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ABSTRACT We investigate a new approach for blind identi�cation of multiple FIR channels that appears to be robust
to the channel length overestimation. The linear prediction approach proposed in [1] constitutes a robust approach since it
provides a consistent channel estimate if the channel order is overestimated. However, we focus here on methods that are
parameterized by the channel directly such as the (signal) subspace �tting technique. To make the optimization criterion
in these approaches well de�ned, a constraint on the channel coe�cients has to be added. Typically, the unit norm
constraint is used. It is the use of this constraint that leads to order overestimation problems. In our approach we replace
this constraint by a unit norm for only the �rst vector coe�cient of the vector channel. Our simulations demonstrate
that the channel estimate obtained in this way is robust to order overestimation. Furthermore, if the exact quantities are
used in the optimization criterion, the proposed channel estimate is the correct channel (up to the usual scaling factor)
even if the order is overestimated. Hence, our channel estimate is consistent even with order overestimation.

1. INTRODUCTION.

In digital communications and especially in mobile ra-
dio communications systems, symbols are transmitted
through unknown channels. The goal of blind identi�-
cation is to identify the unknown channel using the re-
ceived signal only. Oversampling the received signal leads
to a Single Input Multiple Outputs (SIMO) vector chan-
nel representation. The multiple FIR channels we obtain
in this representation are in that case due to oversampling
of a single received signal, but can also be obtained from
multiple received signals from an array of antennas (in
the context of mobile digital communications [1],[2],[4]) or
from a combination of both. To further develop the case
of oversampling, consider linear digital modulation over
a linear channel with additive noise so that the received
signal y(t) has the following form

y(t) =
X
k

h(t� kT )a(k) + v(t) (1)

In (1) a(k) are the transmitted symbols, T is the sym-
bol period and h(t) is the channel impulse response. The
channel is assumed to be FIR with length NT . If the re-
ceived signal is oversampled at the rate m

T
(or ifm di�erent

samples of the received signal are captured by m sensors
every T seconds, or a combination of both), the discrete
input-output relationship can be written as:

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k) = H AN (k) + v(k) (2)

where
y(k) = [yH1 (k) � � � y

H
m(k)]

H, h(i) =
�
hH1 (i) � � �h

H
m(i)

�H
,

v(k) = [vH1 (k) � � � v
H
m(k)]

H, H = [h(N�1) � � �h(0)],

AN (k) =
�
a(k�N+1)H � � �a(k)H

�H
and superscript H de-

notes Hermitian transpose. Let H(z) =
PN�1

i=0
h(i)z�i =

[HH1 (z) � � �H
H
m(z)]

H be the SIMO channel transfer func-

tion, and h =
�
hH(N�1) � � �hH(0)

�H
. Consider addi-

tive independent white Gaussian circular noise v(k) with
rvv(k�i) = E v(k)v(i)H = �2vIm �ki. Assume we receive
M samples:

YM(k) = TM (H )AM+N�1(k) +VM (k) (3)
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where YM(k) = [yH(k�M+1) � � �yH(k)]H and similarly
for VM (k), and TM (H ) is a block Toepliz matrix with M
block rows and [H 0m�(M�1)] as �rst block row. We shall
simplify the notation in (3) with k =M�1 to

Y = T (H )A+V : (4)

We assume that mM >M+N�1 in which case the chan-
nel convolution matrix T (H ) has more rows than columns.
If the Hi(z); i = 1; : : : ;m have no zeros in common, then
T (H ) has full column rank (which we will henceforth as-
sume). For obvious reasons, the column space of T (H ) is
called the signal subspace and its orthogonal complement
the noise subspace. The signal subspace is parameterized
linearly by h.

