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Abstract—We consider an extended wireless network with
transmit and receive nodes distributed according to Bernoulli
lattice processes in 1D and 2D spaces. The received signals are
jointly processed at a central unit. The channel is characterized
by pathloss attenuation depending on distances between transmit
and receive antennas. We introduce a new class of Euclidean
random matrix (ERM) to characterize the distributed antenna
system (DAS). By leveraging on a suitable decomposition of these
ERMs, we propose an approximated analysis of their spectra and
use it to provide an analytical approximation of the capacity per
unit area of the DAS.

I. INTRODUCTION

The concept of distributed antenna systems (DAS) was
introduced in [1], [2] about two decades ago. However, only
recently, the wide use of remote radio heads (RRH) in 4G
standards and the emerging cloud radio access network (C-
RAN) architecture, which is expected to play a strategic role
in 5G wireless networks, is creating the conditions to transform
this concept in a mature and implementable technology. Thus,
it is urgent a thorough analysis of the fundamental limits of
this kind of systems. In the last decade, the study of the DAS
in downlink has been flourishing. By modeling the location
of nodes in a network as random, powerful techniques based
on stochastic geometry have provided insights on capacity,
connectivity, outage probability, and other fundamental aspects
of the DAS downlink. An updated and detailed overview of
the existing results can be found in [3]. In contrast, the study
of the DAS uplink is limited. In [4], Gan et al. considered a
DAS over a finite disc and assumed a circular layout for the
system receive antennas. The capacity per user is determined
by applying standard results of random matrix theory (RMT)
for Wishard matrices (see e.g. [5]). The DAS uplink over
a finite area with arbitrary but fixed layout for the location
of transmit and receive antennas is studied in [6]. In both
cases, the strong assumptions and approximations in modeling
the DAS uplink yield an approximation of the DAS sum
capacity coinciding with the limiting capacity of a standard
multiuser multiple input multiple output (MIMO) system with
co-located antennas. As consequence of this approximation,
the sum capacity obtained by numerical simulations and the
analytical results match well only in the cases when the receive
antenna layout has a negligible effect on the DAS uplink sum
capacity, as noticed in [7]. In [7], Dai considered transmit
and receive antennas homogeneously distributed within a given
finite cell and centralized processing of all the received signals.
Lower bounds of DAS uplink capacity are derived under the

assumption of channel state information (CSI) at the receiver
and with or without CSI at the transmitters. Power control is
performed such that all the transmit signals are received with
constant total power.

A related research field focuses on multicell networks with
regular layouts and joint processing of all received signals.
The so-called Wyner model, a one dimensional infinite linear
network with base stations regularly spaced and jointly pro-
cessed signals, is adopted and the analysis is based on RMT.
An asymptotic analysis of CDMA networks with spreading
factor and number of users per cell scaling with constant ratio
is proposed in [8]. Independently of the transmitters’ locations,
the signals are received at a reference power at their cell base
station (BS) and are attenuated by a unique parameter α < 1
at the two adjacent BSs. In [9], a similar asymptotic analysis
is carried out for a multi-cell MIMO Wyner network with
the number antennas at each BS and users per cell scaling at
a constant ratio. More recently, a more complex model with
directional antennas, finite number of users and cooperating
cells was considered in [10]. Although the analysis based on
RMT can be really insightful, the above mentioned existing
models do not capture the impact of the geographical ran-
dom distributions of transmit and receive antennas. Coherent
potential approximation, a technique developed in statistical
mechanics, is applied in [11] to study a two-dimensional
network with transmitters and receivers randomly distributed
over a lattice.

In [12], we extended the class of Euclidean random matrices
(ERM), introduced and defined by Mézard et al. in [13] for a
single set of random nodes to two independent random sets.
Then, we proposed an application of this new class of random
matrices to the study of the DAS uplink capacity with transmit
and receive nodes randomly distributed according to two
independent Bernoulli lattice processes with given intensities.
By leveraging on the initial mathematical framework sketched
in [12], in this paper, we present a detailed analysis of the
DAS uplink capacity under the assumption of constant transmit
power, knowledge of CSI at the centralized processing unit
and no CSI at the transmitters. Inspired by a decomposition
adopted in [14] and based on a set of eigenfunctions, we adopt
an orthogonal vector basis yielding a decomposition of ERM
into a deterministic kernel and two random matrices. Based on
this decomposition, we discuss an analysis of the eigenvalue
spectrum based on the eigenvalue moments. Additionally, we
approximate the random matrix elements of the decomposition
by classes of free matrices. This approximation enables the ap-
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Fig. 1. Representation of A
♯
L. The large squared box represents the network

surface. The intersection points of the grid correspond to the points of
the lattice. Triangles and circles represent realizations of the homogeneous
Bernoulli processes of transmit and receive antennas, respectively.

