ANYHOW, ANYTIME FEEDBACK IN CLASSICAL MULTIUSER CHANNELS:

RECENT SUCCESSES AND MANY CHALLENGES

Petros Elia

EURECOM

Sophia Antipolis - France

NEWCOM # Spring School - Petros Elia

Wireless communications networks

Distilled point-of-view in this presentation

Distilled point-of-view in this presentation₁

Distilled point-of-view in this presentation₂

SUMMARY OF SLIDES

• Part 1

- \star Motivation (Why feedback is important)
- \star Quick summary of basics (Capacity, Degrees-of-Freedom)
- \star Early results and basic encoding/decoding/feedback tools
- Part 2
 - \star A unified exposition and a general framework
 - \star Insight and answers to fundamental questions
 - \star Open problems

NEWCOM # Spring School - Petros Elia

Typical multiuser scenario: Interference

USERS INTERFERE, AND MUST SHARE THE PIE

FEEDBACK: NOTIFY TRANSMITTER OF THE CHANNEL STATE CHANNEL STATE INFORMATION AT TRANSMITTER (CSIT)

Communications with feedback $_1$

Communications with feedback₂

LONG-STANDING CHALLENGE: HOW TO USE IMPERFECT FEEDBACK?

optimize (SNR Rate1 Rate2)

• Transmit: (Inverse-channel × Message) \Rightarrow separates users' messages \star Channel × Inverse-channel × Message \rightarrow Message OK

• BUT, channel changes: Feedback can be imperfect, limited and delayed \star Channel \times Approximately-inverse-channel \times Message $\rightarrow \mathbb{R}$

Massive gains from resolving challenge

- No feedback: one user served at a time
- Perfect and immediate feedback: many users at a time
- Challenge: new algorithms that bridge gap
- Recent tools brought unprecedented excitement
 - \star New insight sparked worldwide race to resolve challenge
 - \star Much of work done after 2012

QUICK SUMMARY OF BASICS

NEWCOM # Spring School - Petros Elia

• Flat fading (single-input single-output) channel model

$$y_t = h_t x_t + z_t$$

• Ergodic (average) capacity $\mathbb{E}_h[C(h_t)]$:

$$C_{\text{erg}} = \mathbb{E}_h \log(1 + P|h_t|^2) \approx \log P$$

Degrees of freedom d

- Capacity $\approx d \cdot \text{SNR}$
- Number of dimensions available per user

$$DoF = d \triangleq \lim_{P \to \infty} \frac{Capacity}{\log P}$$
$$= \lim_{P \to \infty} \frac{\approx \log P}{\log P} = 1$$

$$\Rightarrow$$
 SISO: DoF = 1

• Same holds for $n \times 1$ MISO (multiple input single output):

 \star Instantaneous Capacity $C(\mathbf{h}_t)$:

$$C(\boldsymbol{h}_t) = \log(1 + P \|\boldsymbol{h}_t\|^2)$$

 \star Ergodic capacity (MISO)

$$C_{\text{erg}} = \mathbb{E}_{\boldsymbol{h}} \log \left(1 + P \| \boldsymbol{h}_t \|^2 \right) = \log P + o(\log P)$$

★ DoF MISO Fading

$$d = \lim_{P \to \infty} \frac{\log P + o(\log P)}{\log P} = 1$$

NEWCOM # Spring School - Petros Elia

DOF INCREASE MEANS EXPONENTIAL POWER REDUCTIONS

- Want to communicate at rate R
- Over 'system' with d DoF:

 $C \approx d \log_2 P$

• Thus minimum power P_{\min} so that

 $R \approx C \approx d \log_2 P_{\min}$

$$\Rightarrow P_{\min} \approx 2^{R/d}$$

$$\Rightarrow P_{\min} \approx 2^{R/d}$$

Example (R = 5):

• If normal MISO (d = 1) $d = 1 \Rightarrow R \approx C \approx 1 \cdot \log_2 P \Rightarrow P_{\min} \approx 2^C \approx 2^R \approx 2^5 \approx 30$

• If reduced MISO
$$(d = 1/2)$$

 $d = 1/2 \Rightarrow R \approx C \approx \frac{1}{2} \cdot \log_2 P \Rightarrow P_{\min} \approx 2^{10} \approx 1000$

Multiuser Channels suffer from interference

• Interference: users must share signal dimensions

★ DoF reduction \Rightarrow Rates \downarrow , Power \uparrow ,

Multiuser Broadcast Channel

Multiuser Interference Channel Multiuser X Channel

Example: interference in two-user MISO BC

- Let information symbol "a" for user 1 $\mathbb{E}|a|^2 = P$
- Let information symbol "b" for user 2 $\mathbb{E}|b|^2$

$$\mathbb{E}|a|^2 = P$$
$$\mathbb{E}|b|^2 = P$$

NEWCOM # Spring School - Petros Elia

Example: interference in two-user MISO BC_1

• No feedback
$$\Rightarrow$$
 transmit $\boldsymbol{x} = \begin{bmatrix} a \\ b \end{bmatrix}$

• User 1 receives:

$$y^{(1)} = \boldsymbol{h}^T \boldsymbol{x} + w = \begin{bmatrix} h_1 & h_2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = h_1 a + \underbrace{h_2 b + w}_{\text{NOISE POWER} \approx P+1}$$

• User 1 treats
$$h_2 b$$
 as noise:
average effective SNR = $\frac{\text{'signal' power}}{\text{'noise' power}} \approx \frac{P}{P+1} \approx \text{Constant}$

• Received SNR does not increase with transmit power!

Example: interference in two-user MISO BC₂

• Thus maximum rate R_{max} does not increase with increasing transmit power

$$R_{\max} \approx \log\left(1 + \frac{P}{P+1}\right) = \text{constant}$$

• Which means, zero DoF

$$d = \lim_{P \to \infty} \frac{R_{\max}}{\log P} = \lim_{P \to \infty} \frac{\text{constant}}{\log P} = 0$$

 $\star \Rightarrow$ Massive damage from inter-user interference

Example: interference in two-user MISO BC₃

TREATING INTERFERENCE AS NOISE

Time division for interference avoidance

Still No Feedback Simple but inefficient solution: Time division (TDMA)

- First send "a" to user 1 (t = 1)
- Then send "b" to user 2 (t = 2)

• Send

$$x(t=1) = \begin{bmatrix} a \\ 0 \end{bmatrix}, \quad x(t=2) = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

• A SISO channel per user (no interference) - but double the time

$$d = \lim_{P \to \infty} \frac{1}{2} \frac{C_{\text{siso}}}{\log P} = \frac{1}{2}$$

Time division for interference avoidance₁

• But what if we could feedback the channel state?

$$\mathbf{H} = \left[egin{array}{c} m{h}^T \ m{g}^T \end{array}
ight]$$

• Send \mathbf{H} to the transmitter

Precoding

• Instead of sending
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
, now could send
 $\boldsymbol{x} = \mathbf{H}^{-1} \begin{bmatrix} a \\ b \end{bmatrix}$

$$\left[egin{array}{c} y^{(1)} \ y^{(2)} \end{array}
ight] = \mathbf{H} oldsymbol{x} + oldsymbol{z} = \mathbf{H} \overbrace{\mathbf{H}^{-1} \left[egin{array}{c} a \ b \end{array}
ight]}^{oldsymbol{x}} + oldsymbol{z} = \left[egin{array}{c} a \ b \end{array}
ight] + oldsymbol{z}$$

$$y^{(1)} = a + z^{(1)}$$
 user 1: DoF = $d_1 = 1$
 $y^{(2)} = b + z^{(2)}$ user 2: DoF = $d_2 = 1$

• Knowledge of *channel state information at the transmitter* (CSIT) is important (knowledge of **H**)

 \star Precoding allows for separation of signals

Precoding with perfect feedback₂

PERFECT FEEDBACK ALLOWS FOR OPTIMAL DOF

• Feedback can be imperfect, limited and delayed

★ Channel × Approximately-inverse-channel × Message → \mathbb{R} ‡♠H∅J =

- How to exploit predicted CSIT
- How to exploit delayed CSIT
- How to exploit imperfect CSIT
- How to minimize total amount of (delayed + current) feedback?
- How to achieve optimality even with feedback delays?
- How to utilize gradually arriving feedback?
- How much feedback quality and when?

Of course, the problem has randomness Let us get some insight on the involved randomness Let us look at some (simplistic) toy examples

Instance of channel and its estimate at time t'

Another instance of channel at time t

Again estimate was good

Now, estimation was bad

Progressive knowledge of channel

What do we know - at any point in time t' - about channel h_t (e.g t=6)?

Knowledge at time t' = 1,2,3.....

No prediction at t' = 1 of h_6

Still no (of h_6) prediction at t' = 2

Knowledge at time t' = 1,2,3.....

Vague prediction (of h_6) at time t' = 3 - high error

Vague prediction (of h_6) at time t' = 3 - high error₁

...getting better (t' = 4)

...warmer (t'=5)

Knowledge at time t' = 1,2,3.....

These are the predicted estimates of h_6

Knowledge at time t' = 1,2,3.....

Knowledge at time t' = 1,2,3.....

'Current estimate' of h_6 at t' = t = 6

Knowledge at time t' = 1,2,3.....

'Delayed estimates' at t' > t = 6, $t' \le n$

What do we know - at any point in time t' - about channel $\mathbf{h_6}$?

Knowledge at time t' = 1,2,3.....

Knowledge at time t' = 1,2,3.....

Knowledge at time t' = 1,2,3.....

And similarly another channel instance for h_6

Knowledge at time t' = 1,2,3.....

And another CSIT estimate instance: $t' = 1 \rightarrow n$

Knowledge at time t' = 1,2,3.....

Yet another point of view - knowledge of channel process

What do we know at time t', about the channel process (say t'=9)

What we know at t' = 9, about current and past channels

What do we know at time t', about the channel process (say t'=9)

What do we know at time t', about the channel process (say t'=9)

What is our knowledge at time t' = 14?

What do we know - at time t' = 14 - about the channel process?

Good for past, not so good for future

What do we know - at time t' = 14 - about the channel process?

Let us learn how to utilize different tools of the trade

Answers in the form of:

- Novel precoders/decoders that cleverly use feedback
- Information theoretic outer bounds (try to prove optimality)

Delayed CSIT

HOW TO UTILIZE DELAYED FEEDBACK?

