
fairness while providing a mean response time similar to SRPT.

In this thesis we focus on scheduling policies for Data-Intensive Scalable Computing
(DISC) systems. Such systems are composed by hundreds or thousands of servers, and
jobs can use either all the resources or only a fraction of them. Given the widespread
adoption of these systems, and their growing relevance, it is interesting to investigate
the impact of the scheduling disciplines on the performances of such distributed and
parallel systems.

1.1 Motivations

Size-based scheduling policies are known in literature for their superior performance
compared to policies that are blind to size. Despite this, size-based policies have little
adoption in real systems because of the problems that arise when such policies are con-
verted from theoretical policies to practical schedulers. As a result, policies that are blind
to size are the de-facto standard for DISC systems.
Schedulers for DISC systems are complex: indeed, scheduling multiple jobs, where each
job is composed by tasks that can be run in parallel, in a distributed environment is
a challenging task. Current DISC systems, such as Hadoop [44], Spark [86] and Na-
iad [122], use schedulers that are based on two di�erent basic strategies: PS and FIFO. In
production systems, the system administrators usually deploy some variations of such
policies: for instance, it may introduce di�erent priority classes that may favor inter-
active jobs with respect to batch processing jobs, and use FIFO within each priority
class. These approaches require that the system administrator con�gures manually the
scheduler (e.g., how to handle di�erent priorities) based on the workload and the system
setting. This process requires a vast knowledge of both the workload and the system
and tends to be error prone, di�cult to both validate and debug and cannot be adapted
easily to workload and system changes. Moreover, in a DISC system where resources
are distributed among many machines, the manual con�guration is even more critical
and involves many parameters to be �ne tuned and regularly checked.

We believe that, due to the lack of research work on how to use size-based schedulers in
realistic environments, current systems are truly missing the opportunity of using better
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scheduling policies to avoid drawbacks of blind to size policies and to drastically reduce
the problems related to manual con�gurations.

As we are going to show in this thesis, not only size-based scheduling policies for DISC
systems are a viable solution, but they also perform very well in many production level
scenarios. The main motivation of this thesis is to show that size-based scheduling is
to show this by designing and implementing the Hadoop Fair Sojourn Protocol (HFSP),
a size-based scheduling policy for a real and complex system such as Hadoop, and by
providing an extensive study of the scheduler architecture and its performance necessary
to understand how and why it works.

Thesis Statement: A preemptive size-based scheduling policy for DISC systems can be
both e�cient and fair, and it can improve the performance with respect to the current state-
of-the-art scheduling policies.

1.2 Challenges

Implementing a size-based scheduling policy for DISC systems raises many challenges;
in the following, we summarize the most important ones.

Job sizes are unknown: Size-based schedulers, despite their superior performance,
are very rarely deployed in practice. A key reason is that, in real systems, job size is
almost never known a priori. When designing a size-based scheduler, therefore, the �rst
problem is how to obtain a job size so that it can be used by the scheduler to sort jobs. We
assume that the information about the job size is not given (e.g., provided by the user):
the scheduler must �nd a way to determine the size of a job once the job has arrived, i.e.,
while the job is in the queue and other jobs are running. Since the measurement of the job
size may be imprecise, we need to face another problem: the estimation errors.

Estimation errors: In a real system it is not possible to determine the exact size of a
job. Instead, it is often possible to provide estimations of job sizes. This means that the
scheduler needs to cope with erroneous sizes.
Perhaps surprisingly, even considering the simple case of a single server, very few works
in the literature tackled the problem of size-based scheduling with inaccurate job size
information. Moreover, these few works give somewhat pessimistic results, suggesting
that size-based scheduling is e�ective only when the error of the estimated size is small.
Nevertheless, such studies cover a limited family of workloads, and their answers are
not exhaustive.
When designing a size-based scheduler, therefore, we need to understand the impact of
the size estimate errors on the overall performance, i.e., if the scheduler is able to make
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su�ciently good decisions despite imprecise information on the job size. To the best of
our knowledge, no study tackled the design of size-based scheduling techniques that are
explicitly designed with the goal of coping with errors in job size information, not even in
the single server case. For this reason, we �rst need to understand the impact of errors in
the single server case, and then extend the lesson learned from this basic con�guration
to the more complex DISC systems.

Job preemption: the scheduling policies that have the best performance in term of
fairness and mean sojourn time are preemptive. Indeed, many works show that a pre-
emptive scheduling policy is often better than its not preemptive counter-part. This can
be intuitively understood considering the case when a new small job arrives while the
system is serving a large job: without preemption, the small job needs to wait until the
large job is completely served.
In many real systems, such as Hadoop, job preemption is often absent or partially imple-
mented. When there is a preemption primitive implemented, it usually has drawbacks
and limitations preventing it from being e�ectively used because its drawbacks are worse
then its advantages.
When designing a size-based scheduler, therefore, we need to understand how to provide
e�cient primitives for preemption, and how to implement such primitives in current
system in a seamless way.

Jobs starvation: Size-based scheduling policies like SRPT can cause starvation when
a job is kept from getting the resources by continuously arriving smaller jobs. Some
works addressed this problem in the case of single server queue by proposing policies
that restore fairness; nevertheless, such policies have never been implemented in real
systems (not even single server systems).

1.3 Contributions and Thesis Organization

The main contribution of this thesis is the Hadoop Fair Sojourn Protocol, a size-based
scheduling policy for Hadoop that is both fair and e�cient. Because HFSP relies on job
size estimation and because size estimation is so important for size-based scheduling
in general, the �rst Chapter (Chapter 3) is dedicated to the study of the impact of esti-
mated sizes on existing scheduling policies in some simple scenarios. With this work
as background, we then proceed de�ning HFSP (Chapter 4) and experimentally evalu-
ating it (Chapter 5). In the HFSP evaluation Chapter we also provide a study of HFSP
with the preemption primitives currently available in Hadoop, and we suggest that a
new preemption primitive should be implemented to overcome the Hadoop preemption
primitive problems. The next Chapter (Chapter 6) is then dedicated to a new preemptive
primitive that solves such problems.
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The rest of this section is dedicated to an overview of our contributions.

1.3.1 Size-Based Scheduling with Estimated Sizes

Before starting with the design of the HFSP protocol, we need to understand if the impre-
cise information about sizes may have a signi�cant impact on the scheduling choices.
Since this problem has not been well studied in the literature, we analyze it starting
from a basic con�guration: the single server case. Even if the single server case may
seem simple, it provides a lot of insights that are useful to understand the behavior of
the system. Chapter 3 is therefore dedicated to the study of scheduling policies that use
estimated sizes. The insights gained in this Chapter will be used to drive the design of a
more complex scheduler for DISC systems such as HFSP.
In the �rst part of the Chapter, we study the scheduling problem in presence of es-
timation errors and then provide an overview of the current state-of-the-art for both
size-based and blind to size schedulers performance.
We then describe the impact of estimation errors on scheduling policies by de�ning
SRPTE and FSPE, two variants of well known size-based scheduling policies for single
server queues that work with estimated sizes. There are two kinds of errors that can
be done when a job size is estimated: it can be overestimated or underestimated if its
estimated size is, respectively, bigger or smaller than its real size. These two kinds of
errors have two completely di�erent impacts on size-based policies and require di�erent
strategies to deal with them. In particular, while jobs with overestimated size delay only
themselves, jobs with underestimated size can potentially delay all the jobs in the queue.
Between the two, the second kind of errors has the highest impact on the scheduling
policy and can lead to very poor performance.
The next part of Chapter is dedicated to de�ne FSPE+PS, a size-based scheduling policy
for single server queue that is tolerant to estimation errors. Our simulative evaluation,
which considers both variation in the workload composition and in the estimation error,
shows two main results:

• despite their problems with jobs with underestimated sizes, both SRPTE and FSPE
have excellent performance in many cases and they are good choices for an im-
plementation of a real scheduler.

• FSPE+PS is even superior and provides better performance even in extreme cases
of both workload composition and error.

The result of this Chapter is that size-based scheduling, even in presence of imprecise
information, is a feasible policy that can be implemented in real systems.
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1.3.2 The Hadoop Fair Sojourn Protocol

In Hadoop, a job is composed by tasks, and tasks can be run in parallel. As we are going
to show in Chapter 4, most of the times tasks of the same job have very similar sizes. A
few tasks can be run in the system and then, based on their performance, it is possible
to deduce the estimated size of a job with small error.
We implemented the Hadoop Fair Sojourn Protocol scheduler, a scheduling policy for
DISC systems based on the FSPE policy de�ned for a single server queue. While the
main contribution of this Chapter is a fully �edged scheduler for a distributed system,
the architectural choices that lead to this scheduler are not less important. Indeed, the
adaption of scheduling policies de�ned for the single server case (such as FSPE) to a real
system like Hadoop raises many challenged that must be addressed.
HFSP consists of two main components, which are described in detail in Chapter 4: the
estimation module and the aging module.
The estimation module is the component that estimates job sizes. It �rst provides a very
rough estimation when a job is submitted and then upgrades the size to a more precise
one based on the performance of a subset of the tasks. This strategy of estimating sizes
is designed around DISC systems, in which a job is composed by tasks, and leads to very
good estimations in the end.
The aging module is the component that avoids job starvation by applying what is called
“aging” to a job. HFSP doesn’t take decisions only based on the size but also based on
how much time the job stays in the queue. In this way, even a relatively big job will
eventually obtain resources, which solves the starvation problem. To age jobs, HFSP
simulates Max-Min Processor Sharing in a virtual cluster with the same characteristics as
the real one.
HFSP is a preemptive scheduler. Hadoop provides two possible options that can be used
for job preemption. The �rst one is to stop running the tasks belonging to the job to be
preempted by killing them – we call this strategy Kill. The second option is to wait for
each task to complete and, once the resources become available on a task-by task basis,
the system assignes such resources to the preempting job – we call this strategy Wait1.
The �nal part of Chapter 4 is dedicated to the analysis of the advantages and drawbacks
of these two approaches.

The following Chapter, Chapter 5, is dedicated to an experimental evaluation of HFSP.
Evaluating the real implementation of a scheduling policy for a system such as Hadoop is
a very complex task. We decided to validate it in an experimental way to be able to com-
pare HFSP to the most used schedulers for Hadoop, which are the Fair – an implementa-

1Even if this approach may not seem a job preemption, we should consider that a job may require more
tasks than the system can provide, therefore, when a task completes, the system reassigns the resources to
the running job so that it can proceed; with the Wait primitive, instead, the system assigns the resources
to the preempting job.
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tion of the PS discipline – and the FIFO schedulers. The main reason is that we want to
put emphasis on the fact that HFSP is a real scheduler that outperforms industrial-ready
schedulers. Our results show that HFSP is always better than both schedulers for the
two metrics observed – fairness and mean response (or sojourn) time. We also observed
that the sequential nature of HFSP leads to smaller cluster load and better “absorption”
of bursts of job submissions. The cluster load and burst tolerance make HFSP capable
to deal with smaller cluster than the counterparts for the same workload, leading to less
cluster costs and better resource utilization.
The next part of the evaluation Chapter is dedicated to estimation errors. The results
con�rm that errors done by estimating the job size with our estimation module is small
enough to be able to justify the use of size based schedulers with imperfect job size
information.
The �nal part of this Chapter shows an experimental evaluation of HFSP with Kill pre-
emption mechanism enabled – the default behaviour of HFSP is to use Wait – with very
interesting results. Compared to Wait, Kill is a good way to achieve better fairness for
all jobs and smaller response times for small and medium jobs, but it has an impact on
the largest jobs.

1.3.3 OS-Assisted Task Preemption

Chapter 6 is dedicated to the design of a new task preemption primitive alternative to
Wait and Kill (the primitives available for Hadoop), which we named task suspension.
Our solution works at the Operating Systems (OS) level: in fact, tasks are just OS pro-
cesses, therefore we can control running jobs by using the primitives to Suspend and
Resume. This approach is completely transparent to users and exploits the system func-
tionalities. Our preemption mechanism can be used in production even with stateful
tasks, i.e., tasks that have a state and need that state to continue the computation.
After the de�nition of our mechanism, we compare the results obtained by using our
Suspend, the Kill and the Wait primitives. Our results show that in almost every case,
except for corner cases when the job is just started or has almost �nished, our Suspend
primitive always performs better than the other two primitives.

1.3.4 Conclusion and Perspectives

The last Chapter of the thesis summarizes the main results we obtained. The design of
a scheduler for a complex system such as Hadoop raises many issues, and we address
many of them in our work. Nevertheless, the system itself is evolving, and its widespread
adoption introduces di�erent functionalities that are making the system more and more
complex. In the last part of the Chapter we provide a set of possible future directions
that consider such evolving complex system.





Chapter 2

Background and Related Work

The �rst part of this Chapter presents the background on scheduling, starting from
scheduling policies for single server systems and then delving into the scheduling for
data-intensive scalable computing systems. The second part of the Chapter is dedicated
to the related work.

2.1 Background

In this section we provide a background on performance metrics for schedulers (Sec-
tion 2.1.1), on scheduling policies theory (Section 2.1.2) and MapReduce (Section 2.1.3),
which are the base ground of our work. The literature on both �elds, in particular for
scheduling policies, is vast. We will focus on the work that is used as a foundation for
what is done in this thesis. In particular we will discuss mainly the scheduling poli-
cies for batch jobs, which are mostly processing jobs that, once they are started, do not
require user interaction to progress.

2.1.1 Performance Metrics

In this thesis we are going to focus on two metrics: the mean response time (or sojourn
time) and fairness. The response time is the time that passes between the moment a
job is submitted and when it completes; such a metric is widely used in the scheduling
literature.
The de�nition of fairness is more elusive: in his survey on the topic, Wierman a�rms
that “fairness is an amorphous concept that is nearly impossible to de�ne in a universal
way” [79]. A common approach is to consider slowdown, i.e. the ratio between a job’s
sojourn time and its size, according to the intuition that the waiting time for a job should
be somewhat proportional to its size. In this work we focus on the per-job slowdown,
which allows us to analyze if a job is treated unfairly [81], i.e., it has a very large slow-
down compared to the other jobs.

23
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2.1.2 Scheduling Policies

Scheduling policies have been the subject of many studies in the past decades, from both
theoretical and experimental perspectives. In this Section we describe the main schedul-
ing policies available in literature as background for both Chapter 3 and Chapter 4. The
scheduling policies presented here consider a simple setting with a single server; it is also
assumed that jobs can be preempted at any time without context-switching costs, e.g. cost
to switch from one job to another, and the single server is a continuous resource that
can be split arbitrarily. Because our work is mainly focused on a real implementation of
scheduling policies, we are going to relax those assumptions in Chapter 4.

First-In-First-Out

The First In-First-Out scheduler (FIFO), also known in literature as First-Come-First-
Served (FCFS), is a scheduling policy that always schedules the job that has arrived �rst.
The performance of FIFO is highly a�ected by the workload composition, i.e. the jobs
that must be scheduled. If the workload is mainly composed by jobs with similar sizes,
then FIFO is a good choice. If the workload has jobs with di�erent sizes, then smaller
jobs are likely to queue until the larger jobs submitted before them complete. For in-
stance, in a batch system, jobs may have sizes with di�erent order of magnitudes (e.g.,
from seconds to hours [26]). If a small job (few seconds to run it) comes after a large job
(hours to run it), then the former will have to wait for the latter to �nish. Despite the
problems of FIFO, it is still used a lot in production because of its simple implementation.
Figure 2.1a shows an example of FIFO scheduling: given one job j1 with arrival time 0
and size 41 and another job j2 with arrival time 1 and size 2, FIFO will �rst schedule j1

and then, when j1 completes, j2. The Figure shows the remaining size of a job in the
y-axis and the time progression in the x-axis.
FIFO strengths: when jobs sizes are very similar, FIFO is fair, meaning that all jobs
�nish before or similarly to PS, and e�cient in term of mean response time.
FIFO weaknesses: when jobs sizes are very di�erent among them, FIFO is not fair and
performs poorly in term of mean response time.

Processor Sharing

Processor Sharing (PS) is a scheduling policy that splits the resources equally among all
the jobs in the queue. In PS, all the jobs in queue receive the same fraction of resources
(e.g. CPU, bandwidth. . . ): if there are n jobs, then each job receives 1/n of the server
capacity. PS achieves fairness but at the cost of increasing the processing times of the
jobs. Indeed, if a job with size s receives on average 1/nth of the resources, then it will
take s · n times to complete.
Figure 2.1b shows an example of PS: given two jobs with arrival time respectively t1 = 0

1Job sizes are normalized with respect to the service rate.
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(b) PS scheduling of two jobs

Figure 2.1: FIFO and PS examples

and t2 = 1, the scheduler will schedule half of the resources to each one and wait them
to complete.
Because in the real system the assumption of continuous resources is relaxed and thus
resources are discrete, PS is often implemented by using a Round Robin strategy: each job
receives one “slot” of the resources until all jobs have their resources or all the resources
are occupied. An example of Round Robin scheduling implementation is the Max-Min
Fair Scheduler, which uses round robin to assign resources to each job starting from the
one that needs fewer resources. We are going to use an implementation of the Max-Min
Fair Scheduler for HFSP in Chapter 4.
PS strengths: fairness among jobs despite workloads composition.
PSweaknesses: jobs response times are increased based on how many jobs are in queue.

Least Attained Service

Least Attained Service (LAS) is a scheduling policy that prioritizes the job which used
the system less. When two jobs have the same server usage time, LAS does Processor
Sharing among them. LAS works particularly well for skewed workloads [74] because
long jobs are preempted by other jobs and the more a job used the server the lower
priority it will have.
Figure 2.2a shows an example of LAS scheduling: given one job j1 with arrival time 0 and
size 4 and another job j2 with arrival time 1 and size 2, LAS will schedule j1 between its
submission and the submission of j2, then schedule the server to j2 and when j2 reaches
the same amount of service time of j1 it will proceed using a PS policy.
LAS strengths: when jobs sizes are very di�erent among them, LAS is fair, meaning
that all jobs �nish before or similarly to PS, and e�cient in term of mean response time.
LAS weaknesses: when jobs sizes are very similar, LAS is not fair and performs poorly
in term of mean response time.
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(b) SRPT scheduling for two jobs

Figure 2.2: LAS and SRPT examples

Shortest Remaining Processing Time

Shortest Remaining Processing Time (SRPT) is a size-based scheduling that serves the job
with the smallest remaining size �rst. SRPT guarantees the minimum mean response
time [78].
Figure 2.2b shows an example of SRPT scheduling: given a job j1 with arrival time 0

and size 4 and another job j2 with arrival time 1 and size 2, SRPT will schedule j1 until
j2 arrives, then will give priority to j2 because its size 2 is smaller than the current
remaining size of j1, which is 3. When j2 completes, SRPT grants the server to j1 that
completes at 6. The optimal mean response time is 6+2

2
= 4.

While SRPT is well known in scheduling theory to be the most e�cient scheduler in
term of mean response time, it has two main problems that prevent its utilization inside
a cluster. First of all, jobs can starve. In particular, a job will never have granted the
server if the jobs queue always has a smaller job inside.
SRPT strengths: optimal mean response times.
SRPT weaknesses: jobs can starve.

Fair Sojourn Protocol

The Fair Sojourn Protocol (FSP) scheduling [38] is a size-based scheduling policy based
on SRPT and PS that is both fair and leads to small mean response times. The key idea
of FSP is to observe the jobs completion times in PS, through a simulation, and then
schedule one job at a time, by selecting the job that completes �rst.
Figure 2.3 shows an example of FSP policy: in the example done for SRPT, with job j1

with arrival time 0 and size 4 and job j2 with arrival time 1 and size 2, FSP has the same
behaviour of SRPT and, consequently, leads to the optimal mean response time. The dif-
ference is that while SRPT takes decisions based on the size of a job, FSP uses the �nish
time of jobs in PS, that can be seen in Figure 2.1b, to sort jobs.
FSP strenghts: fair, meaning that all jobs �nish before or similarly to PS, and nearly
optimal response time.
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FSP weaknesses: requires a simulation to be able to run. While Friedman et al. [38]
demonstrated that the implementation on single-server queue systems is straightfor-
ward, a simulative approach for a multi-server queue system can be heavy for the sched-
uler machine.
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Figure 2.3: FSP for two jobs

2.1.3 MapReduce

MapReduce, popularized by Google [1], is both a data-intensive scalable computing sys-
tem (DISC) and a programming model for DISC systems. MapReduce has been designed
around some best-practices for DISC systems:

• CommodityHardware: prefer a large number of commodity hardware to a small
number of high-end computers.

• Failures are the norm, not the exception: design the system with failures in
mind. If a failure occurs, the system must automatically recover and continue to
work.

• Move computation, not the data: data is expensive to move, move computation
where the data is instead.

• Process data sequentially: when large amounts of data are read from a hard disk,
the fastest way to read it is reading sequentially from the start to the end. While
reading data, processing that can be done locally (e.g. �ltering and/or projections)
is performed.

• Hidewhat can be automatized: MapReduce is a complex distributed framework
but many parts of it can be hidden to the user. Let the user write only the important
part of its program and automatize everything else.
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MapReduce Distributed Architecture

The MapReduce cluster is composed by many machines that have di�erent roles. There
exist essentially two entities: the server, called JobTracker, which manages the other
machines, and the clients, called TaskTracker, which are the machines that perform the
work. When a TaskTracker wants to join the cluster, it contacts the JobTracker. After
it is added to the cluster, the TaskTracker periodically contacts the JobTracker with
messages that contain its status. By checking the di�erences between the old state and
the new state of the TaskTracker, the JobTracker assigns work to the TaskTracker. If
the JobTracker doesn’t receive any message from a TaskTracker for a certain amount
of time, it puts the TaskTracker in a blacklist and eventually removes the TaskTracker
from the clients list.
A MapReduce Job is composed by two phases called respectively Map and Reduce. The
Reduce phase can start only when the Map phase is completed and the output of the
Map phase has been completely transfered to the machines in which the Reduce phase
will run. Each phase is composed by Tasks, where each Task is a single unit of work that
a TaskTracker can perform. Tasks can run in parallel and they do not communicate
with the other Tasks (shared-nothing architecture). When a Map task completes its
computation, it releases its resources and then sets up a HTTP server from which every
Reduce task can pull its data. This data transfer is called the Shuffle phase and it is part
of the Reduce phase2. When a TaskTracker contacts the JobTracker with some free
resources, the JobTracker assigns some Tasks to the free resources. When the Tasks
are completed, the TaskTracker contacts the JobTracker and the JobTracker updates
the state of the Job. When all the Tasks of a Job phase are completed, then that job phase
is complete.

MapReduce Programming Model

The MapReduce Programming Model has been designed to make as simple as possible
to de�ne jobs. Basically, a MapReduce Job is de�ned by a Map and a Reduce function:

map : (k1, v1)→ [(k2, v2)]
reduce : (k2, [v2])→ [(k3, v3)]

The Map function takes in input a key-value pair and outputs a list of key-value pairs
of a di�erent type. The Reduce function takes in input a pair composed by a key and a
list of values and produces a list of key-value pairs. The name of the two functions are
inspired by the functions available in Lisp [1] to operate over lists.
A classical example of MapReduce program is WordCount, described in Algorithm 1.
In WordCount, the Map function takes in input the line as value and the line o�set in

2A Hadoop con�guration parameter allows starting the Shuffle phase before the completion of the
Map phase. This is dangerous, however, since Reduce tasks risk remaining idle while waiting for late
Map tasks stragglers. Best practices advice a conservative choice for this parameter [2].
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the �le as key and “emits” each word of the line with a counter set to 1. The Reduce
function takes in input the counters for a single word, sum the counters together and
“emits” a single tuple composed by the word as key and the sum as value. An optional
function, called Combine, can aggregate results locally in order to minimize the tra�c
between Map and Reduce tasks. For the word-count example, the Combine function
had the very same implementation of Reduce.

fun map(o�set,line):
foreach term ∈ line:

emit(term, 1)

fun reduce(term,counts):
sum← 0
foreach count ∈ counts:

sum← sum+ count
emit(term, sum)

Algorithm 1: WordCount in MapReduce

The description of the two functions is not enough to de�ne the job. The developer must
also provide an input from which the lines of text must be read and an output to which
the word and counter pairs are written.
Once the developer supplies these informations, MapReduce creates the job and executes
it. The procedure of creating the job converts this simple job speci�cation into a real job.
The real job will have many components that are not de�ned by the developer directly,
but that are required for the job to run.
First of all, a MapReduce job needs a way to read the input, for which we will use the
name input reader. For a textual �le, this component reads line by line the given �le. The
Map function is applied to every line generated by the input reader.
The tuples created for a single Reduce are sorted based on the key. During the Shuffle
phase, the machine that must run the Reduce function contacts all the machines that
run the Map function to fetch its data. The fetched data is then sorted based on the
key. The Reduce machine will apply the Reduce function to each pair and the result of
the Reduce function will be written by an output writer. When the Map phase reaches
a progress threshold, the JobTracker instructs a number of machines manually set by
the user to run the Reduce function. This threshold is usually set by the user.
Figure 2.4 shows an example of a MapReduce job.

Scheduling Policies for MapReduce

The Task Scheduler is the scheduler that assigns TaskTracker resources to tasks of one
or more jobs in the queue. In Hadoop, the Task Scheduler is called every time a Task-
Tracker has some free resources and contacts the JobTracker. The JobTracker asks
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Figure 2.4: MapReduce Job Work�ow

what tasks must be assigned for the given TaskTracker and the scheduler responds
with a list of Tasks.
The default scheduling policy of Hadoop is FIFO, that grants resources to the job arrived
�rst. In a system like MapReduce in which the size of a job can vary by di�erent orders
of magnitude, FIFO leads to poor performance for skewed workloads (Chapter 3).
The alternative is the Fair Scheduler [19], a scheduling policy inspired by Processor
Sharing. The key idea of the Fair Scheduler is to split resources among jobs so that each
job receives its fair share. This, of course, guarantees fairness but has a big impact on
the performance of jobs. Basically, jobs progress slowly based on the number of jobs
that are in the queue.
One key point of MapReduce is to move computation to the data instead of the data to
the computation in order to limit network usage. While this strategy works very well,
the fact that many jobs are scheduled in the same cluster can lead to occasions when
tasks cannot be assigned to a machine with the input block required by the task. In this
case, the Hadoop scheduler can choose to assign the task to another machine and then
transfer through the network the block to that machine. This procedure is expensive
and for this reason Zaharia et al. developed a modi�cation to the Fair Scheduler called
Delay Scheduling [33]. There are three levels of data locality for a task assigned to
a TaskTracker: its input can be local to the machine where it has been assigned, it
can be on a machine in the same rack of the machine where it has been assigned or
elsewhere. The Delay Scheduling policy delays the assignment of tasks to machines
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without the block for a certain amount of time. This threshold can be set manually and
raises signi�cantly the number of tasks that work with local blocks. The experimental
results by Zaharia et al. show a signi�cant improvement in the performance of the Fair
Scheduler.

MapReduce Workload Composition

The evaluation of real scheduling policy implementations is a di�cult task. In this thesis,
this evaluation is done experimentally: a real MapReduce cluster has been deployed and
real jobs are run (Chapter 5). Such an approach makes sense only when the cluster con-
�guration and the workload composition are based on what it is used in real deployment
of MapReduce. A lot of works have focused on studying real workloads and clusters.
Chen et al. [26] present a study of MapReduce workloads done across �ve Cloudera [119]
customers and two years, 2009 and 2010, at Facebook [120]. The traces show that those
workloads and clusters are very di�erent. The clusters are obviously tailored on the
company size. For the workloads, most jobs have input and output in the MB and GB
range while there are some jobs with small (<= 1KB) or huge (>= 1TB) size. The
aggregate result is that more than 92% of jobs manage < 10GB of data. Workloads
composition have no common pattern and the authors conclude that it is vital to tailor
schedulers for each speci�c cluster. The output of their work is SWIM [17], a workload
replay tool that can be used to test new techniques against realistic workloads.
While Chen et al. work focuses on industrial deployment, Ren et al. [87] analyze three
di�erent clusters used for research. The �rst result of their analysis regards how MapRe-
duce jobs are written: most jobs are written with the standard API while many others
use Hadoop Streaming, a way to analyze data with tools external to Hadoop, and part
are written with Pig [105], a high-level language for Hadoop. Another interesting result
is the distribution of job structures, where a structure is a classi�cation of a job, e.g., the
number of iterative jobs in the three clusters. The second aspect of this work is the dis-
tribution of small and big jobs. The result is that most of the jobs are small, they process
less than 10GB of data and they run for less that 8 minutes; there exist few outliers that
process less than 100GB of data and run for more than 5 hours. Chen et al. conclude
that small jobs can be problematic for clusters which do not have a scheduler designed
or con�gured to support such jobs.
Appuswamy et al. o�er a view of a Hadoop cluster usage at Microsoft [121]. The study,
which covers 174.000 jobs submitted in 2011, shows that 80% of the jobs have an input
smaller than 1TB and the median is 14GB. A very interesting aspect of this work is that
it o�ers an overview of the relationship between the input size and the total CPU time in
a real cluster. From the data provided, we can say that almost every job is IO-intensive
with few exceptions.
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Preemption

Preemption is an important concept in scheduling in general, and there are several use
cases in a system such as Hadoop that can bene�t from such a primitive. In a system
like Hadoop, where jobs are composed by tasks, there are two kinds of preemption: job
preemption and task preemption. Task preemption means that a task that is running is
stopped while job preemption means that a job that has just received resources won’t
receive any resource the next time the scheduler is called.
Job schedulers, like the Hadoop FAIR and Capacity schedulers, can use task preemption
to warrant fairness [100]: if a job starves due to long-running tasks of another job, the
latter may be preempted. In deadline scheduling [101], preemption can be used to make
sure that jobs that are close to the deadline are run as soon as possible. Size-based sched-
ulers [73, 72] in general attribute priorities to jobs according to a virtual or real size, and
preemption can guarantee that higher-priority jobs are allowed to run earlier.
Currently, two job preemption strategies are available for Hadoop. One technique is to
wait for tasks that should be preempted to complete: we call this Wait strategy. An-
other approach is to kill tasks, using the Kill primitive. Clearly, the �rst policy has the
shortcoming of introducing large latencies for high-priority tasks, while the second one
wastes work done by killed tasks. We refer to the work by Cheng et al. [102] for an ap-
proach that strives to mitigate the impact of theKill strategy by adopting an appropriate
eviction policy (i.e., choosing which tasks to kill).
In Chapter 6, we present a proposal for a Suspend preemption primitive that avoids the
weaknesses of Wait and Kill.

2.2 Related Work

We present the works related to this thesis.
Section 2.2.1 regards scheduling for single server queues with inexact sizes and it touches
works related to the contribution we introduce in Chapter 3. Section 2.2.2 focuses on
scheduling for DISC systems and Section 2.2.3 on job size estimation on DISC systems.
They both touch topics related to HFSP, described in Chapter 4.
Finally, Section 2.2.4 discusses job preemption and is related to Chapter 6.

2.2.1 Size-Based Scheduling Policies with Inexact Job Sizes

Perhaps surprisingly, not much work considers the e�ect of inexact job size informa-
tion on size-based scheduling policies. Lu et al. [70] have been the �rst to consider this
problem, showing that size-based scheduling is useful only when job size evaluations are
reasonably good (high correlation, greater than 0.75, between the real job size and its es-
timate). Their evaluation focuses on a single heavy-tailed job size distribution, and does
not explain the causes of the observed results. We show the e�ect of di�erent job size
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distributions (heavy-tailed, memoryless and light-tailed), and we show how to modify
the size-based scheduling policies to make them robust to job estimation errors.
Wierman and Nuyens [71] provide analytical results for a class of size-based policies,
but consider an impractical assumption: results depend on a bound on estimation error.
In the common case where most estimations are close to the real value but there are
outliers, bounds need to be set according to outliers, leading to pessimistic predictions
on performance. In our work, instead, we do not impose any bound on the error.
To the best of our knowledge, these are the only works targeting job size estimation
errors for the single server queue (usually referred to as M/G/1 queue).

2.2.2 Scheduling for DISC Systems

The rising of DISC systems such as Hadoop has been followed by many research works
on scheduling for those systems. In this Section we give an overview of the work related
to HFSP.
Chang et al. [35] de�ne a scheduler for nearly optimal total completion time. Their work
is based on [36] where the analysis by Schulz et al. demonstrates that the problem of
scheduling jobs to minimize the total completion time is NP-hard. Chang et al. transpose
the problem in a multi-processor system and derive a 2-approximation algorithm for the
problem. The provided scheduling policy achieves good performance in term of total
completion time when the job sizes are known a-priori. A section of the paper shows
that the scheduler could work with estimated job sizes, that is a prerequisite to use a size-
based policy in a real-world system where the job size is unknown a-priori. Although the
study of the error is interesting, it covers only errors up to 100% of the job size and our
work shows that errors can be bigger. We believe a deeper study of the consequences of
estimating job size is very important to understand the real performance of the scheduler
in production. Our scheduler is designed to deal with estimation error and our work
focuses also on explaining how to work with estimated sizes.
Moseley et al. [11] model the MapReduce scheduling problem in term of two-stage �ex-
ible �ow-shop problem and then create a scheduler to minimize the total �ow-time. To
the best of our knowledge, this is one of the best models for MapReduce because it takes
into account important details of a MapReduce-like system, e.g. the relationship be-
tween Map and Reduce tasks in a MapReduce job. The model does not consider the
shu�e phase of a job nor the data-locality problem. While this is understandable from
a theoretical point of view, our HFSP scheduler is a more practical example of scheduler
for MapReduce that takes into account all the details of a real system. Another very
important di�erence between their work and ours is that they consider job size to be
known a-priori and they justify this by saying that size can be determined based on the
cluster history. Even by taking into account the cluster history, the job size must be es-
timated and this estimation leads to errors on the estimated size. These errors can have
an impact on the scheduling policy and, in practice, its study is mandatory to provide a
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working scheduling policy for MapReduce. Our work shows that the lack of information
about job size is a fundamental aspect for a scheduler of MapReduce and has an impact
on the design and the performance of the scheduler.
Interestingly, Moseley et al. acknowledge that MapReduce does not support preemption
but still use it for their results. Indeed, most of the interesting schedulers use preemption
to achieve their performance. Our work on task preemption, presented on Chapter 6,
addresses exactly this problem.
Sandholm et al. [41] provide a way to virtualize MapReduce clusters so that the per-
formance of each cluster can be changed dynamically. While this is very interesting in
many practical scenarios, for instance in Amazon’s EC2 clusters, the target of this work
is to help the cluster utilizer understand costs, performance and risks in such context.
They also provide some strategies for the Hadoop Schedulers to prioritize jobs based on
the submitter. While their and our work are both about job scheduling, the context in
which this job scheduling is done is di�erent and complementary. Indeed, it is possible
to include their strategies in our scheduler.
Ghodsi et al. [39] propose a scheduling policy, called Dominant Resource Fairness, that
strives to achieve fairness while considering multiple resource types, such as IO and
CPU. They use max-min fairness as base scheduling policy and while their goal is to
create a fair scheduler, they also consider the mean response times of jobs showing that
their scheduler is more fair and e�cient than the Fair Scheduler.
Kc et al. [101] design a scheduler for Hadoop called the Constraint Scheduler. Its goal is
to satisfy the deadlines of the submitted jobs, where a deadline is a time constraint set
by the user that submitted the job. The main di�erence with ours is, of course, the fact
that we do not consider deadlines and they do not consider the mean response time.
Another deadline scheduler is Automatic Resource Inference and Allocation (ARIA), pro-
posed by Verma et al. [47]. This work is highly related to our work because, to meet
job deadlines, ARIA creates a job pro�le while the job is running containing job perfor-
mance informations. This resembles our idea of estimating the job size. The job pro�le is
used to estimate the completion time of the job and consequently to be able to schedule
resources so that jobs can meet their deadlines. From their experiments it is possible
to see that their predicted job sizes are similar to the real job sizes and this reinforces
our idea that job size can be estimated in MapReduce without huge errors. As for the
Constraint Scheduler, ARIA does not take into account the mean response time of jobs
and focuses on the deadlines.
Verma et al. propose another kind of scheduler for minimizing the overall completion
time of a MapReduce workload [48]. The idea is similar to the base idea of our scheduling
policy: sort jobs in the “right” order based on their sizes. A big di�erence between our
work and theirs is that they use past runs of the same jobs to infer the performance
of future runs of those jobs. While we acknowledge that a part of jobs in a cluster
are executed periodically, many studies con�rm that a large part of the jobs, such as
orchestration jobs, are not. Also, even periodic jobs can have a di�erent size based on
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the input and the machines on which they are running. We believe our approach to be
easier to apply and adapt to a wider range of situations.
Tian et al. [30] de�ne both a way to classify jobs based on their characteristics, named
MR-Predict, and a new scheduling policy, called Triple-Queue Scheduler that uses the
classi�er to put jobs inside one of the three queues. The Triple-Queue Scheduler as-
signs tasks to slots with the goal of balancing CPU and IO usage on TaskTracker. The
Triple-Queue Scheduler has a di�erent goal from HFSP and the two approaches are com-
plementary since each queue can use a size-based policy such as HFSP.
Tan et al. [42] propose a study of FIFO and Fair Scheduler with di�erent kind of work-
load as well as a new scheduling policy for MapReduce called the Coupling Scheduler.
The Coupling Scheduler is a modi�ed version of the Fair Scheduler which assigns Re-
duce tasks gradually depending on the Map phase progress. Their results show that
the Coupling Scheduler is better than the Fair Scheduler. Their strategy to enhance the
Fair Scheduler does not change the blind-to-size nature of the Fair Scheduler and thus
we conclude that in many cases the Coupling Scheduler will be less e�cient than HFSP.
Our work extensively shows that size-based disciplines have the best performance even
in presence of errors. This work is complementary to HFSP and we believe it could be
included in our scheduler to avoid assigning reducers too aggressively.
Flex [73] is a size-based scheduler for Hadoop which is available as a proprietary com-
mercial solution. In Flex, “fairness” is de�ned as avoiding job starvation and guaran-
teed by allocating a part of the cluster according to Hadoop’s Fair scheduler; size-based
scheduling (without aging) is then performed only on the remaining set of nodes. Flex
is part of IBM InfoSphere BigInsights [123] that is not open source. Consequently, even
if we believe that Flex is the most similar scheduler to HFSP available for Hadoop, we
could not test it against our scheduler.

Framework Schedulers

Recent works have pushed the idea of sharing cluster resources at the framework level,
for example to enable MapReduce and Spark [3] “applications” to run concurrently.
Monolithic schedulers such as YARN [8] and Omega [10] use a single component to allo-
cate resources to each framework, while two-level schedulers [4, 9] have a single man-
ager that negotiates resources with independent, framework-speci�c schedulers. We
believe that such framework schedulers impose no conceptual barriers for size-based
scheduling, but the implementation would require very careful engineering. In par-
ticular, size-based scheduling should only be limited to batch applications rather than
streaming or interactive ones that require continuous progress.

2.2.3 Job Size Estimation in MapReduce

In this Section we present the work done on estimating the size of a job that are not part
of the previous Section.
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Various recent approaches [52, 31] propose techniques to estimate query sizes in re-
curring MapReduce jobs and in database queries [83]. Agarwal et al. [52] report that
recurring jobs are around 40% of all those running in Bing’s production servers. Our es-
timation module, on the other hand, works on-line with any job submitted to a Hadoop
cluster, but it has been designed so that the estimator module can be easily plugged with
other mechanisms, bene�tting from advanced and tailored solutions. For example, the
estimation error can be always evaluated a posteriori, and this evaluation can be used to
decide if the size-based scheduling works better than policies blind to size.

2.2.4 Preemption for MapReduce systems

A recent preemption mechanism for Hadoop is Natjam [65]: unlike in our work, where
we use the OS to perform job suspension and resuming, Natjam operates at the “ap-
plication layer”, and saves counters about task progress, which allow to resume tasks
by fast-forwarding to their previous states. Since the state of the Java Virtual Machine
(JVM) is lost, however, Natjam cannot be applied seamlessly to arbitrary tasks: indeed,
many MapReduce programming patterns involve keeping track of a state within the task
JVM [103]; this problem is exacerbated by the fact that many MapReduce jobs are created
by high-level languages such as Apache Pig [105] or Apache Hive [104]: jobs compiled
by these frameworks are highly likely to make use of these “tricks”, which hinders the
application of Natjam.
Natjam proposes to handle such stateful tasks with hooks that systematically serialize
and deserialize task state. Besides requiring manual intervention to support suspension,
this approach has the drawback of always requiring the overhead for serialization, writ-
ing to disk, and deserialization of a state that could be large. In contrast, our approach
does not incur in a systematic serialization overhead, since it relies on OS paging to swap
to disk the state of the tasks, if and when needed.



Chapter 3

Size-based scheduling with estimated

sizes

Size-based scheduling policies are well known to be e�cient and fair when job sizes are
known. While the properties of those schedulers are very interesting from a theoretical
perspective, their practical implementation poses some problems. In many cases, in
fact, the job size is unknown and must be estimated while the job is running. When
the scheduler estimates the job sizes, it makes errors that have an impact on the overall
performance of the system.
In the literature, the study of such an impact has not been addressed exhaustively, not
even in the single server case. Before starting the design of a scheduler for DISC systems,
therefore, we need to understand precisely the in�uence of inexact job size information
on the scheduling decision. In order to isolate such in�uence, we consider the basic single
server case, so that to obtain useful insights that will be used in later chapters during the
design of our scheduler.
In this Chapter, therefore, we present a study of the state-of-the-art size-based schedul-
ing policies for single server queues in presence of errors on the estimated sizes (Sec-
tion 3.1.1). Based on the observations on the impact of estimation errors on the schedul-
ing decisions, we then propose a new scheduling technique derived from the existing
ones, that performs similarly to existing schedulers also in presence of estimation errors
(Section 3.1.2).
In Section 3.2 we describe the evaluation methodology, while in Section 3.3 we provide
an extensive set of results of the di�erent schedulers.

3.1 Scheduling Based on Estimated Sizes

We introduce the SRPTE and FSPE size-based scheduling protocols in Section 3.1.1; af-
terwards, in Section 3.1.2, we describe FSPE+PS, a size-based scheduling protocol based
on FSPE that works also in conditions in which FSPE has problems.
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Figure 3.1: Examples for job under- and over-estimation.