plication of powerful tools of free probability [15]. It is worth
noticing that this approximation has been successfully applied
both in physics (e.g. [14], [16]) and telecommunications (e.g.
[17]). We utilize the approximation of the eigenvalue distribu-
tion to determine an analytical approximation of the capacity
per unit area of extended networks with randomly distributed
transmitters and receivers with centralized processing. The
eigenvalue moments are essential for the performance analysis
of a large class of linear receivers [18].

II. SYSTEM MODEL

We adopt the same system model and notation adopted in
[12] and we describe them in this section to keep the paper
self-contained. Throughout this paper, we will consider both
networks over 1-dimensional (1D) and 2-dimensional (2D)
spaces. The corresponding models and notation are discussed
in parallel. Let AL =

[
−L

2 ,+
L
2

)
×

[
−L

2 ,+
L
2

)
be a squared

box of side L and area A = L2 in R
2 and ÃL =

[
−L

2 ,+
L
2

)

a segment of length L in R. Additionally, let τ > 0 be
a real such that L = τθ, with θ positive integer, and let
w ≡ (τ(wx + 1/2), τ(wy + 1/2)) or w = τ(wx + 1/2),
with wx, wy ∈ Z, be points of a regular lattice in R

2

or R, respectively. To easy the notation, in the following,
without loss of generality (l.o.g.) we assume θ even and

denote by A♯
L (Ã♯

L) the set of lattice points in AL (ÃL),

i.e. A♯
L ≡ {w|w ∈ AL, wx, wy = − θ

2 , − θ
2 + 1, . . . θ2 − 1}

(Ã♯
L ≡ {w|w ∈ ÃL, wx = − θ

2 , − θ
2 + 1, . . . θ2 − 1}). The

set A♯
L is shown in Fig. 1. Both transmit and receive nodes

are independently and homogeneously distributed over the
squared grid A♯

L. More specifically, the distributed transmit
and receive antennas in R

2 are modeled as homogeneous
Bernoulli lattice processes ΦT

A♯
L

and ΦR
A♯

L

with parameters

γT = ρT τ
2 and γR = ρRτ

2, respectively1. We denote by
T = {tj} and R = {ri} the realizations of the two Bernoulli
lattice processes with cardinality NT and NR, respectively.
Additionally, tj = (tx,j , ty,j) and ri = (rx,i, ry,i) correspond
to the Euclidean coordinates of transmitter j and receiver i in
A♯

L. In Fig. 1, triangles and circles represent the realizations
T and R, respectively. Similarly, in R, the two Bernoulli

lattice points ΦT̃
Ã♯

and ΦR̃
Ã♯

are characterized by the parameters

γ̃T = ρ̃T τ and γ̃R = ρ̃Rτ and the realizations of the
transmit and receive node processes are denoted by T̃ and

R̃, respectively.
Transmit and receive antennas are in line of sight and a

channel coefficient between a transmit-receive antenna pair,
up to a phase rotation, depends on the pathloss attenuation
and it is given by

f(ri, tj) = f(‖ri − tj‖2) (1)

where ‖ri − tj‖2 denotes the Euclidean distance between
transmit antenna j and receive antenna i. In order to keep the
presentation insightful and the computation simple, we follow
the approach in [20] and model a channel coefficient as an
exponentially decaying function of the two antenna distance

f(ri, tj) = e−k0‖ri−tj‖2 (2)

where k0 > 0 is a positive constant.

REMARK 1

• As pointed out in [21], without loss of conceptual scope,

we focus on real valued channels and neglect the effects

of phase rotations.

• In theoretical analysis it is often adopted the function2

f(ri, tj) = ‖ri − tj‖−α
2 where α ∈ [1, 2]. However,

this function presents a vertical asymptote for a distance

equal to zero and it needs to be further modified to be

realistic at short distances.

• For the applicability of the mathematical tools proposed

in the following section, f(·, ·) is required to vanish at the

boundary of a finite disc (assumption satisfied in physical

systems) and to satisfy the conditions of existence of a

Fourier transform.

We further assume that the receive antennas are connected
to a processing unit such that decoding is performed jointly.
The transmit nodes do not have knowledge of the channel
and transmit at the same power P. The receivers are impaired
by additive white Gaussian noise with variance σ2. Then, the
signal received at the discrete time instant t by receiver i is
given by

yi(t) =
∑

j

√
Pf(‖ri − tj‖2)xj(t) + wi(t) (3)

where xj(t) is the unitary energy symbol transmitted by node
j and wi(t) is the additive white Gaussian noise at receive
node i.

