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Wireless communications networks

Big Challenge:
What is best way to communicate?
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Distilled point-of-view in this presentation
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Distilled point-of-view in this presentation1
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Distilled point-of-view in this presentation2

Summary of slides

• Part 1

⋆ Motivation (Why feedback is important)

⋆ Quick summary of basics (Capacity, Degrees-of-Freedom)

⋆ Early results and basic encoding/decoding/feedback tools

• Part 2

⋆ A unified exposition and a general framework

⋆ Insight and answers to fundamental questions

⋆ Open problems
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Typical multiuser scenario
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Typical multiuser scenario: Interference
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Communications with feedback

Feedback: notify transmitter of the channel state

Channel State Information at Transmitter (CSIT)
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Communications with feedback1

Feedback is crucial: Interference ↓ Rates ↑

Rate 

User1 Rate 

User2 

Feedback 
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Communications with feedback2

BUT! Feedback is hard to get
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Channel state at this instance

Long-standing challenge:
How to use imperfect feedback?

optimize (snr Rate1 Rate2)
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What is the source of this challenge?

h

g

Imperfect

Delayed

y (1)

y (2)

Tx

User 1

User 2

Imperfect

Delayed
0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ms

c
h
a
n
n
e
l

Channel state at this instance

• Transmit: (

Feedback︷ ︸︸ ︷
Inverse-channel × Message) ⇒ separates users’ messages

⋆ Channel × Inverse-channel × Message → Message OK

• BUT, channel changes: Feedback can be imperfect, limited and delayed

⋆ Channel × Approximately-inverse-channel × Message → r‡♠H∅ג ⊜
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Massive gains from resolving challenge

• No feedback: one user served at a time

• Perfect and immediate feedback: many users at a time

• Challenge: new algorithms that bridge gap

• Recent tools brought unprecedented excitement

⋆ New insight sparked worldwide race to resolve challenge

⋆ Much of work done after 2012
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Quick summary of basics

Quick summary of basics
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Single link (SISO) capacity

• Flat fading (single-input single-output) channel model

h
y=hx+z

Tx Rx

yt = htxt + zt

• Ergodic (average) capacity Eh[C(ht)]:

Cerg = Eh log
(
1 + P |ht|

2
)
≈ logP
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Degrees of Freedom (DoF)

Degrees of freedom d

• Capacity ≈ d · SNR

• Number of dimensions available per user
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Single link (SISO) degrees of freedom

h
y=hx+z

Tx Rx

DoF = d , lim
P→∞

Capacity

logP

= lim
P→∞

≈ logP

logP
= 1

⇒ SISO: DoF = 1
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Single receiving antenna: DoF = 1

• Same holds for n× 1 MISO (multiple input single output):

h

Feedback

yTx

Rx

⋆ Instantaneous Capacity C(ht):

C(ht) = log
(
1 + P‖ht‖

2
)

⋆ Ergodic capacity (MISO)

Cerg = Eh log
(
1 + P‖ht‖

2
)
= logP + o(logP )

⋆ DoF MISO Fading

d = lim
P→∞

logP + o(logP )

logP
= 1
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Importance of DoF

DoF increase means exponential power reductions

• Want to communicate at rate R

• Over ‘system’ with d DoF:

C ≈ d log2 P

• Thus minimum power Pmin so that

R ≈ C ≈ d log2 Pmin

⇒ Pmin ≈ 2R/d
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Importance of DoF1

⇒ Pmin ≈ 2R/d

Example (R = 5):

• If normal MISO (d = 1)

d = 1 ⇒ R ≈ C ≈ 1 · log2 P ⇒ Pmin ≈ 2C ≈ 2R ≈ 25 ≈ 30

• If reduced MISO (d = 1/2)

d = 1/2 ⇒ R ≈ C ≈
1

2
· log2 P ⇒ Pmin ≈ 210 ≈ 1000
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Multiuser Channels suffer from interference

• Interference: users must share signal dimensions

⋆ DoF reduction ⇒ Rates ↓, Power ↑,

h

Feedback

y (1)

y (K)

Tx

User 1

User KFeedback

(1)

h
(K)

Tx1

Tx2

TxK

Rx1

Rx2

RxK

Multiuser Broadcast Channel Multiuser Interference Channel
Multiuser X Channel
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Example: interference in two-user MISO BC
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• Let information symbol “a” for user 1 E|a|2 = P

• Let information symbol “b” for user 2 E|b|2 = P
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Example: interference in two-user MISO BC1

• No feedback ⇒ transmit x =

[
a
b

]

• User 1 receives:

y(1) = hTx + w = [ h1 h2 ]

[
a
b

]
= h1a + h2b + w︸ ︷︷ ︸

NOISE POWER ≈P+1

• User 1 treats h2b as noise:

average effective SNR =
‘signal’ power

‘noise’ power
≈

P

P + 1
≈ Constant

• Received SNR does not increase with transmit power!
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Example: interference in two-user MISO BC2

