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Abstract—A nonlinear channel estimation scheme proposed
by the authors in earlier work is shown to overcome the pilot
contamination problem in massive multiple-input multiple-output
(MIMO) systems. The method is based on a subspace projection
using a singular value decomposition and is studied both by
analytical and simulative means. The analysis presented in this
paper is a refined version of an earlier work by the same authors.
In addition, simulations based on a cellular network model show
that the benefits of the proposed scheme are retained also in
more realistic settings.

Index Terms—Multiple antennas, multiple-input multiple-
output (MIMO) systems, massive MIMO, channel estimation,
principal component analysis, random matrix theory.

I. INTRODUCTION

Strongly asymmetric MIMO systems [1] realize a large
array gain by a massive use of antenna elements. This design
principle commonly referred to as massive MIMO has attracted
considerable attention recently [2]. Given perfect channel state
information, the signals received at all antenna elements can be
combined coherently and the array gain grows without bound
with the number of antennas at the access point. Therefore,
massive use of antennas elements can overcome both multiuser
interference and thermal noise for any given number of users
and any given powers of the interfering users.

In [3], however, a pessimistic conclusion about the perfor-
mance of massive MIMO in cellular systems was drawn. Based
on the explicit assumption of no coordination among cells
and on the implicit assumption of linear channel estimation
[3, Eq. (5)], it was concluded that the array gain can be
realized only for data detection, but not for channel estimation.
The author argued that channel state information, though not
required to be perfect, must have at least a certain quality
in order to utilize unlimited array gains. As a result, pilot
interference from neighboring cells would limit the ability to
obtain sufficiently accurate channel estimates and be the new
bottleneck of the system. This effect, commonly referred to
as pilot contamination [4], was believed by many researchers,
e.g. [3]–[8] to be a fundamental effect, despite the lack of a
solid proof that it cannot be overcome.

Recent works have indicated that pilot contamination is not
as fundamental as it was thought to be: Using Bayesian chan-
nel estimation, [9] found that pilot contamination can vanish
under certain conditions on the channel covariance matrix if
some cooperation among cells is allowed. On the other hand,
simulation results in [10] showed that the channel can be
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estimated blindly using non-linear methods with much greater
accuracy than with linear methods for a wide range of system
parameters. Finally, using random matrix theory (RMT) the
authors showed in [11], [12] that pilot contamination is not
a fundamental effect, but a shortcoming of linear channel
estimation. Using a subspace approach, the array gain can be
attained blindly even before channel estimation.

The schemes proposed in [10]–[12] all start with a singular
value decomposition of the received signal matrix. Unlike [10],
however, the method considered in [11], [12] does not aim to
subsequently estimate the channel matrix before performing
data detection. Instead, the received signal is proejected onto
an (almost) interference-free subspace where communication
is governed by a non-linear compound channel that can be
estimated easily.

Using RMT, the authors provided in [11], [12] an approx-
imate analysis to determine for which system parameters the
subspace of the signal of interest can be identified blindly
when a power-controlled hand-off protocol is applied that
ensures a power margin between intra-cell and inter-cell
users. A compact condition for the existence of blind pilot
decontamination was found in [12]. However, this preliminary
result lacks accuracy since it relies on several approximations.
In particular, it neglects the repulsion of singular values
that belong to signals-of-interest from those ones that belong
to interference. The eigenvalue repulsion was accounted for
later in [11], but the results were less intuitive and more
complicated. In this work, we provide a refined version of the
original analysis in [12] and take into account for the singular
value repulsion. At the same time, we are able to provide intu-
itive and compact conditions for blind pilot decontamination.
Due to space constraints, however, the derivations have been
omitted in this paper and they can be found in [13]. We also
provide simulation results that use a more realistic cellular
model than the one used in [11]–[13].

In Section II, we introduce the system model. In Section III,
we propose the algorithm for nonlinear channel estimation
utilizing the array gain. In Sections IV and V, we investigate
the performance of this algorithm by analytic and simulative
means, respectively. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider a wireless communication channel. In order to ease
notation and for sake of conciseness, let the channel bandwidth
be smaller than the coherence bandwidth. Channels whose
physical bandwidth is wider than the coherence bandwidth can
be decomposed into equivalent parallel narrowband channels



by means of orthogonal frequency division multiplexing or
related techniques.

Let the frequency-flat, block-fading, narrowband channel
from T transmit antennas to R > T receive antennas be
described by the matrix equation

Y = HX +Z, (1)

where X ∈ CT×C is the transmitted data (eventually multi-
plexed with pilot symbols), C ≥ R is the coherence time in
multiples of the symbol interval, H ∈ CR×T is the channel
matrix of unknown propagation coefficients, Y ∈ CR×C is
the received signal, and Z ∈ CR×C is the total impairment.
Furthermore, we assume that channel, data, and impairment
have zero mean, i.e. EX = EH = EZ = 0. The impairment
includes both thermal noise and interference from other cells
and is, in general, neither white nor Gaussian.

III. PROPOSED ALGORITHM

Consider the singular value decomposition

Y = UΣV † (2)

with unitary matrices U ∈ CR×R and V ∈ CC×C and the
R × C diagonal matrix Σ with diagonal entries σ1 ≥ σ2 ≥
· · · ≥ σR sorted in non-increasing order. As shown in [10],
the columns of U are highly correlated with the columns of
H . Based on this observation [10], proposed two algorithms
for improved nonlinear estimation of the channel matrix H .

In the sequel, we propose a strategy different from the one
in [10]. We decompose the matrix of left singular vectors

U = [S|N ] (3)

into the signal space basis S ∈ CR×T and the null space basis
N ∈ CR×(R−T ). Now, we project the received signal onto the
signal subspace and get

Ỹ = S†Y . (4)

The null space basis N is not required in the sequel. In
fact, there is no need to compute the full singular value
decomposition (2). Only the basis of the signal subspace
S is needed and there are efficient algorithms available to
exclusively calculate S.

Consider now the massive MIMO case, i.e. R � T : The
T -dimensional signal subspace is much smaller than the R-
dimensional full space, which the noise lives in. White noise
is evenly distributed in all dimensions of the full space. Thus,
the influence of white noise onto the signal subspace becomes
negligible as R→∞.

Using the algorithm above, we can achieve an array gain
even without the need for estimating the channel coefficients.
In fact, channel estimation can be delayed until the received
signal has been projected onto the signal subspace and the
dominant part of the white noise has already been suppressed.

In order to save complexity it is sensible not to estimate
the channel matrix H , at all. Instead, we directly consider the
subspace channel

Ỹ = H̃X + Z̃ (5)

and estimate the much smaller subspace channel matrix H̃ ∈
CT×T . Although the data dependent projection (4) implies that
the noise Z̃ = S†Z ∈ CT×C is not independent from the data

X , neglecting this dependence is an admissible approximation
that becomes exact as the number of receive antennas R grows
large.

In addition to white noise, there is co-channel interference
from L neighboring cells. For sake of notational convenience,
we assume that the number of transmit antennas is identical
in all cells and equal to T . The interference from neighboring
cells is anything but white. It is the more colored, the smaller
the ratio

α =
T

R
(6)

which will be called load in the following. Any R-dimensional
channel vector is orthogonal to any other channel vector in
the limit R → ∞. This holds regardless whether the two
channel vectors correspond to transmitters in the same cell
or in different cells. In the limit of zero load, i.e. α → 0,
we have an even stronger result: the subspace spanned by the
co-channel interference is orthogonal to the signal subspace.1
That means that in the limit R/T → ∞, the (L + 1)T
largest singular values of the received signal matrix Y become
identical to the Euclidean norms of the (L + 1)T channel
vectors. If we can identify which singular values correspond
to channel vectors from inside the cell as opposed to channel
vectors from transmitters in neighboring cells, we can remove
the interference from neighboring cells by subspace projection.

Note that for R → ∞, the system has infinite diversity
and the effect of short-term fading (Rayleigh fading) vanishes.
Thus, the norm of a channel vector is solely determined by
path loss and long-term fading (shadowing). In a cellular
system with perfect received power control and a power-
controlled handoff strategy, the norm of channel vectors from
neighboring cells can never be greater than the norm of
channel vectors from the cell of interest. We conclude that
the identification of singular values belonging to transmitters
within the cell of interest is possible by means of ordering
them by magnitude in the limit (R,α) → (∞, 0), i.e. the
number of receive antennas grows large while the number of
transmit antennas does not.