1When we consider two sequences of denser and denser Bernoulli lattice
processes with constant intensity ρT and ρR and τ → 0, the two sequences
of processes converge in distribution to limiting Poisson point processes [19]
with the same intensity ρT and ρR .

2The square of this channel coefficient coincides with the well-known
expression for the pathloss attenuation.



Then, at the central processing unit y(t), the received signal
vector is given by

y(t) =
√
PF(L)x(t) +w(t), (4)

where x(t) = (x1(t), x2(t), . . . xNT
(t))T , F(L) is an NR×NT

random matrix whose (i, j) element is the value of a deter-

ministic function f(ri, tj) in A♯
L × A♯

L depending on the
random antenna locations ri, tj (ri, tj) for the 2D-system
and w(t) = (w1(t), w2(t), . . . wNT

(t))T . In the following,
without ambiguity we can omit the time interval t. Similarly,
for 1D-systems, channel coeffcients are given by the function

f̃(ri, tj) = e−k0|ri−tj |. For the system model, the matrix F(L)

in (4) is replaced by a matrix F̃(L) with (i, j)-element equal

to f̃(ri, tj).

III. SPECTRAL ANALYSIS OF A CLASS OF ERM

As well known (see e.g. [22], [23]), the fundamental limits
of the vector channel system in (4) depends on the eigenvalue
spectrum of the matrix F(L). In this section we follow the
approach of decomposing the ERM F(L) in the product of a
deterministic matrix capturing the complexity of the function
f(·, ·) and two independent random matrices as proposed in
[12]. This decomposition was inspired by a similar decomposi-
tion proposed in [14]. The fundamental differences compared
to the work in [14] are the following. In [14] an infinite
set of continuous eigenfunctions was proposed. However, it
was completely unclear how to associate sequences of finite
matrices scaling with constant ratio to this set. Instead, in
[12] and here we propose a decomposition based on finite
set of orthogonal vectors whose dimension scales with L. A
second difference compared to the approach in [14] lies in
the fact that here we consider a new class of ERM with two
independent sets of random nodes instead of the usual ERM
class introduced in [13]. Finally, the exponential functions
f(·, ·) considered here have properties substantially different
from the sinusoidal functions considered in [14].

In order to introduce the set of orthogonal
vectors, we define the set of points L♯

π ≡{
ω =

(
2πℓx
θ ,

2πℓy
θ

)∣∣∣ ℓx, ℓy = {− θ
2 , . . . 0,+1 . . .+ θ

2 − 1
}

and define the set of orthogonal functions on the discrete and
finite set A♯

L

{
ψ(L)
ω

(w)

∣∣∣∣ψ
(L)
ω

(w) =
1

θ
exp

(
+iωw

τ

)
,

ω ∈ L#
π \ {0} and ω ∈ A♯

L

}
. (5)

Similarly, for the 1D-system, defined the set L̃♯
π ≡{

ω = 2πℓx
θ

∣∣ ℓx = {− θ
2 , . . . 0,+1 . . .+ θ

2 − 1
}

and we adopt

the set of orthogonal functions on Ã♯
L

{
ψ̃(L)
ω (w)

∣∣∣∣ψ̃
(L)
ω (w) =

1√
θ
exp

(
+iωw

τ

)
,

ω ∈ L̃#
π \ {0} and ω ∈ Ã♯

L

}
. (6)

The interested reader is referred to [12] for a discussion on the
properties of (5) and (6). Then, as in [12], for the 2D-system,

we define the discrete transform

T (L)
ω,ν =

∑

r∈A♯
L

∑

t∈A♯
L

f(r, t)ψ(L)∗
ω

(r)ψ(L)
ν

(t)

and its inverse

f(r, t) =
∑

ω,ν∈L#
π \{0}

T (L)
ω,νψ

(L)
ω (r)ψ(L)∗

ν (t) (7)

being ·∗ the complex conjugate operator. Similar relations

holds for the function f̃(ri, tj) and are omitted here for
conciseness.