2. LINEAR PREDICTION.

The linear prediction approach was introduced in the con-
tribution [1] . This approach has for advantage the ro-
bustness to channel order overestimation. Now let P(z) =PL

i=0
p(i) z�i with p(0) = Im be the MMSE multivariate

prediction error �lter of order L for the noise-free received
signal y(k). If L � L = dN�1

m�1 e, then it can be shown [4]
that

P(z)H(z) = h(0) : (5)

From (5) it is clear thatH(z) and P(z);h(0) are equivalent
parameterizations, and linear prediction is well known to
be robust to order overestimation.

3. BLIND METHODS PARAMETRIZED BY h
FOR DETERMINISTIC SYMBOLS.

3.1. Subchannel Response Matching (SRM)

The SRM technique was introduced in [5] and corresponds
also to Liu and Xu's deterministic approach. To be-
gin with, consider �rst the case of two channels: m =
2. One can observe that for noise-free signals, we have
H2(z)y1(k) � H1(z)y2(k) = 0, which can be written in
a matrix form as [H2(z) �H1(z)]y(k) = H?y(z)y(k) =
0. Stacking these zeros into a vector for the signal
fy(k)gk=0���M�1, we get an expression of the form Y h = 0
for some structured matrix Y. Under the constraint
khk2 = 1, we �nd h = Vmin(Y

HY), the eigenvector

of YHY corresponding to its minimum eigenvalue.. For
m > 2, blocking equalizers H?y(z) can be constructed by
considering the channels in pairs. The choice of H?y(z) is
far from unique. To begin with, the number of pairs to be
considered, which is the number of rows in H?y(z), is not
unique. The minimum number is m�1 whereas the max-

imum number is m(m�1)
2 . We shall call H?y(z) balanced



if tr fH?y(z)H?(z)g = �Hy(z)H(z) for some real scalar
� and Hy(z) = HH(1=z�). People usually take the max-
imum number of rows, which corresponds to a balanced
H?y(z). The minimum number of rows in H?y(z) to be
balanced is m. We get for instance

H?y
min(z) =

24 �H2(z) H1(z) � � � 0
...

...
. . .

...
�Hm(z) 0 � � � H1(z)

35 (6)

H?y
bal(z) =

26664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
...

...
. . .

. . . 0
Hm(z) 0 � � � 0 �H1(z)

37775
(7)

Continuing with this H?y
bal(z), its i

th row can be written
as

H?y
bal;i(z) = HT (z)Pi; Pi = CPi�1C

H ;

P1

26664
0 1 0 � � �
�1 0 � � �

0
...

. . .
...

37775 ; C =

26664
0 � � � 0 1
1 0 � � � 0

0
. . .

...
... 0 1 0

37775 :
(8)

For this H?y
bal(z), the SRM criterion min

h

T (h?)Y2
2
can

be written as the minimization w.r.t. h of

tr fTM (h?)YYHT (h?)Hg

= tr fh?
�PM�1

k=N�1
YN (k)Y

H
N (k)

�
h?Hg

= (M�N+1) tr fh? bRY Y h
?Hg

(9)

where the ith row of h? is

h?i = hTSi ; Si = IN 
Pi (10)

Hence the SRM criterion in (9) becomes

min
h
hH B h ; where B =

mX
i=1

Si bR�Y Y STi : (11)

If the exact RY Y is used, then the noise contribution to
the criterion (11) is 2�2v khk

2 (and here the motivation
for chosing a balanced H?(z) becomes apparent). Hence
the minimization of (11) subject to khk = 1 leads to the
consistent SRM estimate h = Vmin(B), at least if the
order is chosen correctly. Since �2v = �min(RY Y ), the
minimum eigenvalue of RY Y , the noise contribution can

be eliminated by replacing bRY Y by bRY Y � �min(bRY Y )I
or, even better, by replacing B by A = B � �min(B)I
(the former choice doesn't make B singular with a �nite
amount of data). With this modi�cation, the criterion
in (11) becomes (asymptotically) insensitive to the noise
contribution and any normalization of h will lead to a
consistent estimate.