For practical systems with small, but nonzero load, i.e. 0 <
α� 1, a certain power margin is required between signals of
interest and interfering signals. For most interfering users, such
a power margin is created for free by shadowing and path loss.
However, there might be few users close to cell boundaries
who lack such a power margin. As a kind of countermeasure, a
power margin has to be engineered for them. There are various
ways to do so. In the sequel, we will exemplarily list two such
potential methods.

One way to create an additional power margin is a smart
choice of frequency or time re-use patterns. However, this
requires coordination among cells. Another way to create an
additional power margin is to equip each user with at least
two transmit antennas. Then, the few users who suffer from
insufficient power margin can form beams that favor one of the
base stations or access points over others2. This will noticeable

1Note that the pairwise orthogonality of channel vectors holds for R →
∞, in general, and does not require α → 0. However, the orthogonality of
subspaces requires α → 0 in addition to R → ∞, as the accumulation of
T = αR vanishing pairwise correlations is not vanishing, in general.

2Note that such beam forming does not require channel state information.
One can keep on forming random beams until a sufficient power margin is
reached.



increase their power margins. The majority of users will not
need to employ such methods and can use the two antennas
for spatial multiplexing.

IV. PERFORMANCE ANALYSIS

We have demonstrated above, that the proposed algorithm
works in principle in massive MIMO systems as the number
of receive antennas grows much larger than the product of
transmit antennas and neighboring cells. In practical systems,
the number of transmit and receive antennas is finite and the
load α can be made very small but not arbitrarily small as in
the classical massive MIMO setting. Then, in real systems
the asymptotic properties are only approximated. A useful
and insightful approach to understand the behavior of a real
network consists in assuming that both T and R grow large
with a fixed ratio α. This setting can be studied effectively
by RMT. In this section, we will adopt results from RMT to
answer the question, how large is large enough in practice.

We decompose the impairment process

Z = W +HIXI (7)

into white noise W and interference from L neighboring
cells where interfering data XI ∈ CLT×R is transmitted in
neighboring cells and received in the cell of interest through
the channel HI ∈ CR×LT . Combining (1) and (7), we get

Y = HX +HIXI +W . (8)

Let the entries of the data signal X be iid with zero mean
and variance P . Let the entries of the channel matrix H
be also iid with zero mean, but have unit variance. Let the
entries of the matrix of interfering signals XI be iid with zero
mean and variance P and let the entries of the kth column
of the matrix of interfering channels HI be iid with zero
mean and variance Ik/P such that the ratio Ik/P accounts
for the relative attenuation between out-of-cell user k and the
intracell users. Let the empirical distribution of Ik converge
to a limit distribution as LT →∞ which is denoted by PI(·).
Furthermore, we assume that the elements of the noise W are
independent and identically distributed (iid) with zero-mean
and variance W . Finally, we define the normalized coherence
time

κ =
C

R
. (9)

Let us denote the asymptotic eigenvalue distribution of Y Y †

as PY Y †(x). Using a generalization of the results in [11],
it can be shown that this asymptotic eigenvalue distribution
obeys

sGY Y † (s) + 1 =

− PTCα (sGY Y † (s) + 1− κ)GY Y †(s)

ακ− PTC (sGY Y † (s) + 1− κ)GY Y †(s)

−
∫
xLTCα (sGY Y † (s) + 1− κ)GY Y †(s)dPI(x)

ακ− xTC (sGY Y † (s) + 1− κ)GY Y †(s)

− WC (sGY Y † (s) + 1− κ)GY Y †(s)

κ
(10)

with

GY Y †(s) =

∫
dPY Y †(x)

x− s
(11)
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asymptotic eigenvalue distribution is compared to the empirical eigenvalue
distribution for T = 3, R = 300, and C = 1000 given by the histogram in
blue.

denoting its Stieltjes transform. By means of the Stieltjes
inversion formula

p(x) =
1

π
lim
y→0+

=G(x+ jy) (12)

the asymptotic eigenvalue density is obtained.
In Figure 1, the solid line in red shows the asymptotic

eigenvalue distribution of Y Y †/R obtained by (10)-(12). The
histogram in blue shows the empirical eigenvalue distribution
of Y Y †/R for T = 3, R = 300, and C = 1000. We observe
that the distribution is decomposed into three disjunct bulks:
A noise bulk to the far left, a bulk of the signal of interest to
the right, and an interference bulk in between. The fact that
the bulks do not overlap enables us to blindly separate the
signals of interest from interference and noise as discussed in
Section III.

