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ABSTRACT

This paper presents a new approach to feature-level phone
normalisation which aims to improve speaker modelling in
the case of short-duration training data. The new approach is
referred to as phone adaptive training (PAT). Based on con-
strained maximum likelihood linear regression (cMLLR) and
previous work in speaker adaptive training (SAT), PAT learns
a set of transforms which project features into a new phone-
normalised but speaker-discriminative space. Originally in-
vestigated in the context of speaker diarization, this paper
presents new work to assess and optimise PAT at the level
of speaker modelling and in the context of automatic speaker
verification (ASV). Experiments show that PAT improves the
performance of a state-of-the-art iVector ASV system by 50%
relative to the baseline.

Index Terms— Speaker modelling, short-duration, phone
adaptive training, automatic speaker verification

1. INTRODUCTION

Many automatic speech processing applications are required
to operate in the face of varying data quantities. When data
is plentiful, phonetic or nuisance variation can be implicitly
normalised or marginalised and often has limited or no im-
pact on performance. For example, the use of long-duration
training and testing data in text-independent speaker verifica-
tion effectively compensates for the effect of differing phone
content. In contrast, when training data is scarce, then perfor-
mance can degrade drastically if the phonetic variation is dis-
similar to that encountered in testing; phonetic variation is no
longer marginalised. Short-duration text-independent speaker
verification [1–3] and speaker diarization [4, 5] are two such
examples in which either speaker models can be trained on
low quantities of data or well-trained models can be compared
to short test segments. In both cases there is a bias towards
the specific phone content [6, 7].

Drawing upon the related work in short-duration auto-
matic speaker verification (ASV) [2, 3, 8] we have thus inves-
tigated approaches to normalise phone variation, originally in
the scope of speaker diarization. The central aim is to project

acoustic features into a new space in which phone discrimina-
tion is minimised while speaker discrimination is maximised.
The outcome of this work is based on the original idea of
speaker adaptive training (SAT) [9], a technique commonly
used in automatic speech recognition (ASR) and language
recognition [10,11]. SAT projects speaker-dependent features
into a speaker-neutral space in order that recognition may be
performed reliably using speaker-independent models. By
interchanging the role of phones and speakers, we applied
the same ideas to suppress phone variation while emphasis-
ing speaker variation. The resulting algorithm, first reported
in [12], is referred to as phone adaptive training (PAT). Initial
experiments showed that PAT can reduce phone variation by
55% while increasing speaker discrimination by 27%. While
subsequent experiments with integrated PAT and speaker di-
arization showed the potential, results failed to meet early ex-
pectations.

While PAT operates at the feature level and targets im-
proved speaker modelling, its use within a speaker diariza-
tion framework makes for somewhat troublesome optimisa-
tion. Our most recent work has thus sought to assess and op-
timise PAT in isolation from the convolutive complexities of
speaker diarization and under strictly controlled conditions.
This paper analyses PAT performance when applied to short-
duration, text-independent ASV using a dataset manually la-
belled at the phone level.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines previous related work. The principles and im-
plementation of phone adaptive training are described in Sec-
tion 3. Section 4 describes the experimental setup used to
obtain results presented in Section 5. Our conclusions and
ideas for future work are presented in Section 6.

2. PRIOR WORK

The influence of phone variation in degrading the perfor-
mance of short duration speaker recognition and speaker
diarization is well acknowledged [3,6,7,13]. The work in [7]
illustrates that, as the quantity of data used for model training
is reduced, then the phone distribution tends to be more and
more dissimilar. In [1], Fauve et al. analysed the impact of



short-duration training utterances on two automatic speaker
verification (ASV) systems: a Gaussian mixture model sys-
tem with a universal background model (GMM-UBM) and
a GMM supervector system based on a support vector ma-
chine (SVM) classifier. They showed that conventional inter-
session compensation techniques and ASV attain sub-optimal
performance when confronted with short-duration training ut-
terances. The same authors following work [8] highlighted
the sensitivity of speech activity detection (SAD) and the
limitations of maximum a posteriori (MAP) adaptation in
the case of short-duration training. Eigenvoice modelling was
shown to improve robustness by removing model components
which are insufficiently adapted as a result of training data
scarcity.

Other authors have investigated the impact of duration
mis-match, namely differences in the data quantities used for
modelling and testing. In the context of a joint factor analysis
(JFA) system, Vogt et al. [2] showed that ASV performance
degrades when speaker and channel sub-spaces are trained
on full-length utterances, but short utterances are used for
testing. This behaviour is caused by the phone-variation in
short utterances which tends to dominate the effects of inter-
session variability. Improved ASV performance was obtained
by training the channel subspace matrix on utterances of du-
ration similar to those encountered during testing. Other work
reported in [3,7,13,14] showed similar effects on iVector [15]
and probabilistic linear discriminant analysis (PLDA) [16]
system variants. Common to all this work is the modelling
and testing using similar quantities of data, thereby marginal-
ising to some extent the effects of phone-variation.

The work in [17–19] all investigated approaches to com-
pensate for phone variation in the context of speaker identifi-
cation (SI). That in [17] investigated the projection of features
into a phone-independent subspace in order to improve text-
independent SI. Based on the assumption that phone varia-
tion dominates speaker variation, the phone-independent sub-
space is learned using principal component analysis (PCA).
Features are then projected onto the eigenvectors which cor-
respond to the lowest eigenvalues. In [18] probabilistic prin-
cipal component analysis (PPCA) is used instead to learn the
phoneme-independent subspace.

Other more generalised techniques such as maximum
likelihood linear regression (MLLR) and constrained maxi-
mum likelihood linear regression (cMLLR), have been used
extensively to improve speaker discriminability and thus to
improve ASV performance. Stolcke et al. [20] and Fer-
ras et al. [21] both used speaker dependent MLLR and cM-
LLR transforms in order to model the difference between
speaker independent and dependent models. The estimated
transforms capture speaker dependent characteristics and are
used themselves as features in order to train SVM-based
verification systems. With the aid of ASR transcripts, these
approaches can exploit knowledge of the phone content in
order to estimate phone-neutral speaker models [20]. Stol-
cke’s later work [22] showed that the same phone content can
be used to derive more speaker-discriminative cMLLR trans-
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Fig. 1: The concept of phone adaptive training (PAT) which
projects input features into a new, phone-normalised space.

forms using speech-constrained phonetic regions defined by
prosodic and phonetic criteria.

When training data is scarce, for instance in the case
of short-duration ASV or in the case of model initializa-
tion in some approaches to speaker diarization, the learning
of speaker and phone specific transforms can be imprac-
tical. Phone adaptive training (PAT), introduced by Bo-
zonnet et al. [12], differs from the previous work in that
phone-dependent cMLLR transforms are learned in a speaker-
independent fashion. By using speech data collected offline
from a large pool of speakers, the resulting transforms give
improved performance in the case of limited speaker-specific
data. As illustrated in Figure 1 PAT is used to project acoustic
features into a new, phone-normalised space which is more
discriminative in terms of speakers. Of particular appeal,
the projected features can be used in the place of baseline
features with any ASV or diarization system.

PAT was originally investigated within the context of
speaker diarization. Intermediate experiments which as-
sessed the impact of PAT in terms of speaker and phone
discrimination showed the potential but gave only modest im-
provements in diarization performance. This paper presents
an assessment of PAT for automatic speaker verification at
the speaker modelling level, i.e. beyond the basic assessment
of discrimination, but independently from diarization.

3. PHONE ADAPTIVE TRAINING

Starting with background MLLR and cMLLR theory, this sec-
tion describes the principles and specific implementation of
PAT used for all experimental work presented in this paper.

3.1. MLLR and cMLLR

Maximum likelihood linear regression (MLLR) is an affine
transform approach to model adaptation. The aim is to reduce
the mismatch between a model and an adaptation dataset. As
detailed in [23, 24], when the model is a GMM with initial
model mean µ and covariance Σ, then the adapted mean µ̂
and covariance Σ̂ are estimated according to:



µ̂ = Aµ+ b (1)
Σ̂ = BHBT (2)

where the transform is characterized by an n × n regression
matrix A (n being the dimension of the feature space), an
n-dimensional bias vector b and an n × n matrix H . B is
the inverse of the Cholesky factor of Σ−1. Both A and b are
optimized according to a standard expectation maximisation
(EM) algorithm [25] to maximize the likelihood of the model
with respect to the adaptation data.