3.2. Signal Subspace Fitting (SSF)

The covariance matrix of the received signal can be de-
composed into signal and noise subspace contributions:

RY Y = EYYH =

M+N�1X
i=1

�iViV
H
i +

mMX
i=M+N

�iViV
H
i

= VS�SV
H
S + VN�NV

H
N

(12)

Hence, the following signal subspace �tting problem can
be formulated:

min
h;T

kT (H )�VSTkF (13)

where the Frobenius norm of a matrix X can be de�ned
in terms of the trace operator kXk2F = tr fXHXg. It can
be shown (see[2]) that this leads to the following problem:

min
khk

2
=1

tr fT (H )HP?VST (H )g = min
khk

2
=1

hH B h (14)

where P?X = I � PX = I �X(XHX)+XH and + denotes
Moore-Penrose pseudo-inverse. B can be determined from
P?VS = PVN . Under the constraint khk2 = 1 the solution
is h = Vmin(B).

3.3. Noise Subspace Fitting (NSF)

Similarly, VN spans the noise subspace and T H(h?) spans
most of it. Hence, the following noise subspace �tting can
be introduced:

min
h;T

T H(h?)�VNT

F

(15)

After optimization w.r.t. T , we obtain minkhk2=1 of

tr fT (h?)P?VNT
H(h?)g = tr fh?Ch?Hg = hHBh

(16)
where C can be determined from P?VN = PVS and B =Pm

i=1 SiCS
H
i .

3.4. Deterministic Maximum Likelihood (DML)

The DML criterion can be written as minh Y
HP?

T (H )
Y .

Since P?
T (H )

� P
TH (h?)

(where the approximation error

has negligible inuence asymptotically), we get minkhk=1

of

YHP?
T (H )

Y = hH(YH
�
T (h?)T H(h?)

�+
Y)h (17)

where T (h?)Y = Yh for some Y. The iterative quadratic
(IQ) strategy considers the quadratic \numerator" of the
criterion, and for h? in the \denominator" the value from
the previous iteration is used.

3.5. Determination of H(z) from

P(z) = h?H(0)P(z)

This technique was proposed in [4]. Consider the full rank
m�(m�1) matrix h?(0) de�ned such that h?H(0)h(0) =
0, then (5) implies that P(z) = h?H(0)P(z) is a (m �
1) �m polynomial that satis�es P(z)H(z) = 0. P(z) or
equivalently P(z) and h(0) can be estimated using linear
prediction or IQDML. If P(z) is estimated in a way that is
robust to order overestimation, then the order of H(z) is
known and H(z) can be estimated straightforwardly from
P(z). If not, then we can consider the following problem

min
h

1

2�j

I
Hy(z)P

y
(z)P(z)H(z)

dz

z
(18)

which is again of the form minh h
HAh.

4. THE CONSTRAINT kh(0)k = 1.

4.1. The Basic Approach

The approach considered here consists of writing H(z)

as Q(z)h(0) or h =
�
hH(N�1) � � �hH(1) hH(0)

�H
as Qh(0) =

�
qH(N�1) � � �qH(1) Im

�H
h(0) where the



square monic Q(z) is somewhat analogous to the linear
prediction polynomial P(z). The key idea is to \anchor"
the impulse response at its �rst coe�cient. This is one
of the properties that leads to robustness to channel over-
estimation. Our approach can be used in the commonly
used channel-based techniques in blind channel identi�-
cation described above. One can observe that the com-
mon paradigm of the previously described methods is the
problem formulation hHBh, which is solved typically un-
der the unit norm channel constraint khk2 = 1. In the
noiseless case, B is singular with a nullspace of dimen-
sion one in the methods described above. In the pres-
ence of noise, we can make B singular by replacing B
by A = B � �min(B)I. The minimization of hHB h or
hHAh with khk2 = 1 leads to h = Vmin(B) = Vmin(A).
The corresponding minimum value of the criteron hHAh
is zero. When on the other hand we minimize hHAh sub-
ject to kh(0)k2 = 1, it is clear that h = �Vmin(A) with
� chosen such that kh(0)k2 = 1 makes hHAh zero and
hence this h = �Vmin(A) is the minimizer of h

HAh sub-
ject to kh(0)k2 = 1. In other words, by replacing B by A,
the problems minkhk2=1 h

HB h and minkh(0)k2=1 h
HAh

lead to solutions for h that are proportional and hence
equivalent. The problem minkh(0)k2=1 h

HAh can be re-

formulated as

min
kh(0)k

2
=1
hH(0)

�
min

q(0)=Im
QHAQ

�
h(0) : (19)

Let's rewrite A and h in the partitioned forms: A =h
A11 A12

A21 A22

i
; h =

� eh
h(0)

�
where A11 is m(N � 1) �

m(N � 1) and A22 is m�m. The solution of (19) can be
found to be:

h(0) = Vmin
�
A22 � A21A

�1
11 A12

�
;eh =

�
hH(N�1) � � �hH(1)

�H
= �A�1

11 A12h(0) :
(20)

The interlacing property for the eigenvalues of nested ma-
trices and the fact that the nullspace of A has dimension
one leads to A11 being nonsingular.

4.2. Robustness to Order Overestimation

As one can remark from the previous discussion, the an-
choring of the impulse response by itself does not lead to
robustness to order overestimation. To analyze the prob-
lem structure when the channel order is overestimated,
consider the SRM method (the conclusions below hold for
the other methods also). Below, let H?(z) be the H?

bal(z)
in (7). In the frequency domain, the SRM criterion is

1

M

1

2�j

I
kbH?y

(z)y(z)k2
dz

z
M!1
�! tr

n
1

2�j

H bH?y
(z)Syy(z)bH?

(z) dz
z

o
= bhTB�bh� =

1

2�j

I bHT
(z)

 
2�2vIm +

mX
i=1

PiH(z)Hy(z)PT
i

! bHTy
(z)

dz

z

where B = A+2�2vI is block Toeplitz.
P

PiH(z)Hy(z)PT
i

has rank m�1 (for any choice of H?(z)). If the length ofbh is N 0 (whereas the length of h is N), then A and A11

are singular of degree N 0�N+1 and N 0�N respectively.

The choice of the minimum-norm soluton for eh (corre-
sponding to the use of the Moore-Penrose pseudo-inverse
A+
11 for A11) would still lead to order overestimation prob-

lems. Now consider A11 = UDUH, the UDL triangular
factorization of A11 (of block size N 0�1). A11 being Her-
mitian and block Toeplitz, the UDL factorization can be

computed e�ciently by the modular multichannel Schur
algorithm. Since A11 is singular and block Toeplitz, U
and D become block Toeplitz after N blocks. So the last
diagonal block in D appears N 0�N times and its diagonal
consists of m�1 nonzero elements followed by a zero. To
solve the order overestimation problem, these (repeated)
singular diagonal blocks in D should be replaced by zero.
Furthermore, the elements of U above its diagonal should
be put equal to zero in columns that correspond to the re-
sulting zeros in D. In the �nite data case, A11 and hence
D will not be exactly singular. However, small elements
in D should be forced to zero. This approach for Q(z) is
the dual of the approach outlined in [2] for P(z), to make
the prediction approach robust to order overestimation.

5. SIMULATION RESULTS.

In the simulations presented here, the performance mea-
sure is the Normalized MSE (NMSE) which is computed
over 300 Monte Carlo runs as

NMSE =
1

300

300X
i=1

kbh(i)
� hk2=khk2:

We use a random complex channel H with N = 3 and
m = 3 which is given by :"
0:0591�0:3600j 0:3516+1:2460j 1:1650+0:8717j
1:7971�0:1356j �0:6965�0:6390j 0:6268�1:4462j
0:2641�1:3493j 1:6961+0:5774j 0:0751�0:7012j

#
the symbols are i.i.d. BPSK, and the data length is M =
100. The SNR is de�ned as (khk2�2a)=(m�

2
v).