3.1.1 SRPTE and FSPE

SRPTE and FSPE are variations of, respectively, SRPT and FSP that work with estimated
sized instead of real ones.
In Figure 3.1, we provide an illustrative example where a single job size is over- or under-
estimated while the others are estimated correctly, focusing (because of its simplicity)
on the behavior of SRPTE; job sojourn times are represented by the horizontal arrows.
The left column of Figure 3.1 illustrates the e�ect of over-estimation. In the top, we show
how the scheduler behaves without errors, while in the bottom we show what happens
when the size of job J1 is over-estimated. The graphs shows the remaining (estimated)
processing time of the jobs over time (assuming a normalized service rate of 1). Without
errors, jobs J2 does not preempt J1, and J3 does not preempt J2. Instead, when the size
of J1 is over-estimated, both J2 and J3 preempt J1. Therefore, the only job su�ering
(i.e., experiencing higher sojourn time) is the one that has been over-estimated. Jobs
with smaller sizes are always able to preempt an over-estimated job, therefore the basic
property of SRPT (favoring small jobs) is not signi�cantly compromised.
The right column of Figure 3.1 illustrates the e�ect of under-estimation. With no esti-
mation errors (top), a large job, J4, is preempted by small ones (J5 and J6). If the size
of the large job is under-estimated (bottom), its estimated remaining processing time
eventually reaches zero: we call late a job with zero or negative estimated remaining
processing time. A late job cannot be preempted by newly arrived jobs, since their size
estimation will always be larger than zero. In practice, since preemption is inhibited, the
under-estimated job blocks the system until the end of its service, with a negative impact
on multiple waiting jobs.
This phenomenon is particularly harmful when job sizes are heavily skewed: if the work-
load has few very large jobs and many small ones, a single late large job can signi�cantly
delay several small ones, which will need to wait for the late job to complete before hav-
ing an opportunity of being served.
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Even if the impact of under-estimation seems straightforward to understand, surpris-
ingly no work in the literature has ever discussed it. To the best of our knowledge, we
are the �rst to identify this problem, which signi�cantly in�uences scheduling policies
dealing with inaccurate job size.
In FSPE, the phenomena we observe are analogous: job size over-estimation delays only
the over-estimated job; under-estimation can result in jobs terminating in the virtual
PS queue before than in the real system. We therefore de�ne late jobs in FSPE as those
whose execution is completed in the virtual system but not yet in the real one and we
notice that, analogously to SRPTE, also in FSPE late jobs can never be preempted by new
ones, and they block the system until they are all completed.

3.1.2 FSPE+PS

Now that we have identi�ed the issue with existing size-based scheduling policies, we
propose our countermeasure. Several alternatives are envisionable, including for exam-
ple updating job size estimations if new information becomes available as work pro-
gresses: such a solution may not however be always feasible, due to limitations in terms
of information or computational resources available to the scheduler.
We propose, instead, a simple solution that requires no additional job size estimation,
based on the simple idea that late jobs should not prevent executing other ones. This goal
is achievable by performing simple modi�cations to preemptive size-based scheduling
disciplines such as SRPT and FSP. The key property is that the scheduler takes corrective
actions when one or more jobs are late, guaranteeing that – even when very large late
jobs are being executed – newly arrived small jobs will get executed soon.
We show here FSPE+PS, which is a modi�cation to FSPE: the only di�erence is that, when
one or more jobs are late, (i.e., they have completed in the emulated virtual system and
not in the real one), all late jobs are scheduled concurrently in a PS fashion. FSPE+PS inher-
its from FSP and FSPE the guarantee that starvation is absent, it is essentially as complex
to implement as FSP is and, as we show in Section 3.3, it performs close to optimally in
most experimental settings we observe. Due to the dominance of FSP with respect to
PS, if there are no size estimation errors no jobs can ever become late: therefore, with
no error FSPE+PS is equivalent to FSP.
Several alternatives to FSPE+PS are possible: we experimented for example with similar
policies that are based on SRPT rather than on FSP, that use a least-attained-service
policy rather than a PS one for late jobs, and/or that schedule aggressively jobs that are
not late yet as soon as at least one reaches the “late” stage. With respect to the metrics
we use in this work, their behavior is very similar to the one of FSPE+PS, and for reasons
of conciseness we do not report about them here. We however encourage the interested
reader to examine their implementation at bit.ly/schedulers. In practice, most of the
performance gain is due to the explicit management of the late jobs, and how late jobs are
handled has no signi�cant impact on such a gain.

http://bit.ly/schedulers
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fun NextVirtualCompletionTime:
if |O| = 0: return-1
else: return t+ w0 ∗ |O|

fun ProcessJob:
if |L| 6= 0: return {(li, 1/|L|)|li ∈ L}
elif |O| = 0: return ∅
else:

k ← min{i|ci}
return {(jk, 1)}

fun UpdateVirtualTime(s):
for (_, wi, _) ∈ O: wi ← wi − (s− t)/|O|
t← s

fun VirtualJobCompletion(s):
UpdateVirtualTime(s)
if c0: add j0 to L
remove the �rst element from O

fun RealJobCompletion(j):
�nd i such that ji = j
ci ← False

fun JobArrival(s, j, w):
UpdateVirtualTime(s)
insert (j, w,True) in O maintaining ordering

Algorithm 2: FSPE+PS.

Algorithm 2 presents our implementation of FSPE+PS, which is based on Friedman and
Henderson’s original description of FSP [75, Section 4.4]. System state is kept in three
variables: the virtual PS queue state is kept in a list O, containing (ji, wi, ci) tuples and
ordered by thewi values: each such tuple represents a job ji having remaining processing
time wi in the virtual system, while the ci boolean �ag is set to True if ji is running in
the real system; late jobs are stored in a L set; the variable t stores the last time at which
the information in O has been updated.
Computation is triggered by three events: if a job j of estimated size w arrives at time
s, JobArrival(s, j, w) is called; when a job j completes, RealJobCompletion(j) is called;
�nally, when a job completes in the virtual system at time s, UpdateVirtualTime(s) is
called (NextVirtualCompletionTime is used to discover when to call VirtualJobComple-
tion). After each event, the ProcessJob procedure is called to determine the new set of
scheduled jobs: its output is a set of (j, s) pairs where j is the job identi�er and s is the
fraction of system resources allocated to it.
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3.2 Evaluation Methodology

Understanding size-based scheduling systems when there are estimation errors is not
a simple task. The complexity of the system makes an analytical study feasible only if
strong assumptions, such as a bounded error [71], are imposed. Moreover, to the best
of our knowledge, no analytical model for FSP (without estimation error) is available,
making an analytical evaluation of FSPE and FSPE+PS even more di�cult.
For these reasons, we evaluate our proposed scheduling policies through simulation. The
simulative approach is extremely �exible, allowing to take into account several parame-
ters – distribution of the arrival times, of the job sizes, of the errors. Previous simulative
studies (e.g., [70]) have focused on a subset of these parameters, and in some cases they
have used real traces. In our work, we developed a tool that is able to both reproduce
real traces and generate synthetic ones. Moreover, thanks to the e�ciency of the im-
plementation, we were able to run an extensive evaluation campaign, exploring a large
parameter space. For these reasons, we are able to provide a broad view of the applica-
bility of size-based scheduling policies, and show the bene�ts and the robustness of our
solution with respect to the existing ones.

3.2.1 Scheduling Policies Under Evaluation

In this work, we take into account di�erent scheduling policies, both size-based and blind
to size. For the size-based disciplines, we consider SRPT as a reference for its optimality
with respect to the MST. When introducing the errors, we evaluate SRPTE, FSPE and
our proposal, FSPE+PS, described in Section 3.1.
For the scheduling policies blind to size, we have implemented the First In, First Out
(FIFO) and Processor Sharing (PS) disciplines. These policies are the default disciplines
used in many scheduling systems – e.g., the default scheduler in Hadoop [2] implements
a FIFO policy, while Hadoop’s FAIR scheduler is inspired by PS; the Apache web server
delegates scheduling to the Linux kernel, which in turn implements a PS-like strat-
egy [85]. Since PS scheduling divides the resources evenly among running jobs, it is
generally considered as a reference for its fairness (see the next section on the perfor-
mance metrics). Finally, we consider also the Least Attained Service (LAS) [74] policy.
LAS scheduling, also known in the literature as Foreground-Background (FB) [76] and
Shortest Elapsed Time (SET) [77], is a preemptive policy that gives service to the job
that has received the least service, sharing it equally in a PS mode in case of ties. LAS
scheduling has been designed considering the case of heavy-tailed job size distributions,
where a large percentage of the total work performed in the system is due to few very
large jobs, since it gives a higher priority to small jobs than what PS would do.



42 CHAPTER 3. SIZE-BASED SCHEDULINGWITH ESTIMATED SIZES

Table 3.1: Simulation parameters.

Parameter Explanation Default
sigma σ in the log-normal error distribution 0.5
shape shape for Weibull job size distribution 0.25
timeshape shape for Weibull inter-arrival time 1
njobs number of jobs in a workload 10,000
load system load 0.9

3.2.2 Parameter Settings

Our goal is to empirically evaluate scheduling policies in a wide spectrum of cases. Ta-
ble 3.1 synthetize the parameters that our simulator can accept as inputs; they are ex-
plained in detail in the following.

Job Size Distribution

Job sizes are generated according to a Weibull distribution, which allows us to evaluate
both heavy-tailed and light-tailed job size distributions. Indeed, the shape parameter
allows to interpolate between heavy-tailed distributions (shape < 1), the exponential
distribution (shape= 1), the Raleigh distribution (shape = 2) and bell-shaped distri-
butions centered around the ‘1’ value (shape > 2). We set the scale parameter of the
distribution to ensure that its mean is 1.
Since scheduling problems have been generally analyzed on heavy-tailed workloads
with job sizes using distributions such as Pareto, we consider a default heavy-tailed
case of shape = 0.25. In our experiments, we vary the shape parameter between a very
skewed distribution with shape = 0.125 and a bell-shaped distribution with shape = 4.

Size Error Distribution

We consider log-normally distributed error values. A job having size s will be estimated
as ŝ = sX , where X is a random variable with distribution

Log-N (0, σ2). (3.1)

This choice satis�es two properties: �rst, since error is multiplicative, the absolute error
ŝ− s is proportional to the job size s; second, under-estimation and over-estimation are
equally likely, and for any σ and any factor k > 1 the (non-zero) probability of under-
estimating ŝ ≤ s

k
is the same of over-estimating ŝ ≥ ks. This choice also is substanciated

by empirical results: in our implementation of the HFSP scheduler for Hadoop [72], we
found that the empirical error distribution was indeed �tting a log-normal distribution.
The sigma parameter controls σ in Equation 3.1, with a default – used if no other in-
formation is given – of 0.5; with this value, the median factor k re�ecting relative error
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is 1.40. In our experiments, we let sigma vary between 0.125 (median k is 1.088) and 4
(median k is 14.85).
It is possible to compute the correlation between the estimated and real size as σ varies.
In particular, when sigma is equal to 0.5, 1.0, 2.0 and 4.0, the correlation coe�cient is
equal to 0.9, 0.6, 0.15 and 0.05 respectively.
The mean of this distribution is always larger than 1, and growing as sigma grows: the
system is biased towards overestimating the aggregate size of several jobs, limiting the
underestimation problems that FSPE+PS is designed to solve. Even in this setting, the
results in Section 3.3 show that the improvements obtained by using FSPE+PS are still
signi�cant.

Job Arrival Time Distribution

For the job inter-arrival time distribution, we use a Weibull distribution for its �exibility
to model heavy-tailed, memoryless and light-tailed distributions. We set the default of
its shape parameter (timeshape) to 1, corresponding to “standard” exponentially dis-
tributed arrivals. Also here, timeshape varies between 0.125 (very bursty arrivals sepa-
rated by long intervals) and 4 (regular arrivals).

Other Parameters

The load parameter is the mean arrival rate divided by the mean service rate. As default
value, we use the same value of 0.9 used by Lu et al. [70]; in our experiments we let the
load parameter vary between 0.5 and 0.999.
The number of jobs (njobs) in each simulation round is 10,000 (in additional experiments
– not shown for space reasons – we varied this parameter, without obtaining signi�cant
di�erences). For each experiment, we perform at least 30 repetitions, and we compute
the con�dence interval for a con�dence level of 95%. For very heavy-tailed job size
distributions (shape ≤ 0.25), results are very variable and therefore, in order to obtain
stable averages, we performed hundreds and/or thousands of experiment runs, until the
con�dence levels have reached the 5% of the estimated values.

3.2.3 Simulator Implementation Details

Our simulator is available under the Apache V2 license at h�ps://bitbucket.org/
bigfootproject/schedsim. It has been conceived with ease of prototyping in mind: for
example, our implementation of FSPE as described in Section 3.1 requires 53 lines of
code. Workloads can be both replayed from real traces and generated synthetically.
The simulator has been written with a focus on computational e�ciency. It is imple-
mented using an event-based paradigm, and we used e�cient data structures based on
B-trees (stutzbachenterprises.com/blist/). As a result of these choices, a “default” work-
load of 10,000 jobs is simulated in around half a second, while using a single core in

https://bitbucket.org/bigfootproject/schedsim
https://bitbucket.org/bigfootproject/schedsim
http://stutzbachenterprises.com/blist/
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our machine with an Intel T7700 CPU. We use IEEE 754 double-precision �oating point
values to represent time and job sizes.

3.3 Experimental Results

We now present our experimental �ndings. For all the results shown in the following,
the parameters whose values are not explicitly stated take the default values shown in
Table 3.1. For the readability of the �gures, we do not show the con�dence intervals: for
all the points, in fact, we have performed a number of runs su�ciently high to obtain a
con�dence interval smaller than 5% of the estimated value. We �rst present our results
on synthetic workloads generated according to the methodology of Section 3.2.2; we
then show the results by replaying two real-world traces from workloads of Hadoop
and of a Web cache.

3.3.1 Synthetic Workloads

Mean Sojourn Time Against PS

We begin our analysis by comparing the three size-based scheduling policies, using PS as
a baseline because PS and its variants are the most widely used set of scheduling policies
in real systems. In Figure 3.2 we plot the value of the MST obtained using respectively
SRPTE, FSPE and FSPE+PS, normalizing it against the MST of PS. We vary the sigma
and shape parameters in�uencing respectively job size distribution and error rate; we
will show that these two parameters are the ones that in�uence performance the most.
Values lower than one (below the dashed line in the plot) represent regions where size-
based schedulers perform better than PS.
In accordance with intuition and to what is known from the literature, we observe that
the performance of size-based scheduling policies depends on the accuracy of job size es-
timation: as sigma grows, performance su�ers. From Figures 3.2a and 3.2b, we however
observe a new phenomenon: job size distribution impacts performance evenmore than size
estimation error. On the one hand, we notice that large areas of the plots (shape > 0.5)
are almost insensitive to estimation errors; on the other hand, we see that MST becomes
very large as job size skew grows (shape < 0.25). We attribute this latter phenomenon to
the fact that, as we highlight in Section 3.1, late jobs whose estimated remaining (virtual)
size reaches zero are never preempted. If a large job is under-estimated and becomes late
with respect to its estimation, small jobs will have to wait for it to �nish in order to be
served.
As we see with Figure 3.2c, FSPE+PS outperforms PS in a large class of heavy-tailed work-
loads where SRPTE and FSPE su�er. The net result is that a size-based policy such as
FSPE+PS is outperformed by PS only in extreme cases where both the job size distribu-
tion is extremely skewed and job size estimation is very imprecise.
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(c) FSPE+PS.

Figure 3.2: Mean sojourn time against PS.
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Figure 3.3: Impact of shape.

It may appear surprising that, when job size skew is not extreme, size-based scheduling
can outperform PS even when size estimation is very imprecise: even a small correlation
between job size and its estimation can direct the scheduler towards choices that are
bene�cial on aggregate. In fact, as we see more in detail in the following, sub-optimal
scheduling choices become less penalized as the job size skew diminishes.
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Impact of shape

We now delve into details and examine how schedulers perform when compared to the
optimal MST that SRPT obtains. In the following Figures, we show the ratio between
the MST obtained with the scheduling policies we implemented and the optimal one of
SRPT.
From Figure 3.3 on the previous page, we see that the shape parameter is fundamental
for evaluating scheduler performance. We notice that FSPE+PS has almost optimal per-
formance for all shape values considered with the default sigma=0.5, which corresponds
to a correlation coe�cient between job size and it estimate of 0.9, while SRPTE and
FSPE perform poorly for highly skewed workloads. Regarding non size-based policies,
PS is outperformed by LAS for heavy-tailed workloads (shape < 1) and by FIFO for
light-tailed ones having shape > 1 ; PS provides a reasonable trade-o� when the job
size distribution is unknown. When the job size distribution is exponential (shape = 1),
non size-based scheduling policies perform analogously; this is a result which has been
proven analytically (see e.g. the work by Harchol-Balter [80] and the references therein).
It is interesting to consider the case of FIFO: in it, jobs are scheduled in series, and the
priority between jobs is not correlated with job size: indeed, the MST of FIFO is equiva-
lent to the one of a random scheduler executing jobs in series [84]. FIFO can be therefore
seen as the limit case for a size-based scheduler such as FSPE or SRPTE when estima-
tions carry no information at all about job sizes; the fact that errors become less critical
as skew diminishes can be therefore explained with the similar patterns observed for
FIFO.

Impact of sigma

The shape of the job size distribution is fundamental in determining the behavior of
scheduling algorithms, and heavy-tailed job size distributions are those in which the
behavior of size-based scheduling di�ers noticeably. Because of this, and since heavy-
tailed workloads are central in the literature on scheduling, we focus on those.
In Figure 3.4 on the facing page, we show the impact of the sigma parameter representing
the error for three heavily skewed workloads. In all three plots, the values for FIFO fall
outside of the plot. These plots demonstrate that FSPE+PS is robust with respect to errors
in all the three cases we consider, while SRPTE and FSPE su�er as the skew among job
sizes grows. In all three cases, FSPE+PS performs better than PS as long as sigma is lower
than 2: this corresponds to lax bounds on size estimation quality, requiring a correlation
coe�cient between job size and its estimate of 0.15 or more.
In all three plots, FSPE+PS performs better than SRPTE; the di�erence between FSPE+PS
and FSPE, instead, becomes discernible only for shape < 0.25. We explain this di�erence
by noting that, when several jobs are in the queue, size reduction in the virtual queue
of FSPE is slow: this leads to fewer jobs being late and therefore non preemptable. As
the distribution becomes more heavy-tailed, more jobs become late in FSPE and di�er-
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Figure 3.4: Impact of error on heavy-tailed workloads, sorted by growing skew.

ences between FSPE and FSPE+PS become more signi�cant, reaching di�erences of even
around one order of magnitude.
In particular in Figure 3.4b, there are areas (0.5 < sigma < 2) in which increasing errors
decreases (slightly) the MST of FSPE. This counterintuitive phenomenon is explained
by the characteristics of the error distribution: the mean of the log-normal distribution
grows as sigma grows, therefore the aggregate amount of work for a set of several jobs
is more likely to be over-estimated; this reduces the likelihood that several jobs at once
become late and therefore non-preemptable. In other words, FSPE works better with
estimation means that tend to over-estimate job size; it is however always better to use
FSPE+PS, which provides a more reliable and performant solution to the same problem.

Pareto Job Size Distribution

In the literature, workloads are often generated using the Pareto distribution. To help
comparing our results to the literature, in Figure 3.5 on the next page we show results for
job sizes having a Pareto distribution, using xm = 0 and α = {1, 2}. The results we ob-
serve for the Weibull distribution are still qualitatively valid for the Pareto distribution;
the value of α = 1 is roughly comparable to a shape of 0.15 for the Weibull distribu-
tion, while α = 2 is comparable to a shape of around 0.5, where the three size-based
disciplines we take into account still have similar performance.
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(b) α = 1

Figure 3.5: Pareto job size distributions, sorted by growing skew.

0.5 0.9 0.99 0.999
load

2

4

6

8

10

M
ST

/
M

ST
(S

R
PT

) SRPTE
FSPE
FSPE+PS

PS
LAS

(a) Varying load.

0.125 0.25 0.5 1 2 4
timeshape

2

4

6

8

10
M

ST
/

M
ST

(S
R

PT
) SRPTE

FSPE
FSPE+PS

PS
LAS

(b) Varying timeshape.

Figure 3.6: Impact of load and timeshape.

Impact of Other Parameters

In Figure 3.6, we show the impact of varying the load and timeshape parameters, while
keeping sigma and shape at their default values.
Figure 3.6a shows that performance of size-based scheduling protocols is not heavily
impacted by load, as the ratio between the MST obtained and the optimal one remains
roughly constant (note that the graph shows a ratio, not the absolute values, that increase
as the load increases); conversely, non size-based schedulers such as PS and LAS deviate
more from optimal as the load grows.
Figure 3.6b shows the impact of changing the timeshape parameter: with low values of
timeshape, job submissions are bursty and separated by long pauses; with high values,
job submissions are evenly spaced. We note that size-based scheduling policies respond
very well to bursty submissions where several jobs are submitted at once: in this case,
adopting a size-based policy that focuses all the system resources on the smallest jobs
pays best; as the intervals between jobs become more regular, SRPTE and FSPE become
slightly less performant; FSPE+PS remains close to optimal.
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Figure 3.7: Mean conditional slowdown.
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Figure 3.8: Per-job slowdown: full CDF (top) and zoom on the 10% more critical cases
(bottom).

