
c© 2014 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Open Access

Open Journal of Cloud Computing (OJCC)
Volume 1, Issue 1, 2014

http://www.ronpub.com/ojcc
ISSN 2199-1987

Block-level De-duplication
with Encrypted Data

Pasquale Puzio A B, Refik Molva B, Melek Önen B, Sergio Loureiro A

A SecludIT, Sophia Antipolis, France, {pasquale, sergio}@secludit.com
B EURECOM, Sophia Antipolis, France, {puzio, molva, onen}@eurecom.fr

ABSTRACT

Deduplication is a storage saving technique which has been adopted by many cloud storage providers such as
Dropbox. The simple principle of deduplication is that duplicate data uploaded by different users are stored only
once. Unfortunately, deduplication is not compatible with encryption. As a scheme that allows deduplication of
encrypted data segments, we propose ClouDedup, a secure and efficient storage service which guarantees block-
level deduplication and data confidentiality at the same time. ClouDedup strengthens convergent encryption by
employing a component that implements an additional encryption operation and an access control mechanism. We
also propose to introduce an additional component which is in charge of providing a key management system for
data blocks together with the actual deduplication operation. We show that the overhead introduced by these new
components is minimal and does not impact the overall storage and computational costs.

TYPE OF PAPER AND KEYWORDS

Regular research paper: cloud computing, cloud storage, confidentiality, cryptography, convergent encryption, dedu-
plication, privacy

1 INTRODUCTION

Cloud storage providers offer to their customers a poten-
tially infinite storage space. In this scenario, users use
large amount of storage space and vendors constantly
look for techniques aimed to minimize redundant data
and optimize performance and costs. A common tech-
nique that gained popularity lately is cross-user dedupli-
cation, for its ability to remove duplicates and store du-
plicate data only once. If different users upload the same
file, instead of storing multiple copies of it, the cloud
provider adds the user to access control list of the unique
copy of the file. Costs of storing and transferring data
can be greatly reduced. As an example, deduplication
can reduce 90 to 95% of storage based on the experi-
ments in [5].

Along with low ownership costs and flexibility, users
also require the protection of their data and confidential-
ity guarantees through encryption. Unfortunately, dedu-
plication and encryption are two conflicting technolo-
gies. While the aim of deduplication is to detect iden-
tical data segments and store them only once, the result
of encryption is to make two identical data segments in-
distinguishable after being encrypted. This means that if
data are encrypted by users in a standard way, the cloud
storage provider cannot apply deduplication since two
identical data segments will be different after encryption.

Convergent encryption (CE) [13,20,21] is a technique
that can meet the requirements of two conflicting solu-
tions between deduplication and encryption. In CE, the
encryption key is derived and computed based on the
data provided. For instance, the key can be the result of
the hash of the data segment. However, convergent en-

10

http://creativecommons.org/licenses/by/3.0/
http://www.ronpub.com/ojcc

Pasquale Puzio, Refik Molva, Melek Önen, Sergio Loureiro: Block-level De-duplication with Encrypted Data

cryption has various well-known weaknesses [10,19] de-
spite of its suitability. One common vulnerability is the
dictionary attack, in which an attacker manages to gener-
ate a potential encryption key and, by comparing the two
ciphertexts, check whether a file has already been stored
or not.

We propose a solution, ClouDedup, that provides both
deduplication and encryption and retains benefits offered
by each technique. ClouDedup makes use of convergent
encryption but prevents the above-mentioned dictionary
attacks. The components involved in ClouDedup are: the
basic cloud storage provider, a metadata manager and an
additional server. The server guarantees data confiden-
tiality even for predictable files. The metadata manager
provides a system for key-management and block-level
deduplication.
To summarize our contributions:

• ClouDedup achieves block-level deduplication
and data confidentiality against honest-but-curious
cloud storage providers while providing a secure so-
lution against weaknesses raised by convergent en-
cryption;

• ClouDedup offers an efficient key management so-
lution through the metadata manager;

• We propose a robust and secure architecture, in
which a single component cannot compromise the
whole system without colluding with other compo-
nents;

• ClouDedup is fully compatible with existing cloud
storage providers.