The three bulks are not disjunct in general, but only for
certain values of the involved system parameters. It is there-
fore of utmost importance for practical design of blind pilot
decontamination to know which system parameters do lead
to bulk separation. The extremely good match between the
asymptotic distribution and the empirical distribution for finite
matrices corroborate the usefulness to study the support of the
asymptotic eigenvalue distribution of Y Y † and the asymptotic
conditions of bulk separability.

The general result for the asymptotic eigenvalue distribution
(10) is implicit and not very intuitive. In the following, we
develop an approximate analysis for small, but not vanishing
loads α. It is based upon the separate calculation of each bulk
and subsequent rescaling of the bulks due to pairwise bulk-to-
bulk repulsion. We will see that it leads to explicit and intuitive
design guidelines.

The co-channel interference is not white but, like the signal
of interest, highly concentrated in certain subspaces. The
empirical distribution of the squared singular values of the
normalized signal of interest, i.e. HX/

√
TR, is shown in

[12] to converge, as R→∞, to a limit distribution which for



α� 1 is supported in the interval

P =

[
κP

α
− 2P

√
κ2 + κ

α
;
κP

α
+ 2P

√
κ2 + κ

α

]
. (13)

The empirical distribution of the squared singular values of
the normalized co-channel interference, i.e. HIXI/

√
TR, also

converges to a limit distribution. For α � 1, it is supported
in the interval [12]

I =

[
κI

α
− 2I

√
L
κ2 + κ

α
;
κI

α
+ 2I

√
L
κ2 + κ

α

]
(14)

for Ik = I ∀k. We remark that the condition Ik = I ∀k
is unrealistic, in practice. However, the general case is not
tractable by analytic means. We note, however, that setting
all interference powers to the maximum interference power
among the users is a worst case scenario and covered by (14).

When separately calculating the eigenvalue spectra of the
signal-of-interest, the interference and the noise, the accuracy
of the results suffers from the eigenvalues in different bulks
repelling each other. In the following, we will correct for this
effect up to first order. We decompose one bulk of eigenvalues
into single eigenvalues. Then, we introduce correction factors
that account for the scaling of one of the single eigenvalues
due to the presence of one other bulk of eigenvalues. We will
then approximate the influence of several other bulks, e.g.
noise bulk and interference bulk, by multiplying the correction
factors. This procedure is an approximation, since we neglect
the fact that also the scaled bulk of eigenvalues repels the
scaling bulk and that the two scaling bulks repel each other.

The presence of additive noise scales the eigenvalues of both
the signal of interest and the interference. As shown in [13,
Appendix C-A], the scale factors are given for R� T by

nP =

(
1 +

W

PR

)(
1 +

W

PC

)
(15)

and

nI =

(
1 +

W

IR

)(
1 +

W

IC

)
, (16)

respectively. Note that the two scale factors converge to 1 in
the large system limit irrespective of the load α, if the noise
power W does not scale with the system size.

The presence of interference scales the eigenvalues of the
signal of interest and vice versa. As shown in [13, Appendix C-
B], the scale factors for non-overlapping bulks are given for
R� T by

iP =

(
1 +

Lα/κ
P
I − 1

)(
1 +

Lα
P
I − 1

)
(17)

and

iI =

(
1 +

α/κ
I
P − 1

)(
1 +

α
I
P − 1

)
, (18)

respectively. Note, however, that these scale factors are only
accurate if P � I . This limits their usefulness in practice.