In contrast to standard MLLR, which requires two dif-
ferent, independently optimised transforms, (A, b) and H ,
the constrained MLLR (cMLLR) algorithm requires a single
transform W = (A, b) to adapt both mean and variance pa-
rameters [26]. Equations 1 and 2 then become:

µ̂ = Aµ+ b (3)
Σ̂ = AΣAT (4)

where the transformA and b are the constrained n× n trans-
form matrix and the n-dimensional bias vector respectively,
both still estimated in the maximum likelihood sense from the
training data. Since the mean and the variance transforms are
tied, in addition to model transformation, cMLLR can also be
used to transform an acoustic feature o according to:

ô = A−1o−A−1b (5)

The application of cMLLR at the feature level is the start-
ing point for PAT.

3.2. Phone Adaptive Training

The motivation behind PAT stems from the idea behind SAT,
a technique commonly used in ASR. SAT aims to decouple
speaker and phone variation and to preserve only the latter
in order that ASR may be performed reliably using speaker-
independent models. In order to decouple speaker and phone
variation, SAT jointly estimates a canonical speaker indepen-
dent acoustic phonetic model λ and a set of speaker trans-
forms to capture unwanted speaker variability. In contrast,
PAT aims to suppress phone variability in order to provide
speaker-discriminative features for speaker modelling.

We suppose a dataset of utterances collected from S dif-
ferent speakers. Each utterance is composed of P different
phones such that the global set of acoustic features is repre-
sented by Os,p = (os,p,1, . . . ,os,p,Ns,p

) where Ns,p is the
number of acoustic features corresponding to each speaker
s ∈ S and each phone p ∈ P . For each phone p, PAT es-
timates iteratively a transformation W̃ p = (Ãp, b̃p) which
captures the phone variation across speakers. Simultaneously,
PAT learns a set of phone-normalised speaker models Λ̃ =
(λ̃1, . . . , λ̃S). The algorithm is thus defined by:

(
Λ̃, W̃

)
= arg max

Λ,W

S∏
s=1

P∏
p=1

L (Os,p|W p,λs) (6)

where W̃ = (W̃ 1, . . . , W̃ p) represents the set of phone
transforms. As in Equation 5, phone-normalized features
Õs,p are then obtained according to:

õs,p,t = Ã
−1

p os,p,t − Ã
−1

p b̃p (7)

where t = 1, . . . , Ns,p is the feature index. Since there is no
closed-form solution, Equation 6 is optimised iteratively.

We denote by O(0)
s,p the set of initial acoustic feature vec-

tors for each speaker s and phone p. The initial step consists
in training a set of speaker models Λ = (λ(0)

1 , . . . ,λ
(0)
S ) us-

ing the initial acoustic features vectors. Then, for each itera-
tion i, the algorithms proceeds as follows:

1. Estimate a cMLLR transform W (i)
p = (A(i)

p , b(i)p ) for
each phone p such that:

W (i)
p = arg max

W

S∏
s=1

L
(
O(i−1)

s,p

∣∣∣W ,λ(i−1)
s

)
(8)

2. Apply the transform W (i)
p obtained in step 1 to the set

of acoustic features resulting from iteration i− 1 to ob-
tain a new set of phone-normalised acoustic features for
each speaker s and phone p:

o
(i)
s,p,t = A(i)−1

p o
(i−1)
s,p,t −A

(i)−1

p b(i)p (9)

3. Through MAP adaptation of speaker models Λ(i−1)

obtained at step i − 1, estimate a new set of nor-
malised speaker models Λ(i) = (λ(i)

1 , . . . ,λ
(i)
S ) for

each speaker s, using the phone-normalised acoustic
featuresO(i)

s,p obtained in step 2.