2 BACKGROUND

2.1 Deduplication

It is worth mentioning that deduplication can either be
file-level [23] or block-level [12]. The latter corresponds
to the most common strategy and is also the one to which
we refer in this paper. The block size in block-based
deduplication can either be fixed or variable [22].

2.2 Convergent Encryption

Convergent encryption (CE) derives the encryption key
from the plaintext. The most common implementations
compute key as the hash of the plaintext. Here is a sim-
ple example which illustrates how it works: Adam de-
rives the encryption key from her message M such that
K = H(M), where H is a cryptographic hash func-
tion; she can encrypt the message with this key, hence:
C = E(K,M) = E(H(M),M), where E is a block
cipher. By applying this technique, two different users

with two identical plaintexts will obtain two identical ci-
phertexts since the encryption key is the same. This al-
lows the cloud storage provider to perform deduplication
on such ciphertexts without having any knowledge on the
original plain-texts.

2.3 Weaknesses of Convergent Encryption

Discussions of vulnerabilities affecting convergent en-
cryption have been presented [3,10,19]. As discussed in
Section 1, potential malicious cloud providers can per-
form offline dictionary attacks and discover predictable
files. This explains why a strategy is needed to enforce
security while retaining benefits offered by deduplication
and convergent encryption.

3 RELATED WORK

Convergent encryption is a particular type of determinis-
tic encryption, and it is suitable to achieve both confiden-
tiality and deduplication [16, 24]. However, it is known
to have several well-known weaknesses which do not en-
sure protection of predictable files against dictionary at-
tacks [7, 13]. Warner and Perttula [19] have proposed to
add a secret S to the encryption key to overcome this is-
sue. Based on their rationale, the new definition of the
encryption key is K = H(S|M) where | denotes an op-
eration between S and M . However, there is a limitation
to their approach, since they constrain the application of
deduplication between a limited set of users. Most im-
portantly, the security of the system can be compromised
by knowing the secret S. The most recent work on this
topic is [9] in our knowledge, where keys are generated
with the aid of a key server which retains a secret. The
security of the entire system can be compromised and the
confidentiality of unpredictable files is no longer guar-
anteed while an attacker learns the secret. To address
all these ongoing issues, we propose ClouDedup. Our
approach provides data confidentiality without impact-
ing deduplication effectiveness, because ClouDedup is
entirely independent from the deduplication technique.
ClouDedup does not rely on the security of one single
component and handles block-level deduplication in an
efficient manner. Moreover, ClouDedup protects against
side-channel attacks and preserve users’s privacy.

4 CLOUDEDUP

ClouDedup proposes a scheme for block-level dedupli-
cation of encrypted files. Two components are avail-
able. First, a server that implements access control and
achieves the main protection against dictionary attacks.
Second, the metadata manager (MM), which is responsi-
ble for block-level deduplication and key management.

11

Open Journal of Cloud Computing (OJCC), Volume 1, Issue 1, 2014

Figure 1: High-level view of ClouDedup

4.1 The Server

In order to prevent attacks against convergent encryption
(CE), we propose to encrypt the ciphertexts with another
encryption algorithm using the same keying material for
all input. The benefit is that encrypted data are confiden-
tial while deduplication is still possible. Additionally,
our proposed solution is unaffected by weaknesses re-
lated to CE. On of the most important tasks of the server
is to securely retain the keying material used for the ad-
ditional encryption. In a real deployment scenario, this
goal can be effectively accomplished by using a hard-
ware security module (HSM) [4]. The server is a core
component of ClouDedup. User authentication, an ac-
cess control mechanism and additional encryption oper-
ation are all managed by the server. Each encrypted data
segment is linked with a signature generated by its owner
and verified upon data retrieval requests. The signature
of each segment is used by the server to identify the re-
cipient.

4.2 Block-level Deduplication and Key Man-
agement

Block-level deduplication raises an issue with respect to
key management. Indeed, users need to store the value
of the key for each encrypted data segment. Unlike file-
level deduplication, in case of block-level deduplication,
the requirement to store and retrieve CE keys for each
block in a secure way, calls for a key management so-
lution. We thus suggest to include a new component,
the metadata manager (MM), in ClouDedup in order to
implement the key management for each block together
with the actual deduplication operation.

4.3 Threat Model

Achieving data confidentiality without losing the advan-
tage of deduplication is the main goal of ClouDedup,

with an emphasis in efficient key management. Even
though a single component is compromised, it does not
make the security of the entire system collapsed. As ex-
plained in Section 4.1, server is trusted for authentica-
tion, access control and additional encryption. However,
it is not trusted for data confidentiality since it cannot
perform offline dictionary attacks. With regard to our
model, the cloud storage provider is honest but curious.
In other words, cloud providers might attempt to dis-
cover the original content of encrypted data stored by
users while performing their tasks.

5 COMPONENTS

5.1 User

Users split files into blocks, encrypt them with the CE,
followed by signing the resulting encrypted blocks and
creating the storage request. They encrypt each block
key and each block with their own secret key. For each
file, this key will be used to decrypt and re-build the orig-
inal file during the retrieval phase. Finally, the user also
signs each block with a compact signature scheme. The
main architecture is illustrated in 1.

5.2 Server

Three roles are offered by the server. First, it authenti-
cates users during the storage/retrieval phase. Second,
it performs access control. Third and most important, it
encrypts/decrypts data uploaded by users in order to pre-
vent attacks based on CE weaknesses. The server also
verifies the signature of each block with the user’s public
key during the retrieval phase.

5.3 Metadata Manager (MM)

MM handles deduplication and stores metadata which
include block signatures, encrypted keys and pointers to
the actual storage. MM has a linked list, which is struc-
tured as follows.

The linked list is the main data structure used for the
deduplication operation and is structured as follows:

• Each element of the linked list represents a data
block. The identifier of each element is computed
by hashing the encrypted data block received from
the server.

• If there is a link between two elements X and Y,
it means that X is the predecessor of Y in a given
file. A link between two elements X and Y contains
the file identifier and the encryption of the key to
decrypt the data block Y.

12

Pasquale Puzio, Refik Molva, Melek Önen, Sergio Loureiro: Block-level De-duplication with Encrypted Data

MM also checks whether a user is authorized to re-
trieve a file that he/she has requested. This provides an
additional access control. Additionally, MM communi-
cates with cloud service provider (SP) to store and re-
trieve data blocks.

5.4 Cloud Storage Provider (SP)

The only role of SP is to physically store data blocks
and allow MM to access those blocks. Data blocks from
MM can be considered as files (or objects) of small size.
For this reason, ClouDedup to make use of well-known
cloud storage providers such as Amazon S3 [1].

5.5 ClouDedup’s architecture in practice

Figure 2: ClouDedup’s Architecture

We demonstrate how our proposed architecture can be
deployed with existing and widespread technologies in
this section. We take into account the following scenario:
a group of users store their data in the cloud and want to
keep their data confidential while trying to save as much
storage space as possible. As shown in Fig. 2, the server
can be implemented using a Luna SA HSM [4] deployed
on the users’ premises or as a virtual appliance in the
Cloud. As documented in [2], in order to make the sys-
tem resilient against single-point-of-failure issues, it is
possible to build a high availability array by using multi-
ple Luna SA HSMs. MM can be hosted on the users’
premises or in a virtual appliance. In order to mini-
mize communication delays and improve performance,
we suggest to place MM as close as possible to cloud
storage provider. In our current implementation, in order
to store metadata and encrypted keys, we employ REDIS
[6], an advanced, lightweight and high-performance key-
value store which can contain lists, hash tables, strings,
sets and ordered sets. Finally, very popular cloud stor-
age solutions such as Amazon S3 [1] might be used as
storage providers.

6 PROTOCOL

In this section we describe the two main operations
of ClouDedup: storage and retrieval. The description
of other operations such as removal, modification and
search are out of the scope of this paper.

Notation
EK encryption function with key K
H hash function
Bi ith block of a file
B′

i ith block of a file after convergent encryption
B′′

i ith block of a file after encryption
at the server

Ki key generated from the ith block of a file
K′

i Ki after encryption at the server
KA secret key of server
KUj secret key of user j
PKUj private key of the certificate of user j
Si signature of ith block of a file with PKUj

6.1 Storage

During the storage procedure, a user uploads a file to the
system. We describe a scenario in which a user Uj wants
to upload the file F1.

Figure 3: Storage Protocol

USER User Uj splits F1 into several blocks. For
each block Bi, Uj generates a key by hashing the block
and uses this key to encrypt the block itself. There-
fore B′i = EKi

(Bi) where Ki = H(Bi). Uj stores
K1 and encrypts each following key with the key corre-
sponding to the previous block: EKi−1(Ki). Uj further
encrypts each key (except K1) with his own secret key
KUj

: EKUj
(EKi−1

(Ki)). Uj computes the block signa-
tures as described in 5.1. Uj sends a request to the server
in order to upload file F1. The request is composed by:

• Uj’s id : IDUj
;

• the encrypted file name;

• file identifier : Fid1;

• first data block : EK1(B1);

13

Open Journal of Cloud Computing (OJCC), Volume 1, Issue 1, 2014

• for each following data block Bi (i ≥ 2): key to
decrypt block Bi, that is EKUj

(EKi−1(Ki)); sig-
nature of block Bi, that is Si; data block B′i :
EKi

(Bi);

In order to improve the level of privacy and reveal as
little information as possible, Uj encrypts the file name
with his own secret key. File identifiers are generated
by hashing the concatenation of user ID and file name
H(user ID | file name).

SERVER The server receives a request from user
Uj and runs SSL in order to authenticate Uj and se-
curely communicate. Each key, signature and block
are encrypted under KA (server’s secret key): B′′i =
EKA

(EKi(Bi)), K ′i = EKA
(EKUj

(EKi−1(Ki))), S′i =
EKA

(Si). The only parts of the request which are not
encrypted are user’s id, the file name and the file iden-
tifier. The server forwards the new encrypted request to
MM.

MM MM receives the request from the server and for
each block B′′i contained in the request, MM checks if
that block has already been stored by computing its hash
value and comparing it to the ones already stored. If the
block has not been stored in the past, MM creates a new
node in the linked list, the identifier of the node is equal
to H(B′′i). MM updates the data structure by linking
each node (block) of file F1 to its successor. A link from
block B′′i−1 to block B′′i contains the following infor-
mation: {Fid1, EKA

(EKUj
(EKi−1

(Ki)))}. It is worth
pointing out that each key is encrypted with the key of
the previous block and users retain the key of the first
block, which is required to start the decryption process.
This way, a chaining mechanism is put in place and the
key retained by the user is the starting point to decrypt
all the keys. Moreover, MM stores the signature of each
block in the signature table, which associates each block
of each user to one signature. For each block B′′i not al-
ready stored, MM sends a storage request to SP which
will store the block and return a pointer. Pointers are
stored in the pointer table, which associates one pointer
to each block identifier.

SP SP receives a request to store a block. After storing
it, SP returns the pointer to the block.

MM MM receives the pointer from SP and stores it in
the pointer table.

6.2 Retrieval

During the retrieval procedure, a user downloads a file
from the system. We describe a scenario in which a user
Uj wants to download the file F1.

USER User Uj sends a retrieval request to the server
in order to retrieve file F1. The request is composed by

Figure 4: Retrieval Protocol

the user’s id IDUj
, the file identifier Fid1 and his certifi-

cate.
SERVER The server receives the request, authenti-

cates Uj and if the authentication does not fail, the server
forwards the request to MM without performing any en-
cryption.

MM MM receives the request from the server and an-
alyzes it in order to check if Uj is authorized to access
Fid1 (Uj is the owner of the file). If the user is autho-
rized, MM looks up the file identifier in the file table in
order to get the pointer to the first block of the file. Then,
MM visits the linked list in order to retrieve all the blocks
that compose the file. For each of these blocks, MM re-
trieves the pointer from the pointer table and sends a re-
quest to SP.

SP SP returns the content of the encrypted blocks to
MM. B′′i = EKA

(EKi
(Bi)).

MM MM builds a response which contains all the
blocks, keys and signatures of file F1. Signatures are
retrieved from the signature table. The response is struc-
tured as follows:

• file identifier: Fid1;

• first data block : EKA
(EK1

(B1));

• for each following data block Bi(i ≥ 2): key to
decrypt block Bi, that is EKA

(EKUj
(EKi−1

(Ki)));
signature of block Bi, that is EKA

(Si); data block
B′′i : EKA

(EKi
(Bi));

MM sends the response to the server.
SERVER The server decrypts blocks, signatures and

keys with KA. If the signature verification does not
fail, the server sends a response to Uj . Each key-block
pair received by the user, will be structured as follows:
{EKUj

(EKi−1
(Ki)), EKi

(Bi)}.

14

Pasquale Puzio, Refik Molva, Melek Önen, Sergio Loureiro: Block-level De-duplication with Encrypted Data

USER Uj can finally decrypt blocks and keys. Uj al-
ready knows the key corresponding to the block B1. For
each data block Bi, Uj decrypts block B′i using Ki and
Ki+1 using KUj

and Ki. Uj can finally rebuild the orig-
inal file F1.

7 EVALUATION

This section describes our evaluation to test storage
space and computational complexity, including the
ClouDedup’s resilience against potential attacks. We use
the same parameters of [17] in order to evaluate a real
scenario.

7.1 Storage Space

Figure 5: Overhead in terms of storage space of our
solution compared to solutions with no metadata

A scenario of 857 file systems was analyzed. The
mean number of files per file system is 225K and the
mean size of a file is 318K, with the total amount of data
as 57T. We use SHA256 as hash function so the key size
of each block is 256 bits in our design. Metadata storage
space is estimated by taking into account four main data
structures:

• Linked list. The linked list contains one node (256
bits) and multiple links for each block. A link con-
tains a pointer (64 bits) to a successor block for a
given file and additional information such as en-
crypted block keys (256 bits) and file id (256 bits).

• Pointer table. The pointer table stores one record
for each block: block id (256 bits) and the id of the
actual block stored at the cloud storage provider (64
bits).

• Signature table. The signature table stores one
record for each block (non-deduplicated): block id
(256 bits), file id (256 bits) and the signature (2048
bits for the first block, 128 bits for the other blocks).

• File table. The file table stores one record for each
file: file id (256 bits), file name (256 bits), user id
(32 bits) and the id of the first data block (256 bits).

Rabin 8K is the best chunking algorithm [17], that re-
sults in 68% of space savings. Results in Fig. 5 show
that the overhead introduced by the MM does not affect
space savings of deduplication. The total storage space
required for metadata is equal to 2.22% of the size of
non-deduplicated data, while dealing with the best dedu-
plication setup. All these results prove that the overhead
for block-level deduplication is affordable even with en-
cryption.

7.2 Computation

This section describes our analysis of the computational
cost on storage and retrieval, which are two main oper-
ations used in cloud storage. N is the mean number of
blocks per file and M the total number of blocks stored
in the system.

Storage Retrieval
Encryption O(N) O(N)

Hash O(N) O(N)

Lookup in data structures O(N logM) O(N)

Other O(N) O(N)

7.2.1 Storage

There are four types of costs involved. They are encryp-
tion, hash, lookup in data structures and other. The com-
putational complexity of encryption and hash is O(N),
while the complexity of lookup in data structures is equal
to O(NlogM). These results are based on our previous
studies [18]. The total cost of the storage operation is
linear for the encryption operations.

7.2.2 Retrieval

The computational cost is O(N) for all of encryption,
hash, lookup in data structures and other [18]. The total
cost of the retrieval operation is linear and the system is
scalable for large datasets.

7.3 Security

We described the design, components, functionality and
evaluation for ClouDedup. We explained that ClouD-
edup can retain the advantages of deduplication and con-
vergent encryption. We explained the use-case scenario,
and showed that our data can be kept secure in between
users, the server and the metadata manager. As we men-
tioned above, compromising one single component does
not make the security of the entire system collapse. For
the sake of brevity, in this paper we just analyze the

15

Open Journal of Cloud Computing (OJCC), Volume 1, Issue 1, 2014

most significant attack scenario. If the attacker compro-
mises the server, online attacks would be possible since
this component directly communicates with users. How-
ever, the effect of such a breach is limited since data up-
loaded by users are encrypted with convergent encryp-
tion, which guarantees confidentiality for unpredictable
files [10]. A full security analysis of ClouDedup can be
found in our previous study [18].

8 CONCLUSION AND FUTURE WORK

We explained our motivations to design ClouDedup in
a way that confidentiality and block-level deduplication
are achieved at the same time. Our proposed solution is
built on top of convergent encryption. We showed that
the overhead of metadata management is minimal de-
spite the requirements of bock-level deduplication. We
proposed three core components: users, the server and
the metadata manager. In particular, the server is the
core component which adds an additional layer of sym-
metric encryption. We explained the weaknesses of ex-
isting approaches and demonstrated that our proposed
approach can fully address CE vulnerabilities and pre-
vent malicious providers from accessing users’ data. We
performed an evaluation to show that our approach can
efficiently reduce costs and storage space in the cloud.
We also illustrated a realistic implementation of ClouD-
edup with existing and widespread technologies. We are
currently developing a full prototype of the system and
we aim to provide a complete performance analysis very
soon. In the performance analysis we will compare the
performance of ClouDedup with the most popular cloud
storage services and we will analyze performance for
both unique files and duplicate files. Furthermore, thanks
to the results obtained from the performance analysis, we
will work on finding possible optimizations in terms of
bandwidth, storage space and computation.

Also, we are currently studying how our system can
be integrated with proofs of retrievability (PoR) mecha-
nisms [14] [15], which are based on a challenge-response
protocol between users and the cloud provider. Such a
functionality would be very valuable from the user point
of view since it would guarantee that deduplication is
correctly performed and no file has been corrupted or
accidentally deleted. Indeeed, without actually down-
loading the entire file, a user could verify that a given
file can be correctly retrieved in the future. Unfortu-
nately, this integration is quite challenging since the ex-
isting approaches appear to be incompatible with the un-
derlying deduplication architecture. For instance, the
sentinel-based approach [15], in which pseudo-random
blocks are injected in the original file before being up-
loaded, can negatively affect the final deduplication rate

since the original file has been modified. On the other
hand, the tag-based approach [14] relies on a homomor-
phic property of the tags in order to aggregate blocks and
tags in the response while enabling the user to correctly
perform the verification. Unfortunately, in ClouDedup
such a property would be lost because of the additional
encryption performed by the server.

In addition to PoR, we are also investigating how
ClouDedup can be further extended with other security
features such as search over encrypted data [8] and data
integrity checking [11].

REFERENCES

[1] “Amazon S3,” http://aws.amazon.com/s3/.

[2] “High Availability with Luna,” http:
//bit.ly/19dtZLb.

[3] “Is Convergent Encryption really secure?” http://
bit.ly/Uf63yH.