• Thus maximum rate Rmax does not increase with increasing transmit
power

Rmax ≈ log
(
1 +

P

P + 1

)
= constant

• Which means, zero DoF

d = lim
P→∞

Rmax

logP
= lim

P→∞

constant

logP
= 0

⋆ ⇒ Massive damage from inter-user interference
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Example: interference in two-user MISO BC3

Treating interference as noise
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Time division for interference avoidance

Still No Feedback
Simple but inefficient solution: Time division (TDMA)

• First send “a” to user 1 (t = 1)

• Then send “b” to user 2 (t = 2)

• Send

x(t = 1) =

[
a
0

]
, x(t = 2) =

[
b
0

]

• A SISO channel per user (no interference) - but double the time

d = lim
P→∞

1

2

Csiso

logP
=

1

2
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Time division for interference avoidance1

TDMA solution
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Precoding with perfect feedback

• But what if we could feedback the channel state?

H =

[
hT

gT

]

• Send H to the transmitter

h

g

Imperfect

Delayed

y (1)

y (2)

Tx

User 1

User 2

Imperfect

Delayed
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Channel state at this instance
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Precoding with perfect feedback

h

g

Imperfect

Delayed

y (1)

y (2)

Tx

User 1

User 2

Imperfect

Delayed

Precoding

• Instead of sending

[
a
b

]
, now could send

x = H
−1

[
a
b

]
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Precoding with perfect feedback1

[
y(1)

y(2)

]
= Hx + z = H

x︷ ︸︸ ︷
H

−1

[
a
b

]
+z =

[
a
b

]
+ z

y(1) = a + z(1) user 1: DoF = d1 = 1

y(2) = b + z(2) user 2: DoF = d2 = 1

• Knowledge of channel state information at the transmitter (CSIT) is im-
portant (knowledge of H)

⋆ Precoding allows for separation of signals
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Precoding with perfect feedback2

Perfect feedback allows for optimal DoF
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But remember our problem

h

g

Imperfect

Delayed

y (1)

y (2)

Tx

User 1

User 2

Imperfect

Delayed
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Channel state at this instance

• Feedback can be imperfect, limited and delayed

⋆ Channel × Approximately-inverse-channel × Message → r‡♠H∅ג ⊜
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Pertinent questions
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Channel state at this instance

• How to exploit predicted CSIT

• How to exploit delayed CSIT

• How to exploit imperfect CSIT

• How to minimize total amount of (delayed + current) feedback?

• How to achieve optimality even with feedback delays?

• How to utilize gradually arriving feedback?

• How much feedback quality and when?
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Toy examples for insight

Of course, the problem has randomness

Let us get some insight on the involved randomness

Let us look at some (simplistic) toy examples
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An instance of channel at time t

ht         and     ĥt,t’  (random vector) 

Fix channel time  t, and estimation time t’ 

ht 

Coord. 1 

Coord. 2 
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Instance of channel and its estimate at time t′

ht         and     ĥt,t’  (random vector) 

Fix channel time  t, and estimation time t’ 

ht 

ĥt,t’ 

ht  -  ĥt,t’  

Coord. 1 

Coord. 2 
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Another instance of channel at time t

ht         and     ĥt,t’  (random vector) 

Fix channel time  t, and estimation time t’ 

ht 
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Again estimate was good

ht         and     ĥt,t’  (random vector) 

Fix channel time  t, and estimation time t’ 

ĥt,t’ 
ht 

ht  -  ĥt,t’  
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...yet another instance

ht         and     ĥt,t’  (random vector) 

Fix channel time  t, and estimation time t’ 

ht 
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Now, estimation was bad

ht         and     ĥt,t’  (random vector) 

Fix channel-time  t, and estimation-time t’ 

ĥt,t’ 

ht 

ht  -  ĥt,t’  
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Another point of view: progressive knowledge of channel
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time

h
6
 = 0.93  (Channel at time t=6, has value 0.93)
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Progressive knowledge of channel

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel ht (e.g t=6 )? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 

Knowledge at time t’ = 1,2,3….. 
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No prediction at t′ = 1 of h6

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 

Knowledge at time t’ = 1,2,3….. 

h6  -  ĥ6,1  
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Still no (of h6) prediction at t′ = 2

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 

Knowledge at time t’ = 1,2,3….. 
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Vague prediction (of h6) at time t′ = 3 - high error

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 

Knowledge at time t’ = 1,2,3….. 
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Vague prediction (of h6) at time t′ = 3 - high error1

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 

Knowledge at time t’ = 1,2,3….. 

h6  -  ĥ6,3  
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..getting better (t′ = 4)

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 

Knowledge at time t’ = 1,2,3….. 
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...warmer (t′ = 5)

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

Knowledge at time t’ = 1,2,3….. 
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These are the predicted estimates of h6

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 
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‘Current estimate’ of h6 at t′ = t = 6

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 

NEWCOM # Spring School - Petros Elia 49



‘Current estimate’ of h6 at t′ = t = 6

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 

Current estimate 
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‘Delayed estimates’ at t′ > t = 6, t′ ≤ n

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

ĥ6,7 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 
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‘Delayed estimate’ at t′ > t = 6, t′ ≤ n

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

ĥ6,7 ĥ6,8 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 
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‘Delayed estimate’ at t′ > t = 6, t′ ≤ n

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

ĥ6,7 ĥ6,8 ĥ6,9 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 
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‘Delayed estimate’ at t′ > t = 6, t′ ≤ n

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

ĥ6,7 ĥ6,8 ĥ6,9 ĥ6,n 

Knowledge at time t’ = 1,2,3….. 

Predicted Estimates 

Delayed Estimates 

C

u

r

r

e

n

t 
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And similarly another channel instance for h6

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

ĥ6,7 ĥ6,8 ĥ6,9 ĥ6,n 

Knowledge at time t’ = 1,2,3….. 

h6 = 0.24  
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And another CSIT estimate instance: t′ = 1 → n

ĥ6,t’    t’ = 1,2,3….. 

What do we know -  at any point in time t’ - about channel h6 ? 

t’ t’ = 6 t’ = 1 t’ = n 

h6 = 0.93  

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 

ĥ6,6 

ĥ6,7 ĥ6,8 ĥ6,9 ĥ6,n 

Knowledge at time t’ = 1,2,3….. 

h6 = 0.24  

ĥ6,1 

ĥ6,2 ĥ6,3 ĥ6,4 
ĥ6,5 ĥ6,6 

ĥ6,8 ĥ6,9 ĥ6,n 

Predicted Estimates Delayed Estimates 

ĥ6,7 
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Yet another point of view - knowledge of channel process

What do we know at time t’, about the channel process (say t’=9) 

t’ 

Channel process ht    t = 1,2,3….. 

h1 h2  h3 h4 h5 h6 h7 h8, 

 

 

 

 

h9 

h10 h11 h12 h13 h14 ….    hn-1       hn 

 

 

 

 

ht  
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What we know at t′ = 9, about current and past
channels

ĥt,t’ = ĥt,9    t =1,2,3…..,9 

Current and delayed estimates 

What do we know at time t’, about the channel process (say t’=9) 

t’ 

Channel process ht    t = 1,2,3….. 

h1 h2  h3 h4 h5 h6 h7 h8, 

 

 

 

 

h9 

h10 h11 h12 h13 h14 ….    hn-1       hn 

 

 

 

 

ht  
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What we know at t′ = 9, about future channels

What do we know at time t’, about the channel process (say t’=9) 

t’ 

Channel process ht    t = 1,2,3….. 

h1 h2  h3 h4 h5 h6 h7 h8, 

 

 

 

 

h9 

h10 h11 h12 h13 h14 ….    hn-1       hn 

 

 

 

 

ht  

ĥt,t’ = ĥt,9    t =10,11,12…..,n 

Predicted estimates of future channels 
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What is our knowledge at time t′ = 14?

t’ 

Channel process ht    t = 1,2,3….. 

h1 h2  h3 h4 h5 h6 h7 h8, 

 

 

 

 

h9 

h10 h11 h12 h13 h14 ….    hn-1       hn 

 

 

 

 

ht  

What do we know -  at time t’ = 14 – about the channel process? 
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Good for past, not so good for future

t’ 

Channel process ht    t = 1,2,3….. 

h1 h2  h3 h4 h5 h6 h7 h8, 

 

 

 

 

h9 

h10 h11 h12 h13 h14 ….    hn-1       hn 

 

 

 

 

ht  

What do we know -  at time t’ = 14 – about the channel process? 
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Learning tools of the trade

Let us learn how to utilize different tools of the trade

Answers in the form of:

• Novel precoders/decoders that cleverly use feedback

• Information theoretic outer bounds (try to prove optimality)

Upper Bound 

Lower Bound 

Answer 
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Delayed CSIT

How to utilize delayed feedback?
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Delayed vs. current CSIT in block fading

Current 

channel (1)

t = 0 

Different 

channelImmediate and 

perfect  feedback  

• Perfect current CSIT is that which arrives immediately

⋆ At the very beginning of the coherence period of the channel

⋆ At time t: ht, gt unknown to transmitter

• Delayed CSIT:

⋆ At time t + τ, τ > T ,Tc: ht, gt perfectly known to transmitter

⋆ Feedback comes with substantial delay - after channel changes
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Utilizing Delayed CSIT - MAT

h

g

Feedback

y (1)

y (2)

Tx

User 1

User 2

Feedback

Current 

channel (1)

t = 0 

Different 

channelImmediate and 

perfect  feedback  

No current CSIT BUT perfect delayed CSIT

coherence block 1 2 3 4 · · ·

− h1 h2 h3 · · ·
− g1 g2 g3 · · ·
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Utilizing Delayed CSIT - MAT1

• Theorem (Maddah-Ali and Tse): Optimal DoF

d1 = d2 = 2/3

d2

d1
0

(2/3, 2/3)

1

1

No CSIT   [TDMA]

Delayed CSIT  [Maddah-Ali and Tse]

2/3

2/3

Full CSIT  [ZF]

(1, 1)
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Maddah-Ali and Tse (MAT) intuition

• Intuition 1: interference alignment in space and time

• Intuition 2: current interference known at transmitter at later time

• Intuition 3: do the damage now, and fix it later

NEWCOM # Spring School - Petros Elia 67



Maddah-Ali and Tse (MAT) scheme

• Tx sends symbols a1, a2 for user 1, and b1, b2 for user 2, in 3 channel uses

⋆ WOLOG consider Tcoh = 1 (unit coherence period)

⋆ Duration T = 3: Tx sequentially sends vectors x1,x2,x3 ∈ C2

• In the first two channel uses:

t = 1 : x1 =

[
a1
a2

]
y
(1)
1 = h⊤

1 x1 + noise

y
(2)
1 = g⊤

1 x1 + noise

t = 2 : x2 =

[
b1
b2

]
y
(1)
2 = h⊤

2 x2 + noise

y
(2)
2 = g⊤

2 x2 + noise
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Maddah-Ali and Tse (MAT) scheme1

• After two coherence blocks: Tx reconstructs g⊤
1 x1 and h⊤

2 x2

⋆ using knowledge of delayed CSIT

t = 3 : x3 =

[
h⊤
2 x2 + g⊤

1 x1

0

]
,

y
(1)
3 /h3,1 = h⊤

2 x2 + g⊤
1 x1 + noise

y
(2)
3 /g3,1 = h⊤

2 x2 + g⊤
1 x1 + noise

• ht,[ht,1 ht,2]
⊤, gt,[gt,1 gt,2]

⊤, then user 1 has

ỹ(1),

[
y
(1)
1

y
(1)
3 /h3,1 − y

(1)
2

]
=

[
h⊤
1

g⊤
1

] [
a1
a2

]
+ noise

• Each user decodes two symbols in three timeslots: d1 = d2 = 2/3

• Intuition: Space-time interference alignment, retrospective interference
cancelation using delayed CSIT
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Feedback asymmetry: one user has more feedback

Feedback asymmetry: one user has more feedback
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One user has more feedback: Maleki, Jafar and Shamai

h

g

Feedback

y (1)

y (2)

Tx

User 1

User 2

Feedback

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

• Current CSIT for ht (of 1st user): Perfectly and instantly known at Tx

• Delayed CSIT for gt (of 2nd user): Perfectly known to Tx after coherence
period passes

coherence block 1 2 3 4 · · ·

h1 h2 h3 h4 · · ·
− g1 g2 g3 · · ·

NEWCOM # Spring School - Petros Elia 71



One user has more feedback: Maleki, Jafar and Shamai1

• Recall: if both users only had delayed feedback

d2

d1
0

(2/3, 2/3)

1

1

No CSIT   [TDMA]

Delayed CSIT  [Maddah-Ali and Tse]

2/3

2/3

Full CSIT  [ZF]

(1, 1)
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One user has more feedback: Maleki, Jafar and Shamai2

• Now One user has delayed, the other had perfect

• Theorem: Derived optimal DoF is d1 = 1, d2 = 1/2, (sum DoF
3/2 ≥ 4/3)

d2

d1
0

(2/3, 2/3)

1

1

No CSIT

Delayed CSIT  [Maddah-Ali and Tse]

2/30.5

2/3

0.5 (1, 0.5)

Mixed CSIT [Maleki, et al.] 
Perfect CSIT for channel 1 

Delayed CSIT for channel 2

d1 = 1, d2 = 1/2, (sum DoF 3/2)
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Maleki et al.: asymmetric scheme

• Tx sends symbols a1, a2 for user 1, and b for user 2, in 2 channel uses

⋆ WOLOG: one channel use = one coherence block

⋆ Tx will sequentially send signal vectors x1,x2 ∈ C2

⋆ note use of symbol ⊥ → (orthogonal)

x1 =

[
a1
a2

]
+ h⊥

1 b, x2 =


g⊤

1

[
a1
a2

]

0


 + h⊥

2 b

• Intuitions:

⋆ Current CSIT can be used for instantaneous interference mitigation

⋆ Delayed CSIT can be used for retrospective interference cancelation
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Introducing feedback QUALITY considerations

Introducing feedback QUALITY considerations
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Introducing feedback QUALITY considerations1

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
h
a
n
n
e
l

time

h
6
 = 0.93  (Channel at time t=6, has value 0.93)
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Introducing feedback QUALITY considerations2

• Jindal et al., Caire et al: “Optimal DoF does not need infinite number of feedback bits”

⋆ Let ĥt be the INSTANTANEOUS estimate of channel ht

⋆ Let ĝt be the INSTANTANEOUS estimate of channel gt
⋆ Then if

E[‖ĥt − ht‖
2] ≈ P−1, E[‖ĝt − gt‖

2] ≈ P−1

⋆ you can achieve the optimal DoF

�

�

���

���

�����	
�������	
�
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Refining quality considerations

• Motivation: Note E[‖ĥt − ht‖
2] ≈ P−1 corresponds to sending about

logP bits of feedback per scalar (rate distortion theory - not optimal)

• What if you cannot send so many bits?

Kobayashi-Yang-Yi-Gesbert:
Current CSIT estimation errors with power P−α

• Current CSIT quality exponent

α = − lim
logE[‖ĥt − ht‖2]

logP
= − lim

logE[‖ĝt − gt‖2]

logP
, α : 0 → 1
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Combining current and delayed CSIT (Yang-Gesbert et al.)

• Perfect delayed CSIT + imperfect current CSIT

Current 

channel (1)

t = 0 

Different 

channelImmediate and 

perfect  feedback  

Coherence block 1 2 3 4 · · ·

Current estimates (quality α) ĥ1, ĝ1 ĥ2, ĝ2 ĥ3, ĝ3 ĥ4, ĝ4 · · ·

Delayed estimates (exact) → h1, g1 h2, g2 h3, g3 h4, g3

• Current CSIT: PARTIAL instantaneous interference mitigation

• Delayed CSIT: retrospective interference management, at later time
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Combining current and delayed CSIT (Yang-Gesbert et al.)1

Recall: if both users only had delayed feedback

(⇒ α = 0)

d2

d1
0

(2/3, 2/3)

1

1

No CSIT   [TDMA]

Delayed CSIT  [Maddah-Ali and Tse]

2/3

2/3

Full CSIT  [ZF]

(1, 1)
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Perfect delayed, and imperfect current CSIT

Now each has delayed + imperfect current estimates
(⇒ α > 0)

• Theorem1: Perfect delayed CSIT and α-quality current CSIT, gives:

d1 = d2 =
2 + α

3

d2

d1
0

(2/3, 2/3)

1

1

No CSIT

Delayed CSIT  [MAT]

2/30.5

2/3

0.5 (1, 0.5)

Special Case of Mixed CSIT 

,1=a

(0.5, 1)

( )

[Maleki, et al.] 

(0.83, 0.83)

Symmetric Mixed CSIT [Yang, et al.] 

[Gou and Jafar] )5.0( =aset

User 1 0=aUser 2

1Yang-Kobayashi-Yi-Gesbert, Gou-Jafar 2012
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Scheme: Yang-Kobayashi-Yi-Gesbert

• Tx to communicate in three channel uses, sending x1,x2,x3 ∈ C2

• First information symbols a1, a
′

1 for user 1

• First information symbols b1, b
′

1 for user 2

• Two phases: phase 1 (t = 1), phase 2 (t = 2, 3)

• Unit coherence period (WOLOG)
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Scheme: Yang-Kobayashi-Yi-Gesbert1

• During phase 1 (t = 1), the transmitter sends (u1 = ĝ⊥
1 , v1 = ĥ⊥

1 )

x1 =

ĝ⊥
1︷︸︸︷
u1 a1︸ ︷︷ ︸

power P, rate prelog r=1

+

ĥ⊥
1︷︸︸︷
v1 b1︸ ︷︷ ︸
P, r=1

+

random︷︸︸︷
u

′

1 a
′

1︸ ︷︷ ︸
P 1−α, r=1−α

+

random︷︸︸︷
v

′

1 b
′

1︸ ︷︷ ︸
P 1−α, r=1−α

• Users receive

y
(1)
1 = hT

1u1a1 + hT

1u
′

1a
′

1 +

interference ι
(1)
1︷ ︸︸ ︷

h̃T

1v1b1 + hT

1v
′

1b
′

1︸ ︷︷ ︸
power P 1−α

+noise,

y
(2)
1 =

interference ι
(2)
1︷ ︸︸ ︷

g̃T

1u1a1 + gT

1u
′

1a
′

1︸ ︷︷ ︸
power P 1−α

+gT

1v1b1 + gT

1v
′

1b
′

1 + noise.

NEWCOM # Spring School - Petros Elia 83



Scheme: Yang-Kobayashi-Yi-Gesbert2

• At the end of phase 1. Reconstruct interference using delayed CSIT

ι
(1)
1 = h̃T

1v1b1 + hT

1v
′

1b
′

1, ι
(2)
1 = g̃T

1u1a1 + gT

1u
′

1a
′

1

• Quantize interference into ¯̌ι
(i)
1

⋆ quantization rate: (1− α) logP bits → bounded quant. error

• Map all quantization bits of {¯̌ι
(i)
1 }2t=1 → into {ct}3t=2

• Send these symbols during next phase

⋆ a) to cancel interference

⋆ b) to get extra observation for MIMO decoding
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Scheme: Yang-Kobayashi-Yi-Gesbert3

• Phase 2, t = 2, 3, Tx sends ct and extra at, bt

xt = wtct︸︷︷︸
P, r=1−α

+ ĝ⊥
t at︸︷︷︸

Pα, r=α

+ ĥ⊥
t bt︸︷︷︸

Pα, r=α

⋆ Successive decoding: ct → at at user 1, ct → bt at user 2

⋆ Reconstructing approximate interference:{ct}
3
t=2 → {¯̌ι

(i)
1 }2t=1

⋆ Go back to phase 1, and decode a1, a2 at user 1, and b1, b2 at user 2
[
y
(1)
1 − ¯̌ι

(1)
1

¯̌ι
(2)
1

]
=

[
hT

1
gT

1

] [
u1 u

′

1

] [a1
a

′

1

]
+ noise

d1 = d2 =
2 + α

3
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Intuition of benefits

• To achieve d1 = d2 =
2+α
3 , send a total of logP feedback bits

⋆ α logP bits sent immediately

⋆ (1− α) logP bits sent at any point after coherence period

d2

d1
0

(2/3, 2/3)

1

1

No CSIT

Delayed CSIT  [MAT]

2/30.5

2/3

0.5 (1, 0.5)

Special Case of Mixed CSIT 

,1=a

(0.5, 1)

( )

[Maleki, et al.] 

(0.83, 0.83)

Symmetric Mixed CSIT [Yang, et al.] 

[Gou and Jafar] )5.0( =aset

User 1 0=aUser 2
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Can imperfect feedback give optimal performance?

Can imperfect feedback give optimal performance?

• Answer: yes, if we have more receiving nodes

⋆ Example: MISO BC, with 3 users
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Even delayed CSIT can achieve max DoF

• Setting (Lee and Heath 2012)

⋆ MISO BC, two transmitter antennas, three users

⋆ Send perfect feedback at γ fraction of coherence period

Current channel (1) 

t = 0 

Much later: 

different channel

Delayed feedback 

for current channel
Perfect Delayed feedback 

for channel 1 

γT t = T 

• Theorem (Lee and Heath 2012): The optimal sum-DoF d1+ d2+ d3 = 2
is achieved for any delay 0 ≤ γ ≤ 1

3
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Lee and Heath Scheme

Lee and Heath scheme for not-too-Delayed CSIT

• Phase 1

⋆ Phase duration: one ‘time slot’. No current CSIT available.

⋆ Tx sends a total of six different data symbols; two per user

x1 =

[
a1
a2

]
+

[
b1
b2

]
+

[
c1
c2

]

⋆ User i = 1, 2, 3, receives a signal consisting of three linear combina-

tions L
(i)
1 (a) = h

(i)⊤
1 a, L

(i)
1 (b) = h

(i)⊤
1 b, L

(i)
1 (c) = h

(i)⊤
1 c

y
(1)
1 = L

(1)
1 (a) + L

(1)
1 (b) + L

(1)
1 (c),

y
(2)
1 = L

(2)
1 (a) + L

(2)
1 (b) + L

(2)
1 (c),

y
(3)
1 = L

(3)
1 (a) + L

(3)
1 (b) + L

(3)
1 (c),
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Lee and Heath Scheme1

• Phase 2

⋆ Two time slots = two independent channel blocks (t = 2, 3)

⋆ current CSIT for channel at t = 2, 3

⋆ with delayed CSIT of the channel corresponding to t = 1

⋆ Construct same interference experienced at time t = 1

xt = V
(a)
t a + V

(b)
t b + V

(c)
t c, t = 2, 3

⋆ With good precodersV
(a)
t ,V

(b)
t ,V

(c)
t , users receive signals of the form

y
(1)
t = L

(1)
t (a) + L

(1)
1 (b) + L

(1)
1 (c),

y
(2)
t = L

(2)
1 (a) + L

(2)
t (b) + L

(2)
1 (c),

y
(3)
t = L

(3)
1 (a) + L

(3)
1 (b) + L

(3)
t (c),
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Lee and Heath Scheme2

⋆ So, the precoders are chosen as

V
(a)
t =

[
h
(2)⊤
t

h
(3)⊤
t

]−1 [
h
(2)⊤
1

h
(3)⊤
1

]

V
(b)
t =

[
h
(1)⊤
t

h
(3)⊤
t

]−1 [
h
(1)⊤
1

h
(3)⊤
1

]

V
(c)
t =

[
h
(1)⊤
t

h
(2)⊤
t

]−1 [
h
(1)⊤
1

h
(2)⊤
1

]

⋆ User 1 decoding
[
y
(1)
1 − y

(1)
2

y
(1)
1 − y

(1)
3

]
=

[
h
(1)T
1 − h

(1)T
2 V

(a)
2

h
(1)T
1 − h

(1)T
3 V

(a)
3

]
a + noise

⋆ Each user decodes 2 symbols in 3 channel uses- optimal sum DoF (2)

⋆ Intuitions: Not-too-delayed CSIT is used for interference reconstruc-
tion and interference cancellation
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Alternating CSIT

Alternating CSIT2

Feedback alternates from user to user

h

g

Feedback

y (1)

y (2)

Tx

User 1

User 2

Feedback

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

PCSIT of channel  h

CSIT of channel  g D

Time    t 1

D

P

2

N

N

3

P

N

4

P

N

5

N

P

6

N

P

7 ...

...

...

2Tandon-Jafar-Shamai-Poor 2012
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Alternating CSIT1

• CSIT for each user’s channel, at a specific time, can be either perfect
(P ), delayed (D) or not available (N )

⋆ I1, I2 ∈ {P,D,N}

⋆ For example, in a specific time: I1 = P, I2 = D

• λI1I2 is the fraction of time associated with CSIT states I1, I2

⋆ Symmetric assumption λI1I2 = λI2I1

• λP = λPP + λPD + λPN

• λD = λDP + λDD + λDN

• Theorem: Derived DoF

d = min{
2 + λP

3
,
1 + λP + λD

2
}
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Alternating CSIT2

(Recall: dopt = min{2+λP

3 , 1+λP+λD

2 })

Example:

• First half I1 = P, I2 = D, second half I1 = D, I2 = P

[
P D
D P

]

• λPD = λDP = 0.5 (λP = λD = 1/2 ⇒ min{2+1/2
3 , 1+1/2+1/2

2 } = 5
6)

• Then optimal DoF d1 = d2 = 5/6
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Alternating CSIT3

Symmetry ‘beats’ alternating

• Asymmetry: λPD = 1 ⇒ d1 + d2 = 3/2 (Maleki et al.)

⋆ Instantaneous perfect CSIT for channel of user 1 I1 = P

⋆ Delayed CSIT for channel of user 2 I2 = D

• Symmetry: λPD = 0.5, λDP = 0.5

⇒ d1 + d2 = 5/3 ≥ 3/2

⋆ Half of time I1 = P, I2 = D, other half I1 = D, I2 = P

• Same feedback cost, but symmetric provides gain 5/3− 3/2
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Summary: Part-1

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

• No CSIT d1 = d2 = 1/2

• Perfect CSIT d1 = d2 = 1

• Delayed CSIT-MAT d1 = d2 = 2/3

• Perfect CSIT for channel 1, delayed CSIT for channel 2 - Maleki et al.
d1 = 1, d2 = 1/2

• Imperfect current CSIT α, perfect delayed CSIT - Sheng et al. and Gou
and Jafar d1 = d2 = (2 + α)/3

• Not-too-delayed CSIT can be optimal - Lee and Heath (γ ≤ 1
3, 2 × 3

setting)
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Common themes of what we have seen

• Motivated by timeliness-and-quality considerations

• Timeliness and quality might be hard to get over limited feedback links

• Timeliness and quality affect performance

⋆ Feedback delays and imperfections generally reduce performance

• A corresponding clear delay-and-quality question....
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The fundamental question

How much feedback is necessary, and when, in order to
achieve a certain performance?
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Answering a broad range of practical questions

“Answering a broad range of practical performance-vs-feedback questions, up
to a sublogarithmic factor of P ”

What would engineers ask?

• What is the role of MIMO in reducing feedback quality?

• When is delayed feedback necessary?

• When is predicted feedback necessary?

• What is better: less feedback early, or more feedback later?

• How to exploit feedback of imperfect quality?

• How to exploit feedback with predictions?

• How to exploit feedback with delayed information?

• How much feedback, where, and when, for a certain performance?
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Addressing interesting and practical scenarios

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

• Can a specific accumulation-rate of feedback bits, guarantee a certain
target DoF performance?

⋆ If we send 1
10 logP feedback bits without delay (at t = 0),

⋆ then send 1
8 logP bits at t = Tcoh/3

⋆ then send 1
9 logP bits at t = 2Tcoh/3

⋆ and 1
6 logP bits at any time t > Tcoh

⋆ then what performance can be guaranteed?
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A unified performance-vs-feedback framework

A unified performance-vs-feedback framework
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Fundamental formulation of performance-vs-feedback problem

Fundamental formulation of performance-vs-feedback
problem
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Fundamental formulation:step 1

Step 1: Communication of duration n (n is large)
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Fundamental formulation:step 2

Step 2: Communication encounters an arbitrary channel
process

user 1 : h1 h2 h3 · · · hn
user 2 : g1 g2 g3 · · · gn
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Fundamental formulation:step 3

Step 3: An arbitrary feedback process

Ch
an

n
el p

ro
cess h

t    t = 1,2,3…
.. 

What do we know -  at any time t’– about any channel ht ? 

h1  

h2  

h3  

hn  

ĥ1,1 ĥ1,2 

t’=1 t’=2 t’=3 

ĥ1,3 

t’=n 

ĥ2,1 

ĥ3,1 

ĥ2,2 ĥ2,3 

ĥ3,2 ĥ3,3 

ĥ1,n 

ĥ2,n 

ĥ3,n 

ĥn,n ĥn,1 ĥn,2 ĥn,3 

Feedback process  ĥt,t’     t’ = 1,2,3….. 

t’ 
t  

Predicted estimates 

D
el

ay
ed

 e
st

im
at

es
 

Current estimates 
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Fundamental formulation:step 4

Step 4: A ‘primitive’ measure of feedback ‘goodness’

Ch
an

n
el p

ro
cess h

t    t = 1,2,3…
.. 

h1  

h2  

h3  

hn  

h1 - ĥ1,1 

t’=1 t’=2 t’=3 t’=n 

Estimation errors 

t’ 
t  

h1 - ĥ1,2 h1 - ĥ1,3 h1 - ĥ1,n 

h2 - ĥ2,1 h2 - ĥ2,2 h2 - ĥ2,3 h2 - ĥ2,n 

h3 - ĥ3,1 h3 - ĥ3,2 h3 - ĥ3,3 h3 - ĥ3,n 

hn - ĥn,1 hn - ĥn,2 hn - ĥn,3 hn - ĥn,n 

NEWCOM # Spring School - Petros Elia 106



Remember the problem is random

Instances of the problem 

t 

Channel process {h1 h2 ….. hn } 
ht  

hn 

0

10

20

30

0
5

10
15

20
25

30

0

0.2

0.4

0.6
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Remember the problem is random1

Instances of the problem 
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Remember the problem is random2

Instances of the problem 
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Channel process {h1 h2 ….. hn } 
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Remember the problem is random3

Instances of the problem 
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Remember the problem is random4

Instances of the problem 
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Remember the problem is random5

Instances of the problem 
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Channel process {h1 h2 ….. hn } 
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Challenge - optimize user’s rates for given feedback
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Instances of the problem 
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Recall: performance in degrees-of-freedom (DoF)
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di = lim
P→∞

Ri

logP
, i = 1, 2

• (R1, R2): achievable rate pair Ri ≈ di logP
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Notations, conventions and assumptions

Brief notations, conventions and assumptions
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Notation

Quality of current CSIT for channel at time t

α
(1)
t ,− lim

P→∞

logE[||ht − ĥt,t||
2]

logP
α
(2)
t ,− lim

P→∞

logE[||gt − ĝt,t||
2]

logP

Instances of the problem 

t 

Channel process {h1 h2 ….. hn } 
ht  

hn 
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Notation1

Quality of delayed CSIT for channel at time t

β
(1)
t ,− lim

P→∞

logE[||ht − ĥt,t+η||
2]

logP
β
(2)
t ,− lim

P→∞

logE[||gt − ĝt,t+η||
2]

logP

for some large η < ∞.

Quality range (WOLOG): 0 ≤ α
(i)
t ≤ β

(i)
t ≤ 1
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Notation and common conventions

• Average of exponent sequences

ᾱ(1),
1

n

n∑

t=1

α
(1)
t ᾱ(2),

1

n

n∑

t=1

α
(2)
t

β̄(1),
1

n

n∑

t=1

β
(1)
t β̄(2),

1

n

n∑

t=1

β
(2)
t

• Common conventions:

⋆ Gaussian estimation errors

⋆ Current estimate error is statistically independent of current and past estimates

⋆ Wait for delayed-CSIT only for a finite amount of time

⋆ Perfect and global knowledge of channel state information at receivers

NEWCOM # Spring School - Petros Elia 118



Performance vs. CSIT timeliness and quality

The following results hold for general setting

• Communication over (large) n time slots

• Channel

{
ht, gt

}n

t

, Feedback

{
ĥt,t′, ĝt,t′

}n

t,t′=1

• ‘Goodness’ measure: statistics of error sets{
(ht − ĥt,t′), (gt − ĝt,t′)

}n

t,t′=1

• Challenge: derive DoF region
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Answers in the form of bounds

Recall: Answers in the form of

• Novel precoders/decoders that cleverly use feedback

• Information theoretic outer bounds (try to prove optimality)

Upