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Abstract

This thesis is composed of two main parts. In the first part, we deal with the mo-
nomicrophone speech separation problem. In general, The problem of blind source
separation (BSS) arises in a variety of fields in speech processing such as speech
enhancement, speakers diarization and identification. Several methods for BSS con-
sider several observations of the same recording. Single microphone analysis is the
worst underdetermined case, but, it is also the more realistic one. In this thesis,
we propose two main monomicrophone speech separation algorithms. The first al-
gorithm is developed in the time domain. The autoregressive (AR) structure and
the periodic signature of voiced speech signal are modeled. Two state space models,
linear and bilinear, with unknown parameters are derived. The expectation maxi-
mization (EM) terminology is used for each state space model to derive a variety of
algorithm that estimates jointly the unknown parameters and the sources. A sec-
ond variety of algorithm for the bilinear state space model is derived where an extra
fixed-interval smoothing step is introduced. Simulations show the performance of
the different algorithm to achieve separation and establish a comparison between
the three varieties.

The second monomicrophone algorithm is derived in the frequency domain. Un-
like the methods proposed in the time domain, in the frequency domain algorithm
we estimate the parameters and the sources separately. We keep the same speech
model used with temporal methods (quasiperiodic sources with AR spectral en-
velope). We focus on the use of windows in the frequency domain processing of
data for the purpose of spectral parameters estimation. Classical frequency domain
asymptotics replace linear convolution by circulant convolution leading to approxi-
mation errors. We show how the introduction of windows can lead to slightly more
complex frequency domain techniques, replacing diagonal matrices by banded ma-
trices, but with controlled approximation error. We focus on the estimation of zero
mean Gaussian data with a parametric spectrum model and show the equivalence
of three approximation/estimation criteria: Itakura-Saito distance (ISD), Gaussian
maximum likelihood (GML) and optimally weighted covariance matrix (OWCM).

In the second part of the thesis, we consider the problem of linear MMSE
(LMMSE) estimation (such as Wiener and Kalman filtering) in the presence of
a number of unknown parameters in the second-order statistics that need to be
estimated also. This well-known joint filtering and parameters estimation problem
has numerous applications. It is a hybrid estimation problem in which the signal
estimated by linear filtering is random, and the unknown parameters are determin-
istic. As the signal is random, it can also be eliminated (marginalized), allowing
parameters estimation from the marginal distribution of the data. An intriguing
question is then the relative performance of joint vs. marginalized parameters es-
timation. In this part, we consider jointly Gaussian signal and data and we first
provide contributions to Cramér-Rao bound (CRB)s. We characterize the differ-
ence between the hybrid information matrix (HIM) and the classical marginalized
Fisher information matrix (FIM) on the one hand, and between the FIM (with CRB
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asymptotically attained by the maximum likelihood (ML)) and the popular mod-
ified FIM, modified FIM (MFIM), the inverse of modified CRB which is a loose
bound. We then investigate three iterative (alternating optimization) joint esti-
mation approaches: Alternating maximum a posteriori (MAP) for signal and ML
for parameters alternating MAP/ML (AMAPML), which in spite of a better HIM
suffers from inconsistent parameters bias, EM which converges to (marginalized)
ML (but with AMAPML signal estimate), and variational Bayes (VB) which yields
an improved signal estimate with the parameters estimate asymptotically becoming
ML.
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Résumé

Nous traitons le sujet de l’estimation conjointe des signaux aléatoires dépendant
de paramètres déterministes et inconnus. En première partie, nous abordons le su-
jet du côté applicatif en proposant deux algorithmes itératifs de séparation de la
parole voisée mono-capteur. Dans le premier algorithme, nous utilisons le modèle
autorégressif de la parole qui décrit les corrélations court et long termes (quasi-
périodique) pour formuler deux modèles d’Etat dépendant de paramètres inconnus
linéairement et bilinéairement. EM-Kalman est ainsi utilisé pour estimer conjointe-
ment les sources et les paramètres. Nous dérivons trois variétés de cet algorithme.
La première variété applique EM-Kalman sur le modèle linéaire en se limitant à un
lissage à délai fixe (un délai de 1 échantillon), cette limitation est due à la singularité
de la matrice de covariance d’erreur de prédiction. Les deux autres variétés consis-
tent à appliquer EM-Kalman au modèle bilinéaire en utilisant le lissage RTS dans
la première et le lissage à délai fixe (délai de 1 échantillon aussi) dans la deuxième.
Les simulations avec signaux synthétiques confirment la supériorité de la deuxième
variété (modèle bilinéaire avec lissage RTS) sur le reste grâce à l’étape lissage RTS.
Les deux autres méthodes montrent des performances très proches. Avec les signaux
réels, la méthode à base du modèle linéaire a montré des performances proches du
modèle bilinéaire avec lissage RTS et mieux que celui avec lissage à délai fixe surtout
en termes de SIR.

Dans le deuxième, nous proposons une méthode fréquentielle pour le même
modèle de la parole utilisé avant mais cette fois nous estimons les sources et les
paramètres séparément. Les observations sont découpées à l’aide d’un fenêtrage bien
conçu pour assurer une reconstruction parfaite des sources après. Les paramètres
(de l’enveloppe spectrale) sont estimés en maximisant le critère GML appliqué au
spectre des données. Dans les méthodes asymptotiques qui utilisent des fenêtres
infiniment longues, la matrice de covariance du spectre est modélisée par une ma-
trice diagonale (spectre paramétrique en diagonal). Dans le cas d’une fenêtre à
longueur finie, nous modélisons plus correctement la matrice de covariance du spec-
tre en tenant compte de l’effet de ce fenêtrage qui introduit des corrélations entre
les fréquences au voisinage du lobe principal de la fenêtre. Dans ce cas, la matrice
de covariance devient une matrice bande. Après estimation des paramètres, le filtre
de Wiener est utilisé pour estimer les sources par fenêtre. Finalement, les sources
complètes sont reconstruites en utilisant la technique d’overlap-add.

En deuxième partie, nous abordons l’estimation conjointe d’un point de vue plus
théorique en s’interrogeant sur les performances relatives de l’estimation conjointe
par rapport à l’estimation séparée d’une manière générale. Nous considérons le
cas conjointement Gaussien (observations et variables cachées) et trois méthodes
itératives d’estimation conjointe: MAP en alternance avec ML, biaisé même asymp-
totiquement pour les paramètres, EM qui converge asymptotiquement vers ML et
VB que nous prouvons converger asymptotiquement vers la solution ML pour les
paramètres déterministes.
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ACRB asymptotic Cramér-Rao bound

AMAPML alternating MAP/ML

AR autoregressive

ASA auditory scene analysis

BB Barankin bound

BCRB Bayesian Cramér-Rao bound

BIM Bayesian information matrix

BSE blind source extraction

BSS blind source separation

CASA computational auditory scene analysis

CCRB conditional Cramér-Rao bound

CE conjugate-exponential

CELP code-excited linear prediction

CRB Cramér-Rao bound

DFT discrete Fourier transform

DTFT discrete-time Fourier transform

EKF extended Kalman filter

EM expectation maximization

EMCB extended Miller-Chang bound

FIM Fisher information matrix

FIR finite impulse response

GML Gaussian maximum likelihood

GMM Gaussian mixture model

HCRB hybrid Cramér-Rao bound

HIM hybrid information matrix
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HMM hidden Markov model

ICA independent component analysis

IIR infinite impulse response

ISD Itakura-Saito distance

JCRB joint Cramér-Rao bound

KLD Kullback-Leibler divergence

LMMSE linear MMSE

LPC linear prediction coding

LSE least square error

LTP long term prediction

LU lower upper

MAP maximum a posteriori

MCB Miller-Chang bound

MCRB modified Cramér-Rao bound

MFIM modified FIM

ML maximum likelihood

MMSE minimum mean square error

MSE mean square error

NCCF normalized cross-correlation function

NLS nonlinear least square

NMF non-negative matrix factorization

OWCM optimally weighted covariance matrix

OWSM optimally weighted spectrum matrix

pdf probability density function

PESQ perceptual evaluation of speech quality

PR perfect reconstruction
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PSD power spectral density

QEKF quadratic extended Kalman filter

RAPT robust algorithm for pitch tracking

RLS recursive least squares

RPEM recursive prediction error method

RTS Rauch-Tung-Striebel

SAGE space-alternating generalized EM

SAR sources-to-artifacts ratio

SDR source-to-distortion ratio

SIR source-to-interferences ratio

SNR source to noise ratio

SOEKF second order extended Kalman filter

SOELMMSE second order extended LMMSE

SSR signal to signal ratio

STFT short time Fourier transform

STP short term prediction

UDL upper diagonal lower

VB variational Bayes

VBEM variational Bayes for EM

VQ vector quantization
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Chapter 1

Introduction

1.1 Mono-microphone source separation

Noise and interference suppression is a fundamental problem that signal process-
ing community strive to resolve. Particularly in audio processing, having "clean"
sounds is very crucial into many applications such as speech recognition, speech de-
coding, music transcription, etc. Unfortunately, in real life, noise/interference-free
environment does not exist. In general, recorded sequences consist of a mixture
of several sounds, some specified as target signals and the rest as noise depending
on the application. for example in music transcription, noise will be defined as all
the instruments played except the target one. In speech enhancement, the aim is
to extract or "enhance" one target speech while considering all the rest as noise,
whereas in speech separation, we aim to extract more than one source.

In the first part of this thesis, we tackle the speech separation issue. Many fac-
tors affect the recorded mixture model, namely, microphones directivities and spac-
ing, static or moving sources, open or closed space, etc. For example, in a closed
room, we call the echoes and reverberation phenomena [Melia & Rickard 2007,
Mukai et al. 2001], the sound wave is reflected by walls and possible objects present
in the room which results in what we call echoes and reverberations. The short
delays refer to the echoes and the long delays to reverberation. The reverberation
time is exactly measured as the delay when the echoes become 60 dB less than
the original sound. Hence, the recorded sound results in a superposition of delayed
and attenuated versions of the original sound wave. In this case, the mixture is
described as convolutive. In specific contexts, these phenomena can be neglected
and the mixture is simplified to instantaneous mixture where the sources contribute
instantaneously to the mixture (each source is only weighted by a multiplicative
constant).

When the sources and the mixture model are both unknown, the problem is
ill-posed and need more assumptions to become resolved. The most famous as-
sumptions used in speech separation is mutual independence like in independent
component analysis (ICA) [Lee et al. 1999]. In addition to these assumptions and
when the number of microphones is greater than (or equal to) the number of sources
(overdetermined mixture), the problem becomes well-determined. We need only to
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estimate the inverse of the mixture function and the sources are deduced immedi-
ately. When the number of microphones is less than the number of sources (un-
derdetermined case), the problem becomes more difficult and more assumptions are
needed such as sparsity in time and frequency, periodicity or assuming a certain
a priori information to the sources. The most difficult case is definitely the mo-
nomicrophone speech separation, that is why generally the studied model is very
simplified (direct sum of sources) but still realistic in some contexts. In this thesis,
we will focus on the study of this model.

1.2 Joint estimation performance

Providing accurate estimations of unknown wanted signals/parameters is an impor-
tant omnipresent task in signal processing where the ultimate goal is to construct
optimal (in the mean square error (MSE) sense) and feasible estimators. A great
part of estimation problems can be described generally by the scheme of using obser-
vations estimating latent random variables and deterministic parameters. There are
two main strategies in literature, whether we estimate jointly the random variables
and the parameters by optimizing a joint criterium, or we marginalize the random
variables to get a new criterium that depends only on the deterministic parameters,
then the estimate of parameters resulting from the new criterium is plugged in the
joint criterium in order to estimate the random variables. An other issue is when
we transform the deterministic parameters to random ones by supposing a certain
a priori knowledge for them. The idea of randomizing the deterministic parameters
intends to add a new element in the estimation process, besides to the estimator
mean, which consists in the estimation error. The latter is also used in the random
variable estimation and we expect it to improve their estimation. An example of
terminology that applies this idea is the variational Bayes (VB) [Beal 2003].

New varieties of the well-known Kalman filter were proposed to solve the joint
estimation problem, namely, extended Kalman filter (EKF), second order extended
Kalman filter (SOEKF), expectation maximization (EM)-Kalman, VB-Kalman,etc.
The plurality of the proposed solutions raises an important question about the supe-
riority of one method relative to the other. In this thesis, we focus on comparing the
joint vs. marginalized estimation techniques in terms of Cramér-Rao bound (CRB)s,
we also compare the EM (deterministic parameters) and VB (random parameters)
in asymptotic regime.
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1.3 Organization and contributions

In Chapter 2, we introduce the problem of monomicrophone speech separation as a
special case (and the most difficult) of a general problem which is source separation.
We then review some applications of this issue in speech recognition ad hearing-aid
to justify our motivation to treat it. Since separation algorithms are applied to the
speech signal, an important point was to introduce the different proposals for speech
modeling starting from the deterministic model to the bayesian one based on the
speech features namely harmonicity and time correlations. Besides, these features
will play an important role on algorithms design as cues for separation. Afterward, a
survey of the different algorithm is done. The classification of the different methods
is very subjective, yet we followed the most common classification in the literature
which is the source-driven vs the model-driven methods. Where in the first category,
the separation is based on specific cues inferred in the observation signals while in
the second a presumed a priori model is set to the sources and a training phase is
necessary to learn it. The advantages and drawbacks of each category are discussed
too. We finally approach an important issue in this topic which is the performance
evaluation and comparison. In fact, in the scientific community, two main evaluation
strategies are used: an objective strategy based on preset mathematical criteria and
which provides a global quality description, a subjective strategy based on human
decision where the results are heard and assessed by audience on a specific data
base.

In Chapter 3, we present our first contribution in the monaural speech separation
topic. A time domain separation approach is proposed. A joint speech model
based on short term prediction (STP) and long term prediction (LTP) is used to
describe the short term and long term correlations of the signal. This model, well-
known in the speech coding framework, is exploited to formulate two state space
models (linear and bilinear) parameterized by the autoregressive (AR) coefficients
of sources. Since the involved signals are Gaussian, source estimation is achieved
using the EM-Kalman algorithm for each state space model, where in the E-step
the unknown parameters are updated using the state (sources) statistics computed
in the M-step using Kalman. An important advantage of this algorithm is that we
override the problems of sources reconstruction encountered in the frequency domain
based methods. A part of this work is published in [Bensaid et al. 2010b].

In Chapter 4, we present our second contribution in the monaural speech sepa-
ration topic. We switch to a frequency domain algorithm. The proposed algorithm
is processing per frame. The same joint model introduced in chapter 3 is used here
too to formulate the parametric spectrum of sources. Under a finite length win-
dow constraint, the equivalence of three cost functions that are Gaussian maximum
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likelihood (GML), Itakura-Saito distance (ISD) and optimally weighted covariance
matrix (OWCM) is analysed. The window effect on the covariance spectrum ma-
trix is also studied by taking into consideration the cross correlation between the
different frequencies. The GML criterium is used to derive the estimates of the
unknown parameters in an iterative fashion. The estimation of the source Spectra
is achieved by a Wiener filtering and finally the overlap-add technique is used for
their reconstruction in time .

In Chapter 5, we move to a new topic inspired by the two previous chapters. We
compare the joint estimation and separate estimation of jointly-Gaussian signals in
terms of lower bounds. In chapters 3 and 4, we dealt with the scenario of estimat-
ing random variables (sources) and deterministic parameters (joint speech model
parameters) using observation data, in other words, we are in a hybrid estimation
scenario. The benchmark of performance in the separate estimation problem (the
deterministic parameter estimation using the observations) is fixed using the CRB.
In the hybrid case, the benchmark is set by the hybrid Cramér-Rao bound (HCRB).
We propose to study the difference between the two bounds in order to understand
the effect of the random parameters on the deterministic ones. The difference be-
tween the CRB and the modified Cramér-Rao bound (MCRB) is also studied. This
work is published in [Bensaid & Slock 2013].

In Chapter 6, we aim to compare two famous iterative maximum likelihood (ML)
algorithms that are EM and variational Bayes for EM (VBEM). VBEM differs from
the terminology of EM by assuming a priori knowledge to the deterministic param-
eters. This assumption results the appearance of a new element in the estimation
process which is the parameters estimation error. The latter is used with the esti-
mate in the estimation of the random variables. In EM, we are only limited to use
the mean value of the parameters estimator for this task. Based on this observation,
we expect that the VB performs better than EM that is known to converge to the
ML solution. We prove that asymptotically, the VB converges to the ML solution.
This work is published in [Bensaid & Slock 2013].

Finally, in Chapter 7, we present the conclusions and the perspectives. We high-
light the key issues tackled in this thesis, we also point out the limitations of our
work which will be the starting point of new perspectives, such us the high depen-
dence of the separation algorithms on pitches tracking accuracy, and the probable
superiority of VB to EMin sub-asymptotic conditions.
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Chapter 2

Monaural speech separation

2.1 Introduction

Source separation is a general problem that may be encountered in different
domains, for instance in telecommunications, audio and biomedical processing
[Comon & Jutten 2010]. The proposed solutions are very influenced by the problem
context, namely, the number of observations compared to the dimension of the input
data, the nature of sources, the nature of the propagation space, etc. In this thesis,
we are mainly interested in speech signal. Therefore, it is important to understand
the features of this physical signal and see how it is mathematically modeled . Defi-
nitely, the speech model plays a key role in the separation algorithm design. In this
chapter, we start with introducing the source separation problem in general and the
specific case the thesis will be limited to. Then we give an overview of the different
applications of Monaural speech separation to justify our motivation to this issue.
Afterward, we make a brief analysis of speech signal characteristics. Finally, we
develop a review about the existing solutions and conclude.

2.2 Problem statement

Suppose we have K speakers (s1,t, s2,t, · · · , sK,t) talking at the same time and
their speech recorded by M -dimensional microphone array denoted by yt =

[y1,t, y2,t · · · , yM,t]
T . Here t denotes time. The speech separation task consists in

recovering the speech of every speaker separately. Generally, the measurements are
interpreted as a mixture of the present sources, corrupted by additive noise denoted
nt = [n1,t, n2,t · · · , nM,t]

T where nm,t is the noise corrupting the mth microphone

yt = h(st) + nt (2.1)

Where st is theK-dimensional source vector [s1,t, s2,t · · · , sK,t]T . WhenM is greater
or equal to the number of sources N , the mixture is said overdetermined and the
sources are recovered by estimating the inverse of the mixture function (or pseu-
doinverse if singular). When the number of observations is less than the number
of input sources, the problem becomes underdetermined and it requires more as-
sumptions and information about the sources to get solved. The extreme and most
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difficult case of the underdetermined mixture is the monaural case where only one
observation is available to recover the K sources, hence no space diversity can be
exploited. In addition to the number of observations, the characterization of the
mixture function h(.) depends tightly on the propagation space (enclosed/opened
space, the dimensions of the propagation room,etc.), reverberation and echoic ef-
fects may occur. In this case, the mixture will be the linear convolution between the
propagation channel and the sources. If we neglect the previous effects, the problem
is simplified to the instantaneous mixture

yt = hTst + nt (2.2)

In the monaural case and in order to simplify the problem, the channel effect is
neglected completely and the measurements are simply interpreted as a direct sum
of the sources corrupted by additive noise

yt =
K∑
k=1

sk,t + nt (2.3)

Here, yt is a scalar. Though this model may look simplistic, it is not far from
some realistic cases and many of the scientific community used it in their work
[Mowlaee 2010, Virtanen 2006a, Benaroya 2003]. This model will be also our main
focus in this first part of the thesis.

2.3 Applications of monaural speech separation

In real life applications, the speech separation is often a necessary pre-processing
step that aims to prepare the signals before starting the main process. For exam-
ple, speech separation is very important to succeed Automatic Speech Recognition
(ASR)[Cooke et al. 2010, Li et al. 2010, Shao et al. 2010]. In [Cooke et al. 2010],
the authors provide a comparison between different monaural speech separation
algorithms used in ASR when a background talker is speaking the same sen-
tences of the target talker. They prove by simulations that model-based ap-
proaches [Virtanen 2006b, Weiss & Ellis 2010] perform better than CASA ap-
proaches [Shao et al. 2010] in this task. In [Li et al. 2010], authors use jointly MAX-
VQ and CASA approaches to improve speaker identification and speech recognition
robustness. An other important application of speech separation is the hearing aid
and speech coding [H. Viste & G. Evangelista 2001]. The human auditive system
has naturally the ability to resolve signals and focus on the wanted target. Unfortu-
nately, this process becomes difficult for hearing-impaired persons especially in the
presence of background noise and cocktail-party like situations. Speech separation
can be also used for speech enhancement purpose [Schmidt et al. 2007]. Actually,
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speech enhancement can be considered as a particular case of speech separation
where one of the sources we want to separate is the additive noise. In general,
speech enhancement algorithms rely on the noise characteristics which are different
from the one of the enhanced source, but the speech separation methods generalize
to the case where the noise is also an interferant speech source. Another application
of speech separation is in the speaker diarization task [Anguera Miro et al. 2012]
which consists in determining "‘who spoke when?"’ by portioning the main audio
stream into segments according to the speaker identity. Diarization becomes more
complicated when the speakers talk simultaneously. A preprocessing step of speech
separation is definitely very helpful to simplify the segmentation task.

2.4 Speech signal modeling

The speech signal is a sound wave that owns specific features. These features will
definitely provide more useful information to the separation process. When we
plot a time domain speech sequence and its corresponding spectrogram (see figure
Fig. 2.1), we first notice strong time correlation between the neighboring samples
and the quasi-periodicity of some parts. In fact, the speech signal is generally divided
into voiced and unvoiced parts. These features have inspired several mathematical
models that try to describe as much accurate as possible the physical wave.

Sinusoidal modeling

A very well known suggested model is the sinusoidal model that is described as

st =

L∑
l=1

al cos(2πflt+ φl) + et (2.4)

where al, fl and φl are respectively the amplitude, frequency and phase of the
lth sinusoid, L is the order of the model, et is the residual noise. The sinusoidal
sum models the harmonic structure of speech signal resulting from the vocal cords
vibration. The frequencies {fl}l=1..L are the prominent peaks in the signal spec-
trum. The residual et contains the excitation power and represents all what is
not harmonic in the signal. In many cases, the sinusoidal model is used in the
complex form where the cos function is replaced by the complex exponential func-
tion. The sinusoidal model is considerably used in the problem of speech sepa-
ration [Quatieri & Danisewicz 1990, Mowlaee et al. 2011a, Chazan et al. 1993] and
multipitch tracking [sbø ll Christensen et al. 2008, Christensen et al. 2009] where
the main objective is to estimate accurately the model parameters (amplitudes,
frequencies, phases,etc.). In [sbø ll Christensen et al. 2008], the nonlinear least
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square (NLS), MUSIC and Capon estimators are applied to estimate the funda-
mental frequencies and the complex amplitudes. Whereas, in [Chazan et al. 1993],
an expectation maximization (EM)-based iterative approach is used to find the
maximum likelihood (ML) estimate of pitches. In [Mowlaee et al. 2011a], the si-
nusoidal model is used in monaural speech separation context, the parameters of
the model are considered as codevectors estimated from vector quantization (VQ)
codebooks trained from clean speech of the original speakers. The sinusoidal
model is also used in music to model instruments sounds [Virtanen & Klapuri 2000,
Virtanen & Klapuri 2001].

Autoregressive modeling

An other model proposed for speech is the autoregressive (AR) model where the
speech signal st is considered as an AR(p) process [Atal & Hanauer 1971]

st =

p∑
l=1

alst−l + et (2.5)

where p is the model order and {al}l=1..p are the AR coefficients that describe
the spectral envelope shape, et is the random innovation process. When et is de-
scribed as white noise, the model order p must be large enough to cover at least
one pitch period. Yet, this model is not really optimized since in practice, only the
first ten coefficients are significant, plus the one corresponding to one pitch delay
[Chu 2003]. The innovation process is alternatively modeled by an AR model where
only the coefficient corresponding to the pitch delay is nonzero (in the voiced case).
this is denoted by the joint model. The AR model is successfully used in speech
coding, mainly in linear prediction coding (LPC) where the signal is coded by its
AR coefficients and excitation [Atal & Remde 1982, Erkelens 1996]. A very famous
LPC algorithm is the code-excited linear prediction (CELP) coder introduced in
[Schroeder & Atal 1985]. The AR model was also used in mono-microphone and
multi-microphone speech enhancement [Weinstein et al. 1994, Gannot et al. 1997]
where the coefficients and innovation power are estimated in an EM-Kalman frame-
work. In speech separation, this model was used by the blind source separa-
tion (BSS) algorithms that exploit the temporal structure of sources to achieve
separation such as in [Smith et al. 2005, Cichocki et al. 2000] where the temporal
prediction error is minimized to estimate the AR coefficients and the mixing matrix
in the overdetermined case. This model will be treated more in details in chapter 3.

Gaussian mixture modeling

In a probabilistic framework, a speech signal can be modeled with a Gaussian mix-
ture model (GMM). This model considers that a source signal st is generated by a
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set of Gaussian subsources {sit}i=1..I , where I is the number of components present
in the set. In speech, we generally use it to express the probability density func-
tion (pdf) of the short time Fourier transform (STFT) where each subsource helps
to model a specific behavior of the speech spectrum

p(S(t, f)) =
I∑
i=1

wi N (S(t, f)|µi,Σi) (2.6)

where S(t, f) is the STFT of st, the multiplying coefficient wi represents the proba-
bility that the ith subsource is active, the term N (S(t, f)|µi,Σi) is the distribution
of S(t, f) when the subsource sit is active which is Normal of mean µi and co-
variance Σi. The GMM presentation is praised for its generality and ability to
model a large number of probable spectrum shapes, and therefore captures the
non-stationarity of the signal which made it used in automatic speech recognition
[Shao et al. 2010]. It is also used in speech separation methods that suppose a
prior knowledge about the sources [Radfar & Dansereau 2007, Ozerov et al. 2007,
Benaroya et al. 2006, Benaroya & Bimbot 2003] and where a training step is needed
to learn the pdfs parameters (means and covariances) from clean speech.

Figure 2.1: Time domain female speech (top figure) and its corresponding spectro-
gram (bottom figure)
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2.5 Review of the existing solutions

Since mono-microphone speech separation has started interesting the scientific com-
munity, many techniques were developed adopting different point of view of the
problem. Sometimes techniques overlap therefore any suggested classification of
them in the literature will be very subjective and depends on the authors’ points
of view. Yet, the most agreed opinion is to consider two main broad categories:
source-driven methods and model-driven methods. In the following, we will analyze
each group in more details.

2.5.1 Source-driven methods

In source-driven methods, no a priori knowledge about speakers is used, the
extraction of speech is done directly on the mixture by inferring some specific
cues [Bregman 1990], namely, harmonic concordance, synchronous changes of on-
set and offset, amplitude modulation,etc. The most well-known source-driven
method is the CASA approach [Hu & Wang 2004, Shao et al. 2010, Li et al. 2010,
Quatieri & Danisewicz 1990, Wang 2005].