As straightforward consequence of (7), the matrix F(L) can
be written as

F(L) = Ψ
(L)
R T(L)Ψ

(L)H
T (8)

where T(L) is a (θ2 − 1) × (θ2 − 1) matrix with elements

T
(L)
ω,ν , Ψ

(L)
R is an NR × (θ2 − 1) matrix with element (j,ω)

ψ
(L)
j,ω = ψ

(L)
ω (rj) and Ψ

(L)
T is an NT × (θ2 − 1) matrix with

element (k,ν) ψ
(L)
k,ν = ψ

(L)
ν (tk). Let us observe that we index

the elements of the matrices T(L), Ψ
(L)
R , and Ψ

(L)
T along the

dimensions of size θ2 − 1 by ω,ν ∈ L#
π \ {0} instead of

the usual indexing by natural numbers. Here, the underlying
assumption is that the 2-dimensional vectors in L#

π \ {0} are
mapped according to an arbitrary mapping criterion onto the
set of natural numbers {0, 1, . . . θ2 − 1}. The matrices T(L),

Ψ
(L)
R , and Ψ

(L)
T are built according to this mapping. However,

their elements are indexed according to the inverse mapping
from {0, 1, . . . θ2−1} in L#

π \{0} since the mapping criterion
is irrelevant for further studies while the values of the vectors
ω,ν play a key role.

When the area of A(L) increases θ, NR and NT also
increases according to the following relations

NR

θ2
→ ρRτ

2,
NT

θ2
→ ρT τ

2,
NR

NT
→ ρR

ρT
, (9)

and the sizes of the matrices Ψ
(L)
R , T(L), and Ψ

(L)
T increase

with ratios converging to a constant as typical in random
matrix theory. Shortly, we denote the growing of the area
network and the corresponding network nodes according to
(9) by L→ +∞.

For 1D-systems, the decomposition F̃(L) =

Ψ̃
(L)

R T̃(L)Ψ̃
(L)H

T holds with obvious meaning for the

(θ− 1)× (θ− 1) matrix T̃(L), the NR× (θ− 1) matrix Ψ̃
(L)

R ,

and the NT × (θ − 1) matrix Ψ̃
(L)

T .
In order to analyze the eigenvalue spectrum of the matrix

C̃(L) = F̃(L)HF̃(L) and C(L) = F(L)HF(L) as L → +∞, it
is essential to characterize the matrices T̃(L) and T(L) as L→
+∞ and determine their asymptotic eigenvalue distribution.

The matrix T̃(L) can be written in closed form and it is
described in the following lemma.

LEMMA 1 Define ν =
2πℓ

θ
. The diagonal and the out-

diagonal elements of the matrix T̃(L), T̃
(L)
ℓ,ℓ and T̃

(L)
ℓ,m are

shown in (10) and (11) at the top of next page, respectively.



T̃
(L)
ℓ,ℓ = 1−

2(e−k0τ(θ−1)(ek0τ
− cos(ν))− ek0τ cos(ν) + 1)

e2k0τ
− 2ek0τ cos(ν) + 1

+
2ek0τ (2ek0τ

− cos(ν)− e2k0τ cos(ν))

θ(e2k0τ
− 2ek0τ cos(ν) + 1)2

+
2e−k0τ(θ−1)(ek0τ

− cos(ν))

(e2k0τ
− 2ek0τ cos(ν) + 1)

+
2e−k0τ(θ−1)(e2k0τ cos(ν)− 2ek0τ + cos(ν))

θ(e2k0τ
− 2ek0τ cos(ν) + 1)2

(10)

T̃
(L)
ℓ,m =

cos(πm) cos(πℓ) cos(π(ℓ−m)/θ)(1− e−k0τθ)(4 cos(π(ℓ−m)/θ)− 2(ek0τ + e−k0τ ) cos(π(ℓ+m)/θ))

θ ((2 cos(π(ℓ−m)/θ)− (ek0τ + e−k0τ ) cos(π(ℓ+m)/θ))2 + (e−k0τ
− ek0τ )2 sin(π(ℓ+m)/θ)2)

(11)

For θ → ∞, T̃
(L)
ℓ,m → 0 with rate θ−1 while the diagonal

elements converge to

T̃
(L)
ℓ,ℓ

θ→+∞→ T̃∞
ν =

e2k0τ − 1

e2k0τ − 2ek0τ cos ν − 1
. (12)

Although it is not proven (see [12] for discussions) that the
asymptotic eigenvalue spectrum for θ → +∞ coincides with

the diagonal elements T̃∞
ν , numerous simulations support this

conjecture.

CONJECTURE 1 As θ → +∞ the eigenvalues of the matrix

T̃(L) converges to T̃∞
ν in (12) with ν ∈ [−π, π) and the

eigenvalue probability density function (pdf) converges to the

following function

f
T̃
(x) =

ek0τ − e−k0τ

2πx
√

(xmax − x)(x− xmin)
(13)

with support [xmin, xmax] and xmin =
ek0τ − 1

ek0τ + 1
and xmax =

ek0τ + 1

ek0τ − 1
.