Conditional Slowdown

We now consider the topic of fairness, intending here – as discussed in Section 2 – that
jobs’ running time should be proportional to their size, and therefore not experience
large slowdowns.
To better understand the reason for the unfairness of FIFO, SRPTE and FSPE, in Figure 3.7
we evaluate mean conditional slowdown, comparing job size with the average slowdown
(job sojourn time divided by job size) obtained at that size using our default simulation
parameters. The �gure has been obtained by sorting jobs by size and binning them in 100
equally sized classes of jobs with similar size; points plotted are obtained by averaging
job size and slowdown in each of the 100 class.
The almost parallel lines of FIFO, SRPTE and FSPE for smaller jobs are explained by the
fact that, below a certain size, job sojourn time is essentially independent from job size:
indeed, it depends on the total size of older (for FIFO) or late (for SRPTE and FSPE) jobs
at submission time.
We con�rm experimentally the fact that the expected slowdown in PS is constant, irre-
spectively of job size [81]; FSPE+PS and LAS, on the other hand, have close to optimal
slowdown for small jobs. The better MST of FSPE+PS is instead due to better perfor-
mance for larger jobs, which are more penalized in LAS.
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Figure 3.9: CCDF for the real workloads.

Per-Job Slowdown

The results we have shown testify that, for FSPE+PS and similarly to LAS, slowdown
values are homogeneous across classes of job sizes: neither small nor big jobs are pe-
nalized when using FSPE+PS. This is a desirable result, but the reported results are still
averages: in order to ensure that sojourn time is commensurate to size for all jobs, we
need to investigate the per-job slowdown distribution.
In Figure 3.8 on the preceding page, we plot the CDF of per-job slowdown for our de-
fault simulator parameters. By serving e�ciently smaller jobs, all size-based scheduling
techniques and LAS manage to obtain an optimal slowdown of 1 for the majority of
jobs. However, some jobs experience very high slowdown values: jobs with a slowdown
larger than 100 are around 1% for FSPE and around 8% for SRPTE.
PS, LAS, and FSPE+PS perform well in terms of fairness, with no jobs experiencing slow-
down higher than 100 in our experiment runs.1 While PS is generally considered the ref-
erence for a “fair” scheduler, it obtains slightly better slowdown than LAS and FSPE+PS
only for the most extreme cases, while being outperformed for a large majority of the
jobs. We remark that slowdown values for PS are clustered around integer values, be-
cause they are obtained in the common case where a small job is submitted when n

larger ones are running.

3.3.2 Real Workloads

We now consider two real workloads in order to con�rm that the phenomena we ob-
served in our experiments are not an artifact of the synthetic traces that we generated,
and that they indeed apply in realistic cases. From the traces we obtain two data points
per job: submission time and job size. In this way, we move away from the assump-
tions of the G/G/1 model, and we provide results that can account for more general
cases where periodic patterns and correlation between job size and submission times
are present.

1Figure 3.8 plots the results of 121 experiment runs, representing therefore 1,210,000 jobs in this sim-
ulation.
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Figure 3.10: MST of the Facebook workload.

Hadoop at Facebook

We consider a trace from a Facebook Hadoop cluster in 2010, covering one day of job
submissions. The trace has been collected and analized by Chen et al. [88]; it is comprised
of 24,443 jobs and it is available online.2 For the purposes of this work, we consider
the job size as the number of bytes handled by each job (summing input, intermediate
output and �nal output): the mean size is 76.1 GiB, and the largest job processes 85.2
TiB. To understand the shape of the tail for the job size distribution, in Figure 3.9 on
the preceding page we plot the complementary CDF (CCDF) of job sizes (normalized
against the mean); the distribution is heavy-tailed and the largest jobs are around 3
orders of magnitude larger than the average size. For homogeneity with the results of
Section 3.3.1, we set the processing speed of the simulated system (in bytes per second)
in order to obtain a load (total size of the submitted jobs divided by total length of the
submission schedule) of 0.9.
In Figure 3.10, we show MST, normalized against optimal MST, while varying the error
rate. We remark that these results are very similar to those that we observe from Fig-
ure 3.4 on page 47: also in this case, FSPE and FSPE+PS perform well even when job size
estimation errors are far from negligible. These results show that this workload is well
represented by our synthetic workloads, when shape is around 0.25.
We performed more experiments on these traces; extensive results are available in a
technical report [82].

Web Cache

IRCache (ircache.net) is a research project for web caching; traces from the caches are
freely available. We performed our experiments on a one-day trace of a server from
2007 totaling 206,914 requests;3 the mean request size in the traces is 14.6KiB, while the
maximum request size is 174 MiB. In Figure 3.9 on the facing page we show the CCDF of
job size; as compared to the Facebook trace analyzed previously, the workload is more

2h�ps://github.com/SWIMProjectUCB/SWIM/blob/master/workloadSuite/FB-2010_samples_24_
times_1hr_0.tsv

3�p://�p.ircache.net/Traces/DITL-2007-01-09/pa.sanitized-access.20070109.gz.

http://ircache.net
https://github.com/SWIMProjectUCB/SWIM/blob/master/workloadSuite/FB-2010_samples_24_times_1hr_0.tsv
https://github.com/SWIMProjectUCB/SWIM/blob/master/workloadSuite/FB-2010_samples_24_times_1hr_0.tsv
ftp://ftp.ircache.net/Traces/DITL-2007-01-09/pa.sanitized-access.20070109.gz
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Figure 3.11: MST of the IRCache workload.

heavily tailed: the biggest requests are four orders of magnitude larger than the mean.
As before, we set the simulated system processing speed in bytes per second to obtain a
load of 0.9.
In Figure 3.11 we plot the evolution of MST as the sigma parameter controlling error
grows. Since the job size distribution is more heavily tailed, sojourn times are more in�u-
enced by job size estimation errors (notice the logarithmic scale on the y axis), con�rm-
ing the results we have from Figure 3.2 on page 45. The performance of FSPE does not
worsen monotonically as error grows, but rather becomes better for 0.5 < sigma < 1;
this is a phenomenon that we also observe – albeit to a lesser extent – for synthetic
workloads in Figure 3.4b on page 47 and for the Facebook workload in Figure 3.10 on
the preceding page. The explanation that we provided in Section 3.3.1 applies: since
the mean of the log-normal distribution grows as sigma grows, the aggregate amount of
work for a given set of jobs is likely to be over-estimated in total, reducing the likelihood
that several jobs at once become late and therefore non-preemptable. Also in this case,
we still remark that FSPE+PS consistently outperforms FSPE. Once again, the results for
the slowdown distribution are qualitatively analogous to those reported in Section 3.3.1.

3.4 Summary

In this Chapter we presented a set of size-based scheduling policies for single server
queue that work on estimated sizes, namely SRPTE and FSPE, and we showed that they
can deal with estimated sizes when the workload is not too skewed and errors on esti-
mated sizes are not extreme.
We then presented FSPE+PS, a size-based scheduling policy that is even more tolerant
to estimation errors and provides close to optimal response times and good fairness in
all but the most extreme of cases.
We stress that, as we are going to see in the next chapter, DISC systems such as Hadoop
do not present the extreme conditions that require FSPE+PS; both SRPTE and FSPE are
good candidates to be implemented in a DISC system. We chose FSPE to avoid problems
related to job starvation and for the fair properties that it provides.
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In the next Chapter we are going to present HFSP, an implementation of the FSPE
scheduling policy for a DISC system such as Hadoop. The problems raised by a complex
system such as Hadoop are many, but the simple nature of FSPE makes easy to adapt it
to such a system without losing its properties.
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Chapter 4

The Hadoop Fair Sojourn Protocol

In this Chapter we present and analyze the Hadoop Fair Sojourn Protocol scheduler
(HFSP), which is an adaptation of the FSPE scheduling policy to Hadoop, a data inten-
sive scalable computing system based on Google MapReduce [1]. The main di�erence
between FSPE, presented in the previous Chapter, and HFSP is that while FSPE is an ab-
stract scheduling policy for a single server queue, HFSP is a fully �edged implementation
for a distributed system that must take into account the complexity of a real system.
In this Chapter we present the problems that we have encountered in extending FSPE
to HFSP and how we solved them. Implementing HFSP raises a number of challenges: a
few of them come from MapReduce itself – e.g., the fact that a job is composed by tasks
– while others come from the size-based nature of the scheduler in a context where the
size of the jobs is not known a-priori. In this section we describe each challenge and the
proposed corresponding solution.
The Chapter is organized as follow: we �rst introduce the concept of job size in MapRe-
duce (Section 4.1), we then describe the estimation module that estimate job sizes (Sec-
tion 4.2), after it we present the aging module (Section 4.3) and �nally how estimation
and aging module are composed to create the HFSP scheduler (Section 4.4).

4.1 Jobs

In MapReduce, jobs are scheduled at the granularity of tasks, and they consist of two
separate phases, called Map and Reduce. The Reduce phase can run only after the Map
phase is completed, i.e. when all Map tasks are done. Our scheduler splits logically the
job in the two phases and treats them independently; therefore the scheduler considers
the job as composed by two parts with di�erent sizes, one for the Map and the other for
the Reduce phase. When a resource is available for scheduling a Map (resp. Reduce)
task, the scheduler sorts jobs based on their virtual Map (resp. Reduce) sizes, and grants
the resource to the job with the smallest size for that phase.

55
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The size of each phase, to which we will refer as real size, is unknown until the phase
itself is complete. Our scheduler, therefore, works using an estimated size: starting from
this estimate, the scheduler applies job aging, i.e., it computes the virtual size, based
on the time spent by the job in the waiting queue. The estimated and the virtual sizes
are calculated by two di�erent modules: the estimation module, that outputs a phase
estimated size, and the aging module, that takes in input the estimated size and applies
an aging function.

4.2 The Estimation Module

The role of the estimation module is to assign a size to a job phase such that, given
two jobs, the scheduler can discriminate the smallest one for that phase. When a new
job is submitted, the module assigns for each phase an initial size Si, which is based on
the number of its tasks. The initial size is necessary to quickly infer job priorities. A
more accurate estimate is done immediately after the job submission, through a training
stage: in such a stage, a subset of t tasks, called the training tasks, is executed, and their
execution time is used to update Si to a �nal estimated size Sf . Choosing t induces
the following trade-o�: a small value reduces the time spent in the training stage, at
the expense of inaccurate estimates; a large value increases the estimation accuracy,
but results in a longer training stage. As we will show in Section 4.4, our scheduler is
designed to work with rough estimates, therefore a small t is su�cient for obtaining
good performances.

4.2.1 Tiny Jobs

Every job phase with less than t tasks is considered as tiny: in this case, the scheduler
sets Sf = 0, which grants them the highest priority. Indeed, tiny jobs use a negligible
fraction of cluster resources: giving them the highest priority marginally a�ects other
jobs. Note that the virtual size of all other jobs is constantly updated, therefore every
job will be eventually scheduled, even if tiny jobs are constantly submitted.

4.2.2 Initial Size

The initial size of a job phase with n tasks is set to Si = n·ξ ·swhere s is the average task
size computed so far by the system considering the jobs that have already completed; ξ ∈
[1,∞) is a tunable parameter that represents the propensity of the system to schedule
jobs that have not completed the training stage yet. If ξ = 1, new jobs are scheduled
quite aggressively based on the initial estimate, with the possible drawback of scheduling
a particularly large job too early. Setting ξ > 1 mitigates this problem, but might result
in increased response times. Finally, if the cluster does not have a past job execution
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history, the scheduler sets Si = s0, where s0 > 0 is an arbitrary constant, until the �rst
job completes.

4.2.3 Final Size

When a job phase completes its training stage, the estimation module noti�es the aging
module that it is ready to update the size of that phase for that job.
The �nal size is computed as:

Sf = s̃ · [(n− t) +
t∑

k=1

(1− pk)] ,

where (n− t) is the number of tasks of a job phase that still need to be scheduled, that is
the total number of tasks minus the training tasks. The de�nitions of s̃ and pk are more
subtle. As observed in prior works [33, 26], Map task execution times are generally stable
and short, whereas the distribution of Reduce task execution times is skewed. For this
reason, s̃ represents the average size of the t tasks that either i) completed in the training
stage (and thus have an individual execution time sk), or ii) that made enough progress
toward their completion, which is determined by a timeout ∆ (60 s in our experiments).
The progress term pk, which is measured by Hadoop counters, indicates the percentage
of input records processed by a training task tk. More formally, we thus have that:

s̃ =
1

t

t∑
k=1

s̃k ,

where

s̃k =

{
sk , if training task tk completes within ∆
∆
pk

, otherwise
.

In HFSP, once Sf is set for the �rst time, after the training stage, it will not be updated,
despite additional information on task execution could be used to re�ne the �rst estimate.
Indeed, continuous updates to Sf may result in a problem that we call “�apping”, which
leads to poor scheduling performance: Figure 4.1 shows an example of this e�ect. If Sf

estimates are not updated, there are two possible cases: the �rst estimate leads to i) a
correct scheduling decision, or ii) an “inversion” between two jobs.
In Figure 4.1, a correct scheduling decision implies that J2 completes at time 2 and J1

completes at time 5, while an inversion implies that J1 completes at time 3 and J2 com-
pletes at time 5. The mean response time in the �rst and second case are 3.5 and 4 respec-
tively. The bottom scheme in Figure 4.1 illustrates the e�ects of a continuous update to
Sf , which leads to �apping. In this case, the response times are 5 for J1 and 4 for J2

resulting in a mean response time of 4.5.



58 CHAPTER 4. THE HADOOP FAIR SOJOURN PROTOCOL
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Figure 4.1: Example of continuous updates of job sizes.

Clearly, jobs with similar sizes exacerbate the phenomenon we illustrate above. Since
estimation errors for jobs with similar sizes is likely to occur, as we are going to show
in Section 4.5, HFSP avoids “�apping” problems using a unique estimate for Sf .

4.3 The Aging Module

The aging module takes in input the estimated sizes to compute virtual sizes. The use
of virtual sizes is a technique applied in many practical implementations of well-known
schedulers [55, 38, 60]: it consists in keeping track of the amount of the remaining work
for each job phase in a virtual “fair” system, and update it every time the scheduler is
called. The result is that, even if the job doesn’t receive resources and thus its real size
does not decrease, in the virtual system the job virtual size slowly decreases with time.
Job aging avoids starvation, achieves fairness, and requires minimal computational load,
since the virtual size does not incur in costly updates [55, 38].
Figure 4.2 shows an example of how the job virtual size is decreased and how that a�ects
the scheduling policy. We recall that HFSP schedules jobs with the smallest virtual size
�rst. In Figure 4.2a, we show job virtual sizes and in Figure 4.2b the job real sizes. At
time 0 there are two jobs in the queue, Job 1 with size 3 and Job 2 with size 4. Note that
at the beginning, the virtual size corresponds to the real job size. The scheduling policy
chooses the job with the smallest virtual size, that is Job 1, and grants it all the resources.
At time 3, Job 3 enters the job queue and Job 1 completes. Job 3 has a smaller real size
than Job 2 but a bigger virtual size; this is due to the fact that while Job 1 was working,
the virtual times of both Job 1 and Job 2 have been decreased. When Job 1 �nishes, Job
2 has virtual size 2.5 while Job 3 has virtual size equal to its current real size, that is 3.

4.3.1 Virtual Cluster

The part of the aging module that implements the virtual system to simulate processor
sharing is called Virtual Cluster. Jobs are scheduled at the granularity of tasks, thus the
virtual cluster simulates the same resources available in the real cluster: it has the same
number of “machines” and the same con�guration of (Map or Reduce) resources per
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Figure 4.2: An example of virtual time and job size progress in HFSP.

machine. When the resources change in the real cluster, the scheduler noti�es it to the
aging module that updates the virtual cluster resources. We simulate a Max-Min Fairness
criterion to take into account jobs that require less compute resources than their fair
share (i.e., 1/n-th of the resources if there are n active jobs): a round-robin mechanism
allocates virtual cluster resources, starting from small jobs (in terms of the number of
tasks). As such, small jobs are implicitly given priority, which reinforces the idea of
scheduling small jobs as soon as possible.

4.3.2 Aging Speed

The fact that the virtual cluster has the same resources of the real one and the virtual
scheduler assigns (virtual) resources to tasks has an interesting e�ect on the aging speed
of jobs: a job with more tasks than another can age faster if enough resources are free in
the virtual cluster. This models the core idea of MapReduce that jobs with a higher par-
allelism degree, i.e. more tasks, can do more work than others with smaller parallelism.

4.3.3 Estimated Size Update

When the estimated size of a job phase is updated from the initial estimation Si to the
�nal estimation Sf , the estimation module alerts the aging module to update the job
phase size to the new value. After the update, the aging module runs the scheduler on
the virtual cluster to reassign the virtual resources.
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4.3.4 Failures

The aging module is robust with respect to failures. The same technique used to support
cluster size updates is used to update the resources available when a failure occurs; once
Hadoop detects the failure, job aging will be slower. Conversely, adding nodes will result
in faster job aging re�ecting the fact that with more resources the cluster can do more
work.

4.3.5 Manual Priority and QoS

Our scheduler does not currently implement the concept of di�erent job priorities as-
signed by the user who submitted the job; however, the aging module can be easily
modi�ed to simulate a Generalized Processor Sharing discipline, leading to a schedul-
ing policy analogous to Weighted Fair Queuing [56]. A simple approach is to consider
the user assigned priority as a speed modi�er to the aging of the job phases virtual sizes:
when the aging module decreases the virtual size of the job, it subtracts to the job virtual
size the virtual work done multiplied by the job modi�er. A job modi�er bigger (resp.
smaller) than 1 speeds up (resp. slows down) the aging of a job.

4.4 The Scheduling Policy

In this section we describe how the estimation and the aging modules coexist to create
a task scheduler1 for Hadoop that strives to be both e�cient and fair.

4.4.1 Job Submission

Figure 4.3 shows the lifetime of a job in HFSP, from its submission to its completion and
removal from the job queue. When a job is submitted, for each phase of the job, the
scheduler asks to the estimation module if that phase is tiny. If the answer is a�rmative,
the scheduler assignsSf = 0, meaning that the job must be scheduled as soon as possible.
Otherwise, the scheduler starts the training stage and sets the virtual time to the initial
size Si given by the estimator module. Periodically, the scheduler asks to the estimation
module if it has completed its training stage, and, if the answer is positive, it noti�es the
aging module to update the virtual size of that job and removes the job from the training
stage.

4.4.2 Priority To The Training Stage

The training stage is important because, as discussed in Section 4.2, the initial size Si

is imprecise, compared to the �nal size Sf . Completing the training stage as soon as

1In Hadoop, jobs are scheduled at granularity of tasks, and thus the scheduler is called Task Scheduler
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possible is fundamental for an e�cient scheduling policy. There are two strategies that
are used by the scheduler to speed up the training stage: the �rst strategy is to set a
low number of training tasks t, as discussed in Section 4.2; the second strategy is to give
priority to the training tasks across jobs – up to a threshold of T ∈ [0, Tmax] where
Tmax is the total number of resources in the cluster. Such threshold avoids starvation
of “regular” jobs in case of a bursty job arrival pattern. When a resource is free and
there are jobs in the training stage, the scheduler assigns the resource to a training task
independently from its job position in the job queue. In other words, training tasks have
the highest priority. Conversely, after a job has received enough resources for its training
tasks, it can still obtain resources by competing with other jobs in the queue.

4.4.3 Virtual Time Update

When a job phase completes its training stage, the scheduler asks to the estimation mod-
ule the �nal size Sf and noti�es the aging module to update the virtual size accordingly.
This operation can potentially change the order of the job execution. The scheduler
should consider the new priority and grant resources to that job, if such job is the small-
est one in the queue. Unfortunately, in Hadoop MapReduce the procedure to free re-
sources that are used by the tasks, also known as task preemption, can waste work. The
default strategy used by HFSP is to wait for the resources to be released by the working
tasks. Section 4.6 describes the preemption strategies implemented in HFSP and their
implications.

4.4.4 Data locality

For performance reasons, it is important to make sure that Map tasks work on local data.
To this aim, we use the delay scheduling strategy [33], which postpones scheduling tasks
operating on non-local data for a �xed amount of attempts; in those cases, tasks of jobs
with lower priority are scheduled instead.

4.4.5 Scheduling Algorithm

HFSP scheduling – which is invoked every time a MapReduce slave claims work to
do to the MapReduce master – behaves as described by Algorithm 3. The procedure
AssignPhaseTasks is responsible for assigning tasks for a certain phase. First,
it checks if there are jobs in training stage for that phase. If there are any, and the
number of current resources used for training tasks Tcurr is smaller or equal than T , the
scheduler assigns the resource to the �rst training task of the smallest job. Otherwise,
the scheduler assigns the resource to the job with the smallest virtual time. When a
task �nishes its work, the procedure releaseResource is called. If the task is a
training task, then the number Tcurr of training slots in use is decreased by one.
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fun assignPhaseTasks(resources):
foreach resource s ∈ resources:

if ∃ (Job in training stage) and Tcurr < T :
job← select job to train with smallest initial virtual size
assign(s, job)
Tcurr ← Tcurr + 1

else:

job← select job with smallest virtual time
assign(s, job)

fun assign(resource, job):
task← select task with lower ID from job
assign task to resource

fun releaseResource(task):
if task is a training task:

Tcurr ← Tcurr − 1
Algorithm 3: HFSP resource scheduling for a job phase.