CASA

computational auditory scene analysis (CASA) method is inspired from the natural
human processing to acoustic signals or what we term exactly auditory scene anal-
ysis (ASA)[Bregman 1990]. CASA processing is done in two steps: segmentation
and grouping. In segmentation step, the signal is transformed into time-frequency
domain and segmented to units or segments where each one corresponds to one sin-
gle speaker. The segmentation is based on periodicity for voiced speech, multi-scale
onset and offset analysis for unvoiced speech [Shao et al. 2010]. In the grouping
step, segments showing similarities are grouped in the same stream. There are two
types of grouping: simultaneous grouping and sequential grouping. In the simulta-
neous grouping, for each fixed time t whence the name simultaneous, segments are
grouped across frequency. It is especially voiced segments which are grouped here
since they are characterized with periodicity. After this step, we end up with simul-
taneous streams where each one corresponds to one speaker. Then these streams
are organized across time in the sequential grouping to produce the final streams of
each speaker in the mixture. The output of the CASA process consists of two time-
frequency binary masks (if there are two speakers in the mixtures) where 1 means
the presence of the target and 0 otherwise. In [Wang 2005], the author proves that
the ideal binary mask of a given target is a major computational goal of CASA.
The ideal binary mask is a binary matrix where the 1−valued coefficient means
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the target power is stronger than interference and 0 otherwise and the CASA-based
methods attempt to estimate this binary mask.

In [Quatieri & Danisewicz 1990], authors propose two methods based on sinu-
soidal modeling of voiced speech. The speech signal is modeled as the sum of sine
waves with time-varying amplitudes and phases which are the parameters to be
estimated. The first approach is the extension of the analysis/synthesis system to
the case of two speakers. The parameters of higher intensity speaker are estimated
first using high-resolution spectral analysis and peak-picking where then only largest
peaks are kept. After synthesizing the speech using sine-wave matching and interpo-
lation, the lower intensity speaker is deduced by subtracting the first estimated from
the mixture. In the second approach, the sine waves’ parameters are estimated by
minimizing the least-squares error between the mixture and the parametric model.
The performance of these approaches are very sensitive to the quality of pitches
estimation. When there is a priori information about pitches, good separation is
achieved down to −16dB speech-to-speech ratio, otherwise good results are only
obtained when the two sources have close powers.

In [Virtanen & Klapuri 2000], the authors use the sinusoidal modeling and the
analysis/synthesis process to achieve separation. Frequency and amplitude continu-
ity over frames and harmonic concordance are measured using heuristic distances.
Unlike the classical CASA systems, authors in [Hu & Wang 2004] suggest different
mechanisms to segregate resolved and unresolved harmonics of voiced speech. Un-
resolved harmonics can be segregated based on the auditory filter bank responses
used in front of the CASA process since they present special behaviour in their
presence (strongly amplitude-modulated responses and important fluctuations of
the responses’ envelopes around the fundamental frequency of target speaker).

2.5.2 Wiener filtering

Wiener filtering is a classical method used in speech enhancement
[Meyer & Simmer 1997, Ephraim 1992, Chen et al. 2006] where it provides
the minimum mean square error (MMSE) estimate of a target stationary source. It
is always applied on the STFT of speech signals in order to exploit their short time
stationarity. Wiener filtering is also used in monaural speech separation where, in
the case of estimating two speakers s1 and s2 from the observation y, the STFT
estimates of both sources are expressed as:

Ŝ1(t, f) =
σ2

1(f)

σ2
1(f) + σ2

2(f)
Y (t, f) (2.7)

Ŝ2(t, f) =
σ2

2(f)

σ2
1(f) + σ2

2(f)
Y (t, f) (2.8)
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where Y (t, f) is the STFT of y. σ2
1(f) and σ2

2(f) are the power spectral den-
sity (PSD) of their corresponding sources. It is noteworthy that the wiener filter
can be interpreted as a time-frequency masking where the mask coefficients are
the quantities weighting Y (t, f) in (2.7). In general, the Wiener based separation
algorithms differ from each other in the proposed model for sources and the estima-
tion/learning approaches of its corresponding parameters. In [Benaroya et al. 2003],
Benaroya et al. generalize Wiener filtering to estimate locally stationary non
Gaussian signals. They propose a parametric model where each source is decom-
posed to the sum of Gaussian processes multiplied by slowly time varying ampli-
tude factors. For each source, the PSDs of the Gaussian processes are estimated
from a codebook learned heuristically in the training phase. The slowly vary-
ing amplitudes are estimated in a sparse non negative decomposition method. In
[Benaroya et al. 2006, Benaroya & Bimbot 2003], the STFTs of sources are modeled
with GMM. The wiener filtering in (2.7) is modified to a time varying Wiener filter
and the STFT estimates of both sources become

Ŝ1(t, f) =
∑
k1,k2

γk1,k2(t)
σ2
k1

(f)

σ2
k1

(f) + σ2
k2

(f)
Y (t, f) (2.9)

Ŝ2(t, f) =
∑
k1,k2

γk1,k2(t)
σ2
k2

(f)

σ2
k1

(f) + σ2
k2

(f)
Y (t, f) (2.10)

where k1 and k2 are components from the Gaussian mixture of S1(t, f) and S2(t, f),
σ2
k1

(f) and σ2
k2

(f) are their corresponding PSDs and γk1,k2(t) is the probability of
k1 and k2 to be active at time t. The parameters of the model which are the PSD
and the prior weight of each component are estimated using the EM algorithm in
the training phase.

2.5.3 BSS-based methods

BSS techniques showed successful results in solving source separation problems,
especially in the determined and overdetermined cases. The most well-known BSS
technique is definitely the independent component analysis (ICA) [Comon 1994].
ICA aims to find a linear transformation W that maximizes the independence of
the output components of vector y where y = W × x and x is the observation
vector. Since only observations are used, it is necessary to make some assumptions
on sources.

A1: the involved sources should be mutually statistically independent.

A2: at most one source can have Gaussian distribution.

The sources are estimated up to a multiplicative constant. ICA and its deriva-
tives have been widely used in speech separation [Makino et al. 2007], especially to
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generate codebooks or features for a single channel of data [Davies & James 2007].
For instance, in [jin Jang et al. 2003, Jang et al. 2003, Jang & Lee 2002], Jang et
al. consider each source signal as generated by linear superpositions of weighted
basis functions, the time varying weighting coefficients have generalized Gaussian
pdfs. The generalized Gaussian ICA learning algorithm [Lee & Lewicki 2000] is ap-
plied for each source in the training step in order to estimate the basis functions
and the parameters of the generalized Gaussian pdfs in order to use them as prior
information in the main separation algorithm. In the single channel case, ICA can
be efficiently used as long as the spectral supports of sources are disjoint, otherwise,
the separation becomes hard.

2.5.4 NMF-based methods

The non-negative matrix factorization (NMF) is an emerging technique in BSS
[Lee & Seung 1996, Lee & Seung 2000]. It is based on approximating a matrix X
(the known data) as the product of two matrices, W and H, with forcing the
constraint that all matrices are non-negative:

X ≈ WH s.t W , H ≥ 0 (2.11)

The approximation in (2.11) is formulated into an optimization problem where W
and H are estimated by minimizing (or maximizing) a cost function D(.)

(Ŵ , Ĥ) = arg min
W , H≥0

D(X;W ,H) (2.12)

The choice of the cost function D(.) depends on the application con-
text and the prospective a priori information assumed for the data X

and the parameters W and H. Several cost functions was used such
as ML, Itakura-Saito distance (ISD), Kullback-Leibler divergence (KLD),
least square error (LSE), etc. In audio processing, the NMF decom-
position was applied in several applications including feature extraction
and music transcription [Smaragdis & Brown 2003, Abdallah & Plumbley 2004,
Vincent et al. 2008, Bertin et al. 2010], sound classification [Cho et al. 2003,
Cho & Choi 2005, Benetos et al. 2006, Holzapfel & Stylianou 2008], and source
separation [Schmidt & Olsson 2006a, Virtanen 2007a, Schmidt & Olsson 2006b,
Parry & Essa 2007]. The matrix X represents the STFT magnitude (the spec-
trogram) of the recorded audio sequence. The two resulting factors from the NMF
decomposition of X are interpreted as the following : (i) the columns of matrix W
represent the basis functions for the spectra (ii) the rows of matrixH represent the
time weights corresponding to the spectral basis.

In [Smaragdis 2004], the conventional NMF algorithm is extended to convolu-
tional NMF where components have temporal structure. In [Raj & Smaragdis 2005],
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the authors propose a probabilistic framework to model the spectrogram with a mix-
ture of multinomial distributions over frequency bins. In [Schmidt & Olsson 2006a],
Schmidt et al. use sparse NMF to factorize the Mel spectrum magnitude of the
recorded data into dictionary matrix and sparse code matrix. Sparse NMF en-
sures that the resulting decomposition is sparse more than the conventional NMF
since it imposes one more penalty on the coefficients of the code matrix (L1 norm
penalty). A training phase is used to learn the overcomplete dictionaries of speak-
ers, then the code matrix is updated while keeping the dictionary matrix fixed.
In [Schmidt & Olsson 2007], another supervised method is presented based on lin-
ear regression where the magnitude time-frequency representations of the sources
are this time estimated as a linear regression on features (the time weights ma-
trix) derived from the mixture. In [Virtanen 2007b], Virtanen uses NMF jointly
with temporal continuity and sparseness criteria to achieve monaural music sepa-
ration. He formulates a cost function which consists of the weighted sum of three
terms : (i) A reconstruction error term using the divergence function introduced in
[Lee & Seung 2000], (ii) a temporal continuity criterion term that penalizes impor-
tant changes between adjacent frames, and finally (iii) a sparseness cost function
term where high coefficients in the time weights matrix are penalized.

2.5.5 Model-driven methods

Model-driven methods relies on a priori knowledge about the underlying speakers.
Early works were done by Roweis in [Roweis 2000, Roweis 2003]. In [Roweis 2003],
Roweis introduces a refiltering (masking) approach and a factorial-VQ modeling
to separate the sources by an estimated spectral mask. He uses the fact that the
log spectrogram of a mixture of speakers can be approximated to the element-
wise maximum of the log spectrograms of the individual speakers. This approx-
imation is motivated by speech sparsity in time/frequency domain. A training
phase is necessary to learn the codebooks from clean speech of speakers individ-
ually. The MAX-log approximation was then widely used [Reddy & Raj 2004,
Reyes-gomez et al. 2004]. Several probabilistic models were proposed such as GMM
[Reddy & Raj 2004, Kristjansson et al. 2004, Ozerov et al. 2007], hidden Markov
model (HMM) [Reyes-gomez et al. 2004] and VQ [Ellis & Weiss 2006].

Different approaches were introduced to estimate the spectral com-
ponents such as the MMSE [Reddy & Raj 2004, Kristjansson et al. 2004,
Radfar & Dansereau 2007, Radfar et al. 2010] and maximum a posteriori (MAP)
[Ozerov et al. 2007] and ML [jin Jang et al. 2003]. In [Reddy & Raj 2007,
Radfar & Dansereau 2007], the binary spectral mask (hard mask) was extended to
the soft mask whose coefficients correspond to the posterior probability of the com-
ponent given the data. In [Jang et al. 2003], a time domain approach is presented,
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each source signal is modeled as a weighted sum of time-domain basis functions, the
weighting coefficients are modeled by generalized Gaussian distributions. The basis
functions and the pdfs of the parameters of the weighting coefficients in each source
signal are learned a priori from a training data set using generalized Gaussian ICA
learning algorithm.

In the previous approaches, a difficulty arises in practice from the fact that
the source models tend to perform poorly in realistic cases, as there is generally
a mismatch between the models and the actual properties of the sources in the
mixture. Moreover, an accurate training able to capture the majority of sources
features requires a large number of Gaussian functions. In [Ozerov et al. 2007],
authors deal with the problem of training probabilistic models namely GMM and
propose an alternative solution consisting in training the GMMs parameters from
the underlying mixture in an adaptive fashion. Since it is applied to voice/music
separation in popular songs, the algorithm exploits the sequences where the singer
voice is absent to train the parameters of music distributions.

2.5.6 Source separation performance evaluation

The evaluation of the source separation algorithms is a very important issue. In
[Vincent et al. 2003], Vincent et al. pointed that the evaluation depends tightly on
the application/the user expectations (hearing aid, audio scene reconstruction,etc.).
In some applications, we need only to estimate the mixture matrix whereas in others
the sources should be estimated too. In general, two different categories of evaluation
criteria are used in literature.

Objective evaluation

In a source separation algorithm, three different types of noise may degrade the
quality of estimated sources: the observation noise, the presence of other inter-
fering sources and the artifacts induced by the used method (musical noise). In
[Vincent et al. 2006], for each extracted source, four numerical performance crite-
ria were formulated in terms of energy ratios which are: the source-to-distortion
ratio (SDR)

SDR = 10 log10

‖starget‖2

‖einterf + enoise + eartif‖2
(2.13)

the source-to-interferences ratio (SIR)

SIR = 10 log10

‖starget‖2

‖einterf‖2
(2.14)



18 Chapter 2. Monaural speech separation

the source to noise ratio (SNR)

SNR = 10 log10

‖starget + einterf‖2

‖enoise‖2
(2.15)

and the sources-to-artifacts ratio (SAR)

SAR = 10 log10

‖starget + einterf + enoise‖2

‖eartif‖2
(2.16)

Here, starget denotes the orthogonal projection of the estimated source on the sub-
space spanned by the original source, enoise, einterf and eartif denote the errors
induced by the sensor noise, interferes from other sources and the algorithm ar-
tifacts respectively. These criteria provide a global assessment of the separation
performance when signals are stationary across time. Since audio signals are time-
varying, or more precisely, stationary across a short time, they are sliced into short
windowed stationary sequences and the previous criteria are computed for each win-
dow resulting in "‘local"’ performance description of the separation method. The
advantage of the measures defined in (2.13)-(2.16) is that they provide more accurate
and precise description about the real cause of interference instead of giving global
and vague description, moreover, they are valid whatever was the type of source
distortion. Another important evaluation measure is the perceptual evaluation of
speech quality (PESQ) [Rix et al. 2001] which is the closest objective measure to
the subjective evaluation.

Subjective evaluation

Subjective evaluation is mainly based on listening tests achieved by a volunteer
audience that hear the signals test and comment on the quality of the separa-
tion. An example of subjective evaluation is the MUSHRA protocol proposed in
[Emiya et al. 2011] where audience are asked to assess the global quality compared
to the reference for each test signal and then assess the quality in terms of preserva-
tion of the target source in each test signal in terms of suppression of other sources
in each test signal and in terms of absence of additional artificial noise in each test
signal.

2.6 conclusion

In this chapter, we presented the problem of monaural source separation. Then, we
introduced the different applications in audio that show the importance of speech
separation algorithms. Afterward, since we are interested in speech signals here, we
gave brief description of speech signal models in literature. Next, we tried to make
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an overview of the existing monaural source separation algorithms that we classified
globally in two categories, the source driven methods and the model driven methods.
At the end, we pointed out the issue of source separation method evaluation and
presented some examples of performance measures used by the scientific community.
In the next chapter, we will introduce our first contribution in this issue.





Chapter 3

Monaural speech separation using
EM-Kalman and joint speech

model

3.1 Introduction

Monaural speech separation is an important issue in audio processing. It helps
solving "‘the cocktail party problem"’ where each speaker needs to be retrieved
independently. Several works exploit the temporal structure of speech signal to
help separation. In literature, three categories can be listed : The first exploits
only the short term correlation in speech signal and models it with a short term
autoregressive (AR) process [Cichocki & Thawonmas 2000]. A second category
models the quasi-periodicity of speech by introducing the fundamental frequency
(or pitch) in the analysis [Barros & Cichocki 2001, Tordini & Piazza 2002]. Finally,
few works combine the two aspects [Smith et al. 2005]. In this chapter, we propose a
time domain method that is classified in the last category. Our case is more difficult,
since only a single sensor is used. Therefore, the proposed model of speech prop-
agation is rather simplified (the observation is the instantaneous sum of sources).
Nevertheless, this model is still relevant in several scenarios. Using some mathemat-
ical manipulations, two varieties of state space models with unknown parameters
are derived from the joint model of speech where the sources are carried in the
state vector. In the first variety, the state vector is linear on the unknown param-
eters, whereas in the second variety, the state vector is bilinear on the unknown
parameters. Since the involved signals are Gaussian, Kalman filtering is used in the
expectation maximization (EM) algorithm (in the "‘Expectation step"’) in order to
estimate the required statistics of the state vector. Moreover, a second version is
derived for the bilinear state space model where a fixed-interval smoothing step is
achieved in order to improve the state (sources) estimates. In the simulation part, we
compare the three derived algorithms using different blind source separation (BSS)
evaluation criteria and finally conclude.
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3.2 State space model formulation

In 2.4, we cited the AR process among the models used to describe the
speech sounds. This model was successfully used in speech coding framework
[Sambur & Jayant 1976, Atal & Hanauer 1971, Chu 2003]. When speaking, two dif-
ferent kind of sounds may be produced : voiced and unvoiced sounds. Voiced sounds
are produced when the vocal tract is excited by series of quasi-periodic pulses gener-
ated by the vocal cords. The frequency of pulses generation (pitch) varies according
to the gender. For males the interval is of 50 to 250 Hz, whereas for female it ranges
from 120 to 500 Hz [Chu 2003]. An example of voiced utterances is the vowels. Vo-
cal sounds represent the harmonic and most energetic part of a speech sequence in
contrast to the unvoiced sounds. The latter result from a turbulent air flow passing
through the vocal tract when constricted. This situation occurs for example when
whispering or pronouncing consonants such as p, t, k. Unvoiced sounds have more
random shape and do not present any harmonic feature. An example illustrating
the two kinds of sounds is presented in figure Fig. 3.1. In terms of filtering theory,
the speech production mechanism can be modeled by the cascade of two infinite
impulse response (IIR) filters: the formant synthesis filter that models the impulse
response of the vocal tract and the pitch synthesis filter that models the vocal cords
activity (see figure Fig. 3.2). The filtering equations will be

st = −
p∑
l=1

al st−l + s̃t (3.1)

s̃t = −b s̃t−T + et (3.2)

The speech signal st is an AR(p) process (p-order AR process) and {al}l=1..p are
the short term prediction (STP) coefficients that describes the strong correlation
between the nearby samples. The intermediate process s̃t (called also the STP
error) reflects the periodicity of st. In the voiced scenario, s̃t is the output of the
feedback comb filter of scaling factor the long term prediction (LTP) coefficient −b
(−1 < b ≤ 0) and delay the pitch period T , excited by the white Gaussian noise
et, called the LTP error. The more −b tends to 1 the more harmonic the signal
is. In the unvoiced scenario, b is equal to zero, hence, the white noise is directly
filtrated by the formant synthesis filter. When the pitch T is integer, one coefficient
is sufficient to describe the long-term behavior such as in (3.2). Nevertheless, it is
not always the case with real speech signals. When the pitch is not integer, the LTP
model is described using two taps around the pitch-lag as it follows

s̃t = −β1 s̃t−dT e+1 − β2 s̃t−dT e + et (3.3)

where β1 < 0 and β2 < 0. A sufficient condition of stability of
this model is when the two taps are constrained to |β1| + |β2| < 1
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[Ramachandran & Kabal 1987]. In some works, we may generalize the
LTP model to more than two taps filter [Ramachandran & Kabal 1989,
Kabal & Ramachandran 1989, Giacobello et al. 2009a]. Yet, the LTP filter is al-
ways sparser than the STP filter.

Tbz−− ∑
=

−−
p

l

l
l za

1

te tsts~

LTP filter STP filter

Figure 3.2: STP and LTP filters cascade for speech production

The idea of LTP filter was developed in speech coding to circumvent situations
where the AR process has a high order p. In fact, in order to capture the whole
statistical information of the speech signal, the AR order should be at least equal
to the pitch period which may exceed 50 taps in terms of AR coefficients and make
computation cumbersome. Moreover, it has been observed in [Chu 2004] that the
main contribution to the prediction gain comes from the first 8 to 12 first taps
plus the coefficient at the pitch period. Therefore, there is no need to consider
the intermediate taps and the model (3.1)-(3.3) offers more compact form with less
parameters. As written in (3.1)-(3.3), the filters are invariant in time. Yet, since
in reality the speech signal is stationarity piecewise, this model is reliable within
the processing frame. The purpose from the previous part was to introduce the
parametric model we are going to use for speech sources hereafter. We remind our
main problem of estimatingK mixed sources from scalar observation yt. Each source
is modeled by the joint STP+LTP model. Then, the probelm is fully described by
the equations system

yt =

K∑
k=1

sk,t + nt (3.4)

sk,t = −
pk∑
l=1

ak,l sk,t−l + s̃k,t k = 1 · · ·K (3.5)

s̃k,t = −βk,1 s̃k,t−dTke+1 − βk,2 s̃k,t−dTke + ek,t k = 1 · · ·K (3.6)

Here, the index k points to the kth source. The LTP errors {ek,t}k=1..K are statis-
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tically independent zero mean Gaussian processes with variances {ρk}k=1..K . The
observation noise nt is a white zero mean Gaussian process with variance σ2

n, statis-
tically independent of the innovations {ek,t}k = 1..K . The idea is to use (3.4)-(3.6) to
formulate a state space model where (3.4) is used to form the observation equation
and the state space evolution is formed using (3.5) and (3.6).

3.2.1 Linear state space model

Let’s denote by xk,t the (N + pk + 2)-dimensional substate vector constructed by
the successive last (pk + 2) samples of sk,t and the last N samples of s̃k,t where N
should be large enough to capture the LTP coefficients of the largest pitch period
present in the mixture

xk,t = [sk,t · · · sk,t−pk−1 | s̃k,t · · · s̃k,t−dTke+1 s̃k,t−dTke · · · s̃k,t−N+1]T k = 1...K (3.7)

The substate vector in (3.7) can be expressed in terms of xk,t−1 as it follows

xk,t = Fk xk,t−1 + gk ek,t, k = 1...K (3.8)

where gk is the (N + pk + 2)-dimensional column vector defined as gk = [ 1 0 · · · 0 |
1 0 · · · · · · 0]T . The second nonzero component in gk is at the (pk + 3)th position.
The (N + pk + 2)× (N + pk + 2) matrix Fk has the following structure

Fk =

[
F11,k F12,k

0 F22,k

]
where the (pk + 2) × (pk + 2) matrix F11,k, the (pk + 2) ×N matrix F12,k and the
N ×N matrix F22,k are given by

F11,k =



−ak,1 −ak,2 · · · −ak,pk 0 0
...

I(pk+1)

...

...
0



F12,k =


0 · · · −βk,1 −βk,2 0 · · · 0

0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 0



F22,k =



0 · · · −βk,1 −βk,2 0 · · · 0
...

I(N−1)

...

...
0


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In the matrices F12,k and F22,k, the coefficients −βk,1 and −βk,2 are situated in the
bTkcth and dTketh columns respectively. Since K sources are present in the mixture,
the final state is formed by concatenating the K subspace vectors in (3.7) into one
vector xt = [xT1,t x

T
2,t · · · xTK,t]T which results in the time update equation (3.9).

Moreover, by reformulating the expression of (3.4) in function of xt, we obtain the
final observation equation (3.10). The final state space model is then deduced

xt = F xt−1 + G et (3.9)

yt = hTxt + nt (3.10)

where

• the K-dimensional column vector et results from the concatenation of the
K LTP errors, thus, is zero mean Gaussian of covariance matrix the K ×K
diagonal matrix Q = diag (ρ1, · · · , ρK).

• F is the
∑K

k=1(pk +N + 2)×
∑K

k=1(pk +N + 2) block diagonal matrix given
by F = blockdiag (F1, · · · ,FK).

• G is the
∑K

k=1(pk +N + 2)×K matrix given by G = blockdiag (g1, · · · , gK).

• h is the (
∑K

k=1(pk+N+2))-dimensional column vector given by h = 1K⊗u1

where 1K is the all-ones K-dimensional vector and u1 is the first vector in the
standard basis for the (N + pk + 2)-dimensional space.

3.2.2 Bilinear state space model

In the bilinear state space model, the substate vector is only composed of successive
samples of sk,t without using the STP error. Yet the number of samples has to be
high enough to capture the long-term effect. In other words, the STP model in (3.6)
is re-expressed using the sources samples as it follows

sk,t = −
pk∑
l=1

ak,l sk,t−l − βk,1
pk∑
l=0

ak,l sk,t−l−dTke+1

− βk,2
pk∑
l=0

ak,l sk,t−l−dTke + ek,t (3.11)

where ak,0 = 1 for all k. In this case, we define the N -dimensional substate vector
xk,t as it follows

xk,t = [sk,t sk,t−1 · · · sk,t−dTke+1 sk,t−dTke · · · sk,t−p−dTke+1

sk,t−p−dTke · · · sk,t−N+1]T k = 1...K (3.12)
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Compared to the linear state space model, the substate matrix Fk is modified to
the form

Fk =


fTk,1 0

...

I(N−1)

...
0

 (3.13)

where fk,1 is the N -dimensional vector defined as

fk,1 = [−ak,1 · · · − ak,p 0 · · · 0 − βk,1 − βk,1ak,1 − βk,2
− βk,1ak,2 − βk,2ak,1 · · · − βk,1ak,p − βk,2ak,p−1 − βk,2ak,p 0 · · · 0]T (3.14)

The parameters of the state space model in (3.9-3.10) are then modified to

• F is the KN × KN block diagonal matrix given by
F = blockdiag (F1, · · · ,FK).

• G is the KN ×K matrix given by G = blockdiag (g, · · · , g) where g is the
N -dimensional vector [1 0 · · · 0]T .

• h is the KN -dimensional column vector given by h = 1K ⊗ g.

Considering the shape of Fk (consequently F ), the state vector is no longer linear
on the parameters (more precisely on the STP+LTP coefficients), it becomes rather
bilinear whence the name of the state space model.

The straightforward classic solution to estimate the state vector is to use Kalman
filter [Kalman 1960]. Yet, the linear and bilinear dynamic systems presented before-
hand depend on the STP+LTP parameters that are recapitulated in the variable
θ

θ = [θ0,θ
T
1 , · · · ,θTK ]T

θk = [aTk ,β
T
k , Tk, ρk]

T , k = 1...K

ak = [ak,1, · · · , ak,pk ]T , k = 1...K

βk = [βk,1, βk,2]T , k = 1...K

θ0 = σ2
n

(3.15)

Obviously, the parameters vector θ is unknown. Therefore, a joint estimation frame-
work is needed to estimate both the sources and the parameters. The joint esti-
mation of latent variables (the random unknown parameters) and unknown deter-
ministic parameters using only observation is a well-known problem in statistical
signal processing. A famous solution to this problem is the EM-Kalman algorithm
[Couvreur & Bresler 1995, Gao et al. 2003, Feder & Weinstein 1988], that is proved
to converge to the maximum likelihood (ML) solution [Dempster et al. 1977]. In
the next section, we introduce this algorithm and develop it for our specific model.
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3.3 EM-Kalman Filter

The EM algorithm was introduced the first time by Dempster et al. in
[Dempster et al. 1977]. It is an iterative algorithm that aims to estimate the ML so-
lution of a deterministic parameter θ from the observed data y (incomplete data) in
presence of random hidden variables x. The set {y,x} represents the complete data.
In general,EM is used when the derivation of the ML estimator of θ is cumbersome
or intractable. The injection of the hidden variables x helps to alleviate computa-
tions and provides an alternative way to approach the ML solution asymptotically
[Dempster et al. 1977]. If we denote by F the cost function

F(q(x),θ) ,
∫
q(x) ln

f(y,x|θ)

q(x)
dx (3.16)

Where q(x) is a free distribution of the hidden variables x. The cost function
in (3.16) is a lower bound on the likelihood function f(y|θ) and EM consists on
maximizing it relative to q(x) and θ in two main steps. Let’s suppose the algorithm
executed i iterations, at the (i+ 1)th iteration, EM alternates between two steps.

E-step:

In this step, F is maximized relative to the distribution q(x)

q(x)i+1 ← arg max
q(x)

F(q(x),θi) (3.17)

Where θi is the estimate of θ at iteration i. It turns out that the maximum is
obtained for q(x)i+1 = f(x|y,θi) which is the posterior distribution of the hidden
variables given the observations. When the involved signals are Gaussian, the infer-
ence of f(x|y,θi) is reduced to the mean and covariance estimation which is realized
using the Kalman filter (for online processing) or smoother (for offline processing).

M-step:

In this step, F is maximized relative to the parameter θ

θi+1 ← arg max
θ

F(q(x)(i+1),θ) (3.18)

← arg max
θ

〈ln f(y,x|θ)〉f(x|y,θi) (3.19)

← arg max
θ

Q(θ|θi) (3.20)

The second line results from replacing q(x)(i+1) by its expression from the E-
step where 〈.〉f(x|y,θi) denotes Ef(x|y,θi)[.]. Let’s suppose we have M samples
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{y1, y2, · · · , yM} of data stream that we note y1:M and x1:M , M state vectors, the
cost function Q(θ|θi) is expressed as

Q(θ|θi) = Ef(xt|y1:M ,θi)[ln f(y1:M ,x1:M |θ)] (3.21)

In what follows, we develop the EM-Kalman for both linear and bilinear models.

3.3.1 EM-Kalman for linear state space model

Considering the state space model in (3.9)-(3.10) and after some mathematical com-
putations, the cost function (3.21) is expressed

Q(θ|θi) = −M
2

lnσ2
n −

1

2σ2
n

(
Y − 2hTRi

ytxt + hTRi
xtxth

)
−

K∑
k=1

M

2
ln ρk −

K∑
k=1

ρk
2

M∑
t=1

〈(
sk,t +

pk∑
l=1

ak,l sk,t−l

+ βk,1 s̃k,t−dTke+1 + βk,2 s̃k,t−dTke

)2
+ ln f(x0)

〉
f(xt|y1:M ,θi)

(3.22)

where Y , Ri
ytxt and R

i
xtxt denote the following amounts

Y ,
M∑
t=1

y2
t (3.23)

Ri
ytxt ,

M∑
t=1

yt 〈xt〉f(xt|y1:M ,θi) (3.24)

Ri
xtxt ,

M∑
t=1

〈
xtx

T
t

〉
f(xt|y1:M ,θi)

(3.25)

The M-step will consist on maximizing (3.22) w.r.t. the STP and LTP coefficients
{ak}k=1:K and {βk}k=1:K , the powers of the LTP errors {ρk}k=1:K and the obser-
vation noise power σ2

n.

Estimation of the LTP coefficients

The estimate of the LTP coefficients vector βk of source k from (3.22) is deduced
by computing more precisely the gradient of the reduced cost function

Qk(θk|θi) =
M∑
t=1

〈(
sk,t+

pk∑
l=1

ak,l sk,t−l+βk,1 s̃k,t−dTke+1 +βk,2 s̃k,t−dTke

)2〉
f(xt|y1:M ,θi)

(3.26)
By replacing the expression sk,t +

∑pk
l=1 ak,l sk,t−l with s̃k,t in (3.26), the reduced

cost function Qk(θk|θi) becomes only dependent on βk. The estimate of βk at
iteration (i+ 1) is then expressed as

β̂k
i+1

= −
(
Ri
s̃,k

)−1
ris̃,k k = 1 · · ·K (3.27)
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where the 2×2-dimensional matrixRi
s̃,k and the 2-dimensional vector ris̃,k are defined

as it follows

Ri
s̃,k =

M∑
t=1

〈[s̃k,t−dTke+1

s̃k,t−dTke

][
s̃k,t−dTke+1

s̃k,t−dTke

]T 〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.28)

ris̃,k =
M∑
t=1

〈[s̃k,t−dTke+1

s̃k,t−dTke

]
s̃k,t

〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.29)

The result in (3.27) represents the Yule-Walker equations derived for the long-term
AR process s̃k,t.

Estimation of the STP coefficients

The STP coefficients vector ak of source k is also deduced using Qk(θk|θi). The
estimate of ak at iteration (i+ 1) is expressed as

âk
i+1 = −

(
Ri
s,k

)−1
(
ris,k +Ri

ss̃,kβ̂k
i+1
)

k = 1 · · ·K (3.30)

where the p × p-dimensional matrix Ri
s,k, the p-dimensional vector ris,k and the

p× 2-dimensional matrix Ri
ss̃,k are defined as it follows

Ri
s,k =

M∑
t=1

〈
sk,t−1

...
sk,t−p



sk,t−1

...
sk,t−p


T 〉

f(xt|y1:M ,θi)
k = 1 · · ·K (3.31)

ris,k =

M∑
t=1

〈
sk,t−1

...
sk,t−p

 sk,t〉f(xt|y1:M ,θi)
k = 1 · · ·K (3.32)

Ri
ss̃,k =

M∑
t=1

〈
sk,t−1

...
sk,t−p


[
s̃k,t−dTke+1

s̃k,t−dTke

]T 〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.33)

Estimation of the LTP error and observation noise variances

Since ρk is the innovation power of the AR process s̃k,t, its estimation can be simply

deduced as the inverse of the first component of the matrix
(

1
M R̃i

k

)−1

ρ̂i+1
k =

[(
1

M
R̃i
k

)−1
]−1

11

k = 1 · · ·K (3.34)

where

R̃i
k =

M∑
t=1

〈 s̃k,t

s̃k,t−dTke+1

s̃k,t−dTke


 s̃k,t

s̃k,t−dTke+1

s̃k,t−dTke


T 〉

f(xt|y1:M ,θi)
k = 1 · · ·K (3.35)
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The observation noise σ̂2
n

i+1
is deduced from the gradient of Q(θ|θi) as the following

σ̂2
n

i+1
=

1

M

(
Y − 2hTRi

ytxt + hTRi
xtxth

)
(3.36)

All the quantities used to estimate ak, βk and ρk form the elements of the (pk +

4)× (pk + 4)-dimensional matrix R̆i
k defined as

R̆i
k =

M∑
t=1

〈
x̆k,tx̆

T
k,t

〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.37)

where x̆k,t is the (pk + 4)-dimensional partial state vector

x̆k,t = [sk,t, · · · , sk,t−p, s̃k,t, s̃k,t−dTke+1, s̃k,t−dTke]
T k = 1 · · ·K (3.38)

R̆i
k (and x̆k,t ) can be selected from Ri

xtxt (and xk,t) using an appropriate selection
matrix Sk.

In the E-step, we need to compute the required statistics (3.23), (3.24) and
(3.25). For the two latter, we use the Rauch-Tung-Striebel (RTS) smoother
[Rauch et al. 1965] which is the most common form of the fixed-interval smoother.
Let’s denote by x̂t|M the RTS state estimate and Pt|M its corresponding covariance
matrix, then the required statistics are expressed as

Ri
ytxt =

M∑
t=1

ytx̂t|M (3.39)

Ri
xtxt =

M∑
t=1

Pt|M + x̂t|M x̂
T
t|M (3.40)

Stop condition

The EM algorithm is proved to increase monotonically to at least a local maxi-
mum of the likelihood function f(y|θ) [Dempster et al. 1977]. Therefore, the al-
gorithm is considered converged when the produced likelihoods are stable during
sequential iterations. In practical, in order to handle the numerical imprecision,
a halting condition consists in measuring the relative change of the log-likelihood
[Shumway & Stoffer 1982]. If we denote by Li the log-likelihood function produced
at the ith iteration and expressed as

Li = −1

2

M∑
t=1

ln

∣∣∣∣hTPt|Mh+ σ̂2
n

i
∣∣∣∣− 1

2

M∑
t=1

∥∥yt − hT x̂t|M∥∥2

hTPt|Mh+ σ̂2
n

i
(3.41)

The relative measure of the log-likelihood variations, used as stop condition is ex-
pressed as

Stop if
Li+1 − Li

1
2 |Li+1 + Li + ε|

< c (3.42)
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where ε is a small term added to keep the condition well-behaved, c is a fixed
threshold that is determined experimentally. In general c is chosen in the interval
[10−4, 10−5].

The full iterative algorithm is summarized in algorithm. 1.

Algorithm 1 Iterative EM-Kalman with RTS smoothing

1: Initialize the parameters
{
β̂0
k

}
k=1..K

,
{
â0
k

}
k=1..K

,
{
ρ̂0
k

}
k=1..K

, σ̂2
n

0
,
{
T̂k

}
k=1..K

,
and Kalman filter with x̂0|0 and P0|0.

2: While the stop condition not true and i < imax do

3: Run Kalman filter, for t = 1 to M

x̂t|t−1 = F̂ ix̂t−1|t−1 (3.43)

Pt|t−1 = F̂ iPt−1|t−1

(
F̂ i
)T

+GQ̂iGT (3.44)

Kt = Pt|t−1h(hTPt|t−1h+ σ̂2
n

i
)−1 (3.45)

x̂t|t = x̂t|t−1 +Kt(yt − hT x̂t|t−1) (3.46)

Pt|t = Pt|t−1 −Kth
TPt|t−1 (3.47)

4: Initialize RTS smoother with x̂M |M and PM |M .

5: Run RTS smoother, for t = M − 1 to 0

Krts,t = Pt|tF̂
iP−1

t+1|t (3.48)

Pt|M = Pt|t −Krts,t

(
Pt+1|t − Pt+1|M

)
KT
rts,t (3.49)

x̂t|M = x̂t|t +Krts,t

(
x̂t+1|M − x̂t+1|t

)
(3.50)

6: Compute Ri
ytxt and R

i
xtxt using (3.39) and (3.40) respectively.

7: Update the parameters
{
β̂i+1
k

}
k=1..K

,
{
âi+1
k

}
k=1..K

,
{
ρ̂i+1
k

}
k=1..K

and σ̂2
n

i+1

using (3.27),(3.30), (3.34) and (3.36) respectively.
8: If the stop condition is fulfilled or the iteration value i > imax, then stop the

algorithm, otherwise, back to the Kalman filtering step.
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The RTS smoother provide an improved estimate of the sources carried in the
smoothed state vector x̂t|M though it increases the complexity of the algorithm ( we
make two sweeps of data in each iteration). In our state space model, the prediction
error matrix Pt|t−1 is singular. In fact, notice that in Fk,11 and Fk,22, the last
columns are all-zeros, which makes the rank of the substate matrix Fk deficient by
2. Consequently, the state matrix F is rank-deficient by 2K. In (3.44), the additive
term GQGT is of rank K which does not correct the singularity of Pt|t−1. In the
smoothing part, the computation of the RTS gain in Krts,t requires the inversion of
the prediction error covariance matrix, which results in ill-conditioned gain matrix
Krts,t.

This fact yields to drop the RTS smoothing step and be restricted to the Kalman
filter only. Hence, f(x|y1:M ,θ

i) is replaced by f(x|y1:t,θ
i) in all the previous deriva-

tions (x̂t|M and Pt|M are replaced by the Kalman filter estimator x̂t|t and its covari-
ance matrix Pt|t respectively). Nevertheless, the filtering here is done in a tricky way
so that a fixed-lag smoothing operation (lag = 1) is achieved at the same time. In
fact, due to the special structure of the state vector xt, it is possible to select from
it the delayed partial state x̆k,t−1 using an appropriate different selection matrix
S′k. The 1-lag smoothing justifies the use of (pk + 2) consecutive samples of sk in
xk,t instead of (pk + 1) samples. The number of STP error samples present in xk,t,
N , has to be at least equal to (max(dTke) + 2) in order to guarantee the presence
of x̆k,t−1 in xt for all k. Then, the smoothed quantities needed for the parameters
estimation form the elements of the matrix R̆i ′

k

R̆i ′
k =

M∑
t=1

〈
x̆k,t−1x̆

T
k,t−1

〉
f(x|y1:t,θi)

(3.51)

=
M∑
t=1

S′k
〈
xk,tx

T
k,t

〉
f(x|y1:t,θi)

S′Tk (3.52)

= S′kR
i
xtxtS

′T
k (3.53)

where Ri
xtxt , as well as R

i
ytxt , are re-expressed as

Ri
ytxt =

M∑
t=1

ytx̂t|t (3.54)

Ri
xtxt =

M∑
t=1

Pt|t + x̂t|tx̂
T
t|t (3.55)

Notice the 1-lag smoothing effect from (3.51) to (3.52).The choice of the lag is
justified with the fact that the state vector xt is an AR process of order 1, hence, 1-
lag smoothing is considered sufficient to improve sources estimation. The smoothed
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elements selected from R̆i ′
k become

Ri
s̃,k =

M∑
t=1

〈[ s̃k,t−dTke

s̃k,t−dTke−1

][
s̃k,t−dTke

s̃k,t−dTke−1

]T 〉
f(xt|y1:t,θi)

k = 1 · · ·K (3.56)

ris̃,k =
M∑
t=1

〈[ s̃k,t−dTke

s̃k,t−dTke−1

]
s̃k,t−1

〉
f(xt|y1:t,θi)

k = 1 · · ·K (3.57)

Ri
s,k =

M∑
t=1

〈
sk,t−2

...
sk,t−p−1



sk,t−2

...
sk,t−p−1


T 〉

f(xt|y1:t,θi)
k = 1 · · ·K (3.58)

ris,k =
M∑
t=1

〈
sk,t−2

...
sk,t−p−1

 sk,t−1

〉
f(xt|y1:t,θi)

k = 1 · · ·K (3.59)

Ri
ss̃,k =

M∑
t=1

〈
sk,t−2

...
sk,t−p−1


[
s̃k,t−dTke

s̃k,t−dTke−1

]T 〉
f(xt|y1:t,θi)

k = 1 · · ·K (3.60)

R̃i
k =

M∑
t=1

〈 s̃k,t−1

s̃k,t−dTke

s̃k,t−dTke−1


 s̃k,t−1

s̃k,t−dTke

s̃k,t−dTke−1


T 〉

f(xt|y1:t,θi)
k = 1 · · ·K (3.61)

The full iterative algorithm is summarized in algorithm. 2.

Algorithm 2 Iterative EM-Kalman with fixed-lag smoothing

1: Initialize the parameters
{
β̂0
k

}
k=1..K

,
{
â0
k

}
k=1..K

,
{
ρ̂0
k

}
k=1..K

, σ̂2
n

0
,
{
T̂k

}
k=1..K

,
and Kalman filter with x̂0|0 and P0|0.

2: While the stop condition not true and i < imax do

3: Run Kalman filter for t = 1 to M to compute x̂t|t and Pt|t
4: Compute Ri

ytxt and R
i
xtxt using (3.54) and (3.55) respectively.

5: Update the parameters
{
β̂i+1
k

}
k=1..K

,
{
âi+1
k

}
k=1..K

,
{
ρ̂i+1
k

}
k=1..K

and σ̂2
n

i+1

using (3.27),(3.30), (3.34) and (3.36) respectively, computed with the elements
in (3.56-3.61).

6: If the stop condition is fulfilled or the iteration value i > imax, then stop the
algorithm, otherwise, back to the Kalman filtering step.
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3.3.2 EM-Kalman for bilinear state space model

In terms of cost function, the difference between the linear and bilinear cases is
limited to the reduced cost function Qk(θ|θi) which becomes only function of the
sources samples in the bilinear case

Qk(θk|θi) =

M∑
t=1

〈(
sk,t +

pk∑
l=1

ak,l sk,t−l + βk,1

pk∑
l=0

ak,l sk,t−l−dTke+1

+ βk,2

pk∑
l=0

ak,l sk,t−l−dTke

)2〉
f(xt|y1:M ,θi)

(3.62)

Therefore, the estimate σ̂2
n

i+1
is identical to the linear case. The rest of parameters

are estimated following the same methodology like in the linear case. We introduce
some notations that are needed afterwards. We denote by sk,t−j,pk−l and Âi the
(pk + 1)-dimensional column vectors and by s̃ik,t

sk,t−j,pk−l = [sk,t−j , sk,t−j−1, · · · , sk,t−j−pk+l]
T k = 1 · · ·K (3.63)

Âik =
[
1 âi Tk

]T
k = 1 · · ·K (3.64)

s̃ik,t−j = Âiksk,t−j,pk−l k = 1 · · ·K (3.65)

Suppose the estimates of β̂ik is available from the previous iteration, then at iteration
(i+ 1), the estimate β̂i+1

k is expressed as in (3.27) but with different forms of Ri
s̃,k

and ris̃,k which become in the bilinear case

Ri
s̃,k =

M∑
t=1

〈[s̃ik,t−dTke+1

s̃ik,t−dTke

][
s̃ik,t−dTke+1

s̃ik,t−dTke

]T 〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.66)

ris̃,k =
M∑
t=1

〈[s̃ik,t−dTke+1

s̃ik,t−dTke

]
s̃ik,t

〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.67)

The expressions of Ri
s̃,k and ris̃,k are equivalent to the ones used in the linear case

with the difference that in the linear case, the samples of the STP error are directly
available in the state vector while in the bilinear case we have to produce them using
the STP filter estimate âik. This latter is also estimated by optimization of (3.62)
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which results in the following expression

âk
i+1 = −

( M∑
t=1

〈(
sk,t−1,pk−1 +

[
sTk,t−dTke,pk−1

sTk,t−dTke−1,pk−1

]T
β̂i+1
k

)(
sk,t−1,pk−1

+

[
sTk,t−dTke,pk−1

sTk,t−dTke−1,pk−1

]T
β̂i+1
k

)T〉
f(xt|y1:M ,θi)

)−1
M∑
t=1

〈(
sk,t−1,pk−1

+

[
sTk,t−dTke,pk−1

sTk,t−dTke−1,pk−1

]T
β̂i+1
k

)(
sk,t +

[
sk,t−dTke+1

sk,t−dTke

]T
β̂i+1
k

)〉
f(xt|y1:M ,θi)

k = 1 · · ·K

(3.68)

Finally, the estimate of ρ̂i+1
k is deduced in an equivalent fashion as in (3.34) with the

difference that the STP error samples and its correlations are not directly available
in the state vector estimate and its covariance, then the STP filter estimate âi+1

k is
used to afford them.

ρ̂i+1
k =

( 1

M

M∑
t=1

〈
s̃i+1
k,t

s̃i+1
k,t−dTke+1

s̃i+1
k,t−dTke




s̃i+1
k,t

s̃i+1
k,t−dTke+1

s̃i+1
k,t−dTke


T 〉

f(xt|y1:M ,θi)

)−1


−1

11

k = 1 · · ·K

(3.69)
In the bilinear case, all the statistics that are needed to compute the parameters
estimates are available in the (2pk + 3)× (2pk + 3)-dimensional matrix R̆i

k defined
as

R̆i
k,bilin =

M∑
t=1

〈
x̆bilink,t x̆

bilin T
k,t

〉
f(xt|y1:M ,θi)

k = 1 · · ·K (3.70)

where x̆bilink,t is the (2pk + 3)-dimensional partial state vector

x̆bilink,t = [sTk,t,pk , s
T
k,tdTke+1,pk

, sk,t−dTke−p]
T k = 1 · · ·K (3.71)

R̆i
k,bilin (and x̆bilink,t ) can be selected from Ri

xtxt (and xk,t) of the bilinear state space
model using an appropriate selection matrix Sk,bilin.

Unlike the linear model where the prediction error is singular, in the bilinear
model, Pt|t−1 is full-rank. In fact, the sub-state matrix in (3.13) is only rank-
deficient by 1 (last column of all zeros) which makes F rank-deficient by K. This
deficiency is rectified by the additive term GQGT of rank K. Therefore, the in-
verse of Pt|t−1 exists and the computation of Krts,t becomes possible. A fixed-lag
smoothing version in the bilinear model is also possible since the delayed partial
state x̆bilink,t−1 can be extracted from the bilinear sub-state vector xk,t. The initializa-
tion and the stop condition of the algorithm in the linear model are also valid in the
bilinear model.
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3.3.3 Multipitch estimation

EM-Kalman permits to estimate all the components of θ except to the pitch peri-
ods {Tk}k=1..K . It is because that the cost function (3.22) depends "‘implicitly"’
on them. It is even important to know their values in advance so that the state
matrix F can be constructed accurately. Therefore, their estimations is achieved
independently.

Multipitch estimation is an issue in itself that was studied exhaustively in
literature. In fact, it plays an important role in several audio applications such as
speech enhancement [Jansson & Stoica 1999], music transcription [Cemgil 2004],
audio compression [Christensen & Holdt Jensen 2006, Lindblom 2005,
Rodbro et al. 2003] and audio source separation [Chazan et al. 1993, Kostek 2004].
Many algorithms were proposed[Gold & Rabiner 1969, Hess 2008, Hess 1983,
Christensen et al. 2009]. In many times, the proposed approaches consist on
a generalization of a monopitch estimation algorithm to the multipitch case.
They can be classified mainly in two categories, parametric and non-parametric
approaches. In the first category, a parametric model is assumed for speech
signal and based on it, the pitch is estimated. The most famous paramet-
ric model is the sinusoidal model [Christensen et al. 2009]. In the parametric
category, there are three classes of methods. The first class is the statistical
methods where pitches are estimated using ML, maximum a posteriori (MAP)
and EM estimators [sbø ll Christensen et al. 2008]. These methods are efficient
asymptotically, thus, need many samples to converge. The second class is the
filtering methods where observations are filtered by picking samples positioned at
harmonics, then pitches are estimated by maximizing the filter’s output power. An
example of used filters is Comb filtering [Nehorai & Porat 1986] and the optimal
filter designs in [Christensen & Jakobsson 2010, Christensen et al. 2008]. The
last class is the subspace methods where famous methods such as MUSIC and
ESPRIT are used [Christensen et al. 2006, Roy & Kailath 1989]. In the second
non-parametric category, there are algorithms based on the auto-correlation
function maximization[Rabiner 1977], the averaged magnitude difference func-
tion minimization[Ross et al. 1974] and the averaged squared difference function
minimization[Noll 1967, Abeysekera 2004].

In our work, it is very important to have a good (even a very good) estimate
of the pitches since they present a strong feature of separability between sources.
In simulations, we assume we have the separate sources and use them to estimate
the pitches using a robust monopitch estimator. This assumption is not totally
unrealistic since in a realistic speech sequence, the present speakers are not talking
simultaneously all the time. Thus, it is possible to extract sequences where only
one speaker is talking and use them to estimate the corresponding pitch. We use
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the robust algorithm for pitch tracking (RAPT) [Talkin 1995] which is a monopitch
estimator based on the maximization of the normalized cross-correlation function
(NCCF) of the given source. The data is processed in overlapped frames where for
a given frame i, the NCCF of source k at lag l, Φk

i,l, is expressed as it follows

Φk
i,l =

im+Nf−1∑
j=im

sk,jsk,j+l√√√√im+Nf−1∑
j=im

s2
k,j

im+l+Nf−1∑
j=im+l

s2
k,j

(3.72)

where Nf and m are respectively the processing frame size and the hop size (time
jump) from one frame to the next (in samples). Φk

i,l is maximized (tends to be close
to 1) when the lag l coincides with multiples of the target pitch period.

3.4 Simulations

The simulation part is carried in two steps. First, we apply the proposed algorithms
to artificial signals generated according to the joint model in (3.5)-(3.6). Second, the
algorithms are applied to real signals. The number of speakers is assumed known
and fixed to K = 2. The STP orders for both sources are fixed to p1 = p2 = 10.
The sampling frequency Fs is fixed to 8KHz.

A very important issue in EM is initialization. When the cost function is
multimodal, it depends on the initial value of parameters that the algorithm will
converge to a global or local maximum. In the case when the cost function is
monomodal, initial value will influence the number of iterations needed to reach
the global maximum. In our simulations, we aim to analyze the behavior of the
algorithms close to and after convergence. Therefore, we initialize the sources pa-
rameters {ak,βk, ρk}k=1:K to values not too far from the "‘true"’ values. We intend
by "‘true"’, the values used to produce the sources in simulations with synthetic
signals. When the signals are real, the "‘true"’ values refer to the one estimated
directly from the clean sources which is once again not completely unrealistic if we
can afford sequences where only one source is active. For Kalman filter, the initial
values of the state vector and its error covariance matrix are set to x̂0|0 = 0 and
P0|0 = diag (ρ1, · · · , ρ1, ρ2, · · · , ρ2) respectively.
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3.4.1 Synthetic signals

In order to synthesize meaningful signals (close to the reality), real voiced speech
signals are used to produce the STP coefficients which are set as it follows

a1 =
[
− 1.5020, 1.7380,−2.0290, 1.7890,−1.3760, 1.2550,−0.6930, 0.3760,

− 0.0800, 0.0330
]T

and

a2 =
[
0.2153, 0.2153,−0.0176, 0.0806, 0.0127, 0.1569,−0.0218, 0.2146,

− 0.7225,−0.3034
]T

The pitch periods are set to T1 = 7.2ms and T2 = 4ms which results in fundamental
frequencies F1 = 139.86Hz and F2 = 250Hz. Converted in samples, T1 and T2

results in fractional pitch T1 = 57.2 and integer pitch T2 = 32 respectively which
permits to simulate the two models of the STP error in (3.3) and (3.2). In order
to emphasize the harmonic feature, the LTP coefficients is fixed close to 1 for the
integer pitch period case (β2,1 = 0.99). For the fractional pitch period of speaker 1,
the two LTP coefficients β1,1 and β1,2 are interpreted as the real LTP coefficient of
the fractional pitch that we denote b1, splitted between dT1e+ 1 and dT1e according
to the contribution of each one in T1 which is deduced from the fraction value. Then,
the coefficients β1,1 and β1,2 are respectively computed as α1b1 and (1−α1)b1 where
α1 = T1 − dT1e. Notice that using this interpretation of β1,1 and β1,2 respects the
stability condition announced before (β1,1+β1,2 = b1 < 1). In order to highlight the
harmonic feature again, the real LTP coefficient is set to b1 = 0.99 which results
in β1,1 = 0.792 and β1,2 = 0.198. The powers are fixed so that the signal to signal
ratio (SSR) is close to 0dB. Thus, the innovative powers are set to ρ1 = 1 and
ρ2 = 2. The speech sequence length is set to 384 ms. The mixture is created
artificially by adding the two sources in addition to the additive white Gaussian
observation noise. The produced sources and their mixture are plotted in time in
figure Fig. 3.3 and their corresponding spectra in figure Fig. 3.4 for an input source
to noise ratio (SNR) of 20 dB. The produced sources are infinitely stationary and
voiced sounds.