• Perfect current CSIT is that which arrives immediately

 \star At the very beginning of the coherence period of the channel

- \star At time t: h_t, g_t unknown to transmitter
- Delayed CSIT:
 - * At time $t + \tau$, $\tau > T \triangleq T_c$: h_t, g_t perfectly known to transmitter
 - \star Feedback comes with substantial delay after channel changes

NO CURRENT CSIT BUT PERFECT DELAYED CSIT

coherence block	1	2	3	4	•••
		$oldsymbol{h}_1$	$oldsymbol{h}_2$	$oldsymbol{h}_3$	
		$oldsymbol{g}_1$	$oldsymbol{g}_2$	$oldsymbol{g}_3$	• • •

Utilizing Delayed CSIT - MAT₁

• Theorem (Maddah-Ali and Tse): Optimal DoF $d_1 = d_2 = 2/3$

- Intuition 1: interference alignment in space and time
- Intuition 2: current interference known at transmitter at later time
- Intuition 3: do the damage now, and fix it later

Maddah-Ali and Tse (MAT) scheme

- Tx sends symbols a_1, a_2 for user 1, and b_1, b_2 for user 2, in 3 channel uses
 - * WOLOG consider $T_{\rm coh} = 1$ (unit coherence period)
 - ★ Duration T = 3: Tx sequentially sends vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3 \in \mathbb{C}^2$

• In the first two channel uses:

$$t = 1: \ \boldsymbol{x}_1 = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \qquad \begin{array}{l} y_1^{(1)} = \boldsymbol{h}_1^\top \boldsymbol{x}_1 + \text{noise} \\ y_1^{(2)} = \boldsymbol{g}_1^\top \boldsymbol{x}_1 + \text{noise} \end{array}$$
$$t = 2: \ \boldsymbol{x}_2 = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \qquad \begin{array}{l} y_2^{(1)} = \boldsymbol{h}_2^\top \boldsymbol{x}_2 + \text{noise} \\ y_2^{(2)} = \boldsymbol{g}_2^\top \boldsymbol{x}_2 + \text{noise} \end{array}$$

• After two coherence blocks: Tx reconstructs $\boldsymbol{g}_1^{\top} \boldsymbol{x}_1$ and $\boldsymbol{h}_2^{\top} \boldsymbol{x}_2$ \star using knowledge of delayed CSIT

$$t = 3: \ \boldsymbol{x}_3 = \begin{bmatrix} \boldsymbol{h}_2^\top \boldsymbol{x}_2 + \boldsymbol{g}_1^\top \boldsymbol{x}_1 \\ 0 \end{bmatrix}, \ \begin{array}{l} y_3^{(1)}/h_{3,1} = \boldsymbol{h}_2^\top \boldsymbol{x}_2 + \boldsymbol{g}_1^\top \boldsymbol{x}_1 + \text{noise} \\ y_3^{(2)}/g_{3,1} = \boldsymbol{h}_2^\top \boldsymbol{x}_2 + \boldsymbol{g}_1^\top \boldsymbol{x}_1 + \text{noise} \end{array}$$

• $\boldsymbol{h}_t \triangleq [h_{t,1} \ h_{t,2}]^\top, \ \boldsymbol{g}_t \triangleq [g_{t,1} \ g_{t,2}]^\top, \text{ then user 1 has}$

$$\tilde{\boldsymbol{y}}^{(1)} \triangleq \begin{bmatrix} y_1^{(1)} \\ y_3^{(1)}/h_{3,1} - y_2^{(1)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{h}_1^\top \\ \boldsymbol{g}_1^\top \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \text{noise}$$

- Each user decodes two symbols in three timeslots: $d_1 = d_2 = 2/3$
- Intuition: Space-time interference alignment, retrospective interference cancelation using delayed CSIT

FEEDBACK ASYMMETRY: ONE USER HAS MORE FEEDBACK

- Current CSIT for h_t (of 1st user): Perfectly and instantly known at Tx
- Delayed CSIT for \boldsymbol{g}_t (of 2nd user): Perfectly known to Tx after coherence period passes

coherence block	1	2	3	4	•••
	$oldsymbol{h}_1$	$oldsymbol{h}_2$	$oldsymbol{h}_3$	$oldsymbol{h}_4$	

One user has more feedback: Maleki, Jafar and Shamai₁

• Recall: if both users only had delayed feedback

One user has more feedback: Maleki, Jafar and Shamai₂

- Now One user has delayed, the other had perfect
- Theorem: Derived optimal DoF is $d_1 = 1$, $d_2 = 1/2$, (sum DoF $3/2 \ge 4/3$)

Tx sends symbols a₁, a₂ for user 1, and b for user 2, in 2 channel uses
★ WOLOG: one channel use = one coherence block
★ Tx will sequentially send signal vectors x₁, x₂ ∈ C²
★ note use of symbol ⊥ → (orthogonal)

$$oldsymbol{x}_1 = egin{bmatrix} a_1 \ a_2 \end{bmatrix} + oldsymbol{h}_1^{\perp} b, \ oldsymbol{x}_2 = egin{bmatrix} oldsymbol{g}_1^{ op} \begin{bmatrix} a_1 \ a_2 \end{bmatrix} \\ 0 \end{bmatrix} + oldsymbol{h}_2^{\perp} b$$

• Intuitions:

- \star Current CSIT can be used for instantaneous interference mitigation
- \star Delayed CSIT can be used for retrospective interference cancelation

Introducing feedback QUALITY considerations

INTRODUCING FEEDBACK QUALITY CONSIDERATIONS

NEWCOM # Spring School - Petros Elia

Introducing feedback QUALITY considerations₂

- Jindal et al., Caire et al: "Optimal DoF does not need infinite number of feedback bits"
 - \star Let $\hat{\boldsymbol{h}}_t$ be the <u>INSTANTANEOUS</u> estimate of channel \boldsymbol{h}_t
 - \star Let $\hat{\boldsymbol{g}}_t$ be the <u>INSTANTANEOUS</u> estimate of channel \boldsymbol{g}_t

 \star Then if

$$\mathbb{E}[\|\hat{\boldsymbol{h}}_t - \boldsymbol{h}_t\|^2] \approx P^{-1}, \qquad \mathbb{E}[\|\hat{\boldsymbol{g}}_t - \boldsymbol{g}_t\|^2] \approx P^{-1}$$

 \star you can achieve the optimal DoF

Refining quality considerations

- Motivation: Note $\mathbb{E}[\|\hat{h}_t h_t\|^2] \approx P^{-1}$ corresponds to sending about $\log P$ bits of feedback per scalar (rate distortion theory not optimal)
- What if you cannot send so many bits?

Kobayashi-Yang-Yi-Gesbert: Current CSIT estimation errors with power $P^{-\alpha}$

• Current CSIT quality exponent

$$\alpha = -\lim \frac{\log \mathbb{E}[\|\hat{\boldsymbol{h}}_t - \boldsymbol{h}_t\|^2]}{\log P} = -\lim \frac{\log \mathbb{E}[\|\hat{\boldsymbol{g}}_t - \boldsymbol{g}_t\|^2]}{\log P}, \quad \alpha : 0 \to 1$$

NEWCOM # Spring School - Petros Elia

Combining current and delayed CSIT (Yang-Gesbert et al.)

• Perfect delayed CSIT + imperfect current CSIT

- Current CSIT: PARTIAL instantaneous interference mitigation
- Delayed CSIT: retrospective interference management, at later time

Combining current and delayed CSIT (Yang-Gesbert et al.)₁

RECALL: IF BOTH USERS <u>ONLY HAD DELAYED FEEDBACK</u> $(\Rightarrow \alpha = 0)$

NEWCOM # Spring School - Petros Elia

Perfect delayed, and imperfect current CSIT

Now each has delayed + imperfect current estimates $(\Rightarrow \alpha > 0)$

• Theorem¹: Perfect delayed CSIT and α -quality current CSIT, gives:

$$d_1 = d_2 = \frac{2+\alpha}{3}$$

 $^1 \mathrm{Yang}\text{-}\mathrm{Kobayashi}\text{-}\mathrm{Yi}\text{-}\mathrm{Gesbert},$ Gou
-Jafar 2012

- Tx to communicate in three channel uses, sending $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3 \in \mathbb{C}^2$
- First information symbols a_1, a'_1 for user 1
- First information symbols b_1, b'_1 for user 2
- Two phases: phase 1 (t = 1), phase 2 (t = 2, 3)
- Unit coherence period (WOLOG)

Scheme: Yang-Kobayashi-Yi-Gesbert₁

• During phase 1 (t = 1), the transmitter sends $(\boldsymbol{u}_1 = \hat{\boldsymbol{g}}_1^{\perp}, \ \boldsymbol{v}_1 = \hat{\boldsymbol{h}}_1^{\perp})$

• Users receive

$$y_{1}^{(1)} = \boldsymbol{h}_{1}^{\mathsf{T}}\boldsymbol{u}_{1}a_{1} + \boldsymbol{h}_{1}^{\mathsf{T}}\boldsymbol{u}_{1}^{'}a_{1}^{'} + \underbrace{\tilde{\boldsymbol{h}}_{1}^{\mathsf{T}}\boldsymbol{v}_{1}b_{1} + \boldsymbol{h}_{1}^{\mathsf{T}}\boldsymbol{v}_{1}^{'}b_{1}^{'}}_{\text{power }P^{1-\alpha}} + \text{noise,}$$

$$y_{1}^{(2)} = \underbrace{\tilde{\boldsymbol{g}}_{1}^{\mathsf{T}}\boldsymbol{u}_{1}a_{1} + \boldsymbol{g}_{1}^{\mathsf{T}}\boldsymbol{u}_{1}^{'}a_{1}^{'}}_{\text{power }P^{1-\alpha}} + \boldsymbol{g}_{1}^{\mathsf{T}}\boldsymbol{v}_{1}b_{1} + \boldsymbol{g}_{1}^{\mathsf{T}}\boldsymbol{v}_{1}^{'}b_{1}^{'} + \text{noise.}$$

NEWCOM # Spring School - Petros Elia

• At the end of phase 1. Reconstruct interference using delayed CSIT

$$\iota_{1}^{(1)} = \tilde{\boldsymbol{h}}_{1}^{\mathsf{T}} \boldsymbol{v}_{1} b_{1} + \boldsymbol{h}_{1}^{\mathsf{T}} \boldsymbol{v}_{1}^{'} b_{1}^{'}, \quad \iota_{1}^{(2)} = \tilde{\boldsymbol{g}}_{1}^{\mathsf{T}} \boldsymbol{u}_{1} a_{1} + \boldsymbol{g}_{1}^{\mathsf{T}} \boldsymbol{u}_{1}^{'} a_{1}^{'}$$

- Quantize interference into *t*₁⁽ⁱ⁾
 ★ quantization rate: (1 − α) log P bits → bounded quant. error
- Map all quantization bits of $\{\tilde{\iota}_1^{(i)}\}_{t=1}^2 \to \text{into } \{c_t\}_{t=2}^3$
- Send these symbols during next phase
 - \star a) to cancel interference
 - \star b) to get extra observation for MIMO decoding

• Phase 2, t = 2, 3, Tx sends c_t and extra a_t, b_t

$$\boldsymbol{x}_{t} = \underbrace{\boldsymbol{w}_{t}c_{t}}_{P, \quad r=1-\alpha} + \underbrace{\hat{\boldsymbol{g}}_{t}^{\perp}a_{t}}_{P^{\alpha}, \quad r=\alpha} + \underbrace{\hat{\boldsymbol{h}}_{t}^{\perp}b_{t}}_{P^{\alpha}, \quad r=\alpha}$$

* Successive decoding: $c_t \to a_t$ at user 1, $c_t \to b_t$ at user 2

* Reconstructing approximate interference: $\{c_t\}_{t=2}^3 \to \{\bar{\iota}_1^{(i)}\}_{t=1}^2$

 \star Go back to phase 1, and decode a_1, a_2 at user 1, and b_1, b_2 at user 2

$$\begin{bmatrix} y_1^{(1)} - \vec{\iota}_1^{(1)} \\ \vec{\iota}_1^{(2)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{h}_1^{\mathsf{T}} \\ \boldsymbol{g}_1^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \ \boldsymbol{u}_1' \end{bmatrix} \begin{bmatrix} a_1 \\ a_1' \end{bmatrix} + \text{noise}$$
$$d_1 = d_2 = \frac{2+\alpha}{3}$$

• To achieve $d_1 = d_2 = \frac{2+\alpha}{3}$, send a total of log P feedback bits

 $\star \alpha \log P$ bits sent immediately

 $\star (1-\alpha) \log P$ bits sent at any point after coherence period

CAN IMPERFECT FEEDBACK GIVE OPTIMAL PERFORMANCE?

- Answer: yes, if we have more receiving nodes
 - \star Example: MISO BC, with 3 users

Even delayed CSIT can achieve max DoF

- Setting (Lee and Heath 2012)
 - \star MISO BC, two transmitter antennas, <u>three</u> users
 - \star Send perfect feedback at γ fraction of coherence period

• Theorem (Lee and Heath 2012): The optimal sum-DoF $d_1 + d_2 + d_3 = 2$ is achieved for any delay $0 \le \gamma \le \frac{1}{3}$

LEE AND HEATH SCHEME FOR NOT-TOO-DELAYED CSIT

- Phase 1
 - \star Phase duration: one 'time slot'. No current CSIT available.
 - \star Tx sends a total of six different data symbols; two per user

$$oldsymbol{x}_1 = egin{bmatrix} a_1\ a_2 \end{bmatrix} + egin{bmatrix} b_1\ b_2 \end{bmatrix} + egin{bmatrix} c_1\ c_2 \end{bmatrix}$$

★ User
$$i = 1, 2, 3$$
, receives a signal consisting of three linear combina-
tions $L_1^{(i)}(\boldsymbol{a}) = \boldsymbol{h}_1^{(i)\top} \boldsymbol{a}, L_1^{(i)}(\boldsymbol{b}) = \boldsymbol{h}_1^{(i)\top} \boldsymbol{b}, L_1^{(i)}(\boldsymbol{c}) = \boldsymbol{h}_1^{(i)\top} \boldsymbol{c}$
 $y_1^{(1)} = L_1^{(1)}(\boldsymbol{a}) + L_1^{(1)}(\boldsymbol{b}) + L_1^{(1)}(\boldsymbol{c}),$
 $y_1^{(2)} = L_1^{(2)}(\boldsymbol{a}) + L_1^{(2)}(\boldsymbol{b}) + L_1^{(2)}(\boldsymbol{c}),$
 $y_1^{(3)} = L_1^{(3)}(\boldsymbol{a}) + L_1^{(3)}(\boldsymbol{b}) + L_1^{(3)}(\boldsymbol{c}),$

• Phase 2

 \star Two time slots = two independent channel blocks (t = 2, 3)

 \star current CSIT for channel at t = 2, 3

 \star with delayed CSIT of the channel corresponding to t=1

 \star Construct same interference experienced at time t=1

$$\boldsymbol{x}_t = \boldsymbol{V}_t^{(a)} \boldsymbol{a} + \boldsymbol{V}_t^{(b)} \boldsymbol{b} + \boldsymbol{V}_t^{(c)} \boldsymbol{c}, \quad t = 2, 3$$

 \star With good precoders $V_t^{(a)}, V_t^{(b)}, V_t^{(c)}$, users receive signals of the form

$$\begin{split} y_t^{(1)} &= L_t^{(1)}(\boldsymbol{a}) + L_1^{(1)}(\boldsymbol{b}) + L_1^{(1)}(\boldsymbol{c}), \\ y_t^{(2)} &= L_1^{(2)}(\boldsymbol{a}) + L_t^{(2)}(\boldsymbol{b}) + L_1^{(2)}(\boldsymbol{c}), \\ y_t^{(3)} &= L_1^{(3)}(\boldsymbol{a}) + L_1^{(3)}(\boldsymbol{b}) + L_t^{(3)}(\boldsymbol{c}), \end{split}$$

 \star So, the precoders are chosen as

$$\begin{split} \boldsymbol{V}_{t}^{(a)} &= \left[\begin{matrix} \boldsymbol{h}_{t}^{(2)\top} \\ \boldsymbol{h}_{t}^{(3)\top} \end{matrix} \right]^{-1} \left[\begin{matrix} \boldsymbol{h}_{1}^{(2)\top} \\ \boldsymbol{h}_{1}^{(3)\top} \end{matrix} \right] \\ \boldsymbol{V}_{t}^{(b)} &= \left[\begin{matrix} \boldsymbol{h}_{t}^{(1)\top} \\ \boldsymbol{h}_{t}^{(3)\top} \end{matrix} \right]^{-1} \left[\begin{matrix} \boldsymbol{h}_{1}^{(1)\top} \\ \boldsymbol{h}_{1}^{(3)\top} \end{matrix} \right] \\ \boldsymbol{V}_{t}^{(c)} &= \left[\begin{matrix} \boldsymbol{h}_{t}^{(1)\top} \\ \boldsymbol{h}_{t}^{(2)\top} \end{matrix} \right]^{-1} \left[\begin{matrix} \boldsymbol{h}_{1}^{(1)\top} \\ \boldsymbol{h}_{1}^{(2)\top} \\ \boldsymbol{h}_{1}^{(2)\top} \end{matrix} \right] \end{split}$$

 \star User 1 decoding

$$\begin{bmatrix} y_1^{(1)} - y_2^{(1)} \\ y_1^{(1)} - y_3^{(1)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{h}_1^{(1)T} - \boldsymbol{h}_2^{(1)T} \boldsymbol{V}_2^{(a)} \\ \boldsymbol{h}_1^{(1)T} - \boldsymbol{h}_3^{(1)T} \boldsymbol{V}_3^{(a)} \end{bmatrix} \boldsymbol{a} + \text{noise}$$

 \star Each user decodes 2 symbols in 3 channel uses- optimal sum DoF (2)

 \star Intuitions: Not-too-delayed CSIT is used for interference reconstruction and interference cancellation

ALTERNATING CSIT^2 Feedback alternates from user to user

Time t	1	2	3	4	5	6	7	
CSIT of channel h	Р	D	N	Р	Р	N	N	
CSIT of channel g	D	Р	N	N	N	Р	Р	

²Tandon-Jafar-Shamai-Poor 2012

NEWCOM # Spring School - Petros Elia

- CSIT for each user's channel, at a specific time, can be either perfect (P), delayed (D) or not available (N)
 - $\star I_1, I_2 \in \{P, D, N\}$

* For example, in a specific time: $I_1 = P$, $I_2 = D$

• $\lambda_{I_1I_2}$ is the fraction of time associated with CSIT states I_1, I_2 * Symmetric assumption $\lambda_{I_1I_2} = \lambda_{I_2I_1}$

•
$$\lambda_P = \lambda_{PP} + \lambda_{PD} + \lambda_{PN}$$

•
$$\lambda_D = \lambda_{DP} + \lambda_{DD} + \lambda_{DN}$$

• Theorem: Derived DoF

$$d = \min\{\frac{2+\lambda_P}{3}, \frac{1+\lambda_P+\lambda_D}{2}\}$$

(Recall:
$$d_{\text{opt}} = \min\{\frac{2+\lambda_P}{3}, \frac{1+\lambda_P+\lambda_D}{2}\}$$
)

EXAMPLE:

• First half
$$I_1 = P$$
, $I_2 = D$, second half $I_1 = D$, $I_2 = P \begin{bmatrix} P & D \\ D & P \end{bmatrix}$
• $\lambda_{PD} = \lambda_{DP} = 0.5 \ (\lambda_P = \lambda_D = 1/2 \ \Rightarrow \min\{\frac{2+1/2}{3}, \frac{1+1/2+1/2}{2}\} = \frac{5}{6})$

• Then optimal DoF
$$d_1 = d_2 = 5/6$$

Symmetry 'beats' alternating

- Asymmetry: λ_{PD} = 1 ⇒ d₁ + d₂ = 3/2 (Maleki et al.)
 ★ Instantaneous perfect CSIT for channel of user 1 I₁ = P
 ★ Delayed CSIT for channel of user 2 I₂ = D
- Symmetry: $\lambda_{PD} = 0.5, \lambda_{DP} = 0.5$ $\Rightarrow d_1 + d_2 = 5/3 \ge 3/2$ \star Half of time $I_1 = P, I_2 = D$, other half $I_1 = D, I_2 = P$
- Same feedback cost, but symmetric provides gain 5/3 3/2

Summary: Part-1

- No CSIT $d_1 = d_2 = 1/2$
- Perfect CSIT $d_1 = d_2 = 1$
- Delayed CSIT-MAT $d_1 = d_2 = 2/3$
- Perfect CSIT for channel 1, delayed CSIT for channel 2 Maleki et al. $d_1=1,\ d_2=1/2$
- Imperfect current CSIT α , perfect delayed CSIT Sheng et al. and Gou and Jafar $d_1 = d_2 = (2 + \alpha)/3$
- Not-too-delayed CSIT can be optimal Lee and Heath ($\gamma \leq \frac{1}{3}$, 2 × 3 setting)

- Motivated by timeliness-and-quality considerations
- Timeliness and quality might be hard to get over limited feedback links
- Timeliness and quality affect performance
 - \star Feedback delays and imperfections generally reduce performance
- A corresponding clear delay-and-quality question....

HOW MUCH FEEDBACK IS NECESSARY, AND WHEN, IN ORDER TO ACHIEVE A CERTAIN PERFORMANCE?

Answering a broad range of practical questions

"Answering a broad range of practical performance-vs-feedback questions, up to a sublogarithmic factor of P"

WHAT WOULD ENGINEERS ASK?

- What is the role of MIMO in reducing feedback quality?
- When is delayed feedback necessary?
- When is predicted feedback necessary?
- What is better: less feedback early, or more feedback later?
- How to exploit feedback of imperfect quality?
- How to exploit feedback with predictions?
- How to exploit feedback with delayed information?
- How much feedback, where, and when, for a certain performance?

• Can a specific accumulation-rate of feedback bits, guarantee a certain target DoF performance?

★ If we send $\frac{1}{10} \log P$ feedback bits without delay (at t = 0),

* then send
$$\frac{1}{8}\log P$$
 bits at $t = T_{coh}/3$

$$\star$$
 then send $\frac{1}{9}\log P$ bits at $t = 2T_{coh}/3$

 \star and $\frac{1}{6}\log P$ bits at any time $t > T_{coh}$

 \star then what performance can be guaranteed?

A unified performance-vs-feedback framework

A UNIFIED PERFORMANCE-VS-FEEDBACK FRAMEWORK

Fundamental formulation of performance-vs-feedback problem

FUNDAMENTAL FORMULATION OF PERFORMANCE-VS-FEEDBACK PROBLEM

NEWCOM # Spring School - Petros Elia

Step 1: Communication of duration n (n is large)

STEP 2: COMMUNICATION ENCOUNTERS AN ARBITRARY CHANNEL PROCESS

STEP 3: AN ARBITRARY FEEDBACK PROCESS What do we know - at any time t'- about any channel h_{t} ?

Fundamental formulation:step 4

STEP 4: A 'PRIMITIVE' MEASURE OF FEEDBACK 'GOODNESS'

Estimation errors

Remember the problem is random

Remember the problem is random₁

Remember the problem is random₂

Estimation errors

Remember the problem is random₃

Remember the problem is random₄

Estimation errors

Remember the problem is random₅

Challenge - optimize user's rates for given feedback

Recall: performance in degrees-of-freedom (DoF)

• (R_1, R_2) : achievable rate pair $R_i \approx d_i \log P$

BRIEF NOTATIONS, CONVENTIONS AND ASSUMPTIONS

Notation

Quality of *current* CSIT for channel at time t

$$\alpha_t^{(1)} \triangleq -\lim_{P \to \infty} \frac{\log \mathbb{E}[||\boldsymbol{h}_t - \hat{\boldsymbol{h}}_{t,t}||^2]}{\log P} \qquad \alpha_t^{(2)} \triangleq -\lim_{P \to \infty} \frac{\log \mathbb{E}[||\boldsymbol{g}_t - \hat{\boldsymbol{g}}_{t,t}||^2]}{\log P}$$

Quality of delayed CSIT for channel at time t

$$\beta_t^{(1)} \triangleq -\lim_{P \to \infty} \frac{\log \mathbb{E}[||\boldsymbol{h}_t - \hat{\boldsymbol{h}}_{t,t+\eta}||^2]}{\log P} \qquad \beta_t^{(2)} \triangleq -\lim_{P \to \infty} \frac{\log \mathbb{E}[||\boldsymbol{g}_t - \hat{\boldsymbol{g}}_{t,t+\eta}||^2]}{\log P}$$
for some large $\eta < \infty$.

Quality range (WOLOG):
$$0 \le \alpha_t^{(i)} \le \beta_t^{(i)} \le 1$$

NEWCOM # Spring School - Petros Elia

• Average of exponent sequences

$$\bar{\alpha}^{(1)} \triangleq \frac{1}{n} \sum_{t=1}^{n} \alpha_t^{(1)} \qquad \bar{\alpha}^{(2)} \triangleq \frac{1}{n} \sum_{t=1}^{n} \alpha_t^{(2)}$$
$$\bar{\beta}^{(1)} \triangleq \frac{1}{n} \sum_{t=1}^{n} \beta_t^{(1)} \qquad \bar{\beta}^{(2)} \triangleq \frac{1}{n} \sum_{t=1}^{n} \beta_t^{(2)}$$

- Common conventions:
 - \star Gaussian estimation errors
 - \star Current estimate error is statistically independent of current and past estimates
 - \star Wait for delayed-CSIT only for a finite amount of time
 - \star Perfect and global knowledge of channel state information at receivers

Performance vs. CSIT timeliness and quality

THE FOLLOWING RESULTS HOLD FOR GENERAL SETTING

• Communication over (large) n time slots

• Channel
$$\left\{ \boldsymbol{h}_{t}, \boldsymbol{g}_{t} \right\}_{t}^{n}$$
, Feedback $\left\{ \hat{\boldsymbol{h}}_{t,t'}, \hat{\boldsymbol{g}}_{t,t'} \right\}_{t,t'=1}^{n}$

• 'Goodness' measure: statistics of error sets

$$\left\{ (\boldsymbol{h}_t - \hat{\boldsymbol{h}}_{t,t'}), (\boldsymbol{g}_t - \hat{\boldsymbol{g}}_{t,t'}) \right\}_{t,t'=1}^n$$

• Challenge: derive DoF region

Answers in the form of bounds

Recall: Answers in the form of

- Novel precoders/decoders that cleverly use feedback
- Information theoretic outer bounds (try to prove optimality)

Magical reduction in difficulty of problem

Theorem: (Chen-Elia 2013) The DoF region $d_1 \leq 1, \quad d_2 \leq 1$ $2d_1 + d_2 \leq 2 + \bar{\alpha}^{(1)}$ $2d_2 + d_1 \leq 2 + \bar{\alpha}^{(2)}$ $d_1 + d_2 \leq \frac{1}{2}(2 + \bar{\beta}^{(1)} + \bar{\beta}^{(2)})$

is achievable for a large range of parameters.

MAGICALLY, RESULT A FUNCTION OF JUST 4 STATISTICAL PARAMETERS!!!!

Complexity of the problem is captured by only 4 parameters

Specifically: Optimal DoF for sufficiently good delayed CSIT

Theorem: (Chen-Elia) The optimal DoF of the two-user MISO BC with a CSIT process
$$\left\{\hat{\boldsymbol{h}}_{t,t'}, \hat{\boldsymbol{g}}_{t,t'}\right\}_{t=1,t'=1}^{n}$$
 of quality $\left\{(\boldsymbol{h}_t - \hat{\boldsymbol{h}}_{t,t'}), (\boldsymbol{g}_t - \hat{\boldsymbol{g}}_{t,t'})\right\}_{t=1,t'=1}^{n}$ is given by

$$d_1 \le 1, \quad d_2 \le 1$$

 $2d_1 + d_2 \le 2 + \bar{\alpha}^{(1)}$
 $2d_2 + d_1 \le 2 + \bar{\alpha}^{(2)}$

for any sufficiently good delayed-CSIT process such that

$$\min\{\bar{\beta}^{(1)}, \bar{\beta}^{(2)}\} \ge \min\{\frac{1+\bar{\alpha}^{(1)}+\bar{\alpha}^{(2)}}{3}, \frac{1+\min\{\bar{\alpha}^{(1)}, \bar{\alpha}^{(2)}\}}{2}\}$$

NEWCOM # Spring School - Petros Elia

Specifically: Optimal DoF for sufficiently good delayed CSIT₁

• Optimal DoF regions for the two-user MISO BC with sufficiently good delayed CSIT.

DoF lower bound for case of 'weak' delayed CSIT

Proposition: For a CSIT process $\left\{\hat{\boldsymbol{h}}_{t,t'}, \hat{\boldsymbol{g}}_{t,t'}\right\}_{t=1,t'=1}^{n}$ for which $\min\{\bar{\beta}^{(1)}, \bar{\beta}^{(2)}\} < \min\{\frac{1+\bar{\alpha}^{(1)}+\bar{\alpha}^{(2)}}{3}, \frac{1+\bar{\alpha}^{(2)}}{2}\}$, the DoF region is inner bounded by the polygon described by

$$d_{1} \leq 1, \quad d_{2} \leq 1$$

$$2d_{1} + d_{2} \leq 2 + \bar{\alpha}^{(1)}$$

$$2d_{2} + d_{1} \leq 2 + \bar{\alpha}^{(2)}$$

$$d_{1} + d_{2} \leq 1 + \min\{\bar{\beta}^{(1)}, \bar{\beta}^{(2)}\}$$

0	
3	

3

• We suspect loose outer bound

• Generalization of Lapidoth-Shamai-Wigger 2005 conjecture: * for $\beta^{(1)} = \beta^{(2)} = \alpha^{(1)} = \alpha^{(2)} = 0$ that $d_1 = d_2 \in [\frac{1}{2}, \frac{2}{3}]$

NEWCOM # Spring School - Petros Elia

USERS HAVE SIMILAR LONG-TERM FEEDBACK CAPABILITIES

$$\bar{\alpha}^{(1)} = \bar{\alpha}^{(2)} = \bar{\alpha}$$
$$\bar{\beta}^{(1)} = \bar{\beta}^{(2)} = \bar{\beta}$$

NEWCOM # Spring School - Petros Elia

MIMO BC

MIMO BC What if I have many transmit and receive antennas?

MIMO BC

Theorem: The optimal DoF region of the Two-user Symmetric $M \times (N, N)$ MIMO BC with sufficiently good delayed CSIT⁴

$$d_{1} + d_{2} \leq \langle 2N \rangle'$$

$$d_{1} \leq \langle N \rangle'; \quad \frac{d_{1}}{\langle N \rangle'} + \frac{d_{2}}{\langle 2N \rangle'} \leq 1 + \frac{\langle 2N \rangle' - \langle N \rangle'}{\langle 2N \rangle'} \bar{\alpha}^{(1)}$$

$$d_{2} \leq \langle N \rangle'; \quad \frac{d_{1}}{\langle 2N \rangle'} + \frac{d_{2}}{\langle N \rangle'} \leq 1 + \frac{\langle 2N \rangle' - \langle N \rangle'}{\langle 2N \rangle'} \bar{\alpha}^{(2)}$$

 $\frac{4\langle \bullet \rangle' = \min\{\bullet, M\}. \text{ `Sufficiently good delayed CSIT': } \min\{\bar{\beta}^{(1)}, \bar{\beta}^{(2)}\} \geq \min\{1, M - N', \frac{N(1 + \bar{\alpha}^{(1)} + \bar{\alpha}^{(2)})}{\langle 2N \rangle' + N}, \frac{N(1 + \min\{\bar{\alpha}^{(1)} + \bar{\alpha}^{(2)}\})}{\langle 2N \rangle'}\}.$

NEWCOM # Spring School - Petros Elia

Theorem: (Chen-Elia) The optimal DoF region of the Two-user Symmetric $(M, M) \times (N, N)$ IC with sufficiently good delayed CSIT, is

 $d_1 + d_2 \le \min\{2M, 2N, \max\{M, N\}\}$

$$d_{1} \leq \langle N \rangle'; \quad \frac{d_{1}}{\langle N \rangle'} + \frac{d_{2}}{\langle 2N \rangle'} \leq 1 + \frac{\langle 2N \rangle' - \langle N \rangle'}{\langle 2N \rangle'} \bar{\alpha}^{(1)}$$
$$d_{2} \leq \langle N \rangle'; \quad \frac{d_{1}}{\langle 2N \rangle'} + \frac{d_{2}}{\langle N \rangle'} \leq 1 + \frac{\langle 2N \rangle' - \langle N \rangle'}{\langle 2N \rangle'} \bar{\alpha}^{(2)}$$

INSIGHT

INSIGHT

NEWCOM # Spring School - Petros Elia

What is the role of MIMO in reducing necessary feedback quality?

CAN, HAVING MORE RECEIVE ANTENNAS, ALLOW FOR REDUCED FEEDBACK QUALITY?

NEWCOM # Spring School - Petros Elia

• Previous results show that, to achieve $d_1 = d_2 = 1$, we need constantly 'perfect' feedback.

$$\alpha_t^{(1)} = \alpha_t^{(2)} = 1, \ \forall t \quad \Rightarrow \bar{\alpha}^{(1)} = \bar{\alpha}^{(2)} = 1$$

Insight: more antennas for less CSIT quality₂

BUT WHAT IF WE HAVE MORE ANTENNAS?

• Do we still need constantly 'perfect' feedback, to achieve the (respective) optimal DoF?

Corollary: (Chen-Elia) A CSIT process with $\bar{\alpha}^{(1)} + \bar{\alpha}^{(2)} \ge \min\{M, 2N\}/N$, achieves the optimal sum-DoF associated to perfect feedback⁵.

⁵Interested in M > N (recall that if $M \le N$, then no CSIT is needed)

NEWCOM # Spring School - Petros Elia

EXAMPLE: M = 3, N = 2

• Note: perfect CSIT ($\bar{\alpha}^{(1)} = \bar{\alpha}^{(2)} = 1$) gives optimal sum-DoF of 3

• BUT: same sum DoF with $\bar{\alpha}^{(1)} + \bar{\alpha}^{(2)} = 3/2$ \star e.g. $\bar{\alpha}^{(1)} = \bar{\alpha}^{(2)} = 3/4$

NEWCOM # Spring School - Petros Elia

Corollary: In the IC, no CSIT is needed for the direct links.

Insight: Minimizing the total number of feedback bits

MINIMIZING THE TOTAL NUMBER OF FEEDBACK BITS

 \bullet Assume you want to feedback a certain i.i.d. channel process of duration n

Assume perfect and immediate feedback

• Assume perfect and immediate feedback

- Need to send $n \times X$ bits
- X is number of bits required to perfectly describe a channel scalar

Now assume perfect but delayed feedback

• Assume same channel process

Now assume perfect but delayed feedback

- Assume same channel process
- With perfect-quality BUT DELAYED feedback

Now assume perfect but delayed feedback₁

- Need to send $\approx n \times X$ bits
- Just shifted the time-scale of the problem
- Did not drastically reduce feedback amount
- Need to reduce quality of delayed feedback also
- We will see more of this, later on, but for now...

Corollary: Having

$$\min\{\bar{\beta}^{(1)}, \bar{\beta}^{(2)}\} \ge \min\{1, M - \min\{M, N\}, \frac{N(1 + \bar{\alpha}^{(1)} + \bar{\alpha}^{(2)})}{\min\{M, 2N\} + N}, \frac{N(1 + \bar{\alpha}^{(2)})}{\min\{M, 2N\}}\}$$

is like having perfect delayed CSIT (i.e., like having $\bar{\beta}^{(1)} = \bar{\beta}^{(2)} = 1$).

• Along the same lines

- Corollary: Having delayed-CSIT quality $\beta \geq \frac{1+2\bar{\alpha}}{3}$ is equivalent to having perfect delayed CSIT.
- Corollary: If $\alpha_{T_c} \geq \frac{1+2\bar{\alpha}}{3}$, there is no need for any delayed CSIT (More later) \star i.e., no need for feedback after coherence block.

Insight: reduced 'problem complexity'

Complexity of the problem is captured by only 4 parameters

• Gaussianity
$$\Rightarrow$$
 Statistics of $\left\{ (\boldsymbol{h}_t - \hat{\boldsymbol{h}}_{t,t'}), (\boldsymbol{g}_t - \hat{\boldsymbol{g}}_{t,t'}) \right\}_{t,t'=1}^n$ captured by

covariance matrix

$$Cov\left(vect\left(\left\{(\boldsymbol{h}_{t}-\hat{\boldsymbol{h}}_{t,t'}),(\boldsymbol{g}_{t}-\hat{\boldsymbol{g}}_{t,t'})\right\}_{t,t'=1}^{n}\right)\right) \in \mathbb{C}^{2n^{2}\times 2n^{2}}$$

• Diagonal entries of
$$Cov(\bullet)$$
 are $\left\{\frac{1}{M}\mathbb{E}[||\boldsymbol{h}_t - \hat{\boldsymbol{h}}_{t,t'}||^2], \frac{1}{M}\mathbb{E}[||\boldsymbol{g}_t - \hat{\boldsymbol{g}}_{t,t'}||^2]\right\}_{t,t'=1}^n$.
Some of them are represented by the exponents

- But, the rest, plus the off-diagonal entries not used by scheme
- But, scheme meets outer bound that holds irrespective of these other entries
- $\bullet \Rightarrow$ exponents faithfully represent problem
- In the end only the four averages show up
Theorem: (Maddah-Ali and Tse) (Have seen). Completely obsolete feedback helps.

Corollary: (Chen-Elia) There is no DoF gain in using predicted $CSIT^6$.

⁶For sufficiently good delayed CSIT. Same conclusion also holds based on inner bounds.

Insight: Less feedback early, or more feedback later?

EVOLVING CSIT WITH GRADUAL FEEDBACK

- A useful tool
- Answering many fundamental questions

Insight: Evolving feedback and block fading

Evolving CSIT with gradual feedback

Evolving CSIT with gradual feedback⁷

- Feedback comes in steps
- A gradual accumulation of feedback bits can result in a progressively increasing CSIT quality
 - \star As time progresses across the coherence period (T channel uses current CSIT), or at any time after

⁷Chen-Elia 2012

- Block fading: coherence block of duration ${\cal T}$
- Current estimates at time t

$$\hat{\boldsymbol{h}}_t, \; \hat{\boldsymbol{g}}_t$$

• Quality of current estimates: α_t

$$\mathbb{E}||oldsymbol{h}-\hat{oldsymbol{h}}_t||^2=\mathbb{E}||oldsymbol{g}-\hat{oldsymbol{g}}_t||^2pprox P^{-lpha_t}$$

- Delayed CSIT of quality β
- Evolving CSIT: $0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_T \le \beta \le 1$

EVOLVING EXPONENTS

time	t = 1	t = 2	t = 3	t = 4	• • •	t = T	t > T
quality exponent	$0 \le \alpha_1$	α_2	$lpha_3$	$lpha_4$	•••	$lpha_T$	$\beta \leq 1$

- Example (recall: each coherence block has T channel uses)
 - \star If we send no feedback bits at t=0
 - \star then send $1/3 \log P$ bits at t = T/3
 - \star then send $1/3 \log P$ bits at t = 2T/3
 - \star and $1/3\log P$ bits at any time t>T
- then the corresponding evolving CSIT quality exponents are

$$\alpha_t = 0, \forall t \in [0, T/3)$$

$$\alpha_t = 1/3, \forall t \in [T/3 + 1, 2T/3)$$

$$\alpha_t = 2/3, \forall t \in [2T/3 + 1, T]$$

$$\beta = 1$$

APPROACH UNIFIES PREVIOUS WORKS

• No CSIT
$$(\beta = \alpha_t = 0)$$

- Full CSIT ($\alpha_1 = 1$)
- Maddah-Ali and Tse

$$\beta = 1, \alpha_t = 0, \ \forall t \leq T$$

- Imperfect current CSIT setting of Yang et al. and of Gou and Jafar $\beta = 1, \alpha_1 = \cdots = \alpha_T > 0$
- Asymmetric setting of Maleki et al.
- Not-so-delayed CSIT setting of Lee and Heath

$$\beta = 1, \alpha_1 = \dots = \alpha_\tau = 0, \text{ some } \tau < T$$

Directly from previous results: Let

$$\bar{\alpha} \triangleq \frac{1}{T} \sum_{t=1}^{T} \alpha_t.$$

Then

• Theorem⁸: The optimal DoF region for symmetrically evolving current CSIT and perfect delayed CSIT is

$$d_1 \leq 1, \quad d_2 \leq 1$$

$$2d_1 + d_2 \leq 2 + \bar{\alpha}$$

$$2d_2 + d_1 \leq 2 + \bar{\alpha}$$

and corresponds to the polygon with corner points

$$\{(0,0), (0,1), (\bar{\alpha},1), (\frac{2+\bar{\alpha}}{3}, \frac{2+\bar{\alpha}}{3}), (1,\bar{\alpha}), (1,0)\}.$$

⁸Chen-Elia 2013

NEWCOM # Spring School - Petros Elia

EXAMPLE: How to achieve target DoF $d_1 = d_2 = d' = 7/9$?

• Recall sequence

• Optimal (symmetric) DoF was given:

$$d = \frac{2 + \bar{\alpha}}{3}$$

* where $\bar{\alpha} = \operatorname{average}(\alpha_1, \alpha_2, \cdots, \alpha_T)$

• Thus solve: We need

$$\bar{\alpha} \ge 3d' - 2 = 3 \cdot \frac{7}{9} - 2 = 1/3$$

• What are the feedback options?

 $\bar{\alpha} = 1/3$: Option 2

Evolving - Insight: Reducing total feedback

HOW TO REDUCE TOTAL AMOUNT OF FEEDBACK?

• Must reduce delayed feedback quality (reduce β)

Evolving - Insight: Reducing total feedback₁

- How many (delayed) feedback bits must be gathered after channel changes?
- When is delayed feedback even necessary?
- Can imperfect delayed CSIT be as useful as perfect delayed CSIT?
- Can we achieve same performance as before with lesser total feedback?

EXAMPLE:

- Can we achieve the MAT d = 2/3, with less than a total of log P (current + delayed) feedback bits?
 - \star I.e., with imperfect delayed feedback

• Corollary (Chen-Elia): MAT case (originally $\beta = 1, \alpha = 0$): $\beta = 1/3$ suffices to achieve the optimal region ($d_1 = d_2 = 2/3$)

MISO BC with imperfect current and imperfect delayed CSIT. $\beta' = \min\{\beta, \frac{1}{3}\} \text{ and } \beta'' = \min\{\beta, \frac{1+2\alpha}{3}\}.$

Corollary: MAT with fewer $bits_2$

WHEN IS DELAYED FEEDBACK UNNECESSARY?

- Corollary: Having delayed-CSIT quality $\beta \geq \frac{1+2\bar{\alpha}}{3}$ is equivalent to having perfect delayed CSIT.
- Corollary: When $\alpha_T \geq \frac{1+2\bar{\alpha}}{3}$, there is no need for any delayed CSIT, i.e., do not send feedback after the end of the coherence block.

UNIVERSAL ENCODING-DECODING SCHEME

Half the key of success

HALF THE KEY OF SUCCESS

Schemes must lim-optimally utilize each and every bit feedback no matter how erroneous, delayed or premature

NEWCOM # Spring School - Petros Elia

• Challenge: design scheme of duration n, that utilizes a CSIT process

$$\left\{\hat{oldsymbol{h}}_{t,t'},\hat{oldsymbol{g}}_{t,t'}
ight\}_{t=1,t'=1}^{n}$$

- Get the help of quality exponents
- Novel schemes with a *phase-Markov* structure
 - \star Schemes often meet outer bounds
 - \star Apply in various settings (e.g. frequency selective: Hao-Clerckx 13)

Encoding and decoding phase-Markov scheme:

- Accumulated quantized interference bits of phase s, can be broadcasted to both users inside the common information symbols of the next phase
- while also a certain amount of common information can be transmitted to both users during phase s, which will then help resolve the accumulated interference of phase (s 1).
- All parameters (power and rate allocation, etc) are functions of the (declared) quality exponents

An information theoretic look to Block-Markov encoding

Shayevitz&Wigger Scheme for Generalized Feedback \tilde{Y} (ISIT'10, IT-Trans March 2013)

(ISIT'10, IT-Trans March 2013)

fresh data	fresh data	fresh data		
	update info	.update info.		
Block 1	Block 2	Block 3		

fresh data	
update info.	update info.
Block B	Block B + 1

- Block-Markov strategy
- In each block use Marton's nofeedback scheme to send fresh data $M_{1,b}, M_{2,b}$ & update infos $J_{0,b-1}, J_{1,b-1}, J_{2,b-1}$

. . .

- Update infos $J_{0,b-1}$, $J_{i,b-1}$ for Receiver *i*: compression indices for Martoncodewords and feedback-outputs $(U_{0,b-1}, U_{1,b-1}, U_{2,b-1}, \tilde{Y}_{b-1})$ given receiver-SI $Y_{i,b-1} \rightarrow V_{i,b-1}$
- Backward decoding:
 - 1. Use $J_{0,b}, J_{i,b}, Y_{i,b}$ to reconstruct compression $V_{i,b}$
 - 2. Decode $M_{i,b}, J_{0,b-1}, J_{i,b-1}$ based on improved outputs $(Y_{i,b}, V_{i,b})$

An information theoretic look to Block-Markov encoding₁

Theorem: [Region for Generalized Feedback \tilde{Y}](Shayevitz-Wigger'10)

Achievable Region: (R_1, R_2) achievable, if for some $P_Q P_{U_0 U_1 U_2 | Q}, P_{X | U_0 U_1 U_2 Q}, P_{V_0 V_1 V_2 | U_0 U_1 U_2 \tilde{Y} Q}$:

 $\begin{aligned} R_1 &\leq I(U_0, U_1; Y_1, V_1, Q) - I(U_0, U_1, U_2, \tilde{Y}; V_0, V_1 | Y_1, Q) \\ R_2 &\leq I(U_0, U_2; Y_2, V_2, Q) - I(U_0, U_1, U_2, \tilde{Y}; V_0, V_2 | Y_2, Q) \\ R_1 + R_2 &\leq I(U_1; Y_1, V_1 | U_0, Q) + I(U_2; Y_2, V_2 | U_0, Q) + \min_{i \in \{1, 2\}} I(U_0; Y_i, V_i | Q) \\ &- I(U_0, U_1, U_2, \tilde{Y}; V_1 | V_0, Y_1) - I(U_0, U_1, U_2, \tilde{Y}; V_2 | V_0, Y_2) \\ &- I(U_1; U_2 | U_0, Q) - \max_{i \in \{1, 2\}} I(U_0, U_1, U_2, \tilde{Y}; V_0 | Y_i, Q) \\ R_1 + R_2 &\leq I(U_1, U_0; Y_1, V_1, Q) + I(U_2, U_0; Y_2, V_2, Q) - I(U_1; U_2 | U_0, Q) \\ &- I(U_0, U_1, U_2, \tilde{Y}; V_0, V_1 | Y_1, Q) - I(U_0, U_1, U_2, \tilde{Y}; V_0, V_2 | Y_2, Q) \end{aligned}$

Comments on the Shayevitz-Wigger'10 Region

- Update info should have common part $J_{0,b}$ useful to both rxs
- Tradeoff: update-info sent at expense of fresh data! \rightarrow Identifying good update info/compression is hard in general
- Scheme applies to stale state information: $\tilde{Y} = S \rightarrow Maddah-Ali\&Tse'10$:

$$Q = \begin{cases} 0 & \text{w.p. } 1/3 \\ 1 & \text{w.p. } 1/3 \\ 2 & \text{w.p. } 1/3 \end{cases}, \quad V_0 = V_i = \begin{cases} \emptyset & \text{if } Q = 0 \\ Y_1 & \text{if } Q = 1 \\ Y_2 & \text{if } Q = 2 \end{cases}, \quad X = \begin{cases} U_0 & \text{if } Q = 0 \\ U_1 & \text{if } Q = 1 \\ U_2 & \text{if } Q = 2 \end{cases}$$

 \rightarrow Yang/Kobayashi/Gesbert/Yi'11: $Q \sim \text{Bern}(2/3)$,

$$V_0 = V_i = \begin{cases} \emptyset & \text{if } Q = 0\\ (\hat{\eta}_1, \hat{\eta}_2) & \text{if } Q = 1 \end{cases}, \quad X = \begin{cases} U_1 + U_2 & \text{if } Q = 0\\ U_0 + U_1 + U_2 & \text{if } Q = 1 \end{cases}$$

 \rightarrow Chen&Elia'13: $V_0 = V_1 = V_2 = (\bar{\check{l}}^{(1)}, \bar{\check{l}}^{(2)}), \qquad X = U_0 + U_1 + U_2$

NEWCOM # Spring School - Petros Elia

An information theoretic look to Block-Markov encoding₃

WU-WIGGER SCHEME '13 itw 2013, Arxiv Jan. 2014

- Feedback rate-limited to $R_{\rm fb}$, (receivers can code over feedback links)
- Scheme based on superposition coding and following ideas:
 - \star feedback allows to occupy unused resource in superposition scheme
 - \star new way to construct common info. useful for both receivers

Theorem:

 (R_1, R_2) achievable, if for some $P_U P_{X|U} P_{\hat{Y}_1|UY_1}$:

$$R_1 \leq I(U; Y_1) \tag{1}$$

$$R_2 \leq I(X; \hat{Y}_1 Y_2 | U) = I(X; Y_2 | U) + \underbrace{I(X; \hat{Y}_1 | U, Y_2)}_{\text{purely beneficial}}$$
(2)

and $I(\hat{Y}_1; Y_1 | U, Y_2) \le \min\{R_{fb}, I(U; Y_2) - I(U; Y_1)\}.$

Any R_{fb} > 0 increases capacity of strictly less-noisy DMBCs
 ★ Ex.: BSC-BC or BEC-BC with unequal cross-over/erasure prob.

Similar channel model: K-user MISO BC

$$K$\mbox{-}user MISO BC$$ A wide range of open problems

$$egin{aligned} y_{1,t} &= oldsymbol{h}_{1,t}^{^{\intercal}}oldsymbol{x}_t + z_{1,t} \ y_{2,t} &= oldsymbol{h}_{2,t}^{^{\intercal}}oldsymbol{x}_t + z_{2,t} \ dots \ y_{K,t} &= oldsymbol{h}_{K,t}^{^{\intercal}}oldsymbol{x}_t + z_{K,t} \end{aligned}$$

- M-transmit antenna, K single-antenna users
- \boldsymbol{x}_t transmitted vector at time t
- Power constraint $\mathbb{E}[||\boldsymbol{x}_t||^2] \leq P$ (SNR)
- $z_{k,t}$ AWGN noise

$$d_i = \lim_{P \to \infty} \frac{R_i}{\log P}, \ i = 1, 2, \cdots, K$$

- (R_1, R_2, \cdots, R_K) : achievable rate tuple
- Corresponding DoF region: The set of all achievable DoF tuples

Emphasis on the K-user case $(K \ge 2)$

- ...
- Delayed CSIT [Maddah-Ali and Tse 10]
- Not-so-delayed CSIT [Lee and Heath 12]
- Alternating CSIT [Tandon et al. 12]
- ...

Theorem: (Maddah-Ali and Tse) The optimal sum-DoF

$$d_{\Sigma} \triangleq \sum_{k=1}^{K} d_k$$

of the K-user MISO BC with delayed feedback, takes the form

$$d_{MAT} \triangleq \frac{K}{1 + \frac{1}{\min\{2,M\}} + \frac{1}{\min\{3,M\}} + \dots + \frac{1}{\min\{K,M\}}}$$
K-user BC with only delayed feedback

GLASS HALF-FULL OR HALF-EMPTY

Corollary 1 (Maddah-Ali and Tse) When $M \ge K \to \infty$ then

$$d_{MAT} \approx \frac{K}{\ln K}$$

- Recall that no feedback gives $d_{\Sigma} = 1$
- Recall that perfect feedback gives $d_{\Sigma} = K$
- Good news:

$$d_{\rm MAT} \approx \frac{K}{\ln K} >> 1 \quad (\text{scales with } K)$$

• Bad news:

 $\frac{d_{\text{MAT}}}{K} \approx \frac{1}{\ln K} \to 0 \quad (\text{unbounded gap from optimal performance})$

K-user problem largely open

• Strong need for understanding role of current feedback

- $\star~$ [Tandon et al. 12] [Lee and Heath 12]
- Strong need for outer bounds [Tandon et al. 12][Chen-Yang-Elia 13]

- Communication of duration n (n is large)
- An arbitrary channel fading process (random)

$$\left\{oldsymbol{h}_{k,t}
ight\}_{k=1,\ t=1}^{K}$$

• An arbitrary feedback process (CSIT)

$$\left\{\hat{\boldsymbol{h}}_{k,t,t'}\right\}_{k=1,\ t=1,\ t'=1}^{K}$$

 $\star \hat{h}_{k,t,t'}$: CSIT estimate at any time t', of channel $h_{k,t}$ (at time t)

• A 'primitive' measure of feedback 'goodness'

$$\left\{ \left(\boldsymbol{h}_{k,t} - \hat{\boldsymbol{h}}_{k,t,t'} \right) \right\}_{k=1, t=1, t'=1}^{K n n}$$

Quality of *current* CSIT for channel $\boldsymbol{h}_{k,t}$ at time t

$$\alpha_t^{(k)} \triangleq -\lim_{P \to \infty} \frac{\mathbb{E}[||\boldsymbol{h}_{k,t} - \hat{\boldsymbol{h}}_{k,t,t}||^2]}{\log P} \qquad (user \ k)$$

• $\hat{h}_{k,t,t'}$: CSIT estimate at any time t', of channel $h_{k,t}$ (at time t)

Quality of *delayed* CSIT for channel $h_{k,t}$ at time t

$$\beta^{(k)} \triangleq -\lim_{P \to \infty} \frac{\mathbb{E}[||\boldsymbol{h}_{k,t} - \hat{\boldsymbol{h}}_{k,t,t+\eta}||^2]}{\log P} \qquad (user \ k)$$

For any sufficiently large finite integer $\eta > 0$.

Quality range (WOLOG)

 $0 \le \alpha_t^{(k)} \le \beta^{(k)} \le 1$

• $\beta_t^{(k)} = 1 \rightarrow \text{perfect delayed CSIT (about channel } \boldsymbol{h}_{k,t} \text{ at time } t)$

• $\alpha_t^{(k)} = 1 \rightarrow \text{perfect current (full) CSIT (about channel <math>\boldsymbol{h}_{k,t}$ at time t).

• Averages of the quality exponents (*current CSIT cost*)

$$\bar{\alpha}^{(k)} \triangleq \frac{1}{n} \sum_{t=1}^{n} \alpha_t^{(k)}, \quad k = 1, 2, \cdots, K$$

• π denotes a permutation of the ordered set $\{1, 2, \cdots, K\}$, $\pi(k)$ denotes the k th element of set π .

For general setting: general channel process (large duration n), general feedback process

Theorem: [DoF region outer bound] (Chen-Elia): The DoF region of the K-user $M \times 1$ MISO BC with a general CSIT feedback process, is outer bounded as

$$\sum_{k=1}^{K} \frac{d_{\pi(k)}}{\min\{k, M\}} \le 1 + \sum_{k=1}^{K-1} \left(\frac{1}{\min\{k, M\}} - \frac{1}{\min\{K, M\}} \right) \bar{\alpha}^{(\pi(k))}$$
$$d_k \le 1, \quad k = 1, 2, \cdots, K$$

Corollary: [Sum DoF outer bound] For the K-user $M \times 1$ MISO BC, the sum DoF is outer bounded as

$$d_{\Sigma} \le d_{MAT} + \left(1 - \frac{d_{MAT}}{\min\{K, M\}}\right) \sum_{k=1}^{K} \bar{\alpha}^{(k)}$$

What is the current CSIT cost for a certain $d_{\Sigma} \in [d_{MAT}, d_{max}]$?

E.g, for the case with M = 2, K = 3 (d_{MAT} = ³/₂, d_{max} = 2)
★ What is the current CSIT cost for d_Σ = ⁷/₄?
★ What is the current CSIT cost for d_Σ = ⁵/₃?

Theorem: [Optimal cases, $d_{\Sigma} vs \bar{\alpha}$] For the K-user MISO BC with $M \geq K$ or with M = 2, K = 3, and given a current CSIT cost $\bar{\alpha}$, the optimal sum DoF is characterized as

$$d_{\Sigma} = d_{MAT} + \left(K - \frac{Kd_{MAT}}{\min\{K, M\}}\right) \min\left\{\bar{\alpha}, \frac{\min\{K, M\}}{K}\right\}$$

Optimal sum DoF d_{Σ} vs. $\bar{\alpha} =: \delta_p$ for the MISO BC with $M \ge K$

Optimal sum DoF (d_{Σ}) vs. $\bar{\alpha} =: \delta_p$ for the MISO BC with M = 2, K = 3 $(\bar{\alpha} = 1/3 \text{ for } d_{\Sigma} = \frac{7}{4})$ and $(\bar{\alpha} = 2/9 \text{ for } d_{\Sigma} = \frac{5}{3})$

NEWCOM # Spring School - Petros Elia

- Challenge: Outer bound for general K-user MISO BC (with general feedback process)
 - ★ Best known bound 1: for two-user [Yang et al., Gou and Jafar, Tandon et al., Chen and Elia, 12]
 - \star Best known bound 2: for K-user, only for the maximum sum DoF point, i.i.d channel [Tandon et al. 12]
- Techniques
 - \star Degraded BC construction
 - ★ Gaussian input maximizes the weighted difference of two (degraded) differential entropies [Weingarten et al. 09]
 - ★ MIMO techniques
 - \star Statistical techniques

Global CSIR

GLOBAL CHANNEL STATE INFORMATION AT RECEIVERS (GLOBAL CSIR)

• Global CSIR: A user must know the channels of the other users

The challenge of global CSIR

GREAT CHALLENGE IN DISTRIBUTING PERFECT GLOBAL CSIR (see Kobayashi-Caire ISIT 2012)

- Training and limited-capacity/limited-reliability feedback links
- Challenge extreme as number of users increases
- Problem: Achilles' heel of delayed-CSIT approaches

CONSIDER IMPERFECT AND DELAYED GLOBAL CSIR

IMPERFECT AND DELAYED GLOBAL CSIR⁹

- CSIT: No current, imperfect delayed ($\alpha = 0, \ 0 \le \beta \le 1$)
- Global CSIR: No current, imperfect delayed (β)
- No receiver access to CSIT estimates at transmitter

Theorem: DoF inner bounds

$$\{(0,0), (0,1), (\frac{1+\beta}{2}, \frac{1+\beta}{2}), (1,0)\}, \quad \beta < \frac{1}{3}$$
$$\{(0,0), (0,1), (\frac{2}{3}, \frac{2}{3}), (1,0)\}^*, \quad \beta \ge \frac{1}{3}$$

 \ast Optimal and previously associated to perfect delayed CSIT and perfect global CSIR

⁹Chen-Elia 2012

NEWCOM # Spring School - Petros Elia

Open problems regarding Global CSIR

OPEN PROBLEMS REGARDING GLOBAL CSIR

- How to use imperfect and delayed global CSIR when there are many users?
- How to use imperfect and delayed global CSIR when $\alpha > 0$?
- Tightening of existing bounds
- How to use imperfect and delayed global CSIR in interference settings?

• TDMA (No CSIT) d = 1/K

- Perfect CSIT d = 1
- Only delayed CSIT [Maddah-Ali and Tse]

 $d \approx 1/\ln K$, for large K

NEWCOM # Spring School - Petros Elia

- Glass half full or half empty?
- How best to complement delayed feedback?
- Novel schemes (index coding)
- Novel information theoretic bounds:
 - \star GRAND CHALLENGE: outer bounds and constructions

K-pair interference channel

- Before: TDMA d = 1/K
- Some extensions of seen work by Yang et al. (from BC to two-user IC)
 - \star Most approaches are limited to two-user IC

Interference alignment with delayed CSIT

A promising direction: Interference alignment with delayed feedback

- Interference alignment (IA) [Cadambe and Jafar 08] d = 1/2
 - \star "Each user gets half of the cake"
 - \star IA concept first introduced for the X channel by Maddah-Ali, Motahari and Khandani
 - ★ Powerful tool but!
 - \star Global and perfect CSIT is required for IA

Interference alignment with delayed CSIT

Some existing approaches

- With delayed CSIT 3×3 SISO IC can achieve $\frac{9}{8}$ sum DoF
 - ★ [Maleki, Jafar and Shamai 11]
- With delayed CSIT 3×3 SISO IC can achieve $\frac{36}{31}$ sum DoF
 - ★ [Abdoli, Ghasemi and Khandani 11]

The main open problem: What is optimal DoF for $K \times K$ SISO IC with delayed CSIT? Extension to X channel

X channel: Each transmitter has a message to be communicated with each receiver

- With perfect global CSIT, $M \times N$ SISO X channel has sum DoF $\frac{MN}{M+N-1}$
 - \star [Cadambe and Jafar 2009]
 - \star Example: 2 × 2 : sum Dof = $\frac{4}{3}$

- With delayed CSIT 2 × 2 SISO X channel can achieve $\frac{8}{7}$ sum DoF \star [Maleki et al. 2011]
- With delayed CSIT 2 × 2 SISO X channel can achieve ⁶/₅ sum DoF
 ★ [Ghasemi, Motahari and Khandani 11]
- With delayed CSIT 3×3 SISO X channel can achieve $\frac{5}{4}$ sum DoF
 - $\star~$ [Ghasemi, Motahari and Khandani 11]

THE MAIN OPEN PROBLEM:

What is optimal DoF for $K \times K$ SISO X channel with delayed and imperfect CSIT?

Bibliography

Bibliography

- A. E. Gamal, "The feedback capacity of degraded broadcast channels," *IEEE Trans. Inf. Theory*, vol. 24, no. 3, pp. 379–381, Apr. 1978.
- [2] M. A. Maddah-Ali, "On the degrees of freedom of the compound MIMO broadcast channels with finite states," Oct. 2009, available on arXiv:0909.5006v3.
- [3] M. A. Maddah-Ali and D. N. C. Tse, "Completely stale transmitter channel state information is still very useful," *IEEE Trans. Inf. Theory*, vol. 58, no. 7, pp. 4418 – 4431, Jul. 2012.
- [4] A. Vahid, M. A. Maddah-Ali, and A. S. Avestimehr, "Capacity results for binary fading interference channels with delayed CSIT," Jan. 2013, submitted to *IEEE Trans. Inf. Theory*, available on arXiv:1301.5309.
- [5] T. Cover and J. Thomas, *Elements of Information Theory*, 2nd ed. New York: Wiley-Interscience, 2006.
- [6] D. Tse and P. Viswanath, *Fundamentals of wireless communication*. Cambridge University Press, 2005.
- [7] N. Lee and R. W. Heath Jr., "Not too delayed CSIT achieves the optimal degrees of freedom," in *Proc. Allerton Conf. Communication, Control and Computing*, Oct. 2012.
- [8] C. Vaze and M. Varanasi, "The degree-of-freedom regions of MIMO broadcast, interference, and cognitive radio channels with no CSIT," *IEEE Trans. Inf. Theory*, vol. 58, no. 8, pp. 5254 – 5374, Aug. 2012.

- [9] C. S. Vaze and M. K. Varanasi, "The degrees of freedom region of two-user and certain three-user MIMO broadcast channel with delayed CSI," Dec. 2011, submitted to *IEEE Trans. Inf. Theory*, available on arXiv:1101.0306.
- [10] Y. Lejosne, D. Slock, and Y. Yuan-Wu, "Degrees of freedom in the MISO BC with delayed-CSIT and finite coherence time: A simple optimal scheme," in *Proc. IEEE Int. Conf. on Signal Processing, Communications and Control (ICSPCC)*, Aug. 2012.
- [11] C. Hao and B. Clerckx, "Imperfect and unmatched CSIT is still useful for the frequency correlated MISO broadcast channel," in *Proc. IEEE Int. Conf. Communications (ICC)*, Jun. 2013.
- [12] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, "Multiuser MIMO achievable rates with downlink training and channel state feedback," *IEEE Trans. Inf. Theory*, vol. 56, no. 6, pp. 2845 – 2866, Jun. 2010.
- [13] A. Adhikary, H. C. Papadopoulos, S. A. Ramprashad, and G. Caire, "Multi-user MIMO with outdated CSI: Training, feedback and scheduling," Sep. 2011, available on arXiv:1109.6371.
- [14] M. Kobayashi and G. Caire, "On the net DoF comparison between ZF and MAT over time-varying MISO broadcast channels," in *Proc. IEEE Int. Symp. Information Theory (ISIT)*, Jul. 2012.
- [15] M. J. Abdoli, A. Ghasemi, and A. K. Khandani, "On the degrees of freedom of threeuser MIMO broadcast channel with delayed CSIT," in *Proc. IEEE Int. Symp. Information Theory (ISIT)*, Jul. 2011.

- [16] M. J. Abdoli and A. Ghasemi and A. K. Khandani, "On the degrees of freedom of K-user SISO interference and X channels with delayed CSIT," Nov. 2011, submitted to *IEEE Trans. Inform. Theory*, available on arXiv:1109.4314v2.
- [17] A. Ghasemi, A. S. Motahari, and A. K. Khandani, "On the degrees of freedom of X channel with delayed CSIT," in *Proc. IEEE Int. Symp. Information Theory (ISIT)*, Jul. 2011.
- [18] A. Ghasemi, A. S. Motahari, and A. K. Khandani, "Interference alignment for the MIMO interference channel with delayed local CSIT," Feb. 2011, available on arXiv:1102.5673v1.
- [19] A. Ghasemi, A. S. Motahari, and A. K. Khandani, "On the degrees of freedom of X channel with delayed CSIT," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Jul. 2011.
- [20] G. Caire and S. Shamai, "On the achievable throughput of a multiantenna Gaussian broadcast channel," *IEEE Trans. Inf. Theory*, vol. 49, no. 7, pp. 1691 – 1706, Jul. 2003.
- [21] G. Caire, N. Jindal, and S. Shamai, "On the required accuracy of transmitter channel state information in multiple antenna broadcast channels," in *Proc. Allerton Conf. Communication, Control and Computing*, Nov. 2007.
- [22] A. Lapidoth, S. Shamai, and M. A. Wigger, "On the capacity of fading MIMO broadcast channels with imperfect transmitter side-information," in *Proc. Allerton Conf. Communication, Control and Computing*, Sep. 2005.

- [23] H. Weingarten, S. Shamai, and G. Kramer, "On the compound MIMO broadcast channel," in Proc. Inf. Theory and App. Workshop (ITA), Jan. 2007.
- [24] T. Gou, S. A. Jafar, and C. Wang, "On the degrees of freedom of finite state compound wireless networks," *IEEE Trans. Inf. Theory*, vol. 57, no. 6, pp. 3286 – 3308, Jun. 2011.
- [25] T. Gou and S. Jafar, "Optimal use of current and outdated channel state information: Degrees of freedom of the MISO BC with mixed CSIT," *IEEE Communications Letters*, vol. 16, no. 7, pp. 1084 – 1087, Jul. 2012.
- [26] C. Huang, S. A. Jafar, S. Shamai, and S. Vishwanath, "On degrees of freedom region of MIMO networks without channel state information at transmitters," *IEEE Trans. Inf. Theory*, vol. 58, no. 2, pp. 849 – 857, Feb. 2012.
- [27] S. Jafar and A. Goldsmith, "Isotropic fading vector broadcast channels: The scalar upper bound and loss in degrees of freedom," *IEEE Trans. Inf. Theory*, vol. 51, no. 3, pp. 848 – 857, Mar. 2005.
- [28] S. A. Jafar, "Blind interference alignment," IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 3, pp. 216 – 227, Jun. 2012.
- [29] S. A. Jafar, "Topological interference management through index coding," IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529 – 568, Jan. 2014.
- [30] H. Maleki, S. Jafar, and S. Shamai, "Retrospective interference alignment over interference networks," *IEEE Journal of Selected Topics in Signal Processing*, vol. 6, no. 3, pp. 228 – 240, Mar. 2012.

[31] R. Tandon, S. A. Jafar, S. Shamai, and H. V. Poor, "On the synergistic benefits of alternating CSIT for the MISO broadcast channel," *IEEE Trans. Inf. Theory*, vol. 59, no. 7, pp. 4106 – 4128, Jul. 2013.

- [32] J. Xu, J. G. Andrews, and S. A. Jafar, "Broadcast channels with delayed finite-rate feedback: Predict or observe?" *IEEE Trans. Wireless Commun.*, vol. 11, no. 4, pp. 1456 – 1467, Apr. 2012.
- [33] —, "Toward the performance vs. feedback tradeoff for the two-user MISO broadcast channel," *IEEE Trans. Inf. Theory*, vol. 59, no. 12, pp. 8336 8356, Dec. 2013.
- [34] J. Chen and P. Elia, "Can imperfect delayed CSIT be as useful as perfect delayed CSIT? DoF analysis and constructions for the BC," in *Proc. Allerton Conf. Communication*, *Control and Computing*, Oct. 2012.
- [35] J. Chen and P. Elia, "Degrees-of-freedom region of the MISO broadcast channel with general mixed-CSIT," May 2012, available on arXiv:1205.3474v1.
- [36] J. Chen and P. Elia, "How much and when to feedback?" (invited paper), Information Theory Applications (ITA 2013), La Jolla, California.
- [37] J. Chen, R. Knopp and P. Elia, "Interference alignment for achieving both full DOF and full diversity in the broadcast channel with delayed CSIT," in *Proc. IEEE Int.* Symp. Information Theory (ISIT), Jul. 2012.
- [38] J. Chen and P. Elia, "Degrees-of-freedom region of the MISO broadcast channel with general mixed-CSIT," in *Proc. Inf. Theory and App. Workshop (ITA)*, Feb. 2013, (also available on arXiv:1205.3474, May 2012).

- [39] J. Chen and P. Elia, "MISO broadcast channel with delayed and evolving CSIT," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Jul. 2013.
- [40] —, "MIMO BC with imperfect and delayed channel state information at the transmitter and receivers," in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2013.
- [41] J. Chen, S. Yang, and P. Elia, "On the fundamental feedback-vs-performance tradeoff over the MISO-BC with imperfect and delayed CSIT," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Jul. 2013.
- [42] J. Chen and P. Elia, "Symmetric two-user MIMO BC and IC with evolving feedback," Jun. 2013, available on arXiv:1306.3710.
- [43] O. Shayevitz and M. Wigger, "On the capacity of the discrete memoryless broadcast channel with feedback," in *Proc. IEEE Int. Symp. Information Theory (ISIT)*, to appear in *IEEE Trans. Inf. Theory*.
- [44] M. Kobayashi, S. Yang, D. Gesbert, and X. Yi, "On the degrees of freedom of time correlated MISO broadcast channel with delayed CSIT," in *Proc. IEEE Int. Symp. Information Theory (ISIT)*, Jul. 2012.
- [45] P. de Kerret, X. Yi, and D. Gesbert, "On the degrees of freedom of the K-user time correlated broadcast channel with delayed CSIT," Jan. 2013, available on arXiv:1301.2138.
- [46] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, "Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT," *IEEE Trans. Inf. Theory*, vol. 59, no. 1, pp. 315 – 328, Jan. 2013.

[47] X. Yi, S. Yang, D. Gesbert, and M. Kobayashi, "The degrees of freedom region of temporally-correlated MIMO networks with delayed CSIT," *IEEE Trans. Inf. Theory*, vol. 60, no. 1, pp. 494 – 514, Jan. 2014. THANK YOU

NEWCOM # Spring School - Petros Elia