4.5 Impact of Estimation Errors

In this section we describe what is the impact of an erroneous scheduling, i.e. giving
resources to the wrong job, and how HFSP handles estimation errors.
The output of the estimation module is an estimated size, thus it can contain an error e.
We identify e as the ratio between the estimated size2 S and the real size R, therefore
S = R · e.
We recall from Chapter 3 that two kinds of errors are possible: the job size can be under-
estimated (e < 1) or over-estimated (e > 1). Both errors have an impact on the scheduler;
however, the case of under-estimation is more problematic. Indeed, a job whose size is
over-estimated obtains a lower priority: this impacts only that job, delaying the moment
in which it obtains the resources to work. Even if the job enters the queue with a lower
priority, i.e. a large virtual size, the aging function will raise its priority as the time
goes by, and the job will obtain eventually the resources. Instead, job under-estimation
increases the priority of a job, and this can potentially a�ect all the other jobs in the
queue. The aging function plays a crucial role in making HFSP tolerant to estimations
errors.
The study of the estimation error for a single job is not enough to understand the impact
of the errors on our scheduling policy. Indeed, we need to consider the estimation errors
of all the jobs in the queue and how their interplay can ultimately lead the scheduler to

2For the sake of clearness, in this Section we simplify the notation: S refers to Sf , as described previ-
ously.



64 CHAPTER 4. THE HADOOP FAIR SOJOURN PROTOCOL

HFSP J1 J2

HFSP wrong J2 J1

Fair Scheduler J1 J2

0 1 2 3
(a) Scheduling of two similar jobs

HFSP J1 J2

HFSP wrong J2 J1

Fair Scheduler J1 J2

0 1 2 3 4 5 6 7 8 9 10 11
(b) Scheduling of two di�erent jobs

Figure 4.4: Illustrative examples of the impact of estimation errors on HFSP.

take wrong scheduling decisions. We exemplify this problem for two jobs: let us denote
the size of an arbitrary phase of a job Jk as Rk, and its estimated size as Sk = Rk · ek,
where ek expresses the estimation error. Two jobs J1 and J2 withR1 < R2 are scheduled
incorrectly (i.e. J2 is given priority over J1) if S1 > S2, i.e. e1/e2 > S2/S1. If J1 and J2

are similar in size, even a small e1/e2 ratio may invert the priorities of these jobs; if S2/S1

is instead large (e.g. because the two sizes di�er by orders of magnitude), then also e1/e2

must be analogously large. This works perfectly with a size-based scheduler because if
two jobs are similar, inverting the priorities of the two has only a small impact on the
overall performance. Instead, if two jobs are very di�erent, switching them can lead to
poor performance because the job with highest priority has to wait for an amount of
time that may be much larger than its size. This, however, is unlikely because it requires
that e1 and/or e2 are very far from 1. In other words, estimation errors should be very
large for switching very di�erent jobs.
Figure 4.4a and Figure 4.4b exemplify how a wrong scheduling can a�ect HFSP. Each
�gure has three cases: the �rst case, on top, is the correct HFSP policy; the second case,
in the middle, shows what happens when HFSP gives priority to the wrong job and the
third case, at the bottom, shows an ideal “fair” scheduler adopting a processor-sharing
scheduling policy.
Figure 4.4a shows what happens when the two jobs have similar sizes, that are 1 and 2
seconds. If the estimation module outputs estimated sizes S1 and S2 such that S1 < S2,
HFSP schedules �rst J1 and then J2 and the resulting mean response time is 1+3

2
= 2.

On the contrary, if the estimation is wrong and S1 > S2, HFSP will schedule �rst J2 and
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then J1. While this scheduling choice is incorrect, the resulting mean response time is
2+3

2
= 2.5, which is more than the one with the correct choice. While a response time

of 2.5 is not optimal, matches the mean response time obtained with Processor Sharing.
We conclude that if two jobs are similar, switching them by giving priority to the bigger
one does not a�ect heavily a metric such as the mean response time.
Figure 4.4b illustrates what happens when two jobs have sizes very di�erent, in the
example 1 and 10 seconds. As in the previous example, HFSP schedules J1 and J2 based
on the estimator output. Here, however, the di�erence in the mean response time is
large: the mean response time is 1+11

2
= 6 when J1 is scheduled �rst and 10+11

2
= 10.5

in the other case. The wrong scheduling choice does not only lead to an almost doubled
mean response time: it also heavily penalizes J1, which has to wait 10 times its size
before having any resource granted. The di�erence between the two scheduling choices
is even more clear when they are compared to the Processor Sharing, that has a mean
response time of 2+11

2
= 6.5. When two jobs are very di�erent, a wrong scheduling

choice can lead to very poor performance of HFSP. This situation, however, is much less
likely than the former, requiring a value of e1 > 10e2.
In summary, scheduling errors – when caused by estimations that are not very far from
the real job sizes – result in response times that are similar to those obtained by processor
sharing policies, especially under heavy cluster load. Estimation errors lead to very bad
scheduling decisions only when job sizes are very di�erent from their estimations. As
we show in our experimental analysis, such errors rarely occur with realistic workloads.

4.6 Task Preemption

HFSP is a preemptive scheduler: jobs with higher priority should be granted the re-
sources allocated to jobs with lower priorities. In Hadoop, the main technique to im-
plement preemption is by killing tasks. Clearly, this strategy is not optimal, because it
wastes work, including CPU and I/O. Other works have focused on mitigating the im-
pact of Kill on other MapReduce schedulers [29]. Alternatively, it is possible to Wait
for a running task to complete, as done by Zaharia et al. [33]. If the runtime of the task is
small, then the waiting time is limited, which makes Wait appealing. This is generally
the case of Map tasks but not of Reduce tasks, which can potentially run for a long time.
HFSP supports both Kill and Wait and by default it is con�gured to use Wait. In this
section we describe how HFSP works when the Kill preemption is enabled.

4.6.1 Task Selection

Preempting a job in MapReduce means preempting some or all of its running tasks.
It may happen that not all the tasks of a job have to be preempted. In this case, it is
very important to pick the right tasks to preempt to minimize the impact of Kill. HFSP
chooses to preempt the “youngest” tasks, i.e. those that have been launched last, for three
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practical reasons: i) old tasks are the most likely ones to �nish �rst, freeing resources to
other tasks; ii) killing young tasks wastes less work; iii) young tasks are likely to have
smaller memory footprints, resulting in lower cleanup overheads due to e.g. purging
temporary data.

4.6.2 When Preemption Occurs

Preemption may occur for many di�erent reasons. First, the training tasks always have
priority over non-training tasks. Therefore, training tasks can preempt other tasks even
if they are part of a job with higher priority than theirs. This measure makes the training
phase faster to complete and, considering that the number of training tasks is bounded,
does not signi�cantly a�ect the runtime of other jobs. Tasks that complete in the training
stage lose their “status” of training task and, consequently, can be preempted as well.
Newly submitted jobs can, of course, preempt running tasks when the virtual size of the
new job is smaller than the virtual size of the job that owns the running tasks.
Task preemption may also happen when the estimation module updates the size of a job,
from Si to Sf . This can move the job to a new position in the job queue.
The aging function can also be responsible for task preemption: as we saw in Section 4.3,
since we implement max-min fairness, jobs may have di�erent degrees of parallelism,
e.g. small jobs may require less than their fair share; this results in a di�erent aging, that
may change the order in the execution list.
Finally, the last reason for task preemption is when the cluster resources shrink, e.g.
after a failure. In this case, HFSP grants “lost” resources to jobs with higher priority
using preemption.

4.7 Summary

In this Chapter we have presented the Hadoop Fair Sojourn Protocol, a preemptive size-
based scheduler for Hadoop MapReduce that is both e�cient and fair. Exploring the
performance of a scheduler like HFSP can be challenging; the next Chapter is dedicated
to the experimental campaign used to evaluate HFSP performance in both a simulative
and an experimental way.



Chapter 5

System Evaluation

The evaluation of a scheduler like the Hadoop Fair Sojourn Protocol is a di�cult task
due to the complexity of a concrete implementation of an advanced scheduler such as
HFSP.
This Chapter provides an extensive evaluation of the performance of HFSP, which is
compared to that of the default scheduler available in most of the current Hadoop distri-
butions (e.g. Cloudera), namely the Fair scheduler [33, 19]. We omit from this section a
comparative analysis of HFSP and the FIFO scheduler available in stock Hadoop: in our
experiments, FIFO is drastically outperformed by all other schedulers, a rather expected
result.
The �rst part of this Chapter is dedicated to the cluster con�guration: in particular, Sec-
tion 5.1 describes the BigFoot platform, on which we run the experiments, and Section 5.2
provides details on the Hadoop con�guration.
The rest of the Chapter is organized as follows: Sections 5.3 is dedicated to the mean
response time and the slowdown analysis; Section 5.4 provides a study of the cluster
utilization and of the job size estimation error; the same section shows a comparative
analysis between HFSP with the di�erent preemption primitives available for Hadoop
(Kill and Wait).

5.1 The BigFoot Platform

The platform on which we run the experiments is the BigFoot cluster.1 In this section we
describe the cluster itself, from the machines that compose the cluster to the software
installed.
The BigFoot cluster uses a heterogeneous set of physical machines: we have two master
nodes running on a dual quad-core Xeon L5320 server clocked at 1.86GHz, with 16GB
of RAM, two 1TB hardware RAID5 volumes, and two 1Gbps network interfaces; worker
nodes execute on six dual exa-core Xeon E5-2650L (with hyperthreading enabled) servers

1h�ps://www.bigfoot-project.eu/
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clocked at 1.8GHz, with 128GB of RAM, ten 1TB disks (con�gured as JBOD, Just a Bunch
of Disks) and four 1Gb/s network cards. In this work we use a single network interface
per host, as splitting tra�c or using bonding would have added complexity to the system
that, instead, we strive to keep as simple as possible, since in this work we are interested
only in baseline performance.
The hardware and network con�guration closely resembles the one suggested by com-
mercial private cloud providers, such as Rackspace[109]. In particular storage is dis-
tributed on the master and compute hosts and is not concentrated on a separate storage
network.
Each machine in the cluster runs the same Linux distribution, a Ubuntu 12.04.2 LTS,
updated with the most recent patches. All energy saving settings in the BIOS are dis-
abled, since they cause severe performance penalties. We use the KVM hypervisor, with
virtio and vhost_net acceleration modules enabled. Virtualization support in the
CPUs is enabled (VMX) and KVM uses it automatically. The hypervisor is con�gured by
Nova, a component of OpenStack used to manage customized clouds systems2, to use
LVM for VM storage. VMs use the unmodi�ed Ubuntu 13.10 image from the Ubuntu
Cloud archives.
We use the Grizzly release of OpenStack, which is installed via the Ubuntu cloud repos-
itory. One of the master nodes runs the OpenStack management services: the web-
based dashboard console, cinder, glance, keystone, and quantum (including
the server, layer 3 services, OpenVSwitch and DHCP agents).3
Worker nodes are con�gured as compute-only nodes, and they host all the VMs created
by our tenants and users. Currently, we con�gure quantum to use GRE tunnels over a
physical network that interconnects all nodes of our cluster.
We implemented the most common setup, where quantum is con�gured to use the
OpenVSwitch [110] (OVS) plugin to provide connectivity between VMs. OVS is a soft-
ware switch implementation that materializes as a virtual switch spanning across mul-
tiple physical hosts. In our con�guration, quantum creates a single OVS switch for all
VMs, using VLAN tagging to separate tra�c from di�erent tenants.
To provide connectivity between tenants and the external network, our virtual network
is con�gured according to the provider router with private networks use-case described
in the OpenStack documentation [114]. Thus, each tenant has its own IP subnet, and
exchange tra�c between each other and the Internet using a single virtual router con-
nected to the subnets of each tenant from one side and to the external network on the
other side. The quantum virtual router is implemented as network namespace on the
master node, where a number of NAT and routing rules provide interconnection, exter-
nal access and �oating IPs allocated to the VMs.

2h�p://docs.openstack.org/developer/nova/
3For more informations on what each component does please refer to h�p://openstack.org

http://docs.openstack.org/developer/nova/
http://openstack.org
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These settings are the result of a tedious trial and error process that lasted several
months. The OpenStack installation manuals only cover the basics to setup a system
that is (mostly) operational, but far from being optimized for performance. Other pa-
rameters are buried in bug reports, OpenStack blueprints (informal feature proposals to
the community) and mailing list archives.

5.2 Experimental Setup

We run our experiments on a cluster composed of 20 TaskTracker worker machines
with 4 CPUs and 8 GB of RAM each. We con�gure Hadoop according to current best
practices [19, 22]: the HDFS block size is 128 MB, with replication factor 3; each Task-
Tracker has 2 map slots with 1 GB of RAM each and 1 reduce slots with 2 GB of RAM.
The slowstart factor is con�gured to start the Reduce phase for a job when 80% of
its Map tasks are completed.
HFSP operates with the following parameters: the number of tasks for the training stage
is set to t = 5 tasks; the timeout to estimate task size is set to ∆ = 60 seconds; we
schedule aggressively jobs that are in the training stage, setting ξ = 1 and T = 10 slots
for both Map and Reduce phases. The Fair scheduler has been con�gured with a single
job pool, thus all jobs have the same priority.
We generate workloads using PigMix [6], a benchmarking suite used to test the perfor-
mance of Apache Pig releases. PigMix is appealing to us because, much like its stan-
dard counterparts for traditional DB systems such as TPC [7], it both generates realistic
datasets and de�nes queries inspired by real-world data analysis tasks. PigMix contains
both Pig scripts and native MapReduce implementation of the scripts. Since Pig has gen-
erally an overhead over the native implementations of the same job, in our experiments
we use the native implementations. For illustrative purposes, we include a sample Pig
Latin query that is included in our workloads next:

REGISTER pigperf.jar;
A = LOAD ’pigmix/page_views’ USING ...

AS (user, action, timespent,
query_term, ip_addr, timestamp,
estimated_revenue, page_info, page_links);

B = FOREACH A GENERATE user, estimated_revenue;
alpha = LOAD ’pigmix/power_users_samples’ USING ...

AS (name, phone, address, city, state, zip);
beta = FOREACH alpha GENERATE name, phone;
C = JOIN B BY user LEFT OUTER,

beta BY name PARALLEL 20;

The above Pig job performs a “projection” on two input datasets, and “joins” the result.
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Job arrival follows a Poisson process, and jobs are generated by choosing uniformly at
random a query between the 17 de�ned in PigMix. The amount of work each job has
to do depends on the size of the data it operates on. For this reason, we generate four
di�erent datasets of sizes respectively 1 GB, 10 GB, 100 GB and 1 TB. For simplicity,
we refer to these datasets as to bins – see the �rst two columns of Table 5.1. The third
column of the table shows ranges4 of number of Map tasks for each bin.
For each job, we randomly map it to one of the four available datasets: this assignment
follows three di�erent probability distributions – see the last three columns of Table 5.1.
The overall composition of the jobs therefore de�nes three workloads, which we label5
according to the following scheme:

• DEV: this workload is indicative of a “development” environment, whereby users
rapidly submit several small jobs to build their data analysis tasks, together with
jobs that operate on larger datasets. The composition of this workload is inspired
by the Facebook 2009 trace observed by Chen et al. [26]. The mean interval be-
tween job arrivals is µ = 30 s.

• TEST: this workload represents a “test” environment, whereby users evaluate and
test their data analysis tasks on a rather uniform range of dataset sizes, with 20%
of the jobs a large dataset. The composition of this workload is inspired by the
Microsoft 2011 traces as described by Appuswamy et al. [63] The mean interval
between jobs is µ = 60 s.

• PROD: this workload is representative of a “production” environment, whereby
data analysis tasks operate predominantly on large datasets. The mean interval
between jobs is µ = 60 s.

In this work, each workload is composed of 100 jobs, and both HFSP and Fair have been
evaluated using the same jobs, the same inputs and the same submission schedule. For
each workload, we run �ve experiments using di�erent seeds for the random assign-
ments (query selection and dataset selection), to improve the statistical con�dence in
our results.
Additional results – not included here for lack of space – obtained on di�erent plat-
forms (Amazon EC2 and the Hadoop Mumak emulator), and with di�erent workloads
(synthetic traces generated by SWIM [26]), con�rm the ones shown in this paper. They
are available in a technical report [57].

4Note that PigMix queries operate on di�erent subsets of the input datasets, which result in a variable
number of Map/Reduce tasks.

5Such labeling, although arbitrary, corresponds to our experience in several research and industrial
projects we have been involved in, e.g. the BigFoot project[113].
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Table 5.1: Summary of the workloads used in our experiments.

Bin

Dataset Averag. num. Workload

Size Map Tasks DEV TEST PROD

1 1 GB < 5 65% 30% 0%
2 10 GB 10− 50 20% 40% 10%
3 100 GB 50− 150 10% 10% 60%
4 1 TB > 150 5% 20% 30%

5.3 Macro Benchmarks

In this section we present the aggregate results of our experiments for response times
and per-job slowdown, across all schedulers we examine.

5.3.1 Response Time

Figure 5.1 describe the mean response times for all workloads we evaluate: the mean re-
sponse times are indicative of system responsiveness, and lower values are best. Overall,
HFSP is substantially more responsive than the Fair scheduler, a claim that we con�rm
also by inspecting the full distribution of response times, later in this Section. It is impor-
tant to note that a responsive system does not only cater to a “development” workload,
which requires interactivity, but also to more “heavy” workloads, that require an e�cient
utilization of resources. Thus, in summary, HFSP is capable of absorbing a wide range
of workloads, with no manual (and static) con�guration of resource pools, and only a
handful parameters to set. Globally, our results can also be interpreted in another key:
a system using HFSP can deliver the same responsiveness as one running other sched-
ulers, but with less hardware, or it can accommodate more intensive workloads with the
same hardware provisioning.
Next, we delve into a more detailed analysis of response times, across all workloads
presented in the global performance overview.
The DEV workload is mostly composed of jobs from bin 1 that are treated in the same
way by both HFSP and Fair schedulers: this biases the interpretation of results using
only �rst order statistics. Therefore, in Figure 5.3, we show the EDCF of job response
times for all bins except bin 1. We notice that jobs that have a response time less or
equal to 80 seconds are 60% in HFSP and only 20% in Fair. The reason of this boost in
performance is the fact that HFSP runs jobs in sequence while Fair runs them in parallel.
By running jobs in series, HFSP focuses all the resources on one job that �nishes as soon
as possible without penalizing other jobs, leading to increased performance overall.
The TEST workload is the most problematic for HFSP because the jobs are distributed
almost uniformly among the four bins. In Figure 5.4, we decompose our analysis per bin,
and show the empirical cumulative distribution function (ECDF) of the job response times
for all bins except for those in bin 1. For jobs in bin 2, the median response times are of 31
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Figure 5.1: Aggregate mean response times for all workloads.
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Figure 5.2: ECDF of the response times for the PROD workload.

seconds and 45 seconds for HFSP and Fair, respectively. For jobs in bin 3, median values
are more distant: 98 seconds and 290 seconds respectively for HFSP and Fair. Finally,
for jobs in bin 4, the gap further widens: 1000 seconds versus almost 2000 seconds for
HFSP and Fair, respectively. The submission of jobs from bin 3 and 4 slows down the Fair
scheduler, while HFSP performs drastically better because it “focuses” cluster resources
to individual jobs.
Our results for the PROD workload are substantially in favor of HFSP, that outperforms
the Fair scheduler both when considering the mean response times (see Figure 5.1), and
the full distribution (see Figure 5.2) of response times: in this latter case, e.g. median re-
sponse times of HFSP are one order of magnitude lower than those in the Fair scheduler.
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Figure 5.3: ECDF of the response times for the DEV workload, excluding jobs from bin
1.
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Figure 5.4: ECDF of the response times for the TEST workload, grouped per bin.

5.3.2 Slowdown

Figure 5.5 shows the ECDF of the per-job slowdown for the three workloads. Recall that,
the slow down of a job equals its response time divided by its size: hence, values close or
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(b) TEST workload.
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(c) PROD workload.

Figure 5.5: ECDF of the per-job slowdown, for all workloads.

equal to 1 are best. Thus, we use Figure 5.5 to compare the HFSP and Fair schedulers with
respect to the notion of “fairness” we introduced earlier: globally, our results indicate
that HFSP is always more fair to jobs than the Fair scheduler.
In particular, we notice that TEST and PROD workloads are particularly di�cult for
the Fair scheduler. Indeed, a large fraction of jobs is mistreated, in the sense they have
to wait long before being served. With the Fair scheduler, job mistreatment worsens
when workloads are “heavier”; in contrast, HFSP treats well the vast majority of jobs,
and this is true also for demanding workloads such as TEST and PROD. For example,
we can use the median slowdown to compare the behavior of the two schedulers: the
gap between HFSP and Fair widens from a few units, to one order of magnitude for the
PROD workload.
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Figure 5.6: Time-series of the cluster load, for an individual experiment with the PROD
workload.

5.4 Micro Benchmarks

In this Section we study additional details of HFSP and Fair schedulers, and introduce
new results that measure cluster utilization and that allow to assess the extent of job size
estimation errors. Finally, we focus on job and task preemption and discuss about the
impact on performance of such mechanism.

Cluster load

We now study the implications of job scheduling from the perspective of cluster uti-
lization: when workloads (like the ones we use in our experiments) present bursts of
arrivals, it is important to understand the ability of the system to “absorb” such bursts,
without overloading the queue of pending jobs. We thus de�ne the cluster load as the
number of jobs currently in the system, either running or waiting to be granted resources
to execute.
To understand how cluster load varies with the two schedulers, we focus on a individual
run of the PROD workload, because its high toll in cluster resources. Figure 5.6 illustrates
the time-series of the cluster load for both HFSP and Fair scheduler. In the experiment
we show, there are two signi�cant bursts: in the �rst, between 0.4 and 0.6 hours, 18 new
jobs arrive; in the second, between 1.34 and 1.5 hours, 35 new jobs are submitted.
Clearly, Figure 5.6 shows that HFSP handles bursts of arrivals better than the Fair sched-
uler: for the latter, the cluster load soars corresponding to each burst, whereas the HFSP
scheduler induces a smoother cluster. Indeed, since HFSP schedules jobs in series, it
is able to serve jobs faster – and thus free up resources more quickly – than the Fair
scheduler, which instead prolongs jobs service, by granting few resources to all of them.
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Figure 5.7: ECDF of task run times, for the Map and Reduce phases of all jobs across all
workloads for HFSP.
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Figure 5.8: ECDF of the normalized task run time, for the Map and Reduce phases of all
jobs across all workloads for HFSP.
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Figure 5.9: ECDF of estimation errors, for the Map and Reduce phases of all jobs across
all workloads for HFSP.
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Figure 5.10: Most important percentiles and outliers of estimation errors, grouped by
bin, for the phases of jobs across all workloads for HFSP.