In this section, simulations consist of two parts. In the first part, we study
and compare the performance of the proposed algorithms in terms of linear MMSE
(LMMSE) estimation quality. In this case, the parameters are supposed known
beforehand, only the sources are estimated. This simulation gives an idea about
the best performance the algorithms can achieve (an upper bound). The input
SNR is varied in the following interval [−25 dB, 30 dB]. Performances are assessed
using the objective criteria explained in 2.5.6. The obtained results are presented in
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figures Fig. 3.5,Fig. 3.6 and Fig. 3.7. In the figures, the LMMSE estimation using
the linear state space model is denoted by filt_lin, the ones using the bilinear
state space model with and without RTS smoothing are denoted filt_bilin and
filt_bilin_RTS respectively. In this scenario limited to source estimation, we
expect that both the linear and bilinear models will have the same performance. The
filt_bilin_RTS will produce better results due to the supplementary step of fixed-
interval smoothing. These expectations are confirmed with the results obtained in
Fig. 3.5,Fig. 3.6 and Fig. 3.7. Thus, the only benefit to use the bilinear model is that
it allows the possibility to perform the RTS smoothing which offers an improvement
that reaches to 5 dB at high SNR in terms of source-to-interferences ratio (SIR).
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Figure 3.3: Time evolution of sources 1 and 2, and observations with zoom on the
sources.
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Figure 3.4: spectrum and true spectrum of sources 1 (a) and 2 (b), and observation
spectrum (c).
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Figure 3.5: Performance criteria of Kalman filtering for source 1.
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Figure 3.6: Performance criteria of Kalman filtering for source 2.
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Figure 3.7: MSE of Kalman filtering for sources 1 (a) and 2 (b).

In the second part, the parameters are assumed unknown and estimated along
with the sources. Since the synthetic signals are purely voiced sounds produced
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by constant pitch periods. these latter are perfectly estimated by the used mono-
pitch estimator. The obtained results are presented in figures Fig. 3.8,Fig. 3.9 and
Fig. 3.10. EM-Kalman using the linear state space model is denoted by estim_lin,
the ones using the bilinear state space model with and without RTS smoothing are
denoted estim_bilin and estim_bilin_RTS respectively. Compared to the re-
sults in the first part, the behavior of the three algorithms does not change a lot
except that at high SNR the performance of estim_bilin_RTS in terms of mean
square error (MSE) and output SNR becomes closer to the two other algorithms.
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Figure 3.8: Performance criteria of EM-Kalman estimation for source 1.
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Figure 3.9: Performance criteria of EM-Kalman estimation for source 2.
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Figure 3.10: MSE of EM-Kalman estimation for sources 1 (a) and 2 (b).
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3.4.2 Real signals

In this section, we apply the algorithms to real signals selected from the GRID
database [Cooke et al. 2006] used in the making of the 1st Speech Separation Chal-
lenge. It consists of a large audiovisual sentence corpus of 1000 sentences spoken by
each of 34 talkers (18 males, 16 females). We select the utterance "‘lwax8s"’ of the
male speaker 14 and the utterance "‘bgwf7n"’ of the female speaker 22. The selected
speakers were downsampled from 25 kHz to 8 kHz. We apply the algorithms on a
strongly voiced sequence where the pitch periods fluctuations are very small for both
speakers. The observation noise is added artificially.The selected voiced sequence
(of length 120.1 ms) is highlighted in red in figure Fig. 3.11 where the SNR is of
14.7 dB and the SSR is of 3.4 dB.
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Figure 3.11: Real speech sequence

In table 3.4.2, we display the corresponding estimation results (in dB). We notice
that, in terms of MSE and output SNR, estim_lin performs slightly better than
estim_bilin and close to estim_bilin_RTS. In terms of artifacts noise, the three
algorithm are equivalent. In terms of source-to-distortion ratio (SDR) and SIR,
estim_lin and estim_bilin_RTS extract both sources with similar qualities,
unlike estim_bilin that privileges the dominant (in terms of SSR) source. In
global, estim_bilin_RTS presents the best performance, but it is also the most
expensive in terms of computation complexity which may privileges estim_lin in
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some applications.

source 1 SDR SIR SAR SNRout MSE
estim_lin 12.0403 12.8418 21.6209 5.4016 -33.4702
estim_bilin 13.3886 14.4546 20.1642 3.5819 -31.6505
estim_bilin_RTS 13.6264 14.6589 20.5177 5.8391 -33.9077
source 2 SDR SIR SAR SNRout MSE
estim_lin 10.4169 13.0641 24.8942 7.1179 -35.1865
estim_bilin 7.3035 7.4124 24.0916 4.1803 -32.2489
estim_bilin_RTS 14.2068 14.6905 24.1230 9.1890 -37.2576

Table 3.1: Results of EM-Kalman for real signals estimation

3.5 Conclusion

In this chapter we use the iterative EM-Kalman algorithm for speech source sep-
aration problem. The model takes into account short and long-term correlations
of speech signals by using the famous speech joint model. Three algorithms are
derived using two state space models formulated from the joint speech model. The
traditional 1-lag smoothing step is included into the algorithms where only Kalman
filtering is used., and it is no more an additional step. Simulations show the equiv-
alence of the linear model and the bilinear one without RTS smoothing in synthetic
signals. In simulation with real signals, the linear model base algorithm shows bet-
ter performance in handling the case where the SSR is not close to 0 dB along with
the bilinear model based algorithm with RTS smoothing. Yet, this performance
depends a lot on the multipitch estimation quality. An error on tracking the pitches
may induce the performance decreasing drastically.





Chapter 4

Monaural speech separation
exploiting periodicity and spectral

envelopes

4.1 Introduction

Audio signal quasi-periodicity and spectral information have been widely exploited
to perform speech enhancement. In fact, in [Nehorai & Porat 1986], Nehorai et al.
propose a sinusoidal model based algorithm for enhancement of speech corrupted
by additive white Gaussian noise. The enhancement is achieved by estimating the
sinusoidal model parameters which are the fundamental frequency, amplitudes and
phases. The fundamental frequency (nonlinear parameter) is estimated using the
recursive prediction error adaptive comb filter; amplitudes and phases are estimated
using the recursive least squares (RLS) algorithm. In [Jensen & Hansen 2001], the
sinusoidal model, corrupted by additive broadband noise, is used with smoothness
constraints imposed on the model parameters. The smoothness condition is induced
by the continuous and slow variations with time of the vocal tract transfer function
and the pitch. Therefore, this algorithm is restricted only to the voiced speech,
while in [Jensen et al. 2012], a more general algorithm is proposed, using two filters
jointly, one for enhancing voiced speech exploiting its harmonic feature, another for
unvoiced speech.

In audio source separation, periodicity has been used exhaus-
tively [Stettiner et al. 1993, Chazan et al. 1993, Virtanen & Klapuri 2000,
Mowlaee et al. 2010a, Mowlaee et al. 2010b, Christensen & Jakobsson 2010,
Jensen et al. 2010, Mowlaee et al. 2011b]. Specifically, in [Chazan et al. 1993,
Stettiner et al. 1993], the authors consider a multipitch model for voiced speech
(referred to also as the long-term model) and introduce a time-warping function
which describes pitch variation with time. The separation is achieved by identifying
this function and estimating the maximum likelihood (ML) solution of the other
usual parameters (amplitudes, phases, etc..). In [Giacobello et al. 2009b], the short
term prediction (STP) and long term prediction (LTP) aspects of speech are jointly
modeled.
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In [Bensaid et al. 2010b, Schutz & Slock 2010], a joint autoregressive (AR)
model (STP + LTP) was introduced for quasiperiodic sources. The LTP part al-
lows to capture the quasiperiodicity (with possible imperfect correlation in time),
while the STP part allows to model the spectral envelope (see section 3.2). The
modeling of the power spectral density is important to allow power splitting be-
tween sources at overlapping harmonics in the source extraction operation. In
[Bensaid et al. 2010b, Schutz & Slock 2010] Bayesian approaches were adopted for
source and parameter estimation, using expectation maximization (EM)-Kalman
and variational Bayes (VB) techniques respectively. In [Schutz & Slock 2011], the
joint AR model was used for mono-microphone source separation in the frequency
domain. Using Gaussian source models, the source extraction is simply the linear
MMSE (LMMSE) (Wiener) estimation. In the parametric approach, the joint model
parameters need to be estimated also.

In [Schutz & Slock 2011], three criteria are formulated for the estimation of these
parameters on the basis of one frame of data, the Itakura-Saito distance (ISD)
and optimally weighted spectrum matrix (OWSM) for matching the parametric
spectrum and the observations periodogram. The third criterion is the Gaussian
maximum likelihood (GML) [de Carvalho & Slock 1999]. The gradients of these
three criteria w.r.t. the AR parameters and hence their extrema are shown to be
identical. The results in [Schutz & Slock 2011] are based on asymptotic frequency
domain expressions that are only valid for extremely long frames. In this chapter,
we extend these results by accounting for the finite window length and by intro-
ducing advantageously a non-rectangular window. Nontrivial windows were also
introduced in [Schutz & Slock 2010], for the different purposes of source extraction
and parameter estimation, passing from time to frequency domain. The approach
in [Schutz & Slock 2010] was based on Variational Bayes, in which sources and their
parameters are estimated jointly in an alternating optimization fashion. Here we
estimate the parameters separately from the sources after elimination of the Gaus-
sian sources from the likelihood function as in [Schutz & Slock 2011]. Due to the
introduction of the window, which already limits temporal correlation, we propose
to replace the LTP coefficient by its maximum value 1. We reconsider the equiva-
lence of the three criteria mentioned beforehand, but this time based on finite data
vectors, for which in frequency domain we can no longer neglect the correlations
between different frequencies. The goal of the window design will then be to limit
these correlations. The equivalence of multivariate ISD and GML is straightforward
[Carlson & Clements 1991a] as we shall see. In the multivariate case, the OWSM re-
sults in optimally weighted covariance matrix (OWCM)[Ottersten et al. 1998]. The
OWCM is again shown to be equivalent to ISD and GML in terms of gradients.
After proving equivalence, we will focus on the GML criterium and use it to derive
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the expressions of the unknown parameters (STP coefficients, innovations powers
and observation noise power).

4.2 Windowing for frame-based processing

As mentioned before, audio signals are by nature non-stationary in global, but they
can be considered hence piecewise. That is why they are processed in frames (during
30 ms), which corresponds to time-invariant filtering. Many of the signal processing
operations such as linear time-invariant filtering and filter computation could be
largely simplified by passing to the frequency domain. However, transforming a
frame of signal to the frequency domain directly via the discrete Fourier transform
(DFT) (FFT) leads to approximations due to the periodic extension of the frame
assumption inherent in the DFT. We shall see later how we can improve these
approximations.

Just like the original data signal yn (n here is the time index) will be cut into a
series of windowed frames of length N , a bit like in the Welch method, a processed
signal (here the extracted source) will be reconstructed by superposing its recon-
structed windowed frame segments. Since the window needs to decay towards its
edges, consecutive frames need to overlap. Let M be the hop size from one frame
to the next, then a perfect reconstruction (PR) window wn requires [Kabal 2005]

∞∑
i=−∞

wn−iM = 1 , ∀n (4.1)

see the figures Fig. 4.1 for the cases of relative overlap of (N−M)
N = 50%, 75%,

both the individual windows (Hann windows) and their sum are shown for a finite
set of windows. Note that one could consider extensions to non-PR windows, in
which the superposition of windowed signal frames could be followed by a zero-
forcing re-scaling with 1/(

∑∞
i=−∞wn−iM ) or (multi-window) minimum mean square

error (MMSE) versions thereof. An example of a PR window is a Hann (or raised
cosine) window

wn =
1

2

[
1− cos

(
2π

n

N

)]
, n = 0, 1, . . . , N − 1 (4.2)

The continuity of the window at its edges can be expected to be reflected in the
continuity of the reconstructed signal and helps reduce blocking artifacts (musical
noise). The motivations for the window design will be different however in the
parameter estimation part as we shall see. In a separate approach for parameter
estimation and source extraction, as considered here, different windows could be
used in both parts.
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Figure 4.1: Perfect reconstruction window

4.3 Equivalence of ISD, GML and OWCM criteria

In what follows we consider a vector of zero mean data y of lengthN , with covariance
matrix R, and estimation on the basis of the simple sample covariance R̂ = yyH .
We consider the data y to be circular complex Gaussian distributed. Suppose that
the covariance matrix R is parameterized by the vector θ: R = R(θ). The symbols
.∗, .T , .H denote complex conjugate, transpose and Hermitian transpose respectively.

4.3.1 Itakura-Saito distance

The multivariate ISD is based on the observation that for a nonnegative definite
matrix A, the tangent hyperplane to ln |A| at A = IN is tr{A− IN}, where IN is
the identity matrix of size N . The concavity of ln |.| then leads to

tr{A− IN} − ln |A| ≥ 0 (4.3)

The ISD is a common tool to measure spectral distortion
[Carlson & Clements 1991b, Itakura 1975, F.Itakura & S.Saito 1970] and is suc-
cessfully used as a cost function for non-negative matrix factorization (NMF) based
audio processing algorithms [Lefèvre et al. 2011, Févotte 2011, Févotte et al. 2009].
In our problem, the ISD is used to compare the covariance matrix R and its
estimate R̂, and obtained by taking their ratio A = R̂R−1(θ):

ISD(θ) = tr{R̂R−1(θ)− IN} − ln
∣∣∣R̂R−1(θ)

∣∣∣ (4.4)
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4.3.2 Gaussian maximum likelihood

Assuming a circular complex Gaussian distribution and apart from constants (we
mean by constant here independent of θ like ln

∣∣∣R̂∣∣∣), the negative loglikelihood
becomes

GML(θ) = ln |R(θ)|+ yHR−1(θ)y (4.5)

Now note that using a property of the trace operator (see Appendix B)

yHR−1(θ)y = tr{yHR−1(θ)y}

= tr{yyHR−1(θ)}

= tr{R̂R−1(θ)} (4.6)

On the other hand, ln
∣∣∣R̂R−1(θ)

∣∣∣ = ln
∣∣∣R̂∣∣∣ − ln |R(θ)|. Hence, the ISD and GML

criteria are identical (in their dependence on θ). Note that the GML criterion only
has an estimation motivation, whereas the ISD (and hence GML also) performs
jointly approximation and estimation. The approximation part refers to the fact
that the true covariance matrix of y may not be of the form R(θ) for some θ, in
which case minimizing the ISD will lead to a θ that best approximates the data.

4.3.3 Optimally weighted covariance matching

The OWCM is in fact the optimally weighted least-squares applied to a sample
covariance. Consider the vec(.) operator which stacks the consecutive columns of a
matrix into a vector. Then

vec(R̂) = vec(yyH) (4.7)

= y∗ ⊗ y (4.8)

Where ⊗ denotes the Kronecker product. The mean of y∗ ⊗ y is of course vec(R̂).
Using expressions for fourth moments of complex Gaussian signal, we get for its
covariance matrix R∗ ⊗ R(θ). After some algebraic computations using rules in
Appendix B, the OWCM criterion is then

OWCM(θ) = (y∗ ⊗ y − vec(R(θ)))H(R∗(θ)⊗R(θ))−1(y∗ ⊗ y − vec(R(θ)))

= tr{(R̂−R(θ))R−1(θ)(R̂−R(θ))R−1(θ)}. (4.9)

Now, it is well-known that the weighting matrices R−1(θ) can be replaced by con-
sistent estimates without modifying the asymptotic covariance matrix of the esti-
mation errors resulting from minimizing the OWCM criterion. Once the R−1(θ)

are replaced by a consistent estimate, they are no longer a function of θ. Now,
taking the gradient of OWCM w.r.t. a parameter θi by only considering the R(θ)
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appearing in the quadratic "numerator" and using some mathematical rules (see
Appendix B) we get

∂ OWCM(θ)

∂θi
= −2tr{∂R(θ)

∂θi
R−1(θ)(R̂−R(θ))R−1(θ)} (4.10)

On the other hand we get for GML(θ) = ln |R(θ)|+ tr{R̂R−1(θ)} that

∂ GML(θ)

∂θi
= tr{R−1(θ)

∂R(θ)

∂θi
} − tr{R̂R−1(θ)

∂R(θ)

∂θi
R−1(θ)}

= −tr{∂R(θ)

∂θi
R−1(θ)(R̂−R(θ))R−1(θ)} (4.11)

Comparing (4.10) and (4.11), we see that the extrema of OWCM(θ) and GML(θ)

coincide. After establishing the equivalence between the three criteria, we will work
with the GML in the next section.

4.4 GML applied to the data DFT

Working in the time domain, we have a full covariance R to work with. By going to
the frequency domain, one typically assumes to be able to work with a diagonal R
because asymptotically, different frequency components are uncorrelated. We shall
analyze more precisely the nonasymptotic regime. Now, let the current frame of N
samples be y = [y0 y1 · · · yN−1]T and without loss of generality we assume that the
first sample starts at time zero. Before applying the DFT, the data get windowed.
Let W = diag {w0, w1, . . . , wN−1} and F is the N × N DFT matrix, with inverse
DFT F−1 = 1

NF
∗ = 1

NF
H . Then we shall work with the transformed windowed

data vector

Y w = F W y (4.12)

The data are assumed to have zero mean so that covariance and correlation matri-
ces are equal. Note now that y is real, but Y w is complex due to the DFT. Y w is
strictly speaking non-circular as both R(θ) = E

{
Y w(Y w)H

}
and E

{
Y w(Y w)T

}
are nonzero. However, Y w is not a genuine complex random vector as only the real
vector y is random and the complex aspect is due to a deterministic transformation.
As a result we can continue as if Y w has a circular complex Gaussian distribution
which corresponds to a real Gaussian distribution with transposes replaced by Her-
mitian transposes.

Now, all we need for GML is to compute the expression of R(θ). Note that
component Y w

k of Y w = [Y w
0 Y w

1 · · ·Y w
N−1]T is in fact the discrete-time Fourier

transform (DTFT) of the windowed signal, Y w(f), evaluated at frequency f = k/N .
To constitute R(θ), we shall need the correlations between different frequencies
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E {Y w(f1)Y w∗(f2)}. For this we consider

Y w(f1) =

N−1∑
n=0

wn yne
−j2πf1n (4.13)

=
∞∑

n=−∞
wne

−j2πf1n yn (4.14)

=
∞∑

n=−∞
h−n yn (4.15)

= hn ∗ yn|n=0 (4.16)

=

∫ 1
2

− 1
2

H(f)Y (f) df (4.17)

=

∫ 1
2

− 1
2

W (f1 − f)Y (f) df (4.18)

Where hn = wne
j2πf1n. Y (f), W (f) and H(f) are the DTFT of the stationary

random process yn, wn and hn respectively. Notice that we zeropadded the finite
window to infinity. Now we get

E {Y w(f1)Y w∗(f2)} = E
{∫

W (f1 − f)Y (f) df

∫
W ∗(f2 − f0)Y ∗(f0) df0

}
=

∫
df W (f1 − f)

∫
df0W

∗(f2 − f0) E {Y (f)Y ∗(f0)}

=

∫
df W (f1 − f)

∫
df0W

∗(f2 − f0)Syy(f,θ) δ1(f − f0)

=

∫
df W (f1 − f)W ∗(f2 − f)Syy(f,θ) (4.19)

where Syy(f,θ) is the spectrum of yn, and δ1(f) =
∑∞

k=−∞ δ(f − k) is the pe-
riodicized delta function. Now let us introduce the vector of DFT frequencies
f = [0 1 · · ·N−1]T /N and the N × 1 vector of ones 1, let W (f) denote the col-
umn vector of W (.) evaluated at the components of f , then we can write for

R(θ) =

∫
df W (f − f1)WH(f − f1)Syy(f,θ) (4.20)

We get in particular for the diagonal elements Rkk =
∫
df |W (k−1

N − f)|2 Syy(f,θ)

which is the well-known spectrum smearing appearing in the mean of the peri-
odogram. For an example, see figure Fig. 4.2 of a 64 ms length Hann window.
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Figure 4.2: The smearing effect

Now, to limit complexity in the frequency domain based methods, one should
sparsify R(θ) as much as possible. Here is where the window design comes in. For
a properly designed window, W (f) can be neglected outside of its main lobe (see
figure Fig. 4.2). Note that from this point of view, a rectangular window is (again)
not a very good choice since the sidelobes are not much attenuated. If ∆f is the
doublesided width of the main lobe of W (f), then the correlation in (4.19) can be
approximated to zero for |f1−f2| > ∆f . This means thatR(θ) can be approximated
by a banded matrix with only dN ∆fe non-zero diagonals. The inversion of R(θ)

can then be done efficiently using the lower upper (LU) triangular factorization
of R(θ) in which the triangular factors will also be banded. Compared to classical
frequency-domain asymptotics, the spectrum gets smeared on the diagonal and spills
onto the main sub- and super-diagonals, leading to correlations between neighboring
frequencies (only). In those classical asymptotics, the smearing effect of W (f) gets
neglected, leading to R = diag {Syy(f,θ)}. If Syy(f,θ) is sufficiently smooth,
the integral in (4.20) can be approximated by a sum over frequencies spaced more
densely at f ′, containing multiples of 1/N ′, where N ′ > N . This can be obtained
by zeropadding the signal from N to N ′ samples and applying the DFT of size N ′.
We then get R′(θ) of the form

R′(θ) = C(W (f ′)) diag {Syy(f ′,θ)} CH(W (f ′)) (4.21)

where C denotes a circulant matrix constructed from the vector argument. The en-
tries ofR′(θ) can be downsampled to obtainR(θ) if desired. In the maximization of
GML in (4.11), we need to determine the derivatives of R(θ) w.r.t. the components
of θ. If we denote by θi the ith component of θ and using the expression of R(θ)
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given in (4.20), we get for the derivatives

∂R(θ)

∂θi
=

∫
df W (f − f1)WH(f − f1)

∂Syy(f,θ)

∂θi
(4.22)

In the next section, we will introduce the expression of Syy(f,θ) for the joint speech
model used in chapter 3.

4.5 Periodic sources with short-term AR spectral enve-
lope

We consider the same speech and observation models as in chapter 3 where the
single microphone measurement signal yn is composed of K quasiperiodic Gaussian
sources sk,n plus white zero-mean Gaussian noise vk of variance σ2

v . The unknown
vector of parameters θ is defined as in (3.15). Assuming stationarity, the spectrum
Syy(f,θ) of yn can be written as

Syy(f,θ) = S0(f,θ) +
K∑
k=1

Sk(f,θk) (4.23)

where S0(f) = σ2
v , and the spectrum Sk(f,θk) of source k is expressed as

Sk(f,θk) =
ρk

|Ak(f)|2|Bk(f)|2
k = 1 · · ·K (4.24)

where ρk adjusts the source power, Ak(f) and Bk(f) represent the AR spectral
envelopes of the STP and LTP filters respectively, expressed as

Ak(f) =

pk∑
i=0

ak,ie
−j2πf i k = 1 · · ·K (4.25)

Bk(f) = 1 + βke
−j2πf Tk k = 1 · · ·K (4.26)

where fk and pk are the pitch and the AR order of source k. For quasiperiodic
sources which are observed over a limited time frame where the latter is furthermore
windowed with reduced weight towards the edges, we can neglect possible limited
long-term correlation and model the source as a Gaussian periodic signal with STP
spectral envelope, leading to a spectrum of the form

Sk(f,θk) =
ρk

|Ak(f)|2

b 1
2fk
c∑

m=−b 1
2fk
c

δ(f −mfk)

= ρk

b 1
2fk
c∑

m=−b 1
2fk
c

1

|Ak(mfk)|2
δ(f −mfk) k = 1 · · ·K (4.27)
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With the above spectrum model, the parameters θ are reduced to {σ2
v , ρk, ak,i, i =

1, . . . , pk, k = 1, . . . ,K} and we get for R(θ)

R(θ) = σ2
v

∫
df W (f − f1)WH(f − f1)

+

K∑
k=1

ρk

b 1
2fk
c∑

m=−b 1
2fk
c

1

|Ak(mfk)|2
W (f −mfk1)WH(f −mfk1) (4.28)

In figure Fig. 4.3, we show an example of matrix R(θ) when using two types of
windows (Hann window and the rectangular window) in order to illustrate the im-
portance of window’s choice in getting the sparse banded from of R(θ). In the
next section, we express the GML extrema for the unknown parameters θ using the
covariance matrix in (4.28).

4.6 Parameters estimation

In this section, we will derive the estimate of the unknown parameters θ. The gradi-
ent of the spectrum Syy(f,θ) relative to θ is computed, then injected in (4.11). By
equating to zero, the different estimates are deduced. In order to avoid cumbersome
notations, we will note the covariance matrix shortly R instead of R(θ).