If the two supporting intervals do not overlap, i.e.

nPiPP ∩ nIiII = ∅ (19)
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Fig. 2. Hexagonal cellular network considered in the simulations. The bit
error rate of the users in the middle cell (depicted in black) is considered
when the interfering users (in red) are active. The figure illustrates one specific
configuration of user locations in a network with L = 6 and T = 10.

or equivalently

P

I
>

nIiI
nPiP

·
1 + 2

√
αL
(
1 + 1

κ

)
1− 2

√
α
(
1 + 1

κ

) , (20)

the singular value distribution of the sum of the signal of
interest and the interference converges, as R→∞, to a limit
distribution that is composed of two separate non-overlapping
bulks [14]. Note that in the limit α→ 0, the signal bulk always
separates from the interference bulk as long as P/I > 1.
Therefore, the signal subspace and the interference subspace
can be identified blindly. The interference can be nulled out
and pilot contamination does not happen.

V. NUMERICAL RESULTS

In this section, we provide simulation results for the un-
coded bit error rate (BER) and compare the proposed subspace
algorithm, with the conventional linear channel and data
estimation scheme considered in [3]. Cellular network with
hexagonal cells is assumed, as illustrated in Fig. 2 for one
specific realization of the user locations. All links are assumed
to suffer from path loss, shadowing and fast fading. Long
term attenuation is a combination of an exponential path loss
model with exponent 4 and log-normal shadow fading with
standard deviation 6 dB. Shadowing is assumed to be the
same to all R receiving antennas from one specific user but
independent among different users. Fast fading follows the
Rayleigh distribution and is independent between the receiving
antennas. Power control and handover is employed so that
the average received power of all users associated with a
specific access point is one, while the interference to any
other access point is at most unity. We set P/W = 0.1 (SNR
is −10 dB), that is, assume that the system operates in the
low SNR region. Identical set of orthogonal pilot sequences
of length T is adopted by all the access points to facilitate
channel estimation. The BER is calculated for the users in the
middle cell when all six interfering cells have T active users.
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To test the performance of the proposed algorithm, we con-
sider the effect of increasing the number of receive antennas
while the rest of the parameters are fixed to T = 10, L = 6,
and C = 1000. Two interference management scenarios are
considered:

1) No power margin: Only power-controlled hand-off is
employed so that Ik ≤ P for all interfering users.

2) Enforced 3 dB power margin: Additionally, beamforming
or scheduling is used so that all interference that would
be received with power Ik > P/2 is attenuated as Ik/2.

Note that the latter case guarantees that all received inter-
ference is at least 3 dB below the desired signal. For the
current setup, employing the 3 dB power margin required
that on average approximately 3% of all users needed to be
handled specially. For beamforming this would imply almost
a negligible loss in overall spectral efficiency.

As may be observed from Fig. 3, the proposed subspace
algorithm outperforms the receiver based on linear channel
estimation in [3] (conventional) in both cases. However, naive
interference management using only power controlled hand-
off is not sufficient to provide a useful performance for either
algorithm. If additional interference avoidance is employed
so that 3 dB power margin is guaranteed, the subspace
method provides a satisfactory performance, while the con-
ventional approach benefits from the reduced interference only
marginally. We have also plotted a genie aided projection
in Fig. 3 for comparison. In this case, the signal subspace
is computed from the true channel HH† while channel
estimation and detection is carried out as before after the
projection. While there is a gap between the practical method
and genie aided projection, the difference is surprisingly small
when 3 dB power margin is guaranteed since the projection is
fully blind and based on a mismatched matrix Y Y †.

VI. SUMMARY AND CONCLUSIONS

We proposed a practical algorithm with polynomial com-
plexity to avoid pilot contamination in cellular systems with
power controlled handoff. The dominant complexity of this
algorithm is a singular value decomposition of the received

signal block. The algorithm was analyzed by means of random
matrix theory. The analysis shows that pilot contamination is
not a fundamental effect, but is overcome by means of the
proposed algorithm.

This paper has focussed solely on the reverse link channel.
For the forward link channel, one can exploit channel reci-
procity in time-division duplex systems. Similar to the reverse
link channel, knowledge of the full channel matrix is not
required. Basic considerations of linear algebra show that it
is sufficient to know the subspace which the channel vectors
of interest span in order to solely require accurate channel
estimates for the projected channel (5).
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