The pdf f
T̃
(x) can be derived from the expression of T̃∞

ν by
use of the standard definition of pdf.

For 2D-system, it is not possible to find a closed form
expression for the elements of the finite matrix T(L). We
conjecture that also for T(L), the asymptotic eigenvalues
coincide with the asymptotic diagonal elements of the matrix
and use fundamental properties of the Fourier transform to
determine the asymptotic values of the diagonal elements of
T(L).

LEMMA 2 [12] Let ǫ > 0 be an arbitrary small positive

value and let τ ≤ π2ǫ
2k0

. Then, up to negligible aliasing effects,

as L→ +∞, the diagonal elements of matrix T(L) converges

to finite values given by

T
(L)
ℓ,ℓ

θ→+∞→ T (ω) =
2πk0τ(√

τ2k20 + ω2
x + ω2

y

)3

where ω =
(

2πℓx
θ ,

2πℓy
θ

)
∈ Lπ ≡ [−π, π]× [−π, π].

Then, by conjecturing that asymptotically the eigenvalues
coincides with the asymptotic limits of the diagonal elements
we state the following.

CONJECTURE 2 Let ǫ > 0 be an arbitrary small positive

value and let τ ≤ π2ǫ
2k0

. Then, the asymptotic eigenvalue density

function of matrix T(L) as L→ +∞ is given by

fT(x) =
(2πk0τ)

2/3

6π
x−5/3,

2πk0τ

(
√
k20τ

2 + π2)3
≤ x ≤ 2π

k20τ
2

and can be effectively approximated elsewhere by

fT =
(
1− π

4

)
δ(x− η) where η is a positive constant

in the interval3
[

2πk0τ

(
√

k2
0τ

2+2π2)3
, 2πk0τ

(
√

k2
0τ

2+π2)3

]
.

By applying the same approximation to the 1D-system we
can state as follows.

LEMMA 3 Let ǫ > 0 be an arbitrary small positive value

and let τ ≤ πǫ
2k0

. Then, up to negligible aliasing effects, as

L→ +∞, the diagonal elements of matrix T̃(L) converges to

finite values given by

T̃ (ω) =
2k0τ

k20τ
2 + ω2

for |ω| ≤ π. (14)

The derivation of this lemma follows along the same line of
the derivation of Lemma 2 sketched in [12].

We are interested in characterizing the spectrum of the ma-

trices C(L) and C̃(L), as R, T, θ2 → ∞ with constant ratio,

in terms of their eigenvalue moments, i.e. m
(n)
C

= E {trCn}
and m

(n)

C̃
= E

{
trC̃n

}
, where the expectation are w.r.t.

the corresponding Bernoulli processes and tr(·) denotes the
trace of the squared matrix argument normalized to the matrix
dimension, e.g. tr(Cn) = 1

NT
Trace(Cn). To make the prob-

lem analytically tractable we approximate their asymptotic
eigenvalues moments by the asymptotic eigenvalues moments

of the matrices C
(L)
d and C̃

(L)
d , differing from the matrices

C(L) and C̃(L) since that matrices T(L) and T̃(L) are replaced

by the matrices T
(L)
d and T̃

(L)
d obtained from the original

matrices by suppressing the out-diagonal elements which are
asymptotically vanishing. Then, the following propositions
holds.

PROPOSITION 1 Let m
(n)
T

=
∫∞

0 xnfT(x)dx be the n-order

eigenvalue moment of the matrix T(L) as L→ +∞. Then,

m
(2)
T

=
π3

k20

(2k20τ
2 + π2)

(k20τ
2 + π2)2

3Because of the constraints on τ for ǫ arbitrarily small also the values on
this interval are close to zero.



and

m
(4)
T

=
(k20τ

2 + π2)17/2 − k170 τ
17

58752π7k30τ
3

.