4.6.1 Estimation of the inputs and observation noise powers

We want to estimate the inputs power {ρk}k=1:K and the observation noise power
σ2
v by maximizing the GML criterium. In (4.11), we need to compute the gradient

of the covariance matrix w.r.t. these parameters. Let’s adopt this notation

R =

K∑
k=0

ρkGk (4.29)
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Figure 4.3: The structure of covariance matrix R(θ) when using Hann window and
rectangular window

where ρ0 = σ2
v and Gk is defined as it follows

G0 =

∫
df W (f − f1)WH(f − f1) (4.30)

Gk =

b 1
2fk
c∑

m=−b 1
2fk
c

1

|Ak(mfk)|2
W (f −mfk1)WH(f −mfk1) k = 1 · · ·K (4.31)

Then, the gradient of the covariance matrix relative to ρk is simplyGk. By injecting
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this result in (4.11), we get

∂ GML(θ)

∂ρk
= −tr{GkR

−1(R̂−
K∑
k′=0

ρk′Gk′)R
−1}

= −tr{GkR
−1R̂R−1}+ tr{GkR

−1(
K∑
k′=0

ρk′Gk′)R
−1}

= −tr{GkR
−1R̂R−1}+ tr{GkR

−1(ρkGk +
∑
k′ 6=k

ρk′Gk′)R
−1}

= −tr{GkR
−1R̂R−1}+ ρktr{GkR

−1GkR
−1}

+
∑
k′ 6=k

ρk′tr{GkR
−1Gk′R

−1} (4.32)

Hence, if we denote by ρ = [ρ0, ρ1, ..., ρK ]T the vector of observation noise and
inputs powers, then the estimate of ρ (denoted ρ̂) is computed by resolving the
system Mρ = d, where:

Mkk′ = tr{GkR
−1Gk′R

−1} k, k′ = 0 · · ·K (4.33)

dk = tr{GkR
−1R̂R−1} k = 0 · · ·K (4.34)

Since R and {Gk}k=1:K depend on θ, what we do in practical is that we update
them with the last estimate of θ, θ̂i to get R(θ̂i) = Ri and Gk(θ̂

i
k) = Gi

k (con-
sequently M i and di). Ri is then efficiently inverted using LU factorization and
forward/backward substitution. The estimate ρ̂i is then expressed

ρ̂i =
(
M i
)−1
di (4.35)

4.6.2 Estimation of the AR coefficients

In this section, we will find out the estimate of the AR coefficients {ak,i, i =

1, . . . , pk, k = 1, . . . ,K}. The derivation of R(θ) in (4.28) w.r.t. A∗k is computed as
it follows

∂R(θ)

∂A∗k
= −

b 1
2fk
c∑

m=−b 1
2fk
c

W (f −mfk1)WH(f −mfk1)
Sk(mfk,θk)

|Ak(mfk)|2
Ak(mfk) (4.36)

After plugging (4.36) in (4.11) and equating to zero, we get

tr
{ b 1

2fk
c∑

m=−b 1
2fk
c

W (f −mfk1)WH(f −mfk1)
Sk(mfk,θk)

|Ak(mfk)|2
Ak(mfk)R

−1R̂R−1
}

= tr
{ b 1

2fk
c∑

m=−b 1
2fk
c

W (f −mfk1)WH(f −mfk1)
Sk(mfk,θk)

|Ak(mfk)|2
Ak(mfk)R

−1
}

(4.37)
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If we switch the trace and the finite sum, we get

b 1
2fk
c∑

m=−b 1
2fk
c

tr
{
W (f −mfk1)WH(f −mfk1)R−1R̂R−1

} Sk(mfk,θk)

|Ak(mfk)|2
Ak(mfk)

=

b 1
2fk
c∑

m=−b 1
2fk
c

tr
{
W (f −mfk1)WH(f −mfk1)R−1

} Sk(mfk,θk)

|Ak(mfk)|2
Ak(mfk) (4.38)

Consequently[
tr
{
W (f −mfk1)WH(f −mfk1)R−1R̂R−1

} Sk(mfk,θk)

|Ak(mfk)|2

]
Ak(mfk)

= tr
{
W (f −mfk)W

H(f −mfk)R
−1
} Sk(mfk,θk)

A∗k(mfk)
(4.39)

As in [Schutz & Slock 2010], This is a Yule-Walker like equation with non zero Right
Hand Side (RHS) which is solved iteratively

T (rk,(0,...,pk−1)) ak = gk,(1,...,pk) − rk,(1,...,pk) (4.40)

where T is the Toeplitz matrix constructed from the first pk elements of rk, ak
is the short term AR coefficients vector of source k as defined in (3.15). The pk-
dimensional vectors rk and gk are defined as

rk = F−1

(
tr
{
W (f −mfk1)WH(f −mfk1)R−1R̂R−1

} Sk(mfk,θk)

|Ak(mfk)|2

)
(4.41)

gk = F−1

(
tr
{
W (f −mfk)W

H(f −mfk)R
−1
} Sk(mfk,θk)

A∗k(mfk)

)
(4.42)

The alternating optimization scheme will consist in iterating (4.40) for source k by
updating each time the resulting âki in the computation of Ri, ρ̂i and gik until
convergence of the latter, then we move to the next source k + 1 and repeat the
same iteration scheme. Global convergence is achieved when for all sources the
correlation vectors {rk}k=1:K become stable. We remind that all this algorithm
is achieved per processing frame. The parameters of the current processing frame
are initialized using the estimates resulting from the previous frame except of the
first frame which is initialized randomly. The estimation of pitches is handled as in
chapter 3

4.6.3 Source estimation

For a given processing frame l and after estimation of the parameters θ̂l ={
âlk, ρ̂

l
k, f̂k

l
}
k=1..K

, the sources are estimated using Wiener filtering followed by
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a DFT inverse operation

ŝlk = F−1 Rl
SY R

l Y w (4.43)

Rl
SY = E

{
Swk
(
Y w
)H}

= E
{
Swk
(
Swk
)H}

= ρ̂lkG
l
k (4.44)

where Swk is the DFT of the windowed source k and ŝlk is the estimate of source
k in frame l. The full length estimates of sources are reconstructed from the dif-
ferent piecewise estimates of sources using the overlap-add technique. The overall
algorithm is described in algorithm. 3.

Algorithm 3 Spectral envelope estimation algorithm
1: For each processing frame l
2: Initialize the parameters using the estimates of the previous frame{

âl−1
k , ρ̂l−1

k , f̂k
l
}
k=1..K

.

3: Until convergence of {rirk }k=1:K and if ir ≤ ir,max
4: For all sources k
5: Until convergence of gigk and if ig ≤ ig,max, estimate ak using (4.40), update
Rig , ρ̂ig and gigk using (4.28), (4.35) and (4.42) respectively.

6: Update {rirk }k=1:K with the last estimates
{
â
ig
k

}
k=1..K

,
{
ρ̂
ig
k

}
k=0..K

using
(4.41). If not converged, back to step 3.

7: Construct sources per frame using (4.43).
8: Construct the full length sources using the overlap-add technique.

4.6.4 Frequency domain Cramér-Rao bound

For a Gaussian process with zero mean, the element (i, j) (pertaining to θi and θj)
of the Fisher information matrix (FIM) is obtained as [Stoica & Moses 2005]

FIMi,j = tr{R−1(θ)
∂R(θ)

∂θi
R−1(θ)

∂R(θ)

∂θj
} . (4.45)

In the classical asymptotics, the FIM gets then approximated as

FIMi,j =

∫
df S−2

yy (f,θ)
∂Syy(f,θ)

∂θi

∂Syy(f,θ)

∂θj
(4.46)

=

∫
df
∂ lnSyy(f,θ)

∂θi

∂ lnSyy(f,θ)

∂θj
(4.47)

4.7 Simulations

Synthetic spectra

In this part, we run the algorithm for synthetic spectra in order to illustrate the
parameters estimation part of the algorithm. Like in chapter 3, the source number is
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fixed to K = 2 and the AR order is fixed to pk = 10 for all sources k. The sampling
frequency Fs is set to 8 KHz. We simulate at high source to noise ratio (SNR) of
20 dB. We use a Hann window of length 64 ms. The pitches of the different sources
are set to f1 = 140.35 Hz and f2 = 250 Hz. The AR coefficients and the powers
vector ρ that are used to generate the synthetic spectra are set as it follows

a1 =
[
− 1.5020, 1.7380,−2.0290, 1.7890,−1.3760, 1.2550,−0.6930, 0.3760,

− 0.0800, 0.0330
]T

a2 =
[
0.2153, 0.2153,−0.0176, 0.0806, 0.0127, 0.1569,−0.0218, 0.2146,

− 0.7225,−0.3034
]T

ρ =
[
7.5473, 1.5, 1

]T
The simulated synthetic spectra of the sources and the noisy mixture are displayed
in figure Fig. 4.4. In the figure, TrueSpec k and SpecEnv k denote the parametric
spectrum of source k and its corresponding spectral envelope respectively. In the
estimation process, AR coefficients are initialized to zero (flat spectrum) for both
sources. The initial vector ρ̂0 is initialized to 0.1×ρ. Here, the pitches are assumed
known. In figure Fig. 4.5, we show the estimation results compared to the original
values where the algorithm presents a perfect estimation result. In this case, the
spectral envelopes of the sources are distinct. In a second simulation, we produce
the synthetic spectra of two sources with identical AR envelopes (a2) but different
pitches (the same pitches as in the first simulation). We also adjust the input
powers in order to keep a low signal to signal ratio (SSR) and set them to ρ1 = 3

and ρ2 = 1. The new sources spectra are displayed in figure Fig. 4.6. The same
initialization approach is done here too. In this case, the algorithm manages to
extract the parameters perfectly as seen in Fig. 4.7. In fact, the main element that
makes the two sources distinguishable is to have different pitches with minimum
overlap between their corresponding harmonics from the where the importance to
have a good pitch estimation in every processing frame.

4.8 Conclusion

In this chapter, we proposed a frequency method for monomicrophone source separa-
tion. Due to the non-stationary nature of speech, a frame-wise processing is proposed
raising the importance of choosing carefully the multiplying window in order to as-
sure a PR of the estimated speech. The effect of the window is studied in the finite
length case. The algorithm is based on a joint modeling of speech inducing a para-
metric spectrum model for each sources. The estimation of these spectra is based
on optimizing the cost function GML. In previous work [Schutz & Slock 2011], the
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Figure 4.4: Spectra of sources 1 (a) and 2 (b), and observation data.
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Figure 4.6: Spectra of sources 1 (a) and 2 (b), and observation data.
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GML was proved equivalent to the ISD and OWSM in asymptotic conditions (infi-
nite length frames). In our work, this equivalence is proved for finite length windows
for ISD, and forOWCM in terms of gradient and under specific hypothesis. The op-
timization of the GML finds out the parameters that reduce the difference between
the parametric spectra and the observations periodogram, in an iterative fashion.
the estimate of the parametric spectrums permits the reconstruction of the final
sources using a PR window and the overlap-add technique.



Chapter 5

On the Cramer-Rao like lower
bounds for performance evaluation

5.1 Introduction

In chapters 3 and 4, we tackled the problem of estimating the sources, which are ran-
dom variables, and their short term prediction (STP)+long term prediction (LTP)
parameters which are deterministic. In chapter 3, we used a joint (hybrid) estima-
tion strategy, the expectation maximization (EM)-Kalman, whereas in chapter 4, the
sources were eliminated (marginalized), the parameters were estimated using only
the observation likelihood (Gaussian maximum likelihood (GML) function) then
their estimates used to estimate sources. Then, two strategies are present These dif-
ferent estimation strategies raise the question of what is the best strategy? (best in
the mean square error (MSE) sense). In terms of estimation performance evaluation,
we generally start by studying/comparing methods in the asymptotic regime. An
ubiquitous used tool is the Cramér-Rao bound (CRB) which provides a lower bound
to the achieved MSE. There are several types of bounds derived in literature. The
choice of the bound depends on many factors: the nature of the estimated parame-
ters (random, nonrandom or hybrid case), the presence or not of nuisance parame-
ters, tractability of the likelihood function, etc. In the case of hybrid estimation, two
famous bounds are used to evaluate the asymptotic performance of the determin-
istic parameters estimation, the hybrid Cramér-Rao bound (HCRB) and modified
Cramér-Rao bound (MCRB). The latter is more precisely used when the estimation
of the random variables is not the main goal. Our question is: can the difference
between the HCRB and CRB be informative about the influence of the random
variables on the deterministic ones? the same question is raised for the MCRB. In
this chapter, we will start by introducing the joint Gaussian framework. Afterward,
we will give a tutorial about the existing bounds, their bias condition, tightness and
possible comparison between them. For an exhaustive list of papers about lower
bounds, the reader may refer to Van Trees book [Van Trees & Bell 2007]. We will
then characterize the difference, first, between the inverses of HCRB and CRB, and
second, between the inverses of MCRB and CRB. We finally conclude.
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5.2 Jointly Gaussian Framework

In this chapter, the conventional notations will be lowercase for scalars, bold low-
ercase for vectors and bold capital for matrices. Let y denotes the N × 1 measure-
ment vector on the basis of which we want to estimate the M × 1 random process
x. We assume y and x are both Gaussian of distributions N (µyy(θ),Cyy(θ))

and N (µxx(θ),Cxx(θ)) respectively where θ is an L × 1 unknown vector that
parameterizes the two distributions, and consequently parameterizes the joint like-
lihood function f(y,x|θ). All the considered quantities here are real. In the jointly
Gaussian setting, the whole estimation problem is characterized by the joint mean
µ(θ) = [µTyy(θ)µTxx(θ)]T and the joint covariance matrix C(θ)

C(θ) =

[
Cyy(θ) Cyx(θ)

Cxy(θ) Cxx(θ)

]
(5.1)

where Cxy(θ) is the cross-covariance matrix of x and y. In this context, two
scenarios are possible to estimate x and θ. The first scenario consists in integrating
out x since it is random and find out the marginalized maximum likelihood (ML)
estimate of θ

θ̂ML = arg max
θ

ln f(y|θ) (5.2)

Where the loglikelihood for the Gaussian model is expressed

ln f(y|θ) = −1

2
ln detCyy(θ)− 1

2
(y − µyy(θ))TC−1

yy (θ)(y − µyy(θ)) (5.3)

Then the estimate θ̂ML is used to estimate x. This scenario is also used when x are
considered as nuisance parameters and the target estimate is θ. The second scenario
is to estimate both jointly using maximum a posteriori (MAP) for x and ML for
θ. In the Gaussian case, the MAP solution (estimator that maximizes the posterior
distribution) coincides with the minimum mean square error (MMSE) solution. In
particular, we get for the posterior distribution

f(x|y,θ) = N (x̂(θ),P (θ)) (5.4)

where x̂(θ) is the MMSE estimate and P (θ) is its covariance matrix, which are both
defined as

x̂(θ) = µxx(θ) + F (θ)(y − µyy(θ)) (5.5)

F (θ) = Cxy(θ)C−1
yy (θ) (5.6)

P (θ) = Cxx(θ)−Cxy(θ)C−1
yy (θ)Cyx(θ) (5.7)

Notice that the posterior distribution in (5.4) is maximum at x̂(θ) and the value of
its maximum is independent of θ

arg maxx ln f(x|y,θ) = x̂(θ)

maxx ln f(x|y,θ) = −1
2 ln detP (θ)

(5.8)
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Hence due to this separability, a compressed form of the joint likelihood is obtained
(5.9) which remains to be optimized w.r.t. θ

max
x

ln f(y,x|θ) = ln f(y|θ)− 1

2
ln detP (θ) (5.9)

This separability was also noted by Yeredor in [Yeredor 2000] and used to study the
joint MAP/ML algorithm performance. In the following sections, the lower bounds
that govern the performance of these two estimators are derived.

5.3 Lower bounds for deterministic parameters estima-
tion

In this section, we will survey the lower bounds used when the estimated parameters
vector θ is deterministic. We denote by θ̂(y) an estimator of θ which is a function
of the observations vector y but we will omit the y later on to simplify notations.
An important notion should be reminded which is the bias element b. The bias of
an estimator θ̂ is defined [Van Trees 2002, Van Trees 2001]

b(θ̂) = E{θ̂} − θ (5.10)

The probability density function (pdf) according to which the expectation operator
in (5.10) is applied depends on the problem context. An estimator θ̂ is said to be
unbiased if and only if b(θ̂) = 0. In general, lower bounds are defined for unbiased
estimators.

5.3.1 The Cramér-Rao bound

The CRB was introduced for the first time by Harald Cramér and Calyampudi
Radhakrishna Rao in [Cramér 1946, Rao 1945]. For any unbiased estimator θ̂, the
covariance matrix of θ̂ is lower bounded by the CRB defined as the following

CRB , Ey|θ

{
∂ ln f (y|θ)

∂θ

∂ ln f (y|θ)

∂θT

}−1

= J−1(θ) (5.11)

where J(θ) is the L× L Fisher information matrix (FIM). The expectation of the
bias expression in (5.10) is taken according to the likelihood f (y|θ). The CRB is
achieved by the ML estimator [Lehmann & Casella 1998] in asymptotic conditions
(high source to noise ratio (SNR) and/or infinite number of samples), in that case
the estimator is said asymptotically efficient. A second expression is proved to define
the CRB using the Hessian of the likelihood.

CRB = Ey|θ

{
−∂

2 ln f (y|θ)

∂θ∂θT

}−1

(5.12)



72
Chapter 5. On the Cramer-Rao like lower bounds for performance

evaluation

The CRB is used as a benchmark in many applications [Stoica & Arye 1989,
Stoica & Nehorai 1990, Catovic & Sahinoglu 2004, Larsson 2004, Li et al. 2008].
Despite the derivation of other lower bounds, the CRB is the most used one due to
its computational advantages.

Gaussian case

Since in most of the time, the involved signals are of Gaussian nature, it is
noteworthy to mention the CRB in this case [Stoica & Moses 1997]. Since y ∼
N (µyy(θ),Cyy(θ)), then the CRB inverse is expressed

CRB−1 =
1

2

∂CT
yy,θ

∂θ
(C−1

yy (θ)⊗C−1
yy (θ))

∂Cyy,θ
∂θT

+
∂µTyy(θ)

∂θ
C−1
yy (θ)

∂µyy(θ)

∂θT
(5.13)

where Cyy,θ = vec (Cyy(θ)).

Biased case

The CRB in (5.11) is only true when the estimator is unbiased. Since it is not
always the case, an other derivation of CRB was developed for biased estimators
[Van Trees 1968]

CRBb = bbT +

(
I +

∂b

∂θ

)T
CRB

(
I +

∂b

∂θ

)
(5.14)

A biased estimator does not mean necessarily a bad estimator in the MSE sense
since this latter depends also on the variance of the estimator. Thus, a good esti-
mator makes a trade-off between the bias and the variance. In many applications
[Demoment 1989, Carlson 1988, O’Sullivan 1986], the bias was used as a degree of
freedom to improve the estimator performance, yet its choice was done in a ad-hoc
way and not guaranteed to perform better for all values of θ. In [Eldar 2006], El-
dar presents a more rigourous construction of the biased estimator when the bias
is linear on the true parameters vector θ. Moreover, she proves that this estimator
dominates the ML estimator.

5.3.2 The Bhattacharyya bound

The Bhattacharyya bound was introduced first by P. K. Bhattacharya in
[Bhattacharya 1966]. It is considered as a generalization of the CRB. Assuming
all the regularization conditions in [Bhattacharya 1966] fulfilled, we consider the
problem of estimating the function g(θ) (notice that θ here is scalar). Let’s de-
note by g(θ) the k-dimensional vector [g(1)(θ), . . . , g(k)(θ)]T where g(i)(θ) is the ith

derivative of g(θ) w.r.t θ and by ĝ(y) an unbiased estimator of this function. Then
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the estimation error variance is lower bounded by the kth order Bhattacharya bound

E(ĝ(y)− g(θ))2 ≥ g(θ)TJ−1
k (θ)g(θ) (5.15)

Where Jk is the k × k matrix whose (i, j) element is given by

J ijk = Ey|θ

{
∂i ln f (y|θ)

∂θi
∂j ln f (y|θ)

∂θj

}
(5.16)

In the special case when g(θ) = θ, the Bhattacharyya bound coincides with the CRB.
In [Tanaka & Akahira 2003], the authors prove that the 2nd order Bhattacharya
bound is tight for a likelihood function f (y|θ) belonging to the exponential family.

5.3.3 The Barankin bound

The Barankin bound (BB) was introduced first by Barankin in [Barankin 1949]. It
is mainly used to detect the threshold effect where the CRB fails. The threshold
effect is the SNR value under which the ML estimator starts to give inaccurate
results. If we denote by g(θ) a real-valued scalar function of the vector θ and ĝ(θ)

an unbiased estimate of it that depends on the observations vector y, the BB is the
solution of the following optimization problem

min
ĝ(θ)
{MSE [ĝ(θ)]} s.t. E [ĝ(θ)] = g(θ) ∀θ (5.17)

The constraint in (5.17) corresponds to the condition for getting unbiased estimator.
In [Barankin 1949], Barankin proposes a form to the solution of (5.17). If we denote
by {θi}i=1..Nt Nt test points of θ and by L(y;θi,θ) = f(y|θi)/f(y|θ) the likelihood
ratio of the test points vector θi to the true parameters vector θ, then, the solution
of (5.17) can be expressed [Barankin 1949]

BB = lim
Nt→∞

max
a,{θi}i=1..Nt

(
∑Nt

i=1 ai(g(θi)− g(θ)))2

Ey|θ
[
(
∑Nt

i=1 aiL(y,θi,θ))2
] (5.18)

Where a = [a1, · · · , aNt ]T is an Nt-dimensional real vector. We can notice form
(5.18) that the problem of BB is that it does not have an analytical expression,
which makes it impractical to use. Many works later tried to overcome this prob-
lem by deriving BB for specific applications such as nonlinear modulation systems
in additive Gaussian noise background [McAulay & Seidman 1969], communication
and radar problems [McAulay & Hofstetter 1971], source localization in ocean en-
vironment [Knockaert 1997], and the estimation of the frequency of a sinusoid in
additive white Gaussian noise[Tabrikian & Krolik 1999].
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5.4 Lower bounds for deterministic parameters estima-
tion in the presence of nuisance signals

In the previous section, the bounds are introduced in a context where only two
elements are involved, the observation data y and the deterministic parameters
θ. Nevertheless, there are other scenarios where nuisance random variables x are
involved too, and most of the time, the conditional pdf f (y|x,θ) is more tractable
than the marginal likelihood f (y|θ). For this type of scenarios, some bounds are
developed. Before reviewing them, we shall introduce the joint vectorw = [θT ,xT ]T

of the nuisance random vector x and the deterministic parameters θ. We also
consider the conditional FIM given by

Jc , Ey|x,θ

{
∂ ln f (y|x,θ)

∂w

∂ ln f (y|x,θ)

∂wT

}
= Ey|x,θ

{
−∂

2 ln f (y|x,θ)

∂w∂wT

}
=

[
Jθ Jθ,x

JTθ,x Jx

]
(5.19)

Where the matrices Jθ, Jx and Jθ,x are defined as

Jθ = Ey|x,θ
{
−∂2 ln f(y|x,θ)

∂θ∂θT

}
, Jx = Ey|x,θ

{
−∂2 ln f(y|x,θ)

∂x∂xT

}
Jθ,x = Ey|x,θ

{
−∂2 ln f(y|x,θ)

∂θ∂xT

} (5.20)

5.4.1 The modified Cramér-Rao bound

The MCRB was introduced first in [D’Andrea et al. 1994] for synchronization prob-
lem where the carrier frequency is estimated in the presence of unwanted random
parameters x (data symbols, carrier phase and time epoch). An important con-
straint is that the a priori of the nuisance random variables must be independent
of the target parameter θ. In [D’Andrea et al. 1994], the MCRB was derived when
θ is scalar. This derivation was extended to the vectorial case in [Gini et al. 1998]
where it takes the following form

MCRB , Ex {Jθ}−1

= Ey,x|θ

{
∂ ln f (y|x,θ)

∂θ

∂ ln f (y|x,θ)

∂θT

}−1

= Ey,x|θ

{
−∂

2 ln f (y|x,θ)

∂θ∂θT

}−1

(5.21)



5.4. Lower bounds for deterministic parameters estimation in the
presence of nuisance signals 75

The derivation of the MCRB is based on the observation that

Ey,x|θ
{
θ̃θ̃T

}
= Ey|θ

{
Ey|x,θ

{
θ̃θ̃T

}}
≥ Ey|θ

{(
Ey|x,θ

{
θ̃θ̃T

})−1
}

≥
(
Ey|θ

{
Ey|x,θ

{
θ̃θ̃T

}})−1

=
(
Ey,x|θ

{
θ̃θ̃T

})−1
(5.22)

where θ̃ denotes the estimation error (θ̂−θ). Notice that here the estimator should
be globally unbiased (in average over x). The first inequality is an application of the
CRB to the estimator θ̂ for a fixed x, and the second inequality uses the Jensen’s
inequality and the convexity of the function 1/z for z > 0. In [D’Andrea et al. 1994,
Gini et al. 1998], authors prove that the MCRB is looser than the CRB (MCRB ≤
CRB). We explain it briefly here. The proof makes use of some important relations
by expressing the FIM and the likelihood f (y|θ) in a tricky way as it follows

J(θ) =

∫
∂f (y|θ)

∂θ

∂f (y|θ)

∂θT
1

f (y|θ)
dy (5.23)

f (y,θ) =

∫
f (y|x,θ) f (x) dx (5.24)

The derivation of (5.24) relative to θ yields

∂f (y|θ)

∂θ
=

∫
∂ ln f (y|x,θ)

∂θ
f (y,x|θ) dx

=

∫ [
∂ ln f (y|x,θ)

∂θ

√
f (y,x|θ)

]√
f (y,x|θ) dx (5.25)

By applying the Cauchy-Schwartz inequality to (5.25) and after some algebraic
manipulations

J(θ) ≤
∫ ∫

∂ ln f (y|x,θ)

∂θ

∂ ln f (y|x,θ)

∂θT
f (y,x|θ) dx dy (5.26)

Notice that the independence of the a priori of x from θ is important for the
proof to hold. Though it is looser than the CRB, the MCRB is computationally
more attractive in some cases where it can be derived in closed form when it is not
the case for the CRB [Middleton 1972, Gini et al. 1998]. The equality in (5.26) is
achieved when ∂ ln f(y|x,θ)

∂θ is independent of x.

5.4.2 The Miller-Chang bound and its extension

The Miller-Chang bound (MCB) was introduced by Miller et al. in
[Miller & Chang 1978] as an extension of the CRB. It is computed by first de-
riving the CRB for θ while supposing the nuisance parameters exactly known, and
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then averaging over all possible x, in contrast to the MCRB where we average over
x before inversion.

MCB , Ex|θ
{
J−1
θ

}
= Ex|θ

 1

Ey|x,θ
{
∂ ln f(y|x,θ)

∂θ
∂ ln f(y|x,θ)

∂θT

}


= Ex|θ

 1

Ey|x,θ
{
−∂2 ln f(y|x,θ)

∂θ∂θT

}
 (5.27)

Unlike MCRB and CRB, the MCB is applied to locally unbiased estimators, i.e. θ̂
has to be unbiased for all values of x. Moreover, there is no such constraint that
the a priori of x must be independent of θ. In [Miller & Chang 1978], the MCB
was defined for random parameters too (θ random). It is a parallel definition to the
nonrandom case, except that the conditional expectation Ey|x,θ {.} is replaced by
Ey,θ|x {.}

MCB′ , Ex

 1

Ey,θ|x
{
∂ ln f(y,θ|x)

∂θ
∂ ln f(y,θ|x)

∂θT

}


= Ex

 1

Ey,θ|x
{
−∂2 ln f(y,θ|x)

∂θ∂θT

}
 (5.28)

In view of Jensen inequality, MCB is tighter than MCRB (MCRB ≤ MCB)
[Gini & Reggiannini 2000]. Applied to a restricted type of estimators, the MCB
is tighter than the true CRB in some applications such as the arrival and separation
time estimation of two interfering signals [Miller & Chang 1978]. An extension of
MCB is proposed in [Gini & Reggiannini 2000] which consists in computing the CRB
for joint estimation of x and θ considering that x is deterministic and unknown,
and then averaging the result over the latter. Hence, the extended Miller-Chang
bound (EMCB) is given by

EMCB , Ex
{[
J−1
c

]
11

}
= Ex

{
1

Jθ − Jθ,xJ−1
x JTθ,x

}
(5.29)

where
[
J−1
c

]
11

is the L×L upper block of matrix J−1
c . Notice that the EMCB is the

joint Cramér-Rao bound (JCRB) averaged over x in [Moeneclaey 1998] (EMCB =

Ex{JCRB}).
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5.4.3 The conditional Cramér-Rao bound

The conditional Cramér-Rao bound (CCRB) is defined for the joint vector w and
when we ignore the a priori function of the nuisance vector x and consider it as non-
random [Noam & Messer 2009]. Then, the covariance of any strict-sense unbiased
estimator ŵ is lower bounded by

CCRB , J−1
c

= Ey|x,θ

{
∂ ln f (y|x,θ)

∂w

∂ ln f (y|x,θ)

∂wT

}−1

(5.30)

Hence, the CCRB for the θ estimation part is deduced

CCRBθ(x) =
(
Jθ − Jθ,xJ−1

x JTθ,x
)−1 (5.31)

Notice that this bound is a function of both x and θ. This bound coincides with
the JCRB, consequently its average over x results in the EMCB.