[4] “Luna SA HSM,” http://bit.ly/17CDPm1.

[5] “Opendedup,” http://opendedup.org/.

[6] “Redis,” http://redis.io/.

[7] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer, “Farsite: Fed-
erated, available, and reliable storage for an incom-
pletely trusted environment,” ACM SIGOPS Oper-
ating Systems Review, vol. 36, no. SI, pp. 1–14,
2002.

[8] M. Bellare, A. Boldyreva, and A. ONeill, “Deter-
ministic and efficiently searchable encryption,” in
Advances in Cryptology-CRYPTO 2007. Springer,
2007, pp. 535–552.

[9] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dup-
less: server-aided encryption for deduplicated stor-
age,” in USENIX Security, 2013.

[10] ——, “Message-locked encryption and secure
deduplication,” in Advances in Cryptology, EURO-
CRYPT 2013. Springer, 2013, pp. 296–312.

[11] K. D. Bowers, A. Juels, and A. Oprea,
“Hail: a high-availability and integrity layer
for cloud storage,” in Proceedings of the 16th ACM
conference on Computer and communications se-
curity, ser. CCS ’09. New York, NY, USA:
ACM, 2009, pp. 187–198. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653686

[12] L. P. Cox, C. D. Murray, and B. D. Noble, “Pas-
tiche: Making backup cheap and easy,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 285–298, 2002.

16

http://aws.amazon.com/s3/
http://bit.ly/19dtZLb
http://bit.ly/19dtZLb
http://bit.ly/Uf63yH
http://bit.ly/Uf63yH
http://bit.ly/17CDPm1
http://opendedup.org/
http://redis.io/
http://doi.acm.org/10.1145/1653662.1653686

Pasquale Puzio, Refik Molva, Melek Önen, Sergio Loureiro: Block-level De-duplication with Encrypted Data

[13] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon,
and M. Theimer, “Reclaiming space from dupli-
cate files in a serverless distributed file system,”
in Distributed Computing Systems, 2002. Proceed-
ings. 22nd International Conference on. IEEE,
2002, pp. 617–624.

[14] A. Giuseppe, B. Randal, C. Reza et al., “Provable
data possession at untrusted stores,” Proceedings of
CCS, vol. 10, pp. 598–609, 2007.

[15] A. Juels and B. S. Kaliski, Jr., “Pors: proofs
of retrievability for large files,” in Proceed-
ings of the 14th ACM conference on Computer and
communications security, ser. CCS ’07. New
York, NY, USA: ACM, 2007, pp. 584–597.
[Online]. Available: http://doi.acm.org/10.1145/
1315245.1315317

[16] L. Marques and C. J. Costa, “Secure deduplica-
tion on mobile devices,” in Proceedings of the 2011
Workshop on Open Source and Design of Commu-
nication. ACM, 2011, pp. 19–26.

[17] D. T. Meyer and W. J. Bolosky, “A study of prac-
tical deduplication,” ACM Transactions on Storage
(TOS), vol. 7, no. 4, p. 14, 2012.

[18] P. P., M. R., M. Ö., and L. S., “Cloudedup: Se-
cure deduplication with encrypted data,” in Pro-
ceedings of the 2013 IEEE International Confer-
ence on Cloud Computing Technology and Science
(CloudCom 2013). IEEE, 2013.

[19] Perttula, “Attacks on convergent encryption,” http:
//bit.ly/yQxyvl.

[20] J. Pettitt, “Hash of plaintext as key?”
http://cypherpunks.venona.com/date/1996/02/
msg02013.html.

[21] T. F. Project, “Freenet,” https://freenetproject.org/.

[22] M. O. Rabin, Fingerprinting by random polynomi-
als. Center for Research in Computing Techn.,
Aiken Computation Laboratory, Univ., 1981.

[23] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the
least-authority filesystem,” in Proceedings of the
4th ACM international workshop on Storage secu-
rity and survivability. ACM, 2008, pp. 21–26.

[24] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-
resilient client-side deduplication of encrypted data
in cloud storage,” in Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and
communications security. ACM, 2013, pp. 195–
206.

AUTHOR BIOGRAPHIES

Pasquale Puzio is a CIFRE
PhD Student at SecludIT and
EURECOM, under the super-
vision of Sergio Loureiro and
Refik Molva. He got a Mas-
ter’s Degree in Computer Sci-
ence from University of Bologna
and a Master’s Degree in Ubiq-
uitous Computing from Univer-
sity of Nice-Sophia Antipolis.
The topic of his PhD thesis is
Data Storage Security in Cloud

Computing but his research interests include also infras-
tructure security in cloud computing. In 2013, his paper
ClouDedup: Secure Deduplication with Encrypted Data
for Cloud Storage was accepted in IEEE CloudCom.

Refik Molva is a full professor
and the head of the Network-
ing and Security Department at
EURECOM in Sophia Antipolis,
France. His current research in-
terests are the design and eval-
uation of protocols for security
and privacy in cloud comput-
ing. He previously worked on
several research projects deal-
ing with security and privacy in
social networks, RFID systems,

self-organizing systems, and mobile networks. He was
program chair or general chair for security conferences
such as ESORICS, RAID, SecureComm, IEEE ICC and
various security related workshops. He has been an area
editor for various journals such as Computer Networks,
Pervasive and Mobile Computing, Computer Communi-
cations, and the International Journal of Information Se-
curity. Beside security, he worked on distributed mul-
timedia applications over high speed networks and on
network interconnection. Prior to joining Eurcom, he
worked in the Zurich Research Laboratory of IBM where
he was one of the key designers of the KryptoKnight se-
curity system. He also worked as a consultant in secu-
rity for the IBM Consulting Group. Refik Molva has a
Ph.D. in Computer Science from the Paul Sabatier Uni-
versity in Toulouse (1986) and a B.Sc. in Computer Sci-
ence (1981) from Joseph Fourier University, Grenoble,
France.

17

http://doi.acm.org/10.1145/1315245.1315317
http://doi.acm.org/10.1145/1315245.1315317
http://bit.ly/yQxyvl
http://bit.ly/yQxyvl
http://cypherpunks.venona.com/date/1996/02/msg02013.html
http://cypherpunks.venona.com/date/1996/02/msg02013.html
https://freenetproject.org/

Open Journal of Cloud Computing (OJCC), Volume 1, Issue 1, 2014

Melek Önen is a senior re-
searcher at EURECOM. Her
current research interests are the
design of security and privacy
solutions for cloud computing,
accountability and user-centric
networking. She was involved
in many European and national
French research projects. She
holds a PhD in Computer Sci-
ence from ENST (2005); her
thesis was focusing on securing

multicast communications in satellite networks.

Sergio Loureiro, CEO and
Co-Founder of SecludIT, has
worked in network security for
more than 15 years. He has
occupied top management po-
sitions in 2 startups where he
was responsible for email secu-
rity products and services, and
security gateways. Before he
was the lead architect for a num-

ber of security products such as SSL VPNs, log man-
agement, web security and SSL crypto accelerators. His
career started in several research labs, where he partici-
pated in European projects focusing on security. Sergio
holds a Ph.D. in computer science from the ENST Paris
and MSc and BSc degrees from the University of Porto
(Portugal). He is the holder of 3 patents.

18

	Introduction
	Background
	Deduplication
	Convergent Encryption
	Weaknesses of Convergent Encryption

	Related Work
	ClouDedup
	The Server
	Block-level Deduplication and Key Management
	Threat Model

	Components
	User
	Server
	Metadata Manager (MM)
	Cloud Storage Provider (SP)
	ClouDedup's architecture in practice

	Protocol
	Storage
	Retrieval

	Evaluation
	Storage Space
	Computation
	Storage
	Retrieval

	Security

	Conclusion and Future Work