Task time and error

We now focus solely on HFSP, and analyze a seemingly delicate component thereof: the
job size estimation module. As alluded in Section 4.5, our experimental results indicate
that HFSP is resilient to job size estimation errors: we show that by focusing on a de-
tailed analysis of task times (which determine the size of a job), and the estimation errors
induced by the simple estimator we implemented,6 which only takes a few training tasks
to deduce job sizes.
Figure 5.7 shows an aggregate distribution of task times for Map and Reduce phases for
all jobs in all workloads and for all our experiments. It is possible to see that most Map
tasks complete within 60 seconds, and the variability among di�erent tasks is limited.
Instead, Reduce task times variability is extremely high, with di�erences peaking at 2
orders of magnitude. Given the skew of Reduce task times, it is reasonable to question
the accuracy of the simple estimation mechanism we use in HFSP.
A closer look at task time distribution, however, reveals that within a single job, task
times are rather stable. Figure 5.8 shows the ECDF of the normalized Map and Reduce
task times: this is obtained by grouping task times belonging to the same job together,
computing the mean task time for each job, and normalizing task times by the corre-
sponding mean task time of the job they belong to. For instance, if a job has two tasks
with task time equal to 10 and 30 seconds respectively, then the mean task time for that
job would be 20 seconds, and the normalized task times of these its tasks would be 0.5
and 1.5 seconds respectively. As such, Figure 5.8 indicates that using a small subset of

6In practice, HFSP is designed to support a variety of job size estimators, that can be plugged in as
simple modules. This can be useful when prior knowledge on a workload composition is available, an
assumption we do not make in this work.
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tasks to compute a suitable job size estimate is su�cient: this allows to distinguish large
jobs from small ones, thus avoiding “inversions” in the job schedule.
We support the above claim with Figure 5.9, that shows the ECDF of the estimation
error we measured for Map and Reduce phase across all jobs and workloads. For the
Map phase, some jobs (less than 5%) are under-estimated by a factor of 0.4/0.5, while
some jobs (less than 4%) are over-estimated by a factor of 2/3.5. For the reduce phase,
the number of under-estimated jobs is very small and in general under-estimation is
negligible while over-estimation happens only for 10% of jobs by a factor inferior to 2.
As a consequence, job size estimates are in the same order of magnitude of real job sizes.
This means that two jobs from the same “bin” can be switched but two jobs from two
di�erent bins are hardly or never switched (see Section 4.5).
In Figures 5.10a and 5.10b we decompose estimation errors according to the size of the job
(bin for the dataset used), to understand whether errors are more likely to occur for larger
or smaller jobs. Results for jobs in bin 1 are omitted because those jobs have less than
5 tasks and they �nish before the estimation is done. The boxplots (indicating quartiles
in the boxes and outliers outside of whiskers) show that HFSP tends to over-estimate
rather than under-estimate job sizes. In our experiments, estimation error is bounded
by the factor of 3.5 for the Map phase and 2 for the Reduce phase. The majority of the
estimated sizes are around 1, showing that often HFSP estimates a size that is very close
to the correct one. Since jobs from bins 3 and 4 have more tasks than jobs from bin 2,
the estimations for bins 3 and 4 are less precise than the estimations for bin 2 (Table 5.1).
In other words, HFSP gives a correct priority to jobs from bin 2 while it tends to give a
lower priority to jobs from bins 3 and 4. This is in line with the philosophy behind HFSP
of favoring smaller jobs.
Given these results and the results of Chaper 3, we conclude that the output of our
estimator is good enough for HFSP to schedule jobs correctly.

Preemption techniques

As discussed in Section 4.6, job preemption can be implemented with two approaches:
one can preempt each task of the job with the Kill primitive, or one can wait for each
task to complete (the Wait primitive, which is the default behavior of HFSP) before
granting the resources to the tasks of the preempting job. Here we analyze the impact
on the system performance and on the fairness of both approaches. To this aim, we
focus on the TEST workload, which is the most problematic workload for HFSP (see
Section 5.3.1). Figures 5.11 and 5.12 show the ECDF of response times and slowdown.
We notice that killing tasks improves HFSP fairness: indeed, when a waiting job is
granted higher priority than a running job, the scheduler kills immediately the run-
ning tasks of the latter, and freeing up resources almost immediately. Without the Kill
primitive, the scheduler can only grant resources to smaller, higher priority jobs when
running tasks are complete.



5.4. MICRO BENCHMARKS 79

1 10 102 103 104 105

sojourn time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

kill
wait

Figure 5.11: ECDF of job response times, for the TEST workload. Comparison between
the Kill and Wait preemption primitives.
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Figure 5.12: ECDF of the per-job slowdown, for the TEST workload. Comparison be-
tween the Kill and Wait preemption primitives.
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The situation changes when considering response times. Indeed, killing tasks wastes
work, and this is particular true for tasks that are close to completion. Figure 5.11 shows
that the Kill primitive is especially problematic for large jobs: as they last longer, they
have more chances to have their tasks killed.
In summary, the lesson we learned is that the choice of the primitive to use to perform
job preemption depends on the “functional” objectives of an administrator. If fairness
is considered important, then the Kill primitive is more appropriate. Instead, if system
responsiveness is the objective, then the Wait primitive is a sensible choice. As a future
research direction, we plan to integrate HFSP with new preemption primitives [65, 64]
that aim at striking a good balance between fairness and responsiveness.

5.5 Summary

In this Chapter we presented a study of the HFSP performances in a real Hadoop deploy-
ment against an industrial quality scheduler such as the Fair Scheduler. HFSP performs
very well in all the proposed scenario, in particular when the cluster is heavy loaded. In
other words, HFSP permits a better utilization of the cluster resources and allows to use
smaller clusters compared to other schedulers.
While the results about the performance of our scheduler are self-explanatory, we believe
there is another lesson to be learned from this Chapter. HFSP is based on FSPE but, since
it is a real implementation, its design posed many new practical issues – issues that are
not present when dealing with simple abstract models. Hadoop is very di�erent from
an ideal single-server system like the one used in Chaper 3, nevertheless we showed
with the implementation of the HFSP scheduler that the FSPE policy can be adapted to
a practical and complex system.
FSPE is a preemptive scheduling policy and, consequently, also HFSP is preemptive. The
lack of an e�cient preemption mechanism in Hadoop – the primitive Kill wastes re-
sources, while the primitive Wait introduces a delay – makes it di�cult to implement
such a scheduler. In the next Chapter we are going to address this problem by introduc-
ing a new preemption mechanism for MapReduce.



Chapter 6

OS-Assisted Task Preemption

In this Chapter we present a new task preemption primitive for Hadoop that is able
to preempt running tasks without wasting work. Our work is based on the Operat-
ing System preemption mechanisms and has the advantage that it works with existing
MapReduce jobs without requiring any further implementation e�ort from developers,
unlike works such as Natjam [65]. This Chapter is organized as follow: Section 6.1
describes the idea, Section 6.2 evaluates the bene�ts of our idea against existing pre-
emption techniques in Hadoop and Section 6.3 discusses advantages and disadvantages
of our preemption primitive.

6.1 OS-assisted Task Preemption

We now describe our task preemption primitive, that implements task suspension and
resume operations. First, we outline how process suspension and memory paging work
in modern operating systems. Then, we present the implementation of our preemption
mechanism.

6.1.1 Suspension and Paging in the OS

Here we provide a synthetic description of the way OSes perform memory management,
which motivates our design and implementation. A more in-depth description of such
mechanisms can be found, for example, in the work of Arpaci-Dusseau [94, Chapters 20
and 21].
In general, system RAM is occupied by �le-system (disk) cache and runtime memory
allocated by processes (including map/reduce tasks); when RAM is full – for whatever
reason – the OS needs to evict pages from memory, either by reclaiming space (and evict
pages) from the �le-system cache or by paging out runtime memory to the swap area.
Since Hadoop workloads involve large sequential reads from disks, it is a best practice
to con�gure the Linux kernel to give precedence to runtime memory, always evicting
�le-system cache �rst [95]. The system therefore only pages out runtime memory to

81
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avoid “out of memory” conditions, i.e. when the memory allocated by running processes
exceeds the physical RAM.
To decide which pages to swap to disk, OSes generally employ a policy which is a variant
of least-recently-used (LRU) [96]; clean pages – i.e., those that have not been modi�ed
since the last time they have been read from disk – do not need to be written and get
prioritized when performing eviction. Page-out operations are generally clustered to
improve disk throughput (and amortize on seek costs) by writing multiple pages to disk
in a batch. These implementation policies ensure that paging is e�cient and with small
overheads, especially if a suspended processes leads to swapping. Most importantly for
our case, pages from suspended processes are evicted before those from running ones.
We recall that it is necessary to make sure that the aggregate memory size for all pro-
cesses – both running and suspended – does not exceed the size of the swap space on
disk, because in such a case the operating system would be forced to kill processes.
Since Hadoop tasks can only allocate a limited amount of memory, this can be ensured
by con�guring the scheduler so that also the number of suspended tasks per task-tracker
is limited.

6.1.2 Thrashing

Paging, in general, is not problematic unless thrashing happens, a phenomenon where
data is continuously read from and written to swap space [90] on disk. Thrashing is
caused by a working set – i.e., the set of pages accessed by running programs – which is
larger than main memory.
In Hadoop, thrashing is avoided because two mechanisms are in place: i) the number of
running tasks per machine is limited (and controlled via a con�guration parameter); and
ii) the heap space size that a given task can allocate is limited (and also controlled via
con�guration). Proper Hadoop con�guration can thus limit working set size and avoid
thrashing.
The aforementioned mechanisms prevent thrashing in the same way even when suspen-
sion is used. Memory allocated by suspended processes is outside the working set and
hence cannot cause thrashing; pages allocated for the suspended processes are paged
out and in at most once, respectively after suspension and resuming. Thrashing could
only happen if a given job is continuously suspended and resumed by the scheduling
mechanism: the moderate cost of a suspend-resume cycle can be thus multiplied by the
number of cycles. A reasonable scheduler implementation should take into account that
suspending and resuming a job has a cost, and should take measures to avoid paying it
too often.
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6.1.3 Implementation Details

The concepts that we illustrate here are valid for both Hadoop 1 [44], which is the most
widely used Hadoop implementation in production, Hadoop 2, which uses a new infras-
tructure for resource negotiation called YARN [97], and even other frameworks such as
Spark [86]. Currently, our implementation targets Hadoop version 1.
Our preemption primitive exposes an API that can be used both by users on the com-
mand line and by schedulers. Mirroring the implementation of the Kill primitive in
Hadoop, we introduce i) new messages between the JobTracker (a centralized machine
responsible for keeping track of system state and scheduling) and TaskTrackers (ma-
chines responsible for running Map/Reduce tasks), and ii) new identi�ers for task states
in the JobTracker.

JobTracker

Hadoop has a “heartbeat” mechanism where, at �xed intervals and every time a task
�nishes, TaskTrackers inform the JobTracker about their state.
As soon as the JobTracker receives the command to suspend a task from the user or the
scheduler, that task is marked as being in a MUST_SUSPEND state. At the following
heartbeat from the involved TaskTracker, the JobTracker piggybacks the command to
suspend the task. The following heartbeat noti�es the JobTracker whether the task has
been suspended – which triggers entering the SUSPENDED state in the JobTracker –
or whether it completed in the meanwhile.
Analogous steps are taken to resume tasks, exchanging appropriate messages and han-
dling the MUST_RESUME state, returning the state to RUNNING when the process is
over.

TaskTracker

In Hadoop, Map and Reduce tasks are regular Unix processes running in child JVMs
spawned by the TaskTracker. This means that they can safely be handled with the POSIX
signaling infrastructure. In particular, to suspend and resume tasks, our preemption
primitive uses the standard POSIX SIGTSTP and SIGCONT signals.
These signals are used because (unlike SIGSTOP) they allow handlers to be written to
manage external state, e.g., when closing and reopening network connections.

Job and Task Scheduler

We factor out the role of task eviction policies implemented by the scheduler, such as
the one presented in Section 4.6 for HFSP, by building a new scheduling component for
Hadoop – a dummy scheduler – which dictates task eviction according to static con�g-
uration �les. This allows to specify, using a series of simple triggers, which jobs/tasks
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Figure 6.1: Task execution schedules.

are run in the cluster and which are preempted. In addition to executing jobs and pre-
empting tasks with our Suspend/Resume primitives, the dummy scheduler also allows
using the Kill primitive and to Wait, for the purpose of a comparative analysis.

6.2 Experimental Evaluation

In our experiments, we evaluate preemption primitives in terms of the latency they in-
troduce and the amount of redundant work they require. We show that our approach
outperforms other preemption primitives and has a small overhead both when jobs are
lightweight in terms of memory, and when they are memory-hungry.

6.2.1 Experimental Setup

Our Suspend/Resume primitives operate at the task level, and behave in the same way
for both Map and Reduce tasks. We evaluate the behavior of the system in a simple
setup: our dummy scheduler runs two single-task, map-only jobs, called th and tl (h
and l stand for high and low priority respectively). tl processes a single-block �le stored
on HDFS, with size 512 MB; th processes single HDFS input block of size 512 MB. Both
jobs run synthetic mappers, which read and parse the randomly generated input. The
physical memory of the machine running the tasks is 4 GB. We remark that this setup is
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analogous to the one used by Cho et al., who evaluated their preemption primitive using
similar synthetic jobs created by the SWIM workload generator [98].
In our experiments, our dummy scheduler preempts the low-priority task tl after it has
reached a completion rate r% (i.e., r% of the input tuples have been processed) and
grants the task slot to the high priority task th. Once th is completed, the scheduler
resumes tl, which can complete as well.
Next, we evaluate the behavior of our Suspend/Resume preemption mechanism against
the two baseline primitives available in Hadoop: Wait and Kill. When waiting, task
th is simply executed after tl completes; when killing, task tl is killed as soon as th is
scheduled, and tl is rescheduled from scratch after the completion of th. This simple
experimental setup is illustrated in Figure 6.1 on the preceding page.
According to Hadoop con�guration best practices, in our experimental setup we pri-
oritize runtime memory over disk cache and therefore limit swapping, as discussed in
Section 6.1.1, by setting the Linux swappiness parameter to 0.

6.2.2 Performance Metrics

Our goals are ensuring low latency for high-priority tasks, and avoid wasting work:
we quantify them, respectively, with the sojourn time of th and the makespan of the
workload. Sojourn Time of th is the time that elapses between the moment th is submitted
and when it completes; makespan is the time that passes between the moment in which
the �rst task tl is submitted and when both tasks are complete.

6.2.3 Results

We focus on experimental results in case of light-weight tasks. This is the standard case
for “functional”, stateless, mappers and reducers. In this case, the amount of memory that
tasks allocate is essentially due to the Hadoop execution engine (i.e., JVM, I/O bu�ers,
overhead due to sorting, etc.).
Stateful mappers and reducers, instead, can allocate non-negligible amounts of mem-
ory; we thus complement our experiments by studying our performance metrics and
overheads for memory-hungry jobs, which represent a worst-case scenario for our pre-
emption primitive.
All our results are obtained by averaging 20 experiment runs; we omit error bars for
readability: in all data points reported, minimum and maximum values measured are
within 5% of the average values.

Baseline Experiments.

Figure 6.2a on the following page illustrates the sojourn time of th: the arrival rate of h

is a parameter de�ned as a function of tl progress, as shown on the x-axis.
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Figure 6.2: Baseline experiments: a comparison of the three preemption primitives with
light-weight tasks.

The Kill and our Suspend/Resume primitives achieve small sojourn times, as opposed
to Wait, in particular when th arrives early. However, they both incur in some over-
heads: Kill runs a cleanup task to remove temporary outputs of the killed task; Sus-
pend/Resume may slow down th in case paging out memory occupied by tl is needed.
In our baseline setup, both jobs are light-weight, hence the suspended process resides
only in memory. This explains the small advantage for our mechanism, which outper-
forms all other primitives even when th arrives at 90% completion rate of task tl.
Figure 6.2b illustrates our results for the makespan metric, using the same setup de-
scribed above. In this case, the makespan is heavily a�ected by a preemption primitive
that wastes work. The Wait policy, at the cost of delaying th, avoids supplementary
work and achieves a small makespan; the Kill primitive, instead, wastes all the work
done by tl before preemption. Finally, our preemption primitive behaves similarly to the
Wait policy, despite the possible overhead due to page-out/page-in cycles.
For light-weight jobs, we conclude that our primitive is superior to both alternatives, as
both sojourn times and makespan are small. We note that the authors of Natjam mea-
sured an overhead of around 7% in terms of makespan, in similar experimental settings
as ours. Our �ndings suggest that the overhead in our case is negligible.

Worst-Case Experiments.

The experiments discussed above are valid for simple implementations of Map and Re-
duce tasks, that carry out stateless computations on their input. Stateful tasks can, how-
ever, allocate memory, which may force the OS to swap. Since clusters often have plenti-
ful available memory [106], such a situation is unlikely to be frequent. However, we still
consider a “worst case” scenario to stress our primitive: both tl and th allocate a large
amount of memory (2 GB in our case; we note that this requires an ad hoc change to the
Hadoop con�guration since Hadoop jobs are not generally allowed to allocate such an
amount of memory). This value makes sure that, when running a single task the system
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Figure 6.3: Worst-case experiments: a comparison of the three preemption primitives
with memory-hungry tasks.

does not have to recur to swap; conversely, when the two tasks are present in the sys-
tem at the same time, one of them is forced to page out memory. We ensure that tasks
allocate memory and that the OS marks pages as “dirty”, by writing random values to
all memory at task startup, and reading them back when �nalizing the tasks.
Figures 6.3a and 6.3b present the sojourn time and the makespan for the worst-case ex-
perimental setup. While our preemption primitive still outperforms both alternatives
with respect to both metrics, it is possible to notice that the overheads related to pag-
ing are visible: with respect to the sojourn time, the Kill primitive achieves a slightly
lower value; similarly, the Wait primitive achieves slightly smaller makespan. Overall,
the overhead due to our preemption primitive is marginal: we further investigate and
quantify it in the next section.

6.2.4 Impact of Memory Footprint.

We now focus on a detailed analysis of the overheads imposed by the OS paging mech-
anism on the performance of our preemption primitive. To do so, we vary the amount
of memory a task allocates in the setup phase.1 In our experiments tl allocates 2.5 GB
of memory, and we parametrize over the amount of memory th allocates. For each ex-
perimental run, we measure the number of bytes swapped by the process executing tl,
and compute the degradation of sojourn time and makespan compared to the Kill and
Wait primitives, respectively.
Figure 6.4 indicates that the overheads due to paging are roughly linearly correlated to
the amount of data swapped to disk. For the sojourn time, our preemption primitive
degrades when th allocates more than 1.5 GB of RAM: in the worst-case, sojourn time
is 20% larger than with the Kill primitive. Similarly, for the makespan, our mechanism
degrades when th allocates more than 1.3 GB: in the worst-case, makespan is 12% larger

1This is where, generally, auxiliary data structures are created to maintain an internal state in a task.
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Figure 6.4: Overheads when varying memory usage.

than with the Wait primitive. Finally, we note that swapped data grows more than lin-
early because of an approximate implementation of the page replacement algorithm in
Linux (and other modern OSes), which can lead to more swapping than strictly neces-
sary [107, Chapter 17].

6.3 Discussion

We now elaborate more on the implications of the new preemption primitive we intro-
duce in this work.

6.3.1 Scheduling and Eviction Strategies

As we discussed in the Introduction, our Suspend primitive gives one more opportunity
to the developers of schedulers, in order to perform more e�cient preemption. As we
have shown with the results of Section 6.2, our primitive generally performs close to
optimally in most cases; however, for freshly started tasks, it may be preferable to use
the Kill primitive, and for tasks that are very close to completion it may be better to
simply Wait for them to �nish.

Task Eviction Policies.

An important topic that falls under the responsibility of the schedulers is to decide which
task(s) to evict once a high-priority job needs time to execute. Cho et al. [65] propose
to suspend tasks that are closest to completion, in order to have all tasks of a job as
close to each other as possible. If the goal is instead to avoid redundant work and reduce
makespan, another possible strategy may aim to suspend tasks with smaller memory
footprints, which reduces overheads according to our experimental results.

Resume Locality.