5.4.4 The asymptotic Cramér-Rao bound

The asymptotic Cramér-Rao bound (ACRB) is defined as the true CRB at high
SNR. There is no general analytic expression of ACRB because its derivation de-
pends tightly on the context (signal models, Noise model,etc.). Yet, the asymptotic
bound derived in [Moeneclaey 1998] seems very interesting, since the observations
model used therein is the most general so far and which is described as

y = s(x, θ) + v (5.32)

Where s(., .) is a general function of the scalar θ and the nuisance random vector x
whose a priori function is independent of θ. v is the Gaussian noise vector of i.i.d.
samples with variance σ2

v . To derive the ACRB, Moeneclaey uses a tricky expression
of the FIM J(θ) (for θ scalar) [Moeneclaey 1998] and which consists in

Ey|θ

{
−∂

2 ln f (y|θ)
∂θ2

}
= −1/2σ2

v Ey|θ

{
Ex|y,θ

{
∂2 |y − s (x, θ)|2

∂θ2

}}

− 1/2σ2
v Ey|θ

{
varx|y,θ

(
∂ |y − s (x, θ)|2

∂θ

)}
(5.33)

where varx|y,θ (.) denotes the variance using the pdf f(x|y, θ). After mathematical
manipulations, Moeneclaey derives approximate expressions to each term of the
RHS in (5.33) at high SNR and shows that

ACRB ∼=
1

Ex
{[
J−1
c

]
11

}
=

1

Ex
{
Jθ − Jθ,xJ−1

x JTθ,x

} (5.34)
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Recall that all these results are for the case when the a priori function of x is
independent of θ. If this condition is not fulfilled, the result will change. In
[Gini & Reggiannini 2000], important inequalities are derived to compare some of
the lower bounds seen before. These inequalities are derived for a specified appli-
cation (carrier frequency offset estimation) but can be generalized. We summarize
them in the following

EMCB ≥MCB ≥MCRB (5.35)

EMCB ≥ ACRB ≥MCRB (5.36)

5.5 Lower bounds for Bayesian estimators

Bayesian estimation is used when the target parameters vector θ is random with
an a priori function denoted by f(θ). The optimal Bayesian estimator of θ is the
MMSE estimator [Kay 1993] (optimal on the MSE sense) defined as the minimizer
of the MSE function.

θ̂MMSE , arg min
θ

Ey,θ
{
θ̃θ̃T

}
(5.37)

The solution of the optimization problem in (5.37) consists in the a posteriori mean
Eθ|y{θ}. Nevertheless, the a posteriori mean can be intractable in some cases. An
alternative sub-optimal solution is the MAP estimator [Kay 1993]. It is based on
maximizing the a posteriori distribution f(θ|y).

θ̂MAP , arg max
θ

(ln f(θ|y))

= arg max
θ

(ln f(y|θ) + ln f(θ)) (5.38)

In asymptotic conditions (infinite number of samples or high SNR), the contribution
of the a priori function becomes insignificant, and the MAP solution converges
to the ML estimation solution. In a Bayesian context, the classical bounds cited
previously are no longer appropriate since they do not take into consideration the
a priori information, whence the need to invent new benchmarks or Bayesian lower
bounds. In the following, we review this type of bounds. It is noteworthy that the
bias condition in the Bayesian case is different than the one in the deterministic case
in (5.10). In the Bayesian case the bias is defined as

b = Eθ
{
Ey|θ

{
θ̂(y)− θ

}}
(5.39)

In the deterministic case, the bias statement is a local condition where the estimator
has to be unbiased for each value of θ (strictly unbiased), whereas in the Bayesian
case, the bias statement is a global condition where the estimator has to be unbiased
in average (widely unbiased).
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5.5.1 The Bayesian Cramér-Rao bound

The Bayesian Cramér-Rao bound (BCRB) was introduced first by Van Trees
[Van Trees 1968] as a lower bound to the variance of estimation error when θ is
random. The bias condition of BCRB is that it is applied for any wide sense unbi-
ased estimator θ̂. The BCRB is formulated as it follows

BCRB , Ey,θ
{
∂ ln f (y,θ)

∂θ

∂ ln f (y,θ)

∂θT

}−1

= Ey,θ
{
−∂

2 ln f (y,θ)

∂θ∂θT

}−1

= J−1
B (5.40)

where JB is the Bayesian information matrix (BIM) which can be decomposed into
two informative quantities

JB = Ey
{
Ey|θ

{
−∂

2 ln f (y|θ)

∂θ∂θT

}}
+ Eθ

{
−∂

2 ln f (θ)

∂θ∂θT

}
= Ey {J(θ)}+ Jp (5.41)

where the first term consists in the information brought by the observed data and
the second term is the information brought from the a priori function of θ. Notice
that the BIM is not a function of θ but constant. In [Van Trees 2001], Van Trees
proves that when f(θ|y) satisfies a multivariate Gaussian density, the BCRB can
be achieved by θ̂MAP that coincides with θ̂MMSE in this case.

5.5.2 The Bobrovsky-Zakai bound

The Bobrovsky-Zakai Bound was introduced for the first time in the context of non-
linear diffusion process filtering [Bobrovsky & Zakai 1976]. The bound was meant
to assess the suboptimal implementable filters relative to the intractable optimal
solution (optimal filter). The Bobrovsky-Zakai Bound is defined as the inverse of
the L× L matrix J(δ) whose (i, j) element is defined as

Ji,j(δ) = Ey,θ
{(f (y,θ)− f (y,θ + δ ei)

δ f (y,θ)

)(
f (y,θ)− f (y,θ + δ ej)

δ f (y,θ)

)}
(5.42)

where ei is the ith vector of the standard basis in RL, and δ is a real number.

5.5.3 The Weiss-Weinstein bound

In [Weiss & Weinstein 1985, Weinstein & Weiss 1988], Weiss et al. prove that for
any arbitrary scalar functions g(y) and k(θ), the following inequality is true

Ey,θ
{

(k(θ)− g(y))2
}
≥ (aTu)2

aTV a
(5.43)
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where a is an arbitrary Nt-dimensional vector, Nt is the number of test points and
u is the Nt-dimensional vector whose ith element is given by

ui = Ey,θ
{

[k(θ − hi)− k(θ)]L1−si(y;θ − hi,θ)
}

(5.44)

{hi}i=1···Nt are arbitrary Nt-dimensional vectors, {si}i=1···Nt are arbitrary scalars in
[0, 1] and L(y;θ − hi,θ) is given by

L(y;θ − hi,θ) , f(y,θ − hi)/f(y,θ) (5.45)

V is the matrix whose (i, j) element is given by

Vij = Ey,θ
{ [
Lsi(y;θ + hi,θ)− L1−si(y;θ − hi,θ)

]
[
Lsj (y;θ + hj ,θ)− L1−sj (y;θ − hj ,θ)

] }
(5.46)

After maximization of the bound relative to the arbitrary vector a and substitution
of k(θ) = lTθ and g(y) = lT θ̂ with l arbitrary vector, the final lower bound on the
error covariance matrix is

Ey,θ
{

(θ − θ̂)(θ − θ̂)T
}
≥HQ−1HT (5.47)

where H is the matrix whose columns are the vectors {hi}i=1···Nt and Q is the
matrix whose (i, j) element is given by

Qij = Vij/(Ey,θ
{
L1−si(y;θ − hi,θ)

}
Ey,θ

{
L1−sj (y;θ − hj ,θ)

}
) (5.48)

Notice that the BCRB is a limiting case for Weiss-Weinstein bound (H = h I, h→
0) provided that more regularity conditions are satisfied (integrability of the Hessian
of the joint log-likelihood). Hence, the Weiss-Weinstein bound presents a good
alternative when the regularity conditions are not fulfilled. Moreover, it is possible
to have a bound even tighter than the CRB if the arbitrary parameters are chosen
properly. The Bobrovsky-Zakai bound is also a special case of Weiss-Weinstein
bound (si = 1) that needs more regularity conditions. In [Weinstein & Weiss 1988],
the authors generalize more (5.43) by formulating lower bounds for higher order
moments of the parameters estimation error Ey,θ

{
(k(θ)− g(y))k

}
with k > 1.

5.6 Lower bound for hybrid estimators: the hybrid
Cramér-Rao bound

The need for the HCRB was expressed first in the work of Rockah and Schultheiss
[Rockah & Schultheiss 1987] where they study the source localization, but restricted
to the case where the a priori pdf of x is independent of θ. Ten years later, Reuven
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and Messer generalize its formulation in [Reuven & Messer 1997] where they extend
the BB to the case of a hybrid vector estimation. The HCRB is applied to wide-
sense unbiased hybrid estimators. A well known example of hybrid estimator is the
MAP/ML estimator defined as

ŵML/MAP = arg max
θ,x

ln f (y,x|θ) (5.49)

It is important to mention that among the regularity conditions in
[Reuven & Messer 1997], the statistical independence of the random and nonran-
dom parameters is required. This constraint is relaxed after in [Bay et al. 2008].
Let us define the hybrid information matrix (HIM) as

J̃ , Ey,x|θ

{
∂ ln f (y,x|θ)

∂w

∂ ln f (y,x|θ)

∂wT

}
= Ey,x|θ

{
−∂

2 ln f (y,x|θ)

∂w∂wT

}
=

[
J̃θ J̃θ,x

J̃Tθ,x J̃x

]
(5.50)

where the matrices J̃θ, J̃x and J̃θ,x are defined as it follows

J̃θ = Ey,x|θ
{
−∂2 ln f(y,x|θ)

∂θ∂θT

}
, J̃x = Ey,x|θ

{
−∂2 ln f(y,x|θ)

∂x∂xT

}
J̃θ,x = Ey,x|θ

{
−∂2 ln f(y,x|θ)

∂θ∂xT

} (5.51)

The HCRB for θ estimation part is defined as the L×L upper block of matrix J̃−1

[Noam & Messer 2009] computed using the matrix inversion lemma (see Appendix
B.2).

HCRB =
(
J̃θ − J̃θ,xJ̃−1

x J̃Tθ,x

)−1
(5.52)

In [Noam & Messer 2009], the authors prove that the CRB is tighter than the HCRB
and provide a necessary and sufficient condition for them to be equal without the
need to compute the CRB explicitly. They also provide a necessary and sufficient
condition for HCRB to be tight and prove that when it is the case, HCRB is achieved
by the hybrid estimator MAP/ML. Yet, in general the HCRB is not asymptotically
tight unless it coincides with the CRB. In [Gini & Reggiannini 2000], authors prove
that HCRB is tighter than MCRB with equality when J̃θ,x = 0. The different
comparison are summarized in (5.53)

CRB ≥ HCRB ≥MCRB (5.53)

It is noteworthy that the inequalities where MCRB is compared to CRB and HCRB
were derived under the constraint of statistical independence between x and θ.
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5.7 Characterizing the differences (HIM-FIM) and
(FIM-MFIM)

In this section, we investigate the differences (HIM-FIM) and (FIM-MFIM) in an
attempt to understand the effect of the random variables x on the estimation of θ.

5.7.1 Difference between HIM and FIM

The relation between the joint pdf f(y,x|θ) and the marginalized pdf f(y|θ) can
be simply expressed using Bayes rule in (5.54)

ln f(y,x|θ) = ln f(y|θ) + ln f(x|y,θ) (5.54)

we compute the Hessian of both sides in (5.54) w.r.t. w and after applying the joint
expectation Ey,x|θ {.}, we can express the HIM using the FIM[

J̃θ J̃θ,x

J̃Tθ,x J̃x

]
=

[
J(θ) 0

0 0

]
+ G̃

=

[
J(θ) 0

0 0

]
+

[
G̃θ G̃θ,x

G̃T
θ,x G̃x

]
(5.55)

where G̃ = −Ex,y|θ
{
∂2 ln f(x|y,θ)
∂w ∂wT

}
is the block matrix partitioned in a similar way

as J̃ in (5.50). From (5.55), we deduce the relation between HCRB−1 and CRB−1 :

HCRB−1 = J̃θ − J̃θ,xJ̃−1
x J̃Tθ,x

= J(θ) + G̃θ − G̃θ,xG̃−1
x G̃

T
θ,x

= CRB−1 + G̃θ − G̃θ,xG̃−1
x G̃

T
θ,x (5.56)

This expression is valid for any distribution and shows that the inverse of HCRB
(information in the presence of nuisance parameters) for θ equals the inverse
marginal/separate CRB plus an inverse CRB that would correspond to joint es-
timation from the posterior density f(x|y,θ). It is noteworthy that this re-
sult can be also derived using the terminology of orthogonal projection used in
[Noam & Messer 2009]. The second method of derivation is detailed in Appendix
A.1. For the joint Gaussian model presented in 5.2 and using the FIM expression
in (5.13), the HCRB inverse is expressed as

J̃θ =
1

2

∂CT
yy,θ

∂θ
(C−1

yy (θ)⊗C−1
yy (θ))

∂Cyy,θ
∂θT

+
∂µTyy(θ)

∂θ
C−1
yy (θ)

∂µyy(θ)

∂θT

+
1

2

∂P T
θ

∂θ

(
P−1(θ)⊗ P−1(θ)

) ∂Pθ(θ)

∂θT
+
∂F T

θ

∂θ

(
P−1(θ)⊗Cyy(θ)

) ∂Fθ
∂θT

(5.57)

where Pθ and Fθ are the vectorized forms of P (θ) and F (θ) respectively, the
last two terms correspond to the difference in inverse CRB, and correspond to the
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information for θ that can be extracted from the covariance and the mean of the
Gaussian posterior f(x|y,θ).

5.7.2 The Difference between FIM and MFIM

In [Moeneclaey 1998], Moeneclaey computes (MFIM − FIM) for the specific case
when f(x|θ) = f(x), θ is scalar and the observation noise is white Gaussian with
covariance matrix Rvv = σ2

vI independent of θ. The extension of his result to
vectorial θ and general observation noise covariance matrix Rvv (but independent
of θ) is straightforward and can be written as follows

J(θ) = JM (θ)− Ey|θ

{
Covx|y,θ

{
∂ ln f (y|x,θ)

∂θ

}}
(5.58)

where JM (θ) = −Ey,x|θ
{
∂2 lnf(y|x,θ)

∂θ∂θT

}
denotes the modified FIM (MFIM) (the

inverse of MCRB). Here we shall extend this to the case of f(x|θ). We claim the
following result

J(θ) = JM (θ)− G̃θ + Jx(θ) (5.59)

where Jx(θ) = Ex|θ
{
−∂2 ln f(x|θ)

∂θ∂θT

}
.

Proof. There is a second way to express the joint likelihood in addition to the fashion
in (5.54),

ln f(y,x|θ) = ln f(y|θ) + ln f(x|y,θ) (5.60)

the Hessian of the two expressions in (5.54) and (5.60) w.r.t. θ results in

∂2 lnf(y|x,θ)

∂θ∂θT
+
∂2 lnf (x|θ)

∂θ∂θT
=
∂2 lnf(y|θ)

∂θ∂θT
+
∂2 lnf (x|y,θ)

∂θ∂θT

Applying the Ey,x|θ{.} operator over all random variables and changing the terms
to the right sides results in the claimed result.

When f(x|θ) = f(x), the last term in the RHS of (5.59) Jx(θ) vanishes. The
second term in the RHS of (5.59) G̃θ can be easily proved equal to the covariance
term in (5.58) when we notice that Ex|y,θ

{
∂ ln f(y|x,θ)

∂θ

}
is simply equal to ∂ ln f(y|θ)

∂θ ,

and therefore get Moeneclaey’s result in (5.58). In terms of interpretation, G̃θ
may be interpreted as the difference in information between x being deterministic
or random. Jx(θ) is new and corresponds to the information on θ in the prior
distribution f(x|θ).

5.8 Performance analysis: back to basics

If we summarize the two main estimation scenarios raised in previous sections, given
the measurements vector y, the latent random (Gaussian) vector x which is con-
sidered according to the application to be either nuisance or target parameters, and
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the deterministic parameters vector θ. In a joint estimation approach, we maximize
the joint likelihood f(y,x|θ) which means alternating the MAP/ML, MAP for x
and ML for θ (the estimator is denoted θ̂JML), with (joint) error covariance matrix
CJ
θ̃θ̃

and performance lower bound HCRB. In a marginalized estimation approach,
the random variables x can be eliminated (marginalized) from the likelihood, and
then the likelihood f(y|θ) maximized, which means ML for θ (the estimator is
denoted θ̂MML), with (marginalized) ML error covariance matrix CM

θ̃θ̃
and associ-

ated lower bound CRB. Asymptotically (in infinite data samples sense), we get the
performance ordering as follows

CJ
θ̃θ̃

(i)

≥ CM
θ̃θ̃

(ii)
= CRB

(iii)

≥ HCRB (5.61)

where (i) is due to the inconsistency of x̂MAP which prevents θ̂JML from reaching its
CRB, (ii) is due to θ̂MML being consistent, (iii) is proved in [Noam & Messer 2009].
In other words, in terms of actual performance, joint estimation of the state and the
parameters leads to worse parameter estimates than when the parameters are esti-
mated in a marginalized fashion, even though the CRBs would indicate otherwise.
In [Yeredor 2000], Yeredor proves that the MAP/ML induces a persisting bias even
asymptotically.

5.9 Conclusion

In this chapter, we tackled the issue of joint vs marginal estimation. We reviewed
some of the lower bounds used as benchmarks to assess estimators of both types.
We then investigated the effect of the presence of random (nuisance) variables on the
estimation of deterministic parameters in terms of lower bounds and in comparison
to the case when these random variables are eliminated.

Different scenarios of joint estimations are present. One scenario is illustrated
by the alternating MAP/ML Kalman filter where the estimate θ̂ is computed using
only x̂. Idem for x, x̂ is computed using only θ̂. This algorithm converges to the
joint MAP/ML solution. Another scenario is illustrated with the EM-Kalman seen
in chapter 3, the estimation of θ̂ is computed differently by using both x̂ and x̃,
thus, the estimation error of x is considered and expected to improve the estimation
of θ. In fact, it is known that the EM approach converges to the marginalized
ML approach, so the EM-Kalman algorithm would be one approach to get this
optimal performance. the estimation fashion of x̂ is unchanged. The last scenario
is illustrated with the variational Bayes (VB)-Kalman filter where θ̂ is computed
the same way as in EM-Kalman algorithm, and the estimation of x̂ is improved by
using both θ̂ and θ̃. This raises the question about a potential improvement of the
VB-Kalman estimate of θ compared to the EM-Kalman estimate.



Chapter 6

On the performance of joint
LMMSE filtering and parameter

estimation

6.1 Introduction

In chapter 5, we characterized the difference between the hybrid information ma-
trix (HIM) (the deterministic parameter part) and the classical Fisher information
matrix (FIM) in order to understand the influence of the random signals on the esti-
mation of deterministic parameter in terms of lower bounds. In this chapter, we fo-
cus on the joint and separate estimation in terms of performances. In estimation the-
ory, the choice of an estimator depends closely on the context of the problem. When
the unknown parameters are deterministic, the maximum likelihood (ML) estimator
is often considered as the best approach. It is typically consistent and asymptotically
optimal (attaining the Cramér-Rao bound (CRB))[Van Trees 2001, Wald 1949]. For
the random case, the minimum mean square error (MMSE) estimator is used and
known (in the Gaussian case) to achieve the Bayesian Cramér-Rao bound (BCRB)
introduced by Van Trees [Van Trees & Bell 2007]. When the MMSE estimate is in-
tractable, it is sometimes replaced by the maximum a posteriori (MAP) estimator.
An other important estimation problem to be considered is when nuisance (random)
parameters are affecting the estimation of the unknown (deterministic) parame-
ters/signals as in synchronization problems [Lindsey 1972] or audio source separa-
tion [Bensaid et al. 2010b]. Different scenarios have been considered. One scenario
is to marginalize out the nuisance parameters which yields the previous problem
of ML estimation. In some cases, the marginalization is intractable or very te-
dious, so we resort to joint estimation (MAP/ML, expectation maximization (EM),
variational Bayes (VB)...)[Dempster et al. 1977, Beal 2003, Yeredor 2000], which is
also relevant when the random signals are of interest [Guarnieri & Tebaldini 2007,
Tichavsky & Wong 2004]. One instance of linear MMSE (LMMSE) estimation is
the Kalman filter. In the literature, variations of the Kalman filter have been de-
rived to handle the problem of joint filtering and parameter estimation. In this
chapter, we start with a review of the different derivatives of Kalman filter in
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the joint filtering/estimation framework. We then analyze the performance of the
iterative algorithm VB (compared to EM) and introduce second order extended
LMMSE (SOELMMSE). Finally, we conclude.

6.2 Adaptive Kalman filtering approaches

Since Rudolf E. Kalman published his famous paper [Kalman 1960], Kalman filter
has been the work horse of many processes in different domains (position and speed
tracking, optimal parameters estimation...). Yet, the filter may depend on unknown
parameters whose knowledge is crucial to perform good estimation. This problem
arises in many contexts such as these three examples :

• Bayesian adaptive filtering [Sadiki & Slock 2004] (or wireless channel estima-
tion [Lenardi & Slock 2002, Gao et al. 2003]) where the state vector represents
the finite impulse response (FIR) filter and the parameters are the power delay
profile, autoregressive (AR)(1) dynamics.

• Position tracking (GPS) [Consortium Partners 2010] where the state vector
represents acceleration, velocity and position variables, and the parameters
are of the acceleration model (e.g. white noise, AR(1))

• Blind audio source separation where the state vector represents source signals
and parameters are the short term prediction (STP) and long term prediction
(LTP) AR parameters [Bensaid et al. 2010a].

In the literature, new varieties of Kalman are derived to overcome this problem like
the widely used EM-Kalman algorithm ([Couvreur & Bresler 1995, Gao et al. 2003,
Feder & Weinstein 1988]) which uses the famous EM technique in order to estimate
the unknown parameters and then update them in the equations of Kalman filter
to estimate the hidden state in adaptive scheme. Another well-known variety is
the extended Kalman filter (EKF) algorithm. In this case, nonlinear models are
tackled and the state is extended with the unknown parameters in order to be esti-
mated in parallel. A third derivation is the truncated second order extended Kalman
filter (SOEKF) introduced by [Bass et al. 1966, Jazwinski 1970] in which nonlineari-
ties are carried to second order, third and higher order statistics are neglected. A cor-
rected derivation of this filter is presented in [Henriksen 1982]. In ([Jazwinski 1970,
Athans et al. 1968]), the Gaussian SOEKF is derived so that fourth-order terms in
Taylor series approximations are retained and approximated by assuming that the
underlying probabilities are Gaussian. In [Villares & Vazquez 2004], Villares et al.
introduced the quadratic extended Kalman filter (QEKF) where they extend the
EKF to a new algorithm using quadratic processing and incorporating fourth order
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statistics of the input signal. The problem of uncertainty about the process noise and
measurement noise covariance matrices was also addressed in [Mehra 1970] where a
test of Kalman filter optimality is used in order to determine the estimation of the
unknown noise matrices. The performance of some Kalman filter approaches was
studied in literature. In [Dempster et al. 1977], the EM-Kalman is proved to con-
verge to the ML performance. The asymptotic behavior of the EKF when depending
of unknown parameter is treated in [Ljung 1979] where it is proved that no global
convergence is guaranteed. Performance analysis of linear and nonlinear Kalman
filters are also treated in terms of CRB computation. In [Tichavsky et al. 1998],
the BCRB is developed for the discrete nonlinear Kalman filter. Recursive BCRBs
were also developed for continuous and discrete nonlinear Kalman filters for many
problems. In order to have a global overview, the interested reader may refer to
[Trees & Bell 2007].

Before reviewing the different Kalman derivatives, we shall present the general
state space model. Let us denote by y the N -dimensional observations vector and
by x the M -dimensional AR(1) state vector, then

xk+1 = Fk xk +Gk wk

yk = Hk xk + vk (6.1)

for discrete time k = 1, 2, ... and where the initial state x0 is Gaussian distributed
with mean x̂0 and covariance P0, the state noise wk and measurement noise vk are
zero-mean Gaussian processes with covariances Qk and Rk respectively. All these
random quantities are mutually uncorrelated.

6.2.1 Basic Kalman filter

In the following, we introduce the compact notation y1:k = {y1, . . . ,yk} of the k
successive samples of y. Kalman filter performs Gram-Schmidt orthogonalization
of the measurement variables yk. This is done by computing the LMMSE predictor
ŷk|k−1 of yk on the basis of y1:k−1, leading to the orthogonalized prediction error
(or innovation) ỹk = yk − ŷk|k−1. We introduce the correlation matrix notation
Cxy = E

{
xyT

}
(correlation matrices will usually also be covariance matrices here

since the processes yk and xk have zero-mean and also various estimation errors
will have (conditional) zero-mean). We denote the covariance matrix Cỹkỹk = Sk.
The idea of the innovations approach is that (linear) estimation in terms of y1:k is
equivalent to estimation in terms of ỹ1:k since one set is obtained from the other by
an invertible linear transformation. Now, since the ỹk are uncorrelated, estimation
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in terms of ỹ1:k is simplified:

x̂|k =

k∑
i=1

Cxỹi C
−1
ỹiỹi

ỹi

= x̂|k−1 +Cxỹk S
−1
k ỹk (6.2)

This will be used to obtain predicted estimates x̂k|k−1 with estimation error
x̃k|k−1 = xk− x̂k|k−1 and covariance matrix Pk|k−1 = Cx̃k|k−1x̃k|k−1

and also filtered
estimates x̂k|k with estimation error x̃k|k = xk − x̂k|k with covariance matrix
Pk|k = Cx̃k|kx̃k|k . Now exploiting the correlation structure in the signal model, this
leads to the following two-step recursive procedure to go from |k−1 to |k:
Measurement Update

ŷk|k−1 = Hk x̂k|k−1 (6.3)

ỹk = yk − ŷk|k−1 (6.4)

Sk = Hk Pk|k−1H
T
k +Rk (6.5)

Kk = Pk|k−1H
T
k S

−1
k (6.6)

x̂k|k = x̂k|k−1 +Kk ỹk (6.7)

Pk|k = Pk|k−1 −KkHk Pk|k−1 (6.8)

Time Update (prediction)

x̂k+1|k = Fk x̂k|k (6.9)

Pk+1|k = Fk Pk|k F
T
k +GkQkG

T
k (6.10)

Kk is the Kalman filter gain. In the usual case of total absence of prior information
on the initial state, one can choose x̂0 = 0, P0 = p0 I with p0 being a large number.