5.1. SRM

In Figure 1, we compare the performance of the SRM es-
timates obtained with the normalizations khk = 1 and
kh(0)k = 1 assuming the correct channel order. We also
compare with the normalized Cramer-Rao bound (CRB)
[4]. The two normalizations give comparable performance,
especially at high SNR. Note that when khk = 1 is used,
the subtraction of the noise contribution has no inuence.
In Figure 2, the problem of channel order overdetermina-
tion is illustrated: we apply SRM assuming the channel
order is N 0 = 4 > 3 = N . We can notice that the use
of kh(0)k = 1 leads to only a moderate increase (one ele-
ment in D zeroed out) or even a decrease (m elements in
D zeroed out) in the NMSE, whereas the channel order
overestimation problem of the khk = 1 approach is clear.

5.2. SSF

When the channel length is assumed to be N 0 > N , then
the assumed signal subspace will be of increased dimen-
sion M+N 0�1. In the SSF method, the channel esti-
mate will be obtained by searching for orthogonality with
a noise subspace of reduced dimension (m�1)M�N 0+1.
This does not pose any fundamental problem since ex-
pressing orthogonality to as few as m�1 noise subspace
vectors leads to identi�ability [4]. (Note that for the NSF
method on the other hand, even if one works with a po-
tentially overdimensioned channel length, one should not
overestimate the signal subspace dimension).
In Figure 3, we apply SSF assuming the channel order

is N 0 = 5 > 3 = N and we use the procedure described
previously except that we don't force all m elements in the
singular blocks ofD to zero, but only take the last element
in each excess block equal to zero. We �nd that using the
constraint kh(0)k = 1 leads to only a moderate increase
in the NMSE, whereas the channel order overestimation
problem using the constraint khk = 1 is clear. In Figure 4,
the same channel order overestimation is assumed and we
estimate h according to the previously mentioned proce-
dure, now putting all m elements in each singular block of



D equal to zero. The curves of NMSEs corresponding to
kh(0)k = 1 with order overestimation and khk = 1 with
the correct order become superimposed for SNR � 10dB.

REFERENCES

[1] D.T.M. Slock. \Blind Fractionally-Spaced Equaliza-
tion, Perfect-Reconstruction Filter Banks and Mul-
tichannel Linear Prediction". In Proc. ICASSP 94
Conf., Adelaide, Australia, April 1994.

[2] D.T.M. Slock. \Subspace Techniques in Blind Mobile
Radio Channel Identi�cation and Equalization using
Fractional Spacing and/or Multiple Antennas". In
Proc. 3rd International Workshop on SVD and Signal
Processing, Leuven, Belgium, Aug. 22-25 1994.

[3] E. De Carvalho and D.T.M. Slock. \Maximum-
Likelihood Blind Equalization of Multiple FIR Chan-
nels". In Proc. ICASSP 96 Conf., Atlanta, USA, May
1996.

[4] D.T.M. Slock and C. B. Papadias. \Blind
Fractionally-spaced Equalization Based on Cyclosta-
tionarity". In Proc. Vehicular Technology Conf.,
Stockholm, Sweden, June 1994.

[5] L.A. Baccala and S. Roy. \A New Time-Domain
Blind Channel Identi�cation Method". IEEE Signal
Processing Letters, 1(6):89 91, June 1994.

5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

N
M

S
E

tr (CRBbh)= khk2

bRY Y � �min(bRY Y )I and kh(0)k
2
= 1

bRY Y or bRY Y � �min(bRY Y )I and khk
2
= 1

Figure 1. SRM: comparison of NMSEs obtained
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Figure 3. SSF: robustness to order overestimation
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