In our implementation, a suspended process can only be resumed on the same machine
it was suspended on. If the same task gets scheduled on a di�erent machine, it has to be
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restarted from scratch, losing work done so far: in that case, the Suspend is e�ectively
analogous to a delayed Kill. We call this issue resume locality due to its similarity with
the data locality issue – i.e., the problem of running mappers on the machines that have
local copies of data.
Hadoop schedulers, such as HFSP (Section 4.4.4), generally handle data locality by using
the simple technique of delay scheduling [99]: waiting a �xed amount of time before
scheduling non-local copies of data. Only if that threshold is exceeded, a non-local map-
per is run. The same technique can be used for our resume locality issue.
Analogously to our approach, Natjam only supports local resumes. As a future improve-
ment, the authors suggest moving the checkpoints used to mark task state and reduce
inputs over the network; a similar approach could be taken also in our case, using process
migration facilities such as CRIU [93]. However, extreme care should be taken before
attempting to use such a non-local resume in particular for reducers, since the cost of
moving non-local inputs can be very large.

6.3.2 Implications on Task Implementation

In most cases, our Suspend/Resume mechanism is transparent towards the implementa-
tion, and task implementations that correctly handle error conditions and the possibility
of being killed by the scheduler will also handle suspension correctly. However, we add
a few notes regarding tasks with external state and ways in which task implementation
can control the memory footprint.

External State.

In some cases, Hadoop jobs can interact with the external world through more than in-
puts and outputs: they can use network connections and/or use “Hadoop Streaming”,
whereby arbitrary executables can be used as mappers or reducers, interacting with the
Hadoop framework through Unix pipes. In these cases, there are interactions that hap-
pen outside the control of Hadoop; in the most common case, external software would
correctly pause waiting for the next input from a suspended task; however, when the
interaction happens with a complex program, the fact that they correctly handle sus-
pended programs should be tested.

Controlling Memory Footprint.

We have seen that the memory footprint allocated by a process has an impact on the
overheads due to suspension; when writing task implementations, it is good measure to
take this into account and optimize for lower memory footprints.
Java garbage collectors di�er in the way they are implemented: some of them release
memory to the OS when they stop using it, others do not [92]. It is therefore a good
idea to con�gure Java to use a garbage collector that does release memory, such as the
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new G1 implementation [91]. It is also possible to hint the garbage collector to run using
System.gc(); this is advisable after disposing of large objects in memory.

6.4 Summary

In this Chapter we presented a new task preemption technique for Hadoop and we
showed its impact on the framework. Task suspension works better than existing tech-
niques in almost every case and we believe it could be used by current and new Hadoop
preemptive schedulers.



Chapter 7

Conclusion

This thesis focused on size-based scheduling policies for real systems. While this the-
sis provides various contributions to the existing scheduling theory and practice, the
main and fundamental contribution of our work is the de�nition and the implementa-
tion of HFSP, a size-based scheduler for Hadoop that performs better than the existing,
industrial-ready schedulers by exploiting job sizes. To achieve this result, many chal-
lenges have been addressed and resolved.
The most important problem with size-based scheduling for real systems is the lack of
knowledge of jobs sizes: when the information on job size is missing, our idea is to
estimate the job sizes while they are running. Estimating the size of a job introduces an
error: Chapter 3 has been dedicated precisely to study the impact of such errors in the
scheduling decisions. We presented SRPTE, FSPE and FSPE+PS, three schedulers that
work with estimated sizes, and we showed that all three can tolerate estimations errors
under certain conditions of practical interest. Every system that meets such conditions
is a candidate for the implementation of one of the above size-based scheduling policies.
In Chapter 4, we presented the design and architecture of HFSP, a size-based sched-
uler for Hadoop based on FSPE. HFSP raised many challenges, such as how to estimate
sizes, or how to deal with job aging, which we solved to create a working size-based
preemptive scheduler. HFSP leads to smaller mean response time compared to existing
schedulers, while being fair among jobs. Our results showed that HFSP can deal with
bursts of jobs better than the Fair Scheduler, and thus it can be used in smaller clusters.
While our work is for Hadoop, we believe that HFSP can be ported to other real systems
such as Spark or Naiad or even other non DISC systems.
Finally, in Chapter 6, we extended Hadoop MapReduce to provide a new task preemptive
mechanism, called Suspend, that is as e�cient as the Kill preemption, but avoids all the
problems that Kill has. We also discussed when Suspend should be used, and in which
scenario the Kill should be used instead.
We believe that the approach to size-based scheduling proposed in this dissertation could
be a starting point for future works with all the advantages that the scheduling theory
has shown in the past.
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While the thesis answers fundamental questions, it inevitably raises many new ones that
will require further studies in the domain.

7.1 Future Work

In this Section we present some of the most promising ideas, the �rst two related to the
job size estimation, and the last related to the task suspension.

Complex Jobs

HFSP is a scheduler for MapReduce and works by considering each job independent
from the others. While this is how a standard job scheduler for MapReduce works, a
raising trend in industry is to avoid de�ning jobs at MapReduce level and use higher-
level libraries, such as Cascading [115], Scalding [116], Cascalog [117] and Scoobi [118],
or languages, such as Pig [105] and Hive [104]. The main feature of high-level libraries
and languages is to abstract from MapReduce and let the user de�ne its MapReduce
program in an easier way. For example, Hive lets the user de�ne a MapReduce program
in SQL. Those “high-level” programs are then compiled in a set of MapReduce jobs and
are submitted as a chain of jobs, where each job of the chain can start working only after
the previous one completes. While for the MapReduce engine this chain of jobs is seen
as many independent jobs, the scheduler should take in account that the jobs are part of
the same chain and should consider them as a big complex job.
Evaluating the size of a complex job is indeed di�erent from evaluating the size of a
normal job. High-level languages and libraries o�er hints on the performances of some
operations. Those hints are usually used to do cost-based optimization but can also be
used to have a better idea of the size of a complex job. We believe this is a research
direction for our work.

Recurring Jobs

Hadoop workloads often contain recurring jobs, that are jobs that are periodically sub-
mitted to the cluster. For instance, Agarwal et al. [52] show that in their production
system, recurring jobs are the 40% of all the submitted jobs in their cluster. In our opin-
ion this kind of jobs can contribute to an advanced version of HFSP, in which job sizes
are estimated based not only on their sizes, but also on the past runs. We recall that the
output of a job execution is its real size, which is exactly what a size-based scheduling
policy needs. Morevoer, a scheduler can obtain a very accurate size for them by ob-
serving all the past runs and then build a job pro�le that aggregates all the informations
about the job. While it is easy to collect the real sizes of a job from its past runs, there
are plenty of challenges raised by this technique. First, and most importantly, the job
size depends on the input. If the input does not change between two runs, then the size
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of a job is likely to be nearly identical to the previous one – some variations may de due
to data-locality. On the contrary, if the input is di�erent, then the only way to use the
information about past runs is to understand the characteristics of the input, e.g. the
distribution of the keys, and then adapt the past runs information to the new input.

Extending schedulers with task suspension

In Chapter 5.4 we showed the performance of HFSP with or without the Hadoop built-
in preemption mechanism activated. In Chapter 6 we presented a new task preemption
mechanism called Suspend that aims at having the same advantages of the built-in Kill
primitive without the drawbacks. When suspending a task of a job, we need to select,
among the possible tasks, the ones according to some metric1. In Section 4.6 we adopted
a strategy that is inspired by the approach proposed when using the Kill primitive. Nev-
ertheless, there could be other strategies, tailored to the characteristics of the Suspend
primitive, that may result in a more e�cient use of the resources.
Another interesting aspect is the so called Task Locality Problem: when a task is sus-
pended, it can be resumed only on the same machine. This problem can lead to poor
performance if, for instance, some resources become available (e.g., another task com-
pleted) on a machine di�erent from the one in which the task has been suspended. The
task cannot be resumed on the other machine, and thus the resources may be wasted.
there are di�erent approaches to solve this problem – approaches that should be investi-
gated in depth to understand their advantages and disadvantages. A strategy that could
be applied without modifying Hadoop is to use the Speculative Execution, i.e., to run a
copy of the suspended task on the machine with available resources. In this case, there
are two possibilities: i) the speculative copy �nishes the work and the suspended task
can be killed ii) the suspended task is resumed and completes in the machine where it
has been suspended and the speculative copy is killed. While speculative execution is
a simple strategy, it basically consists in running the task more than once, and thus the
advantages of using the suspension may be lost. Moreover, output data of the task is
partially duplicated, and this wastes both disk and networking resources.
A second strategy could be the modi�cation of Hadoop to support task check-pointing:
when a task is suspended and resources are released on another machine, on the other
machine Hadoop starts a “special task” that continues the work of the previous one,
without redoing all the work done by the suspended task. Basically, Hadoop consid-
ers the task as split in two tasks, and treats them independently. This strategy has the
problem that, if the task has some internal state, like an accumulator, this state must be
migrated to the new machine.

1Consider the case in which, while a large job with many tasks is running, a small job that requires
only few tasks arrive: only a fraction of the task of the large job should be suspended to give the resources
to the small job, while the other tasks can continue to work.



94 CHAPTER 7. CONCLUSION

As �nal note, we highlight that all the preemptive schedulers in Hadoop, such as the
Fair or the Capacity Schedulers, could be extended with our suspension mechanism to
improve their performance.
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Abstract

La dernière décennie a vu l’émergence de systèmes parallèles pour
l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la
demande qui en résulte pour les politiques de gestion des ressources, pou-
vant fournir des temps de réponse rapides ainsi qu’équité. Actuellement,
les schedulers pour les systèmes de DISC sont axées sur l’équité, sans
optimiser les temps de réponse. Les meilleures pratiques pour surmon-
ter ce problème comprennent une intervention manuelle et une politique
de plani�cation ad-hoc , qui est sujette aux erreurs et qui est di�cile à
adapter aux changements.
Dans cette thèse, nous nous concentrons sur la plani�cation basée sur la
taille pour les systèmes DISC. La principale contribution de ce travail est
le scheduler dit Hadoop Fair Sojourn Protocol (HFSP), un ordonnanceur
préemptif basé sur la taille qui tient en considération le vieillissement,
ayant comme objectifs de fournir l’équité et des temps de réponse réduits.
Hélas, dans les systèmes DISC, les tailles des job d’analyse de données ne
sont pas connus a priori, donc, HFSP comprends un module d’estimation
de taille, qui calcule une approximation et qui a�ne cette estimation au
fur et a mesure du progrès d’un job.
Nous démontrons que l’impact des erreurs d’estimation sur les politiques
fondées sur la taille n’est pas signi�catif. Pour cette raison, et en vertu
d’être conçu autour de l’idée de travailler avec des tailles estimées, HFSP
est tolérant aux erreurs d’estimation de la taille des jobs. Nos résultats
expérimentaux démontrent que, dans un véritable déploiement Hadoop
avec des charges de travail réalistes, HFSP est plus performant que les
politiques de scheduling existantes, a la fois en terme de temps de réponse
et d’équité. En outre, HFSP maintiens ses bonnes performances même
lorsque le cluster de calcul est lourdement chargé, car il focalises les
ressources sur des jobs ayant priorité.
HFSP est une politique préventive: la préemption dans un système DISC
peut être mis en œuvre avec des techniques di�érentes. Les approches



actuellement disponibles dans Hadoop ont des lacunes qui ont une in-
cidence sur les performances du système. Par conséquence, nous avons
mis en œuvre une nouvelle technique de préemption, appelé suspension,
qui exploite le système d’exploitation pour e�ectuer la préemption d’une
manière qui garantie une faible latence sans pénaliser l’avancement des
jobs a faible priorité.

Introduction

La plani�cation est l’un des problèmes les plus étudiés dans de nombreux
domaines, et en particulier en informatique. Du point de vue abstrait,
le problème d’ordonnancement peut être vu la manière suivante: étant
donné un ensemble de ressources et un ensemble de travaux, où un emploi
a besoin d’un sous-ensemble des ressources pour progresser, comment
peuvent-ils être a�ectés pour les travaux tels que tous les emplois seront
éventuellement complète tout en optimisant certains métrique? Les in-
stances de ce problème sont les mêmes pour les systèmes d’exploitation,
bases de données, réseaux, systèmes de cloud computing et beaucoup
d’autres. Programmation joue un rôle fondamental car la performance
d’un système varie considérablement sur la base de la politique adoptée.
L’impact d’une politique d’ordonnancement est généralement mesurée
par une performance indice: les indicateurs les plus couramment utilisés
sont, par exemple, la moyenne le temps de réponse (également dénommé
temps de séjour), qui est le temps d’un emploi est resté dans le système
jusqu’à ce qu’il soit complètement servi, ou la moyenne temps d’attente,
c’est à dire le temps passé dans la �le d’attente avant de recevoir ser-
vice ou l’équité, qui indique combien assez un travail est traitée. Certains
paramètres sont parfois di�ciles à optimiser à la fois, donc un politique
d’ordonnancement peut avoir besoin pour faire face à un compromis. Par
exemple, l’ Processor Sharing (PS) politique d’ordonnancement, qui divise



également la ressources entre les emplois actuellement dans le système,
fournit l’équité, mais il amène à des temps de réponse moyens élevés.

Politiques d’ordonnancement peuvent être classés en quatre familles, sur
la base de savoir si une la politique est basée sur la taille ou aveugle à
la taille, ou si une politique est préventive ou non préemptif - nous con-
sidérons que le travail de conservation politiques, ce qui signi�e que, si
il ya des emplois pour être servi, le serveur est toujours occupé à tra-
vailler sur un emploi, et aucun travail qui est fait est perdu. Une politique
d’ordonnancement basé sur la taille est une politique qui prend des dé-
cisions d’ordonnancement par compte tenu de la taille d’un emploi. Par
exemple, le restant le plus court Délai de traitement (SRPT) la politique est
basée sur la taille, car il plani�e le travail avec le plus petit temps restant
de la première transformation. la First-In-First-Out (FIFO) ordonnanceur
est, au contraire, aveugle à la taille depuis il horaires des emplois en fonc-
tion de leur heure d’arrivée. Une politique de plani�cation préventive est
une politique qui peut suspendre un travail en service avant complète, i.e.
c’est à dire qu’il peut supprimer des ressources déjà attribuées à un em-
ploi. préventive ordonnanceurs sont connus dans la littérature pour o�rir
de meilleures performances, car un grand travail en service ne peuvent
bloquer le système, tandis que la préemption peut suspendre l’exécution
d’un si grand travail en cas d’arrivée d’un petit boulot. Par exemple, le PS
est un ordonnanceur préemptif tout FIFO est pas.
Parmi les quatre familles, les politiques de plani�cation qui sont basées
sur la taille et préventive sont connus pour fournir les meilleures per-
formances: la politique de SRPT, par exemple, est optimale en termes
de temps de réponse moyen [78], tandis que le Protocole de séjour Fair
(FSP) [75] garantit l’équité, tout en o�rant un temps moyen de réponse
similaire à SRPT.

Dans cette thèse, nous nous concentrons sur les politiques de plani�cation
pour Data-Intensive Scalable Computing (DISC) systems . Ces systèmes
sont composés par des centaines ou des milliers de serveurs, et les em-



plois peuvent utiliser soit toutes les ressources ou seulement une fraction
d’entre eux. Compte tenu de l’adoption généralisée de ces systèmes, et
leur importance croissante, il est intéressant d’étudier l’impact de la disci-
plines de plani�cation sur les performances de tels parallèles et distribués
systèmes.

A.1 Motivations

Politiques d’ordonnancement basés sur la taille sont connus dans la lit-
térature pour leur supérieur performance par rapport à des politiques
qui sont aveugles à la taille. Malgré cela, politiques fondées sur la taille
ont peu adoption dans les systèmes réels en raison de la problèmes qui
se posent lorsque ces politiques sont convertis à partir des politiques
théoriques à ordonnanceurs pratiques. Par conséquent, les politiques qui
sont aveugles à la taille sont les norme de facto pour les systèmes de
disque.
Ordonnanceurs pour les systèmes de DISC sont complexes: en e�et, la
plani�cation des emplois multiples, où chaque emploi est composé de
tâches qui peuvent être exécutées en parallèle, dans un environnement
distribué est une tâche di�cile. Systèmes de disque, tels que Hadoop [44],
Spark [86] et Naiad [122], l’utilisation des ordonnanceurs qui sont basées
sur deux stratégies de base di�érentes: PS et FIFO. dans la production sys-
tèmes, les administrateurs système de déployer généralement des varia-
tions de cette politiques: par exemple, il peut présenter di�érentes classes
de priorité qui peut favoriser les travaux interactifs à l’égard de travaux
de traitement par lots, et utiliser FIFO au sein de chaque classe de pri-
orité. Ces approches nécessitent que le système administrateur con�g-
ure manuellement le plani�cateur (i.e., comment gérer des priorités dif-
férentes) en fonction de la charge de travail et le réglage du système. ce
processus nécessite une grande connaissance des deux la charge de tra-
vail et le système et tend être source d’erreurs, di�cile à la fois valider
et déboguer et ne peut pas être adapté facilement à la charge de travail
et les modi�cations du système. En outre, dans un système de disque



où ressources sont réparties entre plusieurs machines, la con�guration
manuelle est encore plus critique et implique de nombreux paramètres à
être a�née et régulièrement cochée.

Basé sur la taille, nous pensons que, en raison de l’absence de travaux
de recherche sur la façon d’utiliser ordonnanceurs dans des environ-
nements réalistes, les systèmes actuels sont vraiment absents de la pos-
sibilité d’utiliser de meilleures politiques de plani�cation pour éviter les
inconvénients des aveugles politiques de taille et de réduire considérable-
ment les problèmes liés à l’emploi con�gurations.

Comme nous allons le montrer dans cette thèse, non seulement les poli-
tiques d’ordonnancement basés sur la taille DISC sont une solution viable,
mais ils jouent aussi très bien dans de nombreux scénarios de niveau de
production. La motivation principale de cette thèse est de montrer que
basée sur la taille de la programmation est de montrer en concevant et
en mise en œuvre de la Foire Protocole Hadoop de séjour (de HFSP), une
basée sur la taille plani�cation politique pour un système réel et complexe
comme Hadoop, et par fournir une étude approfondie de l’architecture de
l’ordonnanceur et sa performance nécessaire de comprendre comment et
pourquoi cela fonctionne.

Thesis Statement: Une politique d’ordonnancement préemptif basé sur
la taille des systèmes de DISC peut être à la fois e�cace et équitable, et
il peut améliorer les performances en ce qui concerne aux politiques de
plani�cation actuels état-of-the-art.



A.2 Challenges

Mettre en œuvre une politique d’ordonnancement basé sur la taille des
systèmes de DISQUE soulève beaucoup dé�s; dans ce qui suit, nous ré-
sumons les plus importants.

Tailles d’emploi sont inconnues: ordonnanceurs fondés sur la taille, en
dépit de leur supérieur performance, sont très rarement déployé dans la
pratique. Une des principales raisons est que, dans systèmes réels, la taille
de l’emploi sont presque jamais connus a priori. Lors de la conception un
ordonnanceur basé sur la taille, donc, le premier problème est de savoir
comment obtenir un emploi taille de sorte qu’il peut être utilisé par le
plani�cateur pour trier les tâches. Nous supposons que le informations
sur la taille de l’emploi n’est pas donné (e.g., fourni par l’utilisateur): plani-
�cateur doit trouver un moyen de déterminer la taille d’un emploi une fois
le travail est arrivé, i.e., alors que la tâche est en attente et d’autres travaux
sont en cours d’exécution. Depuis la mesure de la taille de l’emploi peut
être imprécise, nous devons faire face à une autre problème: les erreurs
d’estimation.

Les erreurs d’estimation: dans un système réel, il n’est pas possible de
déterminer la taille exacte d’un emploi. Au lieu de cela, il est souvent
possible de prévoir estimations de la taille des tâches. Cela signi�e que
l’ordonnanceur a besoin d’ faire face aux dimensions erronées.
Peut-être étonnamment, même en considérant le cas simple d’un seul
serveur, basées taille très peu de travaux dans la littérature ont abordé
le problème de la la plani�cation de renseignements inexacts de la taille
de l’emploi. En outre, ces quelques œuvres donnent des résultats quelque
peu pessimistes, ce qui suggère que la plani�cation basée sur la taille est
e�cace seulement lorsque l’erreur de la taille estimée est faible. Néan-
moins, ces études portent sur une famille restreinte de la charge de travail,
et leurs réponses ne sont pas exhaustives.



Lors de la conception d’un ordonnanceur basé sur la taille, par
conséquent, nous avons besoin de comprendre l’impact des erreurs
d’estimation de la taille sur la performance globale, par exemple, si le
plani�cateur est en mesure de faire su�samment de bonnes décisions
malgré des informations imprécises sur la taille du travail. Au meilleur
de notre connaissance, aucune étude abordé la conception de techniques
d’ordonnancement basés sur la taille qui sont explicitement conçu dans le
but de faire face à des erreurs dans la taille de l’emploi informations, pas
même dans le cas d’un serveur unique. Pour cette raison, nous devons
d’abord comprendre l’impact des erreurs dans le cas de serveur unique,
puis prolonger la leçon à tirer de cette con�guration de base pour les sys-
tèmes de DISQUE plus complexes.

Préemption d’emploi: les politiques de plani�cation qui ont les meilleures
performances en terme d’équité et le temps moyen de séjour sont de
préemption. En e�et, de nombreux travaux montrent qu’une politique
de plani�cation préventive est souvent meilleur que ce n’est pas préemp-
tive contre-partie. Cela peut être compris intuitivement considérer le cas
où une nouvelle petit travail arrive alors que le système est au service
d’un grand travail: sans préemption, le petit travail doit attendre jusqu’à
ce que le grand travail est complètement servi.
Dans de nombreux systèmes réels, tels que Hadoop, emploi préemption
est souvent absent ou partiellement mises en œuvre. Quand il ya une
préemption primitif mis en œuvre, il a généralement les inconvénients et
les limitations empêchant d’être e�cacement utilisés parce que ses incon-
vénients sont pire que ses avantages.
Lors de la conception d’un ordonnanceur basé sur la taille, par con-
séquent, nous avons besoin de comprendre comment de fournir des prim-
itives e�caces pour la préemption, et comment mettre en œuvre ces prim-
itives dans le système actuel de manière transparente.

Emploi famine: les politiques de plani�cation fondés sur la taille comme
SRPT peuvent causer famine quand un travail est maintenu d’obtenir les



ressources en arrivant en continu petits travaux. Certains travaux ont
abordé ce problème dans le cas d’un serveur unique la �le d’attente en
proposant des politiques qui rétablissent l’équité; Néanmoins, de telles
politiques n’ont jamais été mis en œuvre dans des systèmes réels (même
pas de systèmes de serveur unique).

A.3 Contributions et Organisation de thèse

La principale contribution de cette thèse est le Protocole de séjour Hadoop
Fair, basée sur la taille de politique d’ordonnancement pour Hadoop qui
est à la fois juste et e�cace. Parce que HFSP repose sur l’estimation de la
taille de l’emploi et que l’estimation de la taille est si importante pour la
plani�cation basée sur la taille, en général, le premier chapitre (Chapitre
3) est consacré à l’étude de l’impact de la taille estimée sur les politiques de
plani�cation existants dans certains scénarios simples. Avec ce travail en
arrière-plan, on procède ensuite à dé�nir le programme au (chapitre 4)
et expérimentalement l’évaluer (chapitre 5). Dans le HFSP évaluation
Chapitre, nous fournissons également une étude de HFSP avec la préemp-
tion primitives actuellement disponibles dans Hadoop, et nous suggérons
qu’un nouveau préemption primitif doit être mis en oeuvre de surmon-
ter les problèmes primitives Hadoop de préemption. Le prochain chapitre
(Chapitre 6) est ensuite consacré à une nouvelle préventive primitive ré-
sout ces problèmes.
The rest of this section is dedicated to an overview of our contributions.

A.3.1 Plani�cation de Taille-base avec taille estimée

Avant de commencer la conception du protocole HFSP, nous avons besoin
de comprendre si l’information imprécise sur les tailles peut avoir un im-
pact signi�catif sur le choix de programmation. Depuis ce problème n’a
pas été bien étudiée dans le littérature, nous analysons ce à partir d’une
con�guration de base: la seule cas de serveur. Même si le cas de serveur
unique peut sembler simple, il fournit beaucoup des points de vue qui sont
utiles pour comprendre le comportement du système. Chapitre 3 est donc



consacrée à l’étude de politiques d’ordonnancement qui utilisent taille es-
timée. Les connaissances acquises dans ce Chapitre sera utilisé pour con-
duire la conception d’un ordonnanceur plus complexe DISC systèmes tels
que HFSP.
Dans la première partie du chapitre, nous étudions le problème de la plan-
i�cation en présence des erreurs d’estimation et de fournir un aperçu du
courant état-of-the-art à la fois pour la performance basée sur la taille et
aveugle aux plani�cateurs de taille.
Nous décrivons ensuite l’impact des erreurs d’estimation sur les politiques
de plani�cation par dé�nir SRPTE et FSPE, deux variantes de program-
mation fondé sur la taille bien connu politiques pour les �les d’attente
de serveur unique qui travaillent avec des tailles estimées. Il existe deux
types d’erreurs qui peuvent être fait si la taille de l’emploi est estimé: il
peut être surestimée ou sous-estimée si sa taille est estimée, respective-
ment, plus ou plus petit que sa taille réelle. Ces deux types d’erreurs ont
deux impacts complètement di�érents sur les politiques et basés sur la
taille nécessitent des méthodes di�érentes stratégies pour faire face avec
eux. En particulier, alors que les emplois dont la taille surestimé retarder
seulement eux-mêmes, avec des emplois sous-estimé la taille peuvent po-
tentiellement retarder tout les emplois dans la �le d’attente. Entre les
deux, le second type d’erreurs comporte l’ plus d’impact sur la politique
d’ordonnancement et peut conduire à de très mauvaises performances.
La prochaine partie du chapitre est consacrée à dé�nir FSPE + PS, une pro-
grammation basée sur la taille politique de �le d’attente de serveur unique
qui est tolérante aux erreurs d’estimation. Notre évaluation de simulation,
qui considère à la fois la variation de la composition de la charge de travail
et à l’erreur d’estimation, montre deux résultats principaux:

• en dépit de leurs problèmes avec des emplois avec des tailles sous-
estimé, à la fois SRPTE et FSPE ont d’excellentes performances dans
de nombreux cas et ils sont bons choix pour une mise en œuvre d’un
véritable ordonnanceur.



• FSPE + PS est encore supérieure et o�re de meilleures performances,
même dans les cas extrêmes à la fois la composition de la charge de
travail et de l’erreur.

Le résultat de ce chapitre est que l’ordonnancement basé sur la taille,
même en présence de informations imprécises, est une politique réaliste
qui peut être mis en œuvre en temps réel systèmes.

A.3.2 The Hadoop Fair Sojourn Protocol

Dans Hadoop, un travail est composé de tâches, tâches et peut être exé-
cuté en parallèle. Comme nous l’avons vont montrer au chapitre 4, la
plupart des fois les tâches de la même travail ont des tailles très simi-
laires. Quelques tâches peuvent être exécutées dans le système et puis,
sur la base de leurs performances, il est possible de déduire la taille es-
timée d’un travail avec une petite erreur.
Nous avons mis l’ordonnanceur Hadoop Foire Protocole de séjour, une
politique d’ordonnancement pour les systèmes de DISC sur la base de la
politique de la FSPE dé�ni pour une �le d’attente à un seul serveur. Bien
que la principale contribution de ce chapitre est un à part entière plani�-
cateur pour un système distribué, les choix architecturaux qui conduisent
à ce planning sont pas moins important. En e�et, l’adaptation des poli-
tiques de plani�cation dé�ni pour le cas de serveur unique (comme FSPE)
à un système réel comme Hadoop soulève beaucoup contesté qui doit être
abordée.
HFSP se compose de deux éléments principaux, qui sont décrits en détail
dans le chapitre 4: le module d’estimation et le module de vieillissement.
Le module d’estimation est le composant qui estime la taille des tâches.
Il permet d’abord une estimation très approximative quand un travail est
soumis, puis met à jour la taille à un une plus précis sur la base de la perfor-
mance d’un sous-ensemble des tâches. ce stratégie de tailles d’estimation
est conçu autour des systèmes de disque, dans lequel un travail est com-
posé par des tâches, et conduit à de très bons estimations à la �n.



Le module de vieillissement est le composant qui permet d’éviter la famine
travail en appliquant ce qui est appelé “vieillissement” à un emploi. HFSP
ne prend pas des décisions uniquement sur la base de la taille, mais aussi
basé sur combien de temps le travail reste dans la �le d’attente. De cette
façon, même relativement gros travail �nira par obtenir des ressources, ce
qui résout le problème de la famine. Pour les travaux d’âge, HFSP simule
Max-Min Processeur Partage d’un cluster virtuel avec les mêmes carac-
téristiques que le vrai.
HFSP est un ordonnanceur préemptif. Hadoop fournit deux options pos-
sibles qui peuvent être utilisés pour le travail préemption. La première
consiste à arrêter l’exécution des tâches appartenant à la tâche à préempté
par les tuer - nous appelons cette stratégie Kill. La deuxième option
consiste à attendre pour chaque tâche et pour terminer, une fois que les
ressources seront disponibles sur une tâche en fonction des travaux par
les assigne système tels ressources à la tâche préemptée - nous appelons
cette stratégie Wait 1. La dernière partie du chapitre 4 est consacrée à
l’analyse des avantages et des inconvénients de ces deux approches.

Le chapitre suivant, chapitre 5, est dédié à un dispositif expérimental éval-
uation des HFSP. L’évaluation de la mise en œuvre réelle d’une politique
de plani�cation pour une système tels que Hadoop est une tâche très com-
plexe. Nous avons décidé de valider de manière expérimentale pour pou-
voir comparer HFSP pour le plus utilisé ordonnanceurs pour Hadoop, qui
sont la Foire - une mise en œuvre de la discipline PS - et les plani�cateurs
de FIFO. le principal raison est que nous voulons mettre l’accent sur le fait
que HFSP est un véritable ordonnanceur qui surpasse ordonnanceurs in-
dustrielle prêts. Nos résultats montrent que HFSP est toujours mieux que
les deux ordonnanceurs pour la deux paramètres observés - l’équité et le
temps de réponse (ou séjour) signi�ent. nous a également observé que la
nature séquentielle de HFSP conduit à plus petite charge de cluster et une

1Même si cette approche peut ne pas sembler une préemption de l’emploi, nous devons considérer que
l’emploi peut exiger plus de tâches que le système peut fournir, par conséquent, quand une tâche terminée,
le système réa�ecte les ressources à la tâche en cours d’exécution a�n qu’il puisse procéder; avec le Wait
primitive, à la place, le système attribue les ressources au travail de préemption.



meilleure “absorption” de salves de soumissions de tâches. La charge de
cluster et rafale la tolérance font HFSP capable de traiter plus petit groupe
que leurs homologues pour la même charge de travail, conduisant à moins
de coûts de munitions et de meilleure ressource utilisation.
La partie suivante de l’évaluation Chapitre est consacré à des erreurs
d’estimation. Les résultats con�rment que les erreurs faites par estima-
tion de la taille de l’emploi avec notre module d’estimation est assez petit
pour être en mesure pour justi�er l’utilisation d’ordonnanceurs à base de
taille avec imparfait informations de taille de travail.
La dernière partie de ce chapitre présente une évaluation expérimentale de
HFSP avec Kill mécanisme de préemption permis - le comportement par
défaut de HFSP est d’utiliser Wait - avec des résultats très intéressants.
par rapport à Wait, Kill est un bon moyen de parvenir à une meilleure
équité pour tous les emplois et des temps de réponse plus petites pour
les petites et moyennes d’emplois, mais il a un impact sur la plus grands
emplois.

A.3.3 OS-Assisted Task Preemption

Chapitre 6 est dédiée à la conception d’une nouvelle tâche préemption
autre primitive de Wait et Kill (les primitives disponibles pour Hadoop),
que nous avons nommé tâche suspension. Notre solution fonctionne à
l’ Systèmes d’exploitation (OS) niveau: en e�et, les tâches ne sont que
des processus OS, donc nous pouvons contrôler l’exécution des travaux
en utilisant les primitives de Suspend et Resume. ce approche est totale-
ment transparente pour les utilisateurs et exploite le système fonctionnal-
ités. Notre mécanisme de préemption peut être utilisé dans la production
même des tâches stateful, i.e., les tâches qui ont un état et des besoins cet
état de continuer le calcul.
Après la dé�nition de notre mécanisme, nous comparons les résultats
obtenus à l’aide de notre Suspend , l’ Kill et le Wait primitives. Nos
résultats montrent que, dans presque tous les cas, à l’exception de cas
d’angle lorsque le travail est juste commencé ou a presque �ni, notre Sus-
pend primitive e�ectue toujours mieux que les deux autres primitives.



A.3.4 Conclusion and Perspectives

Le dernier chapitre de la thèse résume les principaux résultats que nous
avons obtenus. la conception d’un plani�cateur pour un système com-
plexe comme Hadoop soulève de nombreuses questions, et nous abordons
beaucoup d’entre eux dans notre travail. Néanmoins, le système lui-même
est évolution, et son adoption généralisée introduit di�érentes fonction-
nalités que on rend le système de plus en plus complexe. Dans la dernière
partie du chapitre, nous fournir un ensemble de directions futures possi-
bles qui tiennent compte de cette évolution système complexe.

Conclusion

Cette thèse a porté sur plani�cation des politiques fondés sur la taille pour
les systèmes réels. tandis que cette thèse propose di�érentes contributions
à la théorie de l’ordonnancement existant et la pratique, la contribution
principale et fondamentale de notre travail est la dé�nition et la mise en
œuvre de HFSP, un plani�cateur basé sur la taille pour Hadoop qui donne
de meilleurs résultats que les plani�cateurs, industrielle prêts existants
par l’exploitation de la taille des tâches. Pour parvenir à ce résultat, de
nombreux dé�s ont été traités et résolus.
Le problème le plus important de la programmation basée sur la taille des
systèmes réels est l’ manque de connaissance des emplois tailles: quand
l’information sur la taille de l’emploi est manquant, notre idée est de es-
timer la taille d’emploi alors qu’ils sont en cours d’exécution. Estima-
tion de la taille d’un emploi introduit une erreur: chapitre 3 a été con-
sacrée précisément à étudier l’impact de ces erreurs dans le décisions
d’ordonnancement. Nous avons présenté SRPTE, FSPE et FSPE+PS, trois
plani�cateurs qui travaillent avec des tailles estimées, et nous avons mon-
tré que tous les trois peuvent tolérer Estimations des erreurs sous cer-
taines conditions d’intérêt pratique. Chaque système qui répond à ces
conditions est un candidat à la la mise en œuvre de l’une des politiques
d’ordonnancement basés sur la taille au-dessus.



Dans le chapitre 4, nous avons présenté la conception et l’architecture
de HFSP, un ordonnanceur basé sur la taille pour Hadoop basé sur FSPE.
HFSP soulevé de nombreux dé�s, par exemple, comment estimer la taille,
ou la façon de faire face au vieillissement de travail, ce qui nous résolu à
créer un ordonnanceur préemptif basé sur la taille de travail. HFSP con-
duit à plus petit temps de réponse moyen par rapport à ordonnanceurs
existants, tout en être équitable entre les emplois. Nos résultats ont mon-
tré que HFSP peut traiter avec des éclats d’emplois mieux que le Salon
Scheduler, et donc il peut être utilisé dans les petits groupes.
Bien que notre travail est pour Hadoop, nous croyons que HFSP peut être
porté à d’autres biens systèmes tels que Spark ou naïade ou même d’autres
systèmes non-disque.
En�n, dans le chapitre 6, nous avons renforcé les Hadoop MapReduce
pour fournir une nouveau mécanisme de préemption de la tâche, appelé
Suspend, qui est aussi e�cace que le Kill préemption, mais évite tous
les problèmes que Kill ne possède. Nous avons également discuté lors
Suspend doit être utilisé, et dans lequel le scénario Kill doit être utilisé à
la place.
Nous croyons que l’approche de plani�cation basée sur la taille proposée
dans ce thèse pourrait être un point de départ pour de futures fonctionne
avec tous les avantages que la théorie de l’ordonnancement a montré dans
le passé.
Alors que la thèse répond à des questions fondamentales, il soulève in-
évitablement de nombreux nouveaux ceux qui nécessiteront des études
complémentaires dans le domaine.

A.4 Travaux Futurs

Dans cette section, nous présentons quelques-uns des plus idées promet-
teuses, les deux premières liées à l’estimation de la taille de l’emploi, et la
dernière connexes à la tâche suspension.



Complex Jobs

HFSP est un programmateur pour MapReduce et travaille en considérant
chaque emploi indépendant des autres. Bien que ce soit la façon dont un
plani�cateur de tâches standard pour MapReduce fonctionne, une ten-
dance de l’élevage dans l’industrie est d’éviter de dé�nir des emplois à
Niveau de MapReduce et utiliser les bibliothèques de niveau supérieur,
tels que Cascading [115], Scalding [116], Cascalog [117] et Scoobi [118],
or languages, such as Pig [105] et Hive [104]. La principale caractéristique
des bibliothèques et des langages de haut niveau est de faire abstraction de
MapReduce et laissez-le utilisateur de dé�nir son programme de MapRe-
duce dans une voie plus facile. Par exemple, la ruche permet à l’ utilisateur
de dé�nir un programme de MapReduce dans SQL. Ces ” programmes de
haut niveau “ sont alors compilé dans un ensemble de travaux MapRe-
duce et sont soumis en tant que chaîne de l’emploi, où chaque tâche de
la chaîne peut commencer à travailler qu’après la précédente complète.
Alors que pour le moteur de MapReduce cette chaîne d’emplois est consid-
érée comme beaucoup emplois indépendants, le plani�cateur doit prendre
en compte que les emplois font partie de la même chaîne et doit les con-
sidérer comme un gros travail complexe.
L’évaluation de la taille d’un travail complexe est en e�et di�érente de
l’évaluation de la taille d’un travail normal. Haut niveau langues et les
bibliothèques o�rent des conseils sur les performances de certaines opéra-
tions. Ces conseils sont généralement utilisés pour faire l’optimisation
basée sur les coûts, mais peuvent également être utilisés pour avoir une
meilleure idée de la taille d’un travail complexe. Nous croyons qu’il s’agit
d’un direction de la recherche pour notre travail.

Recurring Jobs

soumis à la grappe. Par exemple, Agarwal et al. [52] spectacle que,
dans leur système de production, les emplois récurrents sont le 40 % de
l’ensemble des emplois soumis dans leur groupe. À notre avis ce genre
d’emplois peut contribuer à une version avancée de HFSP, dans lequel la



taille des tâches sont estimés sur la base non seulement de leurs tailles,
mais également sur les dernières pistes. Nous rappelons que le sortie
de l’exécution d’un travail est sa taille, qui est exactement ce qu’est une
base de taille politique d’ordonnancement doit. Cela s’ajoute le un ordon-
nanceur peut obtenir une taille très précise pour eux en observant toutes
les pistes dernières et puis construire un pro�l de poste qui regroupe
toutes les informations sur le travail. Alors qu’il est facile de recueillir
les dimensions réelles d’un travail de ses courses passées, il ya beaucoup
de dé�s posés par cette technique. Tout d’abord, et surtout, la taille du
travail dépend de l’entrée. Si l’entrée ne change pas entre deux pistes,
ensuite la taille d’un travail est susceptible d’être à peu près identique à
la précédente - certaines variations peuvent dé en raison de données lo-
calité. Au contraire, si l’entrée est di�érente, alors l’ seule façon d’utiliser
les informations sur les pistes dernières est de comprendre la caractéris-
tiques de l’entrée, par exemple, la distribution des clés, et ensuite adapter
le passé va information pour la nouvelle entrée.

Extension ordonnanceurs avec tâche suspension

Dans le chapitre 5.4, nous avons montré la performance de HFSP avec
ou sans le mécanisme de préemption intégré Hadoop activé. Dans le
chapitre 6, nous avons présenté un nouveau mécanisme tâche de préemp-
tion appelé Suspend qui vise à avoir les mêmes avantages que le haut-Kill
primitive sans les inconvénients. Lorsque la suspension d’une tâche d’un
emploi, nous avons besoin de sélectionner, parmi les tâches possibles,
celles selon certains métrique 2. Dans la section 4.6 nous avons adopté
une stratégie qui est inspiré par l’approche proposée lors de l’utilisation
duKill primitive. Néanmoins, il pourrait y avoir d’autres stratégies, adap-
tées aux caractéristiques de la Suspend primitive, qui peut se traduire par
une utilisation plus e�cace de la ressources.

2Considérons le cas dans lequel, tout en un grand travail avec de nombreuses tâches est en marche,
un petit travail qui ne nécessite que quelques tâches arriver: seule une fraction de la tâche de la grande
tâche devrait être suspendu à donner les moyens de la petite emploi, tandis que les autres tâches peuvent
continuer à travailler.



Un autre aspect intéressant est ce qu’on appelle le Groupe Localité prob-
lème: lorsqu’une tâche est mis en suspension, il peut être reprise seule-
ment sur la même machine. Ce problème peut conduire à une mauvaise
performance si, par exemple, certaines ressources sont disponibles (par
exemple, une autre tâche achevée) sur une machine di�érente de celle
dans laquelle la tâche a été suspendu. La tâche ne peut pas être repris
sur l’autre machine, et donc les ressources peuvent être gaspillées. il ex-
iste di�érentes approches pour résoudre ce problème - des approches qui
devrait être étudiée en profondeur pour comprendre leur avantages et
des inconvénients. Une stratégie qui pourrait être appliqué sans mod-
i�cation Hadoop est d’utiliser l’exécution spéculative, dire, pour exé-
cuter une copie de la tâche suspendue sur la machine avec les ressources
disponibles. dans ce cas, il ya deux possibilités: i) la copie spéculative ter-
mine le travail et la tâche suspendue peut être tué ii) la tâche suspendue
est reprise et complète dans la machine où il a été suspendu et la copie
spéculative est tué. Bien que l’exécution spéculative est une stratégie sim-
ple, qu’il est fondamentalement consiste à exécuter la tâche plus d’une
fois, et par conséquent, les avantages de l’utilisation la suspension peut
être perdu. En outre, les données de sortie de la tâche est partiellement
dupliqué, et cette fois les déchets disque et réseau des ressources.
Une deuxième stratégie pourrait être la modi�cation de Hadoop pour
soutenir tâche check-pointage: quand une tâche est suspendue et les
ressources sont libérées sur une autre machine, d’autre part Machine
Hadoop commence une tâche spéciale qui continue le travail de la précé-
dente un, sans avoir à refaire tout le travail accompli par le groupe de
suspension. Fondamentalement, Hadoop considère la tâche comme di-
visé en deux tâches, et les traite de façon indépendante. ce stratégie a le
problème que, si la tâche a un état interne, comme un accumulateur, cet
état doit être migré vers la nouvelle machine.
Comme note �nale, nous soulignons que tous les plani�cateurs de
préemption dans Hadoop, comme comme la Foire ou les ordonnanceurs
de capacité, pourrait être étendu avec notre suspension mécanisme pour
améliorer leur performance.
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