6.2.2 Extended Kalman filter

For the case of a nonlinear state space model, the idea of the EKF is to apply
the Kalman filter to a linearized version of the state space model, via a first-order
Taylor series expansion. So we get for the state update and the measurement update
equations

xk+1 = f(xk,wk) ≈ Fk xk +Gk wk (6.11)

yk = h(xk) + vk ≈ Hk xk + vk (6.12)

where
Fk=

∂ f(x,w)

∂ xT

∣∣∣∣
(x,w)=(xk,wk)

Gk=
∂ f(x,w)

∂wT

∣∣∣∣
(x,w)=(xk,wk)

Hk=
∂ h(x)

∂ xT

∣∣∣∣
x=xk

(6.13)
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So, at this point, the basic Kalman filter can be applied to the obtained approximate
linear state space model. The EKF approach can be used to adapt some parameters
in an otherwise linear state space model x′k+1 = F

′
x
′
k + G

′
wk. For instance,

consider the case in which one wants to adapt parameters appearing (e.g.) linearly in
the matrix F ′ = F

′
(θ). One can jointly estimate the unknown constant parameters

vector θ by considering the following state update for them: θk+1 = θk. Then one
can introduce the augmented state and system matrices

xk =

[
x
′
k

θk

]
, Fk =

[
F
′
(θk) C(x

′
k)

0 I

]
, Gk =

[
G
′

0

]
(6.14)

where C(x
′
k) =

∂ F
′
(θ)x

′
k

∂ θT
. When running the EKF, the state-dependent system

matrices have to be filled with the latest state estimates, so in this case

Fk =

[
F
′
(θ̂k|k) C(x̂

′

k|k)

0 I

]
(6.15)

The parameters vector θ is often not really constant and hence need to be tracked
adaptively. This can be done either by introducing some process noise in θk+1 = θk

(random walk time evolution) or by introducing exponential weighting (at least
for the θ portion) into the Kalman filter updates [Anderson & Moore 1979]. The
EKF approach allows fairly and straightforwardly the estimation of parameters in
Fk, Hk, or Gk, but much less so in Qk, Rk. For adapting (parameters in) Q
and R, one needs to consider the innovations representation x̂k+1|k = Fk x̂k|k−1 +

FkKk ỹk and consider gradients of the Kalman gain Kk w.r.t. these matrices.
The EKF has been widely used thanks to its practical usefulness [Pham et al. 1998,
Dhaouadi et al. 1991, Kim et al. 1994], nevertheless, its convergence is not always
guaranteed [Ljung 1979, Reif et al. 1999].

6.2.3 Recursive prediction error method

The recursive prediction error method (RPEM) is an adaptive implementation of
ML parameters estimation [Ljung & Söderström 1983, Ljung 2002]. The negative
loglikelihood becomes a least-squares criterion in the prediction errors (innovations)
and RPEM performs one iteration per new sample. Applied to Kalman filter, the
RPEM (referred also as adaptive EKF) can be seen as a more rigorous version of
EKF and computes gradients more precisely [Wiklander 2003]. Indeed, in the case
of a state transition matrix Fk = Fk(θ), the EKF considers the gradient

∂xk+1

∂θT
=
∂Fk(θ)xk
∂θT

(6.16)
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where only the explicit dependence of F on θ is taken into account, whereas the
RPEM considers more correctly

∂xk+1

∂θT
=
∂Fk(θ)xk
∂θT

+ Fk(θ)
∂xk
∂θT

(6.17)

One characteristic of the RPEM is a higher complexity. More details about
RPEM for Kalman filter can be found in [Åström 1980, Wiklander 2003,
Ljungquist & Balchen 1993].

6.2.4 Fixed-lag smoothing

In fixed-lag smoothing, the aim is to have an estimate of the state at time k − L
given L future measurements where L is the fixed lag. In the case of L = 1 and
using the innovations approach, we have

x̂k−1|k = x̂k−1|k−1 + Cxk−1ỹk S
−1
k ỹk . (6.18)

After a few steps, we get the following lag-1 smoothing equations that need to be
added to the basic Kalman filter equations (to be inserted between the measurement
update and the time update)

Kk;1 = Pk−1|k−1 F
T
k−1H

T
k (6.19)

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk (6.20)

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1 (6.21)

There are more types of optimal smoothing such as fixed-point smoothing where the
state estimate at time k is computed using measurements up to and including time
j where j ≥ k, and fixed-interval smoothing where the state is estimated based on
fixed set of measurements [Simon 2006].

6.2.5 Gaussian second order extented Kalman filter

In EKF, the linearization of f(.) and h(.) using Taylor series is limited to the first
order expansion. In order to handle more accurately the nonlinearity, the SOEKF
proposes to extend the Taylor series expansion to the second order [Jazwinski 1970,
Athans et al. 1968]. If we consider the following state update equation (xk is the
augmented state)

xk+1 = f(xk) +Gkwk (6.22)
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Then, we get for the SOEKF time update equations

x̂k+1|k = f(x̂k|k) +
1

2

M∑
i=1

φi tr
{
F xx
i,kPk|k

}
(6.23)

Pk+1|k = FkPk|kF
T
k +GkQkG

T
k

+
1

2

M∑
i,j=1

φiφ
T
j tr

(
F xx
i,kPk|kF

xx
j,kPk|k

)
(6.24)

F xx
i,k =

∂2fi

∂xk∂x
T
k

∣∣∣
xk=x̂k|k

(6.25)

Fk =
∂ f

∂xTk

∣∣∣
xk=x̂k|k

(6.26)

where fi is the ith component of the vector f and φi is the M × 1 vector with
all zeros except for 1 in the ith element. The same development is made for the
measurement update equations

x̂k|k = x̂k|k−1 +Kk

(
yk − h(x̂k|k−1)− πk

)
(6.27)

πk =
1

2
Kk

M∑
i=1

φi tr
(
Hxx
i,kPk|k−1

)
(6.28)

Hxx
i,k =

∂2hi

∂xk∂x
T
k

∣∣∣
xk=x̂k|k−1

(6.29)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk +Dk

)−1 (6.30)

Dk =
1

2

M∑
i,j=1

φiφ
T
j tr

(
Hxx
i,kPk|k−1H

xx
j,kPk|k−1

)
(6.31)

Hk =
∂ h

∂xTk

∣∣∣
xk=x̂k|k−1

(6.32)

Pk|k = Pk|k−1 −KkHk Pk|k−1 (6.33)

where hi is the ith component of the vector h. The term πk represents a bias cor-
rection term (w.r.t. the EKF) that aims to have unbiased estimate of xk. Although
the SOEKF often provides improved performance over the EKF, nothing definitive
can be said about its performance. In fact, an example of an unstable SOEKF was
reported in [Kushner 1967].

6.2.6 Expectation-Maximization Kalman filter

In EM, the parameters are estimated by minimizing expected values of negative
loglikelihoods. For the state update, since Gk is typically a tall matrix, Gkwk has
a singular covariance matrix. The state update equation can be rewritten as

G+
k xk+1 = G+

k Fk xk +wk (6.34)
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whereG+
k = (GT

kGk)
−1GT

k is the pseudo-inverse ofGk. For the parameters involved
in the state update equation, the following negative loglikelihood is applicable:

n∑
k=1

{ln det(Qk)+(xk+1−Fk xk)TG+T
k Q

−1
k G

+
k (xk+1−Fk xk)} (6.35)

where n is the total number of observed samples. For the parameters involved in
the measurement equation, the appropriate negative loglikelihood is

n∑
k=1

{ln det(Rk) + (yk −Hk xk)
TR−1

k (yk −Hk xk)} (6.36)

Now the expectation is computed, in principle with the conditional distribution
given all data, hence E|y1:n {.}. This leads to an iterative algorithm within each
iteration a whole fixed-interval smoothing operation is done. An adaptive version
[Weinstein et al. 1994, Gao et al. 2003] can be obtained by replacing fixed-interval
smoothing by fixed-lag smoothing and performing one iteration per time sample.
Since the state update equation corresponds to a vector AR(1) model, one may
expect (as in [Gao et al. 2003]) that a lag of 1 should be enough (to guarantee
convergence). In [Weinstein et al. 1994], Weinstein et al. reduce complexity further
by suggesting that filtering might be enough. In that case, the (presumably) slowly
varying Q̂k+1 and F̂k+1 (for use in the Kalman filter at time k + 1) get determined
by minimizing

∑k
i=1 λ

k−i E|i{Terms in ((6.35))} w.r.t. Q and F (G is known)

where they introduce an exponential forgetting factor λ
≈
< 1. This is equivalent to{

Q̂k+1, F̂k+1

}
= arg min

Q,F
γ−1
k ln det(Q)

+
k∑
i=1

λk−i tr{G+T
i Q−1G+

i E|y1:i{(xi+1 − F xi)(xi+1 − F xi)T }} (6.37)

where we introduced γ−1
k =

∑k
i=1 λ

k−i = λ γ−1
k−1+1. γ−1

k behaves initially as 1/k but
saturates eventually at γ−1

∞ = 1/(1−λ). The expectations that need to be computed
in (6.37) are expressed as follows

E|y1:i
{
xix

T
i

}
= x̂i|ix̂

T
i|i + Pi|i (6.38)

E|y1:i
{
xi+1x

T
i

}
= F̂i x̂i|ix̂

T
i|i + F̂iPi|i (6.39)

E|y1:i
{
xix

T
i+1

}
= x̂i|ix̂

T
i|iF̂

T
i + Pi|i F̂

T
i (6.40)

E|y1:i
{
xi+1x

T
i+1

}
= x̂i+1|ix̂

T
i+1|i + Pi+1|i

= F̂i (x̂i|ix̂
T
i|i + Pi|i) F̂

T
i +GiQ̂iG

T
i (6.41)

In case of time-invariant Gk ≡ G, we can rewrite the cost function in (6.37) as

ln det(Q) + tr{G+TQ−1G+(M11
k − F M01

k −M10
k F T + F M00

k F T )} (6.42)
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where

M00
k = (1− γk)M00

k−1+γk (x̂k|kx̂
T
k|k + Pk|k) (6.43)

M10
k = (1− γk)M10

k−1+γk F̂k (x̂k|kx̂
T
k|k + Pk|k) (6.44)

M01
k = (1− γk)M01

k−1+γk (x̂k|kx̂
T
k|k + Pk|k) F̂

T
k (6.45)

M11
k = (1− γk)M11

k−1+γk(F̂k (x̂k|kx̂
T
k|k + Pk|k) F̂

T
k +GQ̂kG

T ) (6.46)

In case of furthermore time-invariant Fk ≡ F and Qk ≡ Q, then

M10
k = F̂ M00

k (6.47)

M01
k = M00

k F̂ T (6.48)

M11
k = F̂ M00

k F̂ T +GQ̂GT (6.49)

As a result, (6.43) can be rewritten as

ln det(Q) + tr{Q−1Q̂}+ tr{G+TQ−1G+
i (F̂ − F )M00

k (F̂ − F )T )} (6.50)

The optimization of (6.50) now clearly leads to F̂ = F , Q̂ = Q. So we just get back
the quantities that we use in the Kalman filter, without any additional information.
Hence, just Kalman filtering in the EM-Kalman is not enough to adapt the state
update parameters.

For adapting the parameters in the measurement equation, Rk andHk, Kalman
filtering is sufficient. A similar derivation from the expected measurement negative
logliklihood in (6.36) leads to

Ĥk = Ĉyx,k
(
M00

k

)−1 (6.51)

R̂k = Ĉyy,k − Ĉyx,k
(
M00

k

)−1
Ĉxy,k (6.52)

where

Ĉyy,k = (1− γk)Ĉyy,k−1 + γkyky
T
k (6.53)

Ĉxy,k = (1− γk)Ĉxy,k−1 + γkx̂k|ky
T
k (6.54)

6.2.7 Adaptive EM-Kalman filter with fixed-lag smoothing

Consider now the case in which the state space model is essentially time-invariant
(or slowly time-varying). In that case the time index k of the system matrices
(Fk , Qk , Rk , Hk) just reflects at which time they have been adapted. The
resulting Kalman filter equations with lag-1 smoothing become
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ŷk|k−1 = Hk−1 x̂k|k−1 (6.55)

ỹk = yk − ŷk|k−1 (6.56)

Sk = Hk−1Pk|k−1H
T
k−1 +Rk−1 (6.57)

Kk;1 = Pk−1|k−1 F
T
k−1H

T
k−1 (6.58)

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk (6.59)

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1 (6.60)

Kk = Pk|k−1H
T
k−1 S

−1
k (6.61)

x̂k|k = x̂k|k−1 +Kk ỹk (6.62)

Pk|k = Pk|k−1 −KkHk−1Pk|k−1 (6.63)

x̂k+1|k = Fk x̂k|k (6.64)

Pk+1|k = Fk Pk|k F
T
k +GQkG

T (6.65)

So, the system matrices (Fk , Qk , Rk , Hk) should be adapted after the smoothing
step and before the filtering and prediction steps. We now adapt the matrices F
and Q from the equivalent of (6.37) with E|y1:i {.} replaced by E|y1:i+1

{.}. This
leads to the matrix updates

M00
k = (1− γk)M00

k−1 + γk (x̂k−1|kx̂
T
k−1|k + Pk−1|k) (6.66)

M10
k = (1− γk)M10

k−1 + γk (x̂k|kx̂
T
k−1|k + Fk−1Pk−1|k

−GQk−1G
THT

k−1S
−1
k KT

k,1) (6.67)

= (M01
k )T

M11
k = (1− γk)M11

k−1 + γk(x̂k|kx̂
T
k|k + Pk|k) (6.68)

The minimization of the expected negative loglikelihood w.r.t. F and Q leads to
the following minimizers

F̂k = M10
k (M00

k )−1 (6.69)

Q̂k = G+(M11
k −M10

k (M00
k )−1M01

k )G+T (6.70)

For adapting H and R, the system becomes

Ĥk = Ĉyx,k
(
M11

k

)−1 (6.71)

R̂k = Ĉyy,k − Ĉyx,k
(
M11

k

)−1
Ĉxy,k (6.72)

where Ĉyx,k and Ĉyy,k are the same defined in (6.51). For the initialization, in
absence of any side information, one can take M00

0 = 1/p0I, M10
0 = 0, M11

0 = 0,
Ĉxy,0 = 1/p0I, Ĉyy,0 = 0 where again p0 is a very large number.
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6.2.8 Alternating MAP/ML Kalman filter

The alternating MAP/ML estimate consists in alternating optimization between the
MAP estimator for the state sequence xk and the ML estimator for the parameters
θ. The ML estimate of θ is obtained by performing least-squares estimation given
the state sequence replaced by its estimate. The resulting algorithm is similar to
the EM-Kalman with only the x̂ terms kept in the matrices M ij

k .

6.2.9 Variational Bayes Kalman filter

Variational Bayes

The VB is again an application of alternating optimization but this time ap-
plied to the Kullback-Leibler divergence (KLD) between the true joint a posteriori
probability density function (pdf) of hidden data and parameters f(x,θ|y), and
an approximate form q(x,θ|y) called the free distribution [Tzikas et al. 2008]. The
main simplifying assumption of VB is to constrain q(x,θ|y) to a factorised (separa-
ble) form q(x|y)q(θ|y), in other words, suppose a posteriori independence between
x and θ. The VB can be interpreted as an extension of EM to the case where the
parameters θ are also considered random. Then, the cost function (3.16) in chapter
3 is modified to

F(q(x|y), q(θ|y)) ,
∫
q(x|y)q(θ|y) ln

f(x,y,θ)

q(x|y)q(θ|y)
dxdθ (6.73)

The optimization of the functional (6.73) w.r.t q(x|y) and q(θ|y) results in the
variational Bayes for EM (VBEM) algorithm, composed of two main steps VBE
and VBM (in parallel to the E-step and M-step of EM respectively).

VBM step: ln qi+1(θ|y)
.
=

∫
qi(x|y) ln f(x,y,θ) dx (6.74)

VBE step: ln qi+1(x|y)
.
=

∫
qi+1(θ|y) ln f(x,y,θ) dθ (6.75)

where f(θ) is the a priori function of θ, .= denotes equality up to "constant" (con-
stant relative to the variable of the equation, but it may depend on the other vari-
ables) and the index i denotes the iteration number. Notice that the difference
between the loglikelihood f(y) and the cost function in (6.73) corresponds to the
KLD cited in the beginning of the section. The privilege of VB is that by using
q(θ|y) in the computation of the hidden sate estimate x̂, not only the estimate of
θ accounts but also its estimation error.

Conjugate exponential family and variational Bayes

The VBEM is proved successful when applied to the conjugate-exponential (CE)
models [Ghahramani & Beal 2001, Beal 2003]. Two main conditions are satisfied by
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CE models. The first condition is that the complete-data likelihood f(x,y|θ) has
to be in the exponential family

f(x,y|θ) = g(θ) p(x,y) eϕ(θ)Tu(x,y) (6.76)

where ϕ(θ) is the vector of natural parameters, p(x,y) and u(x,y) are the functions
that define the exponential family, and g(θ) is a normalisation constant. The second
condition is that the parameters prior f(θ) has to be conjugate to the complete-data
likelihood which means that the parameters prior and posterior pdfs belong to the
same family [Beal 2003]. Thus, the prior function is of the form

f(θ|η, ν) = ζ(η, ν) g(θ)η eϕ(θ)T ν (6.77)

where η and ν are the hyperparameters of θ and ζ(η, ν) is a normalisation constant.
The two former conditions on the complete-data likelihood and the parameters prior
pdfs provide tractable VBEM updates. Given an i.i.d. data set y1:n = {y1, · · · ,yn},
the analytical expressions of the approximate posteriors are described as

qi+1(θ|y1:n, η
′, ν ′ i) = ζ(η′, ν ′ i) g(θ)η

′
eϕ(θ)T ν′ i (6.78)

qi+1(xk|yk) = f(xk|yk, ϕ i+1(θ)) for k = 1 · · · , n (6.79)

where the different new quantities are defined as

ϕ i+1(θ) = Eqi+1(θ|y1:n,η′,ν′ i) {ϕ(θ)} (6.80)

ν ′ i = ν +

n∑
k=1

Eqi(xk|yk) {u(xk,yk)} (6.81)

η′ = η + n (6.82)

Hence, the VBM and VBE steps are simplified to the computation of the
expectations of the sufficient statistics {u(xk,yk)}k=1:n under the distribu-
tions

{
qi(xk|yk)

}
k=1:n

and the natural parameters ϕ(θ) under the distributions
qi+1(θ|y1:n, η

′, ν ′ i) respectively. For detailed proofs of these results, the reader can
refer to [Beal 2003].

The interesting particular case of the joint Gaussian complete-data (x,y) (pre-
sented in section 5.2) satisfies the CE model, where, using the same notations therein

g(θ) = exp(−1

2
µ(θ)TC(θ)−1µ(θ)− 1

2
ln 2π|C(θ)|) (6.83)

p(x,y) = 1 (6.84)

ϕ(θ) = [(vecC(θ)−1)T µ(θ)TC(θ)−1]T (6.85)

u(x,y) = [−1

2
(w ⊗w)T wT ]T (6.86)

where the (M +N)-dimensional vector w is the complete-data vector [xT ,yT ]T .
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Variational Bayes for Kalman filter

The VB methodology is applied to several statistical models such as
hidden Markov model (HMM) [MacKay 1997], mixture of factor analysers
[Ghahramani & Beal 2000] and linear dynamical systems where the VB Kalman
filter and smoother are derived [Beal 2003]. If we reconsider the state space model
in (6.1) but with the matrices of the filter independent of time k, then in the
VB Kalman the complete-data is defined by the state and observation vectors
{xk,yk}k=1:n, while θ is defined by the state space model parameters {F ,H,Q,R}.
An important preprocessing task consists in defining the prior functions of the dif-
ferent parameters. By respecting the conjugacy constraint, the prior functions of
the different parameters are defined as

• For the covariances Q and R, Wishart distributions are considered for their
inverses Q−1 ∼ W(Q−1|SQ, νQ) and R−1 ∼ W(R−1|SR, νR), where SQ and
SR are their corresponding hyperparameters, and νQ and νQ are their degrees
of freedom. When the covariance matrix (Q and/orR) is reduced to a diagonal
matrix, the diagonal components of its inverse are modeled by i.i.d. Gamma
distributed processes.

• The matrix F has a zero-mean matrix normal distribution F ∼
MN (F |0, diagα−1,GQGT ) where the M -dimensional vector α is its cor-
responding hyperparameter. Notice that the prior of F depends also on Q
due to their interaction in the state evolution equation in (6.1), idem for ma-
trix H ∼ MN (H|0, diagβ−1,R) where the N -dimensional vector β is its
corresponding parameter.

• The initial condition x0 has a multivariate Gaussian distribution with mean
x̂0 and covariance P0 which are considered as hyperparameters.

Given n observations y1:n and the priors defined above, we deduce the full joint
distribution

f(F ,H,Q,R,x0:n,y1:n) = f(F |Q,α)f(Q|SQ, νQ)f(H|R,β)f(R|SR, νR)

f(x0|x̂0,P0)

n∏
t=1

f(xt|xt−1,F ,Q)f(yt|xt,H,R) (6.87)

The variational methodology approximates the joint posterior distribution of θ and
x0:n to q(θ,x0:n) where

q(θ,x0:n|y1:n) =q(θ|y1:n) q(x0:n|y1:n) (6.88)

=q(F ,H,Q,R|y1:n) q(x0:n|y1:n) (6.89)

=q(F |Q,y1:n)q(Q|y1:n)q(H|R,y1:n)q(R|y1:n)q(x0:n|y1:n) (6.90)
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We should distinguish between the first factorization in (6.88) that results from the
VB approximation, and the additional factorizations in (6.90) that are motivated
by the existing (or nonexisting) interactions implied naturally by (6.1) between the
different parameters. Using the previous derivations, the cost function (6.73) is
finally formulated for the VB Kalman

F =
∫

dQ q(Q|y1:n) ln
f(Q|SQ, νQ)

q(Q|y1:n)

+

∫
dQ q(Q|y1:n)

∫
dF q(F |Q,y1:n) ln

f(F |Q,α)

q(F |Q,y1:n)

+

∫
dR q(R|y1:n) ln

f(R|SR, νR)

q(R|y1:n)

+

∫
dR q(R|y1:n)

∫
dH q(H|R,y1:n) ln

f(H|R,β)

q(H|R,y1:n)

−
∫
dx0:n q(x0:n|y1:n) ln q(x0:n|y1:n)

+

∫
dR q(R|y1:n)

∫
dH q(H|R,y1:n)

∫
dQ q(Q|y1:n)

∫
dF q(F |Q,y1:n)∫

dx0:n q(x0:n|y1:n) ln f(x0:n, y1:n|F ,H,Q,R)

= F(q(x0:n|y1:n), q(F |Q,y1:n), q(Q|y1:n), q(H|R,y1:n), q(R|y1:n)) (6.91)

The approximate posteriors of the different parameters are derived from the op-
timization of (6.91) in the VBM-step. Due to the conjugacy, the posteriors will
have the same form of the prior functions. For example, q(F |Q,y1:n) and q(Q|y1:n)

will be Gaussian and Wishart distributions respectively as their respective priors.
Hence, the task is reduced to estimating the parameters of these posteriors using
the parameters of the prior distributions and sufficient statistics of the hidden states
computed in the VBE-step. Since the functional F also depends on the hyperpa-
rameters

{
SQ, νQ,SR, νR,α,β, x̂0,P0

}
, an estimate of the latter can be deduced by

maximizing it. In the VBE-step, the variational Kalman filter/smoother derivation
always takes into consideration the averaging of the terms depending on the parame-
ters over the latter using their approximate posteriors. Thus, the sufficient statistics
of the hidden states will depend on the parameters of the approximate posterior dis-
tributions computed in the VBE-step. For more details about the derivation of VB
Kalman equations, the reader may refer to [Beal 2003].

6.3 On the performance of iterative ML algorithms

At the end of section 5.8, we mentioned that Arie Yeredor [Yeredor 2000] proves
that the joint MAP/ML estimator is biased for θ and that the bias persists asymp-
totically. The author also provides approximate analytical expressions of the bias
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bJ(θ) and the mean square error (MSE) e2 J(θ) in the subasymptotic regime (for θ
scalar) where the number of observations n is too small to fit to the asymptotic but
still too large to satisfy weaker assumptions. Both bJ(θ) and e2 J(θ) are expressed
in terms of the bias and the MSE of the ML estimator in the subasymptotic regime.
The asymptotic expressions can be deduced by letting the ML bias and MSE tend to
zero and the inverse of the Fisher information J−1(θ) respectively. The asymptotic
bias and MSE are expressed as

bJ(θ) ≈ r′(θ)

J(θ)− r′′(θ)
(6.92)

e2 J(θ) ≈ J(θ) + r
′2(θ)

(J(θ)− r′′(θ))2
(6.93)

where r′(θ) and r′′(θ) are respectively the gradient and Hessian of −1
2 ln detP (θ)

w.r.t. θ (P (θ) defined in (5.7)). In the following, we will discuss the EM perfor-
mance.

6.3.1 The EM algorithm performance

The EM algorithm was introduced to iterate towards the ML estimate while having
reduced-complexity iterations [Dempster et al. 1977]. Let’s consider the joint Gaus-
sian model presented in 5.2 and the notations of the MMSE estimation presented
therein, but this time in the zero-mean case (µ = 0), we mentioned in section 3.3
that the estimate of θ at iteration i+ 1, θ̂i+1 is expressed (the M-step)

θ̂i+1 = arg max
θ
〈ln f(y,x|θ)〉

f(x|y,θ̂i) = arg max
θ

Q(θ, θ̂i) (6.94)

The expectation term 〈ln f(y,x|θ)〉
f(x|y,θ̂i) is computed in the E-step. Depending

on the application, some simplifications may occur. For instance if the parameters
of interest only appear in f(x|θ) so that ln f(y,x|θ) = ln f(y|x) + ln f(x|θ), then,
apart from additive constants, we get

−2 Q(θ, θ̂i)
.
= tr{Ĉi

xxC
−1
xx(θ)− I} − ln det(Ĉi

xxC
−1
xx(θ)) (6.95)

where

Ĉi
xx = x̂(θ̂i)x̂T (θ̂i) + P (θ̂i) (6.96)

Which is the Itakura-Saito distance (ISD) between Ĉi
xx and Cxx(θ). In the general

case, (6.94) leads to the ISD minimization between Ĉi = E
x|y,θ̂i

{
wwT

}
with

wT = [xTyT ] and the joint covariance matrix C(θ). Now, using the block upper
diagonal lower (UDL) factorization

C(θ) =

[
I F (θ)

0 I

][
P (θ) 0

0 Cyy(θ)

][
I 0

F T (θ) I

]
(6.97)
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By considering that both tr{.} and ln det(.) allow cyclic commutation of the factors
in their argument, we get

C−1(θ) Ĉi =

[
P−1(θ) 0

0 C−1
yy (θ)

][
I −F (θ)

0 I

]
E
x|y,θ̂i


[
x

y

][
x

y

]T
[

I 0

−F T (θ) I

]

=

[
P−1(θ) 0

0 C−1
yy (θ)

]
E
x|y,θ̂i


[
x̃

y

][
x̃

y

]T
= D−1(θ) D̂i (6.98)

Where

D(θ) =

[
P (θ) 0

0 Cyy(θ)

]
(6.99)

D̂i =

[
P (θ̂i) 0

0 0

]
+

[
x̂(θ̂i)− x̂(θ)

y

][
x̂(θ̂i)− x̂(θ)

y

]T
(6.100)

At convergence we get (with θ = θ̂∞)

D−1(θ) D̂∞ =

[
I 0

0 C−1
yy (θ)yyT

]
(6.101)

Hence the ISD between Ĉi and C−1(θ) converges to the ISD between Ĉi
yy = yyT

and Cyy(θ) and hence to the ML loglikelihood. Actually, Q(θ, θ̂i) does not measure
exactly the ISD between Ĉi and C(θ), but

−2 Q(θ, θ̂i)
.
= ln det(C(θ)) + tr{C−1(θ) Ĉi} (6.102)

which also converges to the ML loglikelihood. The difference between Q(θ, θ̂i) and
the ISD is due to the fact that both C(θ) and Ĉi depend on θ, leading to the
difference term ln det(Ĉi).