As θ2, NT , NR → ∞ with constant ratios ρT τ
2 and ρRτ

2,
the first asymptotic eigenvalue moment of the matrix C

(L)
d

converges to the value

m
(1)
Cd

→ ρRτ
2m

(2)
T

and the second order moment converges to

m
(2)
Cd

→ ρTρ
2
Rτ

6m
(4)
T

+ ρR(ρT + ρR)τ
4(m

(2)
T

)2 +
ρRτ

2

(2π)6∫

D1

T (ω1)dω1

∫

D2

T (ω2)dω2

∫

D3

T (ω3)T (ω1+ω2−ω3)dω3

where D1 = D2 = [−π, +π]2 and D3 = [−π, ωx1
+ ωx2

+
π]× [−π, ωy1

+ ωy2
+ π]

REMARK 2 Note that m
(2)
Cd

cannot be expressed in terms of

m
(n)
T
, the eigenvalue moments of the deterministic matrix

T(L). A complex convolution of the two dimensional function

T (ω) need be computed and implies the computation of

an integral in a 6-dimensional space, which is practically

unfeasible. This discourages a combinatorial analysis to find

a general expression for the eigenvalue moments of any order

n.

The analysis simplifies for the 1D-system as follows.

PROPOSITION 2 The first two eigenvalue moments of the

matrix C̃
(L)
d converge to

m
(1)

C̃d

→ ρ̃Rτm
(2)

T̃
,

m
(2)

C̃d

→ ρ̃T ρ̃
2
Rτ

3m
(4)

T̃d

+ ρ̃R(ρ̃T + ρ̃R)τ
2(m

(2)

T̃d

)2+

+
ρ̃Rτ

(2π)3

∫ π

−π

T̃ (ω1)dω1

∫ +π

−π

T̃ (ω2)dω2·

·
∫ ω1+ω2+π

−π

T̃ (ω3)T̃ (ω1 + ω2 − ω3)dω3

with m
(n)

T̃
= 1

2π

∫ π

−π T̃
n(ω)dω.

The proofs of Proposition 1 and 2 follow from lengthly
combinatorial arguments along the same line as the results
in [24]. Due to space constraints we omit the details of the
proof.

REMARK 3 Let us observe that the independent random ma-

trices Ψ̃
(L)

R and Ψ̃
(L)

T for a 1D-system are random Vander-

monde matrices with entries in the unit circle (up to a cyclic

column rotation). In [24], the eigenvalue moments of matrices

of the type
∏

iDiV
H
i Vi, being Di diagonal deterministic

matrices and Vi random Vandermonde matrices, have been

studied. However, the theory developed in [24] is not appli-

cable to the analysis of these Euclidean matrices since an

Euclidean matrix is approximated by a product of the type

DV1V
H
1 DV2V

H
2 and its powers. The effect of the matrices

ViV
H
i on the asymptotic behaviour of the global product

differs substantially from the one of the matrices VH
i Vi as

apparent when we consider that the eigenvalue moments in

[24] can be expressed in terms of the eigenvalue moments of

the deterministic matrix while in the Euclidean case complex

convolutions of the diagonal matrix are required.

Additionally, let us assume that the j-th element of the
Bernoulli process ΦÃ#

L
is kept fixed, i.e. we consider the

Bernoulli process conditioned to tj = t and denote it by

ΦT̃
Ã#

L

|tj= t. Then, we can consider the expectation of diagonal

element of matrix C̃
(L)n
d corresponding to such an antenna

position. In fact, this value plays a key role in the performance
analysis of linear detectors for such a transmit antenna. Their
properties are summarized below.

PROPOSITION 3 As L→ +∞, the expectation w.r.t. Φ̃R̃
Ã#

L

and

Φ̃T̃
Ã#

L

|tj= t of the jth diagonal element of C̃
(L)n
d equals m

(n)

C̃d

.

More specifically,

C
(1)

= lim
L→+∞

Eψ
(L)

T̃
T̃

(L)
d Ψ̃

(L)H

R Ψ̃
(L)

R T̃
(L)
d ψ

(L)

T = m
(1)

C̃d

and

C
(2)

= lim
L→+∞

Eψ
(L)

T T̃
(L)
d Ψ̃

(L)H

R F̃
(L)
d F̃

(L)H
d Ψ̃

(L)

R T̃
(L)
d ψ

(L)

T

= m
(2)

C̃d

(15)

where the expectation is w.r.t. ΦR̃
Ã#

L

and ΦT̃
Ã#

L

|tj = t and

ψ
(L)

T =

(
1√
(θ)

exp(+ıtν/τ)

)

ν∈L̃#

L
\{0}

is a row vector.

In order to obtain an approximate expression of the eigen-
value pdf fC(λ) of matrix C as L → +∞ or, equivalently,
NR, NT , θ

2 → +∞ with constant ratios (9) we approximate

the matrices Ψ
(L)
R and Ψ

(L)
T by Gaussian matrices of i.i.d.

zero mean elements with variance θ−2.
Under this approximation, we obtain the following results.