4. Increase i to i + 1 and iterate from step 1 until a maxi-
mum number of iterations is reached.

For each speaker s and phone p, the final iteration pro-
duces phone-normalised acoustic features Õs,p, cMLLR
phone transforms W̃ p and phone-normalised speaker mod-
els Λ̃.

In practice, due to data limitations, it can be preferable
to learn transforms W̃ p for groups of phones, often referred
to as phone classes or acoustic classes, instead of individual
phones. Based on linguistic analysis, suitable classes can be
learned with a binary regression tree. As illustrated in Fig-
ure 2, the root node is initialized with a single acoustic class
containing the full set of phones illustrated in Table 1. Each
node is progressively split into smaller sub-classes for which
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Fig. 2: An illustration of regression tree analysis used to iden-
tify suitable acoustic classes or groups of phones for PAT.

separate transforms W̃ p are determined. The split is made ac-
cording to that which maximises the data likelihood in Equa-
tion 6. The pooling of data according to acoustic classes, in-
stead of phones, allows the reliable estimation of a smaller set
of transforms with less data.

PAT thus results in phone-normalised acoustic features
from which more discriminant, phone-normalised speaker
models can be learned. In the following we seek to assess
PAT performance through a series of experiments performed
on the TIMIT database [27] which is manually labelled at the
phone level.

4. EXPERIMENTAL SETUP

In contrast to our previous work [12] which was performed on
the NIST Rich Transcription datasets in the context of speaker
diarization, the work reported in this paper was performed
on the TIMIT database and in the context of ASV. The full
experimental setup is described here.

4.1. Database

The TIMIT database [27] is composed of high-quality, read
speech collected from a total of 630 speakers (192 female,
438 male). Each speaker contributes 10 short, phonetically-
rich English language sentences whose average duration is
3 seconds. All data from a subset of 462 speakers (136 fe-
male, 326 male) is set aside for the learning of a UBM (4620
speech recordings in total) whereas that from the remaining
168 speakers (56 female, 112 male) is used for ASV experi-
ments. One sentence per speaker is randomly selected and set
aside for testing. In order to assess PAT performance in the
case of varying quantities of training data, between 1 and 7
of the remaining sentences are randomly selected and used to
learn speaker models.

Table 1: The setup of 38 phones used for PAT.
ENGLISH-LANGUAGE PHONES IN

TIMIT ANNOTATIONS
hh, ih, z, eh, f, l, aa, b, ae, k, dh, dx, er,

iy, m, n, g, r, ey, w, v, ah, y, uw, d, s, t, ng, p,
sh, uh, ch, ay, ow, aw, th, jh, oy

4.2. Feature extraction and PAT

According to the ground-truth TIMIT transcriptions, all in-
tervals of non-speech are first removed. Remaining speech
is then parametrised by 12 mel-scaled frequency cepstral co-
efficients (MFCCs) augmented by normalized energy, delta
and acceleration coefficients thereby obtaining a feature vec-
tor with a total of 39 coefficients.

We investigated PAT performance using speaker models
of between 4 and 1024 GMM components. Models are de-
rived from the UBM using conventional maximum a posteri-
ori (MAP) adaptation. PAT transforms W̃ p for each phone
p ∈ P are then learned from a set of acoustic classes de-
rived from the initial set of 38 phones illustrated in Table 1. A
number of acoustic classes is controlled in the conventional
manner with a regression tree. Independent transforms are
learned for male and female speakers and for the set of utter-
ances used to train the UBM and for ASV experiments.

The global PAT process (steps from 1 to 4) described in
Section 3 was implemented with the Hidden Markov Model
Toolkit (HTK) [28], in particular for creating the binary re-
gression tree and for estimating the cMLLR transforms by
solving Equation 8.

4.3. Speaker verification systems

We assessed PAT performance on two different ASV sys-
tems: a traditional GMM-UBM system and a state-of the art
iVector-PLDA system. Baseline experiments were performed
using the initial set of features Os,p (or derived iVectors)
used in PAT initialisation while ASV experiments with PAT
are performed using the phone-normalised speaker features
Õs,p (or derived iVectors) previously defined in section 3. For
the iVector-PLDA system we estimated the total variability
matrix using the same data used to estimate the UBM. Due to
data limitations and since we do not aim to optimise ASV, but
to observe the difference in ASV performance with PAT, the
PLDA model is learned with the same development iVectors.