The EM algorithm guarantees to monotonically increase the likelihood function
f(y|θ). In the case when f(y|θ) is multimodal, the algorithm converges to one of
its stationary points (local maximum or saddle point) depending on the initializa-
tion θ̂0. If f(y|θ) is unimodal, the algorithm converges to the global maximum
independently of the initialization value [McLachlan & Krishnan 2008]. Despite
its advantages, a common criticism for EM is that its convergence can be very
slow. Many solutions were proposed for EM acceleration [Aitkin & Aitkin 1996,
Jamshidian & Jennrich 1993, Jamshidian & Jennrich 1997], a famous one is the al-
gorithm space-alternating generalized EM (SAGE) proposed by Fessler et al. in
[Fessler & Hero 1994]. The simultaneous maximization in classical EM needs overly
informative complete-data spaces, which in turn lead to slow convergence. Updating
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the parameters "‘sequentially"’ in small groups improves the convergence rates. In
[Fessler & Hero 1993], it is proved that the less informative the complete-data is,
the better the asymptotic convergence rates. Less informative complete-data spaces
lead to larger step size and greater likelihood increases in the early iterations. The
minimization of the complete-data space information improves convergence rates.
However, this can lead to intractable maximization step in classical EM, due to the
simultaneous update. For each parameters subset θS , hidden data are designed so
that it is less informative than the case where there is single complete-data space.
This reduction leads to faster convergence. The methods proposed to accelerate EM
based on numerical tools (Aitken’s acceleration, over-relaxation...) do not guarantee
monotone increases in the objective function unless the objective function is explic-
itly computed, but with SAGE method, monotonicity is guaranteed since it is based
on statistical considerations. The choice of hidden data per each subset is tricky.
In fact, the hidden data of subset θS play the role of complete data for this latter
knowing θS̄ where S̄ is the complementary space of S.

6.3.2 The VB algorithm performance

Even though ln f(x|y,θ) is quadratic and ln f(θ|y) is asymptotically quadratic,
the joint ln f(x,θ|y) contains products of both quadratic terms and hence is not
Gaussian. In VB, apart from approximating the true posterior pdf by a factored
form, one can furthermore require the factors to be of a certain parametric form. In
the case considered here however, q(x|y) is automatically Gaussian, whereas we shall
force q(θ|y) to be Gaussian. This is done by taking the mean and covariance of the
RHS in (6.75). Note that asymptotically, q(θ|y) becomes Gaussian automatically.
Also note that q(x|y) and q(θ|y) are not the marginals of f(x,θ|y). They are factors
of which the product attempts to approximate the joint pdf as well as possible. The
equalities in (6.75) should be interpreted as up to additive "constants" (possibly
functions of y). Hence f(x,θ|y) is equivalent to f(x,θ,y) in (6.75). Finally, VB is
an approach that normally applies to the fully Bayesian case in which both x and
θ are considered random. However, we shall consider the prior f(θ) to be uniform
so that f(x,y,θ) becomes equivalent to f(x,y|θ).

The EM algorithm can be viewed as a limiting case of the VB approach, in
which θ is treated as deterministic and hence can be viewed as random with prior
f(θ′) = δ(θ′−θ) (where θ is the unknown true value). As a result also the posterior
becomes of the form q(θ|y) = δ(θ− θ̂) and hence is characterized solely by the point
estimate θ̂. Under some regularity conditions, the EM estimate is known to converge
to the (separate) ML estimate and hence has the same performance. EM can be
viewed as a case of VB in which qi(θ|y) is forced to be of the form δ(θ − θ̂i) in the
M step. The best approximation is obviously obtained for θ̂i = arg maxθ q

i(θ|y)
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where qi(θ|y) is obtained from the first equation in (6.75). If now furthermore
qi(θ|y) = δ(θ − θ̂i), then we get from the second equation in (6.75)

ln qi(x|y)
.
=

∫
δ(θ − θ̂i) ln f(x,y|θ) dθ = ln f(x,y|θ̂i) .

= ln f(x|y, θ̂i) (6.103)

This finally leads to θ̂i+1 = arg maxθ
∫
f(x|y, θ̂i) ln f(x,y|θ) dx for EM.

Now consider the actual VB updates ((6.75)) with Gaussian qi(θ|y) =

N (θ̂i,Ci
θ). Motivated by asymptotics we shall determine the Gaussian approxi-

mation by a second-order Taylor series expansion

ln qi+1(θ|y)
.
= gi(θ) (6.104)
.
= −1

2
(θ−θ̂i+1)T (Ci+1

θ )−1(θ−θ̂i+1) (6.105)

.
= gi(θ̂i) + (θ−θ̂i)T ∂g

i(θ̂i)

∂θ
+

1

2
(θ−θ̂i)T ∂

2gi(θ̂i)

∂θ ∂θT
(θ−θ̂i) (6.106)

Equating the last two lines yields

θ̂i+1 = θ̂i +Ci+1
θ

∂ ln gi(θ̂i)

∂θ
(6.107)

Ci+1
θ =

(
−∂

2 ln gi(θ̂i)

∂θ ∂θT

)−1

(6.108)

This converges to a point θ̂V for which ∂ ln gi(θ̂V )
∂θ = 0 and for which fV (θ|y) =

N (θ̂V ,CV
θ ). Now, we have for gi(θ) in (6.104), and from (6.75)

gi(θ) = Eqi(x|y) {ln f(x,y|θ)}

= ln f(y|θ) + Eqi(x|y) {ln f(x|y,θ)}

.
= −1

2
ln det(C(θ))− 1

2
Eqi(x|y)


[
x

y

]T
C−1(θ)

[
x

y

]
= −1

2
[ln det(C(θ)) + tr{C−1(θ) Ĉi}] (6.109)

where now Ĉi = Eqi(x|y)

{
wwT

}
with wT = [xTyT ]. Hence, the computation of

gi(θ) in VB is identical to that in EM except that f(x|y, θ̂i) in EM is replaced by
qi(x|y) in VB. However, asymptotically, for the second-order expansion in (6.104),
q(x|y) can equivalently be replaced by f(x|y, θ̂i). Hence, asymptotically there is
no information for θ in Eq(x|y) {ln f(x|y,θ)} and

fV (θ|y) = fE(θ|y) = fM (θ|y) = N (θ̂M ,CRBM ) (6.110)

For the estimator θ̂, VB is asymptotically equivalent to ML, nevertheless, this es-
tablishes that: (i) asymptotically, one can not do better than ML (and CRBM !),
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(ii) the convergence behavior of the VB iterations may be more interesting, and (iii)

the VB performance may be better than ML non-asymptotically. To summarize the
performances of the different estimators of θ :

• In the alternating MAP/ML, the estimate θ̂ is computed using only x̂ (as
if x̂ = x). Reciprocally, x̂ is computed from θ̂ only (as if θ̂ = θ). The
alternating MAP/ML converges to the joint MAP/ML.

• In EM, the estimate θ̂ is computed from x̂ and its estimation error x̃, whereas
x̂ is computed only from θ̂. EM converges to the marginalized ML approach.

• In VB, θ̂ is computed from both x̂ and x̃. Reciprocally, x̂ is computed from θ̂

and θ̃. Asymptotically, VB has the same performance as ML and EM (hence
efficient).

Note that all these iterative algorithms require only one iteration to converge if
initialized with a consistent θ̂0. From (6.75), we get for the VB update of q(x|y) =

N (x̂,Cx)

ln qi(x|y)
.
=

∫
qi(θ|y) ln f(x,θ,y)dθ

.
=

∫
qi(θ|y) ln f(x|y,θ)dθ

.
= −1

2
Eqi(θ|y)

{
(x− F (θ)y)TP−1(θ)(x− F (θ)y)

}
.
= Eqi(θ|y){yTF (θ)TP−1(θ)x− 1

2
xTP−1(θ)x}

.
= −1

2
(x− x̂i)T (Ci

x)−1(x− x̂i) (6.111)

where the Gaussian pdf comes out automatically. So we get

x̂i = Ci
x Eqi(θ|y)

{
P−1(θ)F (θ)

}
y (6.112)

Ci
x = Eqi(θ|y)

{
P−1(θ)

}−1 (6.113)

which can be computed (asymptotically) by second-order expansions in θ of P−1(θ)

and P−1(θ)F (θ). Asymptotically, when q(θ|y) becomes f(θ|y), x̂V attains a CRB
corresponding to the following FIM

JVxx = −Ex,θ|y

{
∂2f(x,y,θ)

∂x∂xT

}
= −Ex,θ|y

{
∂2f(x|y,θ)

∂x∂xT

}
= Eθ|y

{
P−1(θ)

}
(6.114)

So, asymptotically, CV
x =

(
JVxx

)−1. Note that the VB update of q(x|y) is non-
iterative in x, due to the quadratic nature of ln f(x|y,θ): q(x|y) is just a function
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of q(θ|y) (whereas qi+1(θ|y) depends on both qi(x|y) and qi(θ|y)). Hence the
VB update for x is an extension of LMMSE estimation, accounting for the model
parameter θ inaccuracies. There has been some work in recent years to account for
the channel estimation error in LMMSE receiver design [Piantanida et al. 2009].

6.3.3 Second-order extended LMMSE

Inspired by this state of the art presented before, one possible extension of LMMSE
to account for parameter estimation performance would be to optimize a linear
estimator F (θ) on the basis of an extended MSE criterion

MSE = Eθ|y
{
Ex|y,θ

{
||x− F (θ)y||2

}}
(6.115)

leading to

F̂ = Eθ|y {Cxy(θ)} Eθ|y {Cyy(θ)}−1 (6.116)

which would be applicable also in the case of non-Gaussian f(x|y,θ) and f(θ|y).

6.4 Conclusion

In this chapter, we tackled the issue of iterative ML algorithms performance. We sur-
veyed different Kalman filter varieties in order to understand the difference between
their behaviours before convergence. Then, we compared between the asymptotic
behaviour of EM and VBEM in the Gaussian case. Due to the fact that in the
VBEM, we use the estimation error of θ in the estimation of x, we expected that
the VBEM performs better than the EM. Yet, asymptotically, we proved that simi-
larly to EM , VBEM converges to the ML solution. Since it is not always possible in
many applications to get placed in the asymptotic mode (limited number of samples,
low source to noise ratio (SNR)), it would be interesting to compare between EM
and VBEM in subasymptotic conditions where VBEM is expected to perform bet-
ter than EM. In asymptotic performance analysis of ML, joint MAP/ML, etc., the
Taylor series expansion of cost functions (marginal loglikelihood and/or joint log-
likelihood) takes into consideration terms until O(1/N) and neglects higher-orders
terms. We think that pushing the analysis to higher orders may clarify more the
nuance between both.



Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this thesis, we tackled two different topics. The first topic consists in finding new
solution to the problem of mono-microphone source separation. Two main algo-
rithms were proposed. The first algorithm, presented in chapter 3, consists in a time
domain separation solution. A joint speech model is used where both time correla-
tion and quasi-periodicity are exploited. The short time correlation is described with
an autoregressive (AR) model of order 10. The long term correlation is described
with a long-term model where only the coefficient of a pitch delay is nonzero. The
long term model describes the quasi-periodicity nature of speech signals. The joint
speech model is used to formulate two state space models whose parameters, namely,
the state transition matrix, the observation and the state noise covariance depend
on the speech model parameters, namely, the short term prediction (STP) and the
long term prediction (LTP) coefficients, pitches and innovations powers in linear (1st

model) and bilinear (2nd model) fashions. The separation problem is reduced to the
estimation of the state vector and the parameters in both models linear and bilinear.
In such case, an appropriate solution is to use the expectation maximization (EM)-
Kalman algorithm. Since pitches are nonlinear parameters in this problem, a pitch
estimation algorithm is used to estimate them in parallel of the main separation
algorithm. Three varieties of algorithm are derived which are EM-Kalman for linear
model, EM-Kalman with and without Rauch-Tung-Striebel (RTS) smoothing for
bilinear model. The advantage of these algorithms is that, unlike the model-driven
methods, they do not rely on a training step which is a costly pre-processing task.
Simulations are achieved for both synthetic and real signals. For synthetic signals
and when all the parameters are assumed known (filtering case), the algorithm con-
verges to the wanted solution and shows good separation performance. When the
parameters are unknown but appropriately initialized, the algorithm manages to
achieve separation with performance close to the filtering case and converges to pa-
rameters close to the original ones. For real voiced signals, the proposed methods
perform less than in synthetic signals. This is due to the limitations of the proposed
methods as well as the used speech model, which are explained hereafter.

In fact, there are several limitation to these methods. First, the performance of
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our algorithm is highly-dependent on the pitch estimation accuracy. In our simu-
lations, we always assumed having some knowledge about the pitches of speakers
by supposing that we can always estimate them from sequences where only one
speaker is active. This also implies that these pitches will not vary in the other
voiced sequences. In realistic context where these assumptions are no more true,
the performance will decrease drastically. Moreover, the batch-iterative fashion used
in our methods is more advantageous (compared to the adaptive processing) when
the sources are stationary through the processing interval which is only true for very
short voiced sequences. Yet for signals which are long enough to become non sta-
tionary, it is no longer the case, especially in terms of pitch variations that make the
estimation of LTP coefficients as done here unmanageable. Another limitation of
these methods is the initialization issue. Again, if we can not afford non overlapping
sequences, and initialize the algorithm randomly, we risk to fall in a local minimum
different from the desired solution or take a long time to converge. The second
limitation is the number of active sources. In fact, we have to provide the algorithm
with this information in order to construct the state space model properly. In a real
context where the number of sources changes unpredictably, this model may not be
easy to apply.

In addition to the previous limitations which are linked to the algorithm con-
ception, there are limitations induced by the model itself [Chu 2003]. In the case
where the involved pitches are fractional, the LTP is interpreted as two coefficients
corresponding to the floor and ceil of the real pitch delay which is still an approx-
imation that induces a certain estimation error. Moreover, it is utopian to think
that the presented joint model matches perfectly all speech signals. For example,
nasal sounds like n and m are better modeled with pole-zero type transfer function
as cite in [Lim & Lee 1993].

In the second algorithm presented in chapter 4, we propose a frequency domain
based method. We use the same speech model as in the previous chapter. The
switch to the frequency domain is beneficial when there are filtering operations in
time. Unlike the previous chapter where the parameters and sources are estimated
jointly, in this chapter, the Gaussian sources are marginalized (eliminated), the pa-
rameters are estimated separately then used to estimate the sources afterward. Here,
signals are processed piecewise using non trivial finite length window, which helps to
handle the non stationarity better than with the proposed algorithms in chapter 3.
The introduction of finite length window induce a smearing effect that we take into
account on the formulation of the criterium used to estimate the parameters. We
use the Gaussian maximum likelihood (GML) criterium that we show equivalent to
Itakura-Saito distance (ISD), and to optimally weighted covariance matrix (OWCM)
in terms of gradient (extrema). The smearing effect which is neglected in the asymp-
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totic methods (extremely long frames) is considered by transforming the spectrum
covariance matrix (used in GML) from diagonal to banded matrix (cross-correlation
between only neighboring frequencies are modeled). This banded form is inherited
from the non trivial choice of the window which should have highly attenuated side-
lobes. Parameters estimation is achieved in an alternating optimization fashion.
Like the proposed algorithms in chapter 3, the performance of this algorithm de-
pends highly on the quality of pitch estimation. Moreover, the banded covariance
matrix is in reality banded circulant, which means the existence of non zero com-
ponents in the top right and bottom left corners of the matrix. By zeropadding
the involved signals, we increase the total number of frequency samples (dimen-
sions of the covariance matrix) so that the contribution of these components can
be neglected and we get a purely banded matrix. Yet, it is definitely not the best
way to handle this point, not only because we increase the algorithm complexity by
increasing the dimensions of the covariance matrix but also that it is better to find
a solution that takes into consideration the contributions of these components.

The second topic deals with the problem of joint optimal filtering and parameters
estimation. In chapter 5, we tackled the issue of joint vs marginal estimation. We
reviewed some of the lower bounds used as benchmarks to assess estimators of both
types. We then investigated the effect of the presence of random (nuisance) variables
on the estimation of deterministic parameters in terms of lower bounds in comparison
to the case when these random variables are eliminated. A known result is that the
Cramér-Rao bound (CRB) is tighter than hybrid Cramér-Rao bound (HCRB). We
characterized the difference between both and find out an additive positive term
interpreted as an inverse CRB of the joint estimation from the posterior of random
variables. In literature, the modified Cramér-Rao bound (MCRB) is always defined
in the case when the a priori distribution of random variables is independent of the
deterministic parameters and this condition is used in the proof where the CRB is
shown tighter than MCRB. We extend it to the case when they are dependent (such
as the case in our monaural speech separation problem) which induce a change in
the relation between the modified FIM (MFIM) and the Fisher information matrix
(FIM). In this case, the well-known result of theCRB being tighter than the MCRB
is no more true.

In chapter 6, we switch from the lower bounds to the estimation error investiga-
tion. Our focus was in comparing to joint estimators EM and variational Bayes (VB)
where the former considers deterministic parameters while the latter suppose an
a priori distribution for them. Our question was about the performance of VB
compared to EM that converges asymptotically to the maximum likelihood (ML)
solution. Using an ISD interpretation of both criteria in EM and VB and exploiting
asymptotic Gaussian approximation for the parameters, we prove that, like EM, the
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VB converges asymptotically to the ML solution.

7.2 Perspectives

7.2.1 Monaural speech separation

In this part, we suggest few ideas to improve the separation algorithms proposed in
the thesis:

• In our work, we assumed that the number of active sources is known and
constant through a time sequence. Since in reality it is not the case, the
integration of an estimator of this element is necessary to avoid the problem
of overfitting.

• In the case where we can not afford a good initialization of EM-Kalman, we
can investigate the idea to use one of the accelerated forms of EM algorithms
like space-alternating generalized EM (SAGE) method [Fessler & Hero 1994].

• The EM-Kalman based algorithms in chapter 3 can be extended to VB-Kalman
based versions where the AR coefficients and the involved powers are modeled
as random Gaussian and Gamma distributed variables respectively.

7.2.2 Joint optimal filtering and parameters estimation

• The proofs in chapter 6 are developed in the case of zero-mean Gaussian ob-
servations and latent data (only the covariance matrix depends on the param-
eters), an extension to the case where means also depend on the parameters
should be investigated.

• An investigation of the subasymptotic performance of VB compared to EM
and ML is also an interesting issue.
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Appendix

A.1 Using orthogonal projection terminology in (HFIM-
FIM) characterization

In this section, we show that using the orthogonal projection terminology used by
Messer et al. in [Noam & Messer 2009], we can prove the same result in (5.56). We
use the same notations used in chapter 5. In [Noam & Messer 2009], the authors
prove the following inequality

J−1 ≥
(
J̃θ − J̃θ,xJ̃−1

x J̃Tθ,x

)−1
(A.1)

The RHS term represents the upper block of the HCRB for the estimation part θ. We
introduce some important results/formulations presented in [Noam & Messer 2009],
which are needed for this proof. In [Noam & Messer 2009], an interesting form of
the HCRB inverse is presented

J̃θ − J̃θ,xJ̃−1
x J̃Tθ,x = Ey,x|θ

{(
Zθ − J̃θ,xJ̃−1

x Zx

)(
Zθ − J̃θ,xJ̃−1

x Zx

)T }
(A.2)

where the L-dimensional vector Zθ and the M -dimensional vector Zx are presented
respectively

Zθ =
∂ ln f (y,x|θ)

∂θ
(A.3a)

Zx =
∂ ln f (y,x|θ)

∂x
(A.3b)

They also prove the two following results

Ex|y,θ
{
J̃θ,xJ̃

−1
x Zx

}
= 0 (A.4a)

Ex|y,θ {Zθ} =
∂ ln f (y|θ)

∂θ
(A.4b)

and re-express the CRB inverse, J , in a different interesting form

J = Ey,x|θ
{
Ex|y,θ

{(
Zθ − J̃θ,xJ̃−1

x Zx

)}
Ex|y,θ

{(
Zθ − J̃θ,xJ̃−1

x Zx

)T}}
(A.5)

Using the fact that Ex|y,θ {.} is a projection operator, Messer et al. prove the in-
equality (A.1). The authors used the inequality between the norm of an element and
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the norm of its projection : ‖u‖2 ≥ ‖P u‖2 where P is a given projector. In order
to find analytic expression to the difference between the CRB inverse and HCRB
inverse, we use the expression ‖u‖2 = ‖P u‖2 + ‖(I − P )u‖2. In what follows, the
notations Ey,x|θ {.} and Ex|y,θ {.} are simplified to E {.} and P respectively. By
applying this formula to our problem gives the following expression

J̃θ − J̃θ,xJ̃−1
x J̃Tθ,x = J +

∥∥∥(I − P )
(
Zθ − J̃θ,xJ̃−1

x Zx

)∥∥∥2
(A.6)

using the previous results, we can compute the second term of the RHS in (A.6)

∥∥∥(I − P )
(
Zθ − J̃θ,xJ̃−1

x Zx

)∥∥∥2
=E

{(
(I − P )

(
Zθ − J̃θ,xJ̃−1

x Zx

))
(

(I − P )
(
Zθ − J̃θ,xJ̃−1

x Zx

))T } (A.7)

we have

(I − P )
(
Zθ − J̃θ,xJ̃−1

x Zx

)
=
∂ ln f (y,x|θ)

∂θ
− ∂ ln f (y|θ)

∂θ
− J̃θ,xJ̃−1

x Zx

=
∂ ln f (x|y,θ)

∂θ
− J̃θ,xJ̃−1

x

∂ ln f (y,x|θ)

∂x

=
∂ ln f (x|y,θ)

∂θ︸ ︷︷ ︸
Yθ

−J̃θ,xJ̃−1
x

∂ ln f (x|y,θ)

∂x︸ ︷︷ ︸
Yx

(A.8)

inserting (A.8) in (A.7) results in

∥∥∥(I − P )
(
Zθ − J̃θ,xJ̃−1

x Zx

)∥∥∥2
= E

{(
Yθ − J̃θ,xJ̃−1

x Yx

)(
Yθ − J̃θ,xJ̃−1

x Yx

)T}
= E

{
YθY

T
θ

}
+ J̃θ,xJ̃

−1
x E

{
YxY

T
x

}
J̃−1
x J̃Tθ,x

− J̃θ,xJ̃−1
x E

{
YxY

T
θ

}
−E

{
YθY

T
x

}
J̃−1
x J̃Tθ,x

(A.9)
It is easy to prove that E

{
YxY

T
x

}
= J̃x and E

{
YθY

T
θ

}
= G̃θ. In fact :

E
{
YxY

T
x

}
= E

{
∂ ln f (x|y,θ)

∂x

∂ ln f (x|y,θ)

∂xT

}
= E

{
∂ ln f (y,x|θ)

∂x

∂ ln f (y,x|θ)

∂xT

}
= J̃x

(A.10)
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Idem for the term in E
{
YθY

T
θ

}
:

E
{
YθY

T
θ

}
= E

{
∂ ln f (x|y,θ)

∂θ

∂ ln f (x|y,θ)

∂θT

}
=

∫
f (y|θ) dy

∫
∂f (x|y,θ)

∂θ

∂ ln f (x|y,θ)

∂θT
dx

=

∫ ∫
∂

∂θ

(
f (x|y,θ)

∂ ln f (x|y,θ)

∂θT

)
dxf (y|θ) dy

−
∫ ∫

f (y,x|θ)
∂∂ ln f (x|y,θ)

∂θ∂θT
dxdy

= E
{
−∂∂ ln f (x|y,θ)

∂θ∂θT

}
= G̃θ

(A.11)

The first term in the third RHS line of (A.11) disappears since when we invert the
derivation w.r.t. θ and the integration w.r.t x, we get ∂∂

∂θ∂θT

∫
f (x|y,θ) dx which

is equal to zero. For the crossed derivation term E
{
YxY

T
θ

}
. We notice that

E
{
YxY

T
θ

}
= E

{
ZxZ

T
θ

}
− E

{
Zx

∂ ln f (y|θ)

∂θT

}
= J̃x,θ − E

{
Zx

∂ ln f (y|θ)

∂θT

} (A.12)

By multiplying both sides of (A.12) by J̃θ,xJ̃−1
x , we get

J̃θ,xJ̃
−1
x E

{
YxY

T
θ

}
= J̃θ,xJ̃

−1
x J̃x,θ − E

{
J̃θ,xJ̃

−1
x Zx

∂ ln f (y|θ)

∂θT

}

= J̃θ,xJ̃
−1
x J̃x,θ − Ey|θ

P J̃θ,xJ̃−1
x Zx︸ ︷︷ ︸

0

∂ ln f (y|θ)

∂θT


(A.13)

Replacing (A.10), (A.11) and (A.13) in (A.9) and using the fact that G̃θ,x = J̃θ,x

and G̃x = J̃x from (5.55) results in∥∥∥(I − P )
(
Zθ − J̃θ,xJ̃−1

x Zx

)∥∥∥2
= G̃θ − J̃θ,xJ̃−1

x J̃Tθ,x

= G̃θ − G̃θ,xG̃
−1
x G̃

T
θ,x

(A.14)

We end up with the same result in (5.56).
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Miscellaneous mathematical
utilities

In this appendix we will remind the mathematical tools we used in the thesis to
derive the different results.

B.1 Determinant, trace and vec-operator rules

• Suppose A, B and C three matrices

tr (ABC) = tr (CAB) = tr (BCA) (B.1)

• If we denote by vec the operator that when applied on a matrix A stacks its
columns into a vector, B and X are matrices

vec (AXB) =
(
BT ⊗A

)
vec (X) (B.2)

tr
(
ATB

)
= vec (B)T vec (B) (B.3)

• if the matrix A is a function of the scalar x
∂ det (A)

∂x
= det (A) tr

[
A−1∂ (A)

∂x

]
(B.4)

∂A−1

∂x
= −A−1∂A

∂x
A−1 (B.5)

B.2 Matrix inversion Lemma

In chapter 5, we dealt with 2 × 2 block matrices and their inverses. Let’s suppose
the matrix system [

A B

C D

]−1

=

[
E F

G H

]
(B.6)

Then the block matrices of the RHS of (B.6) are expressed in the following system

E =
(
A−BD−1C

)−1 (B.7)

F = −
(
A−BD−1C

)−1
BD−1 (B.8)

G = −D−1C
(
A−BD−1C

)−1 (B.9)

H = D−1 +D−1C
(
A−BD−1C

)−1
BD−1 (B.10)
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Which is equivalent to

E = A−1 +A−1B
(
D −CA−1B

)−1
CA−1 (B.11)

F = −A−1B
(
D −CA−1B

)−1 (B.12)

G = −
(
D −CA−1B

)−1
CA−1 (B.13)

H =
(
D −CA−1B

)−1 (B.14)
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