PROPOSITION 4 Let ΦT and ΦR be Gaussian matrices of

i.i.d. zero mean elements with variance θ−2 and size θ2×NT

and θ2×NR, respectively. Let A be a θ2×θ2 diagonal matrix

with eigenvalue probability density function that converges

to fA(x), with x ∈ R, as θ2 → +∞. Then, as θ2, NT ,
NR → +∞ with constant ratios NR

θ2 → γR and NT

θ2 → γT ,
the asymptotic eigenvalue distribution f

C
(x) of the matrix

C = ΦTAΦ
H

RΦRAΦ
H

T

obeys

sG
C
(s) + 1 = −G

C
(s)

(
γT sGC

(s) + γT − γR
)

∫
x2fA(x)dx

1− γTGC
(s)

(
γT sGC

(s) + γT − γR
)
x2

(16)

being G
C
(s) the Stieltjes transform of f

C
(x), i.e.

G
C
(s) =

∫
f
C
(x)dx

x− s
. (17)
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Fig. 2. Capacity per unit area and unit frequency band versus intensity of
receive antennas. Intensity of transmit antennas constant ρT = 5, exponential
decaying constant k0 = 2. Solid and dashed lines show the analytical
approximation and the actual capacity in a finite network of area L2 = 255 .

The derivation of this result is omitted and follows along the
lines of the derivation in [25], Appendix A. Analogous results
can be stated for the 1D-system.

IV. PERFORMANCE ANALYSIS

It is well known that the mathematical tools derived in the
previous section are essential to derive the fundamental limits
of the system in (4) as the network size grows large. In particu-
lar, the total capacity per unit area or throughput of the system
is related to the Stieltjes transform provided in Proposition
4 while the eigenvalue moments and the diagonal elements
in Proposition 1, 2, and 3 characterize the performance of
linear multiuser detectors at a centralized receiver. The first
two eigenvalues or the conditional expectations C

(1)
and C

(2)

are sufficient to characterize the performance of the matched
filter. We recall here some fundamental relations by referring
to the 2D-system. Analogous results can be stated for the 1D-
system.

Under the constraint of constant transmit power at the
transmit antennas, the capacity per receive antennas in a

network over a finite squared box A#
L with transfer matrix

F(L) is given by [22]

C(ρ,F(L), NR, NT ) =
1

2NR
log2 det

(
I+ ρF(L)F(L)H

)

=
1

2NR

NR∑

n=1

log2

(
1 + ρλn(F

(L)F(L)H)
)

=
1

2NR

NT∑

n=1

log2

(
1 + ρλn(C

(L))
)

being ρ = P
σ2 the transmit signal to noise ratio (SNR) and

λn(·) is the n-th eigenvalue of the matrix argument. The
average with respect to F(L) is denoted by

C(ρ,NR, NT ) = E

{
1

2NR

NR∑

n=1

log2

(
1 + ρλn(F

(L)F(L)H)
)}
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Fig. 3. Capacity per unit area and unit frequency band versus the attenuation
coefficient k0. Intensity of transmit antennas constant ρT = 20, while the
receivers’ intensity varies ρR = 20, 60, 100, 140, 180. Solid and dashed lines
show the analytical approximation and the actual capacity in a finite network
of area 100, respectively.

and the average maximum achievable rate per unit area is

C(ρ,NR, NT ) = E

{
1

2θ2τ2

NT∑

n=1

log2

(
1 + ρλn(C

(L))
)}

= ρRC(ρ,NR, NT ).

Let Eb be the energy per information bit. Then, when
transmitting at total rate NRC(ρ,NR, NT ) [21]

ρ =
EbNRC(ρ,NR, NT )

σ2NT

=
EbρRC(ρ,NR, NT )

σ2ρT

=
EbC(ρ,NR, NT )

σ2ρT
.

Thus, the average maximum achievable throughput per unit
area as a function of Eb

N0
= Eb

σ2 is the solution to the fixed
point equation

C(ρ,NR, NT ) =

E

{
1

2θ2

NT∑

n=1

log2

(
1 +

EbC(ρ,NR, NT )

N0ρT
λn(C

(L))

)}

As from Proposition 4, when L → +∞ the eigenvalue
distribution of the matrix C(L) can be approximated by a
determinist eigenvalue distribution described by the Stieltjes
transform G

C
(s) in (16). The well known relation between

capacity and Stieltjes transform of the eigenvalues of the
channel covariance matrix C, (see e.g. [5], [23], [26], [27])

C(ρ) = ρT
2 ln 2

∫ ρ

0

s−1
(
1− s−1G

C
(−s−1)

)
ds

provides an approximation of the capacity per unit area as a
function of ρ, the SNR.

V. SIMULATION RESULTS

In this section we compare the capacity per unit area of
a 2D-system obtained using the asymptotic analytical ap-
proximations with the average capacity obtained by averag-
ing over several network realizations. We consider a system



with transmitters homogeneously distributed with intensity
ρT = 5 while the intensity of the receivers varies in the range
ρR = [5, 10, 15, 20, 25, 30]. The coefficient of the exponential
pathloss was k0 = 2. In Fig. 2, we show the capacity per
unit area when the number of the receivers’ intensity increases
for Eb/N0 = 0 dB and Eb/N0 = 10 dB. At low values of
Eb/N0 the approximation obtained analytically is very tight
while it becomes looser when Eb/N0 increases. In fact, the
approximations made yield a slight mismatch on the tails of
the eigenvalue distribution of matrix C. As expected, when
the number of receive antennas per unit area increases also
the capacity per unit area increases.

Fig. 2 captures the effects of the attenuation on the ca-
pacity per unit area. It shows the system capacity versus the
attenuation coefficient k0 for transmitter intensity ρT = 20
and varying values of the receiver intensity ρR. More specif-
ically, ρR = [20, 60, 100, 140 180]. As already observed, the
capacity per unit area increases when the receiver’s intensity
increases. However, the channel attenuation is more beneficial
for not heavily loaded systems and for load ρT /ρR = 1 the
best capacity per unit area is attained when k0 = 2 while for
decreasing loads, ρT

ρR
= 1

3 ,
1
5 ,

1
7 ,

1
9 the best capacity is attained

for k0 = 4, 6, 6, 6, respectively. This behavior points out a
complex trade off between the number of actually reachable
receive antennas from a transmit antenna and the average
number of transmit antennas actually served by a receive
antennas.

VI. CONCLUSIONS

In this contribution we considered a system consisting of
distributed transmit and receive antennas randomly distributed
over a 1-dimensional and 2-dimensional Euclidean space.
The receive antennas are connected to a central receiver
and the receive signal is processed jointly. We analyzed the
fundamental limits of this system in terms of capacity per unit
area. Approximations of the eigenvalue moments to analize the
performance of a simple matched filter detector at the receiver
when the size of the network grows large are also provided.
This analysis is based on the introduction of a new class of
ERMs whose entries depend on two independent Bernoulli
processes. These matrices capture the effects of the slow fading
due to pathloss. Note that the effect of fast fading is neglected
in this phase. However, the proposed mathematical framework
is capable to capture also the effects of fast fading to some
extent. The performance analysis of combined pathloss and
Rayleigh fading is left for future studies.
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efficiency of coded DS-CDMA with random signatures,” IEEE Journal
on Selected Areas in Communications, vol. 19, no. 8, pp. 1556–1569,
Aug. 2001.

[9] D. Aktas, M. Bacha, J. Evans, and S. Hanly, “Scaling results on the sum
capacity of cellular networks with MIMO links,” IEEE Transactions on
Information Theory, vol. 52, no. 7, pp. 3264 – 3274, july 2006.

[10] N. Levy, O. Zeitouni, and S. Shamai, “On information rates of the
fading Wyner cellular model via the Thouless formula for the strip,”
Information Theory, IEEE Transactions on, vol. 56, no. 11, pp. 5495
–5514, nov. 2010.

[11] A. L. Moustakas and N. Bambos, “Power optimization on a random
wireless network,” in Proc. of IEEE International Symposium on Infor-
mation Theory (ISIT), Istambul, Turkey, Aug. 2013.

[12] L. Cottatellucci, “Spectral efficiency of extended networks with ran-
domly distributed transmitters and receivers,” in Invited for Proc. of
2nd IEEE China Summit and International Conference on Signal and
Information Processing (ChinaSIP14), Xi’an, China, Jul. 2014, pp. 673–
677.
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tion,” Submitted to IEEE Journal on Selected Areas in Signal Processing,
Sep. 2013, on line: arXiv:1309.6806.

[26] L. Cottatellucci, R. R. Müller, and M. Debbah, “Asynchronous CDMA
systems with random spreading–Part I: Fundamental limits,” IEEE
Transactions on Information Theory, vol. 56, no. 4, pp. 1477 – 1497,
Apr. 2010.

[27] L. Cottatellucci and M. Debbah, “On the capacity of MIMO Rice
channels,” in Proc. 42nd Allerton Conf. on Communication, Control and
Computing, Monticello, Illinois, Sep./Oct. 2004.