5. EXPERIMENTAL RESULTS

PAT performance is analyzed first, in terms of speaker and
phone discrimination statistics, and second, in terms of its im-
pact on ASV performance.
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Fig. 3: Average phone and speaker discrimination for up to
10 iterations of PAT. Results shown for the 112 male speakers
in the test dataset.

5.1. Speaker and phone discrimination

As reported previously in [12,29], speaker and phone discrim-
ination can be assessed at the feature level in terms of Fisher
scores. They reflect the ratio of inter and intra class variance,
where classes infer the subset of features corresponding to
distinct speakers or distinct phones.

Given Ci, i = 1, . . . , S classes (phones or speakers)
and a set of N labelled features ot, t = 1, . . . , N with
Ti = {t|ot ∈ Ci}, the Fisher score is defined as follows:

SFisher =

S∑
i=1

S∑
j=1

(µi − µj)T (µi − µj)

S∑
l=1

∑
t∈Tl

(ot − µl)T (ot − µl)
(10)

where µi is the mean for class Ci and ot is the t-th feature in
the subset corresponding to class Cl.

Figure 3 illustrates average phone and speaker discrimi-
nation for the 112 male speakers in the test dataset. Discrimi-
nation is plotted as a function of PAT iterations. As expected,
PAT reduces the phone discrimination (dashed profile) sig-
nificantly. A rapid drop occurs after a single iteration. The
algorithm converges with 10 iterations, after which the phone
discrimination is approximately 50% lower than without PAT.
Importantly, PAT also enhances speaker discrimination (solid
profile). Figure 3 shows that after 10 iterations, speaker dis-
crimination increases by approximately 43%.

Features exhibiting lower phone discrimination but higher
speaker discrimination should result in more discriminative
speaker models. While improvements in ASV performance
might be modest when training data is plentiful (models will
be inherently phone-normalised without PAT), performance
should improve in the case of limited training data. We now
seek to verify this hypothesis with ASV experiments.

5.2. Automatic Speaker verification

Figure 4 illustrates the performance of GMM-UBM (left)
and iVector-PLDA (right) systems, with and without PAT,
for model sizes between 4 and 1024 components. Results
indicate the equal error rate (EER) and are shown for models
trained with 1, 3, 5 or 7 TIMIT sentences per speaker as
described in section 4.1. In all cases, baseline performance
is illustrated with clear bars. In general, as the amount of
training data increases, then better performance is obtained
with increasingly complex models. Noting the difference
in scale between plots for each system, we also see that the
iVector-PLDA system outperforms the GMM-UBM system
when models are trained with relatively little data (top plots),
whereas similar level of performance are achieved when
larger quantities are used (bottom plots).

We now turn to the assessment of PAT performance il-
lustrated in Figure 4 by shaded bars. In general, for smaller
model sizes and for both GMM-UBM and iVector-PLDA sys-
tems, performance with PAT is better than without – shaded
bars are lower than clear bars. While improvements are
mostly greater in the case of low quantities of training data
(top plots), modest improvements are also observed for the
greatest quantities of training data (bottom plots). In some
cases, for higher model sizes, PAT degrades performance.
While it is difficult to explain these observations precisely,
we expect this behaviour to be the result of over-fitting;
with PAT, features are phone-normalised and accordingly
require models of less complexity. Indeed optimal baseline
performance is generally obtained with models of greater
complexity than obtained by the same system with PAT.

Detection error trade-off (DET) profiles for both (a)
GMM-UBM and (b) iVector-PLDA systems are illustrated in
Figure 5. The two plots illustrate performance when speaker
models of optimal size in each case are learned with only a
single sentence (and thus corresponds to Figure 4a), with or
without PAT. Baseline EERs of 4.2% and 2.4% are shown to
fall to 3.6% and 1.2% with the application of PAT. PAT thus
delivers significant improvements in ASV performance in the
case of short-duration training.

Table 2 illustrates a summary of performance for both
GMM-UBM and iVector-PLDA systems for different quan-
tities of training data. Results correspond to optimal model
sizes in each case. When speaker models are trained on a sin-
gle sentence, the baseline iVector-PLDA system outperforms
the baseline GMM-UBM system by 43% relative (EERs of
4.2% c.f. 2.4%). When 7 sentences are used, both systems
attain the same baseline EER of 0.6%. PAT leads to bet-
ter or equivalent performance in all cases. When speaker
models are learned with only a single sentence, baseline
EERs decrease to 3.6% and 1.2% for the GMM-UBM and
iVector-PLDA systems respectively. Of particular note, the
greatest improvements in ASV performance are obtained for
the iVector-PLDA system where performance is improved by
50% relative, irrespective of the quantity of training data.
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(b) models trained with 3 sentences
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(c) models trained with 5 sentences
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Fig. 4: An illustration of ASV performance for different model complexities (4-1024) and for varying quantities of training
data (1-7 TIMIT sentences). Plots show the EER for GMM-UBM (left) and iVector-PLDA (right) systems with (shaded bars)
and without 5 iterations of PAT (clear bars).



0.1 0.2 0.5 1 2 5 10 20 30

0.1

0.2

0.5

1

2

5

10

20

30

False Acceptance Rate [in %]

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 [
in

 %
]

 

 

GMM−UBM

GMM−UBM + PAT

(a) GMM-UBM

0.1 0.2 0.5 1 2 5 10 20 30

0.1

0.2

0.5

1

2

5

10

20

30

False Acceptance Rate [in %]

M
is

s
e
d
 D

e
te

c
ti
o
n
 R

a
te

 [
in

 %
]

 

 

iVector−PLDA

iVector−PLDA + PAT
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Fig. 5: Detection error trade-off (DET) plots for GMM-UBM
and iVector-PLDA systems with and without 5 iterations of
PAT and for models trained with a single TIMIT sentence.

6. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of speaker modelling in the
case where training data is scarce. It reports new experiments
to assess and optimise a new approach to phone normalisation

Number of sentences
for speaker model training

Baseline
(EER %)

Baseline + PAT
(EER %)

1 4.2 3.6
3 1.8 1.0
5 0.6 0.6
7 0.6 0.6

(a) GMM-UBM

Number of sentences
for speaker model training

Baseline
(EER %)

Baseline + PAT
(EER %)

1 2.4 1.2
3 1.1 0.4
5 1.1 0.4
7 0.6 0.3

(b) iVector-PLDA

Table 2: An illustration of EERs for the GMM-UBM and
the iVector-PLDA systems with varying quantities of training
data. Results shown for optimal model sizes in each case.

referred to as Phone Adaptive Training (PAT). PAT is based
on the application of constrained maximum likelihood linear
regression (cMLLR) to reduce phone influence at the feature
level, while simultaneously emphasising speaker discrimina-
tion. As such, PAT has utility in any application involving
speaker modelling, for example speaker diarization or speaker
recognition.

In contrast to previous work which used PAT for speaker
diarization, this paper presents our first work to optimise and
evaluate PAT at the speaker modelling level, with small-scale
automatic speaker verification (ASV) experiments performed
on the TIMIT database. We show that PAT is successful in
reducing phone bias and that it improves significantly the
performance of both traditional GMM-UBM and iVector-
PLDA ASV systems in the case of short-duration training.
Also of appeal, PAT can typically achieve better performance
with less complex models, requiring only the application
of a straightforward feature-level linear transform prior to
verification.

Our future work will continue the exploration of auto-
matic approaches to acoustic-class transcription; PAT does
not necessarily require phone-level transcriptions. Also,
while PAT has particular appeal for short-duration ASV, our
original goal involves speaker diarization. Other future work
will therefore explore the use of speaker level transcriptions
derived automatically through diarization and alternative,
speaker-independent approaches to phone normalisation. Fi-
nally, with an interest in embedded, mobile device applica-
tions, we are also investigating the potential for implementing
PAT in real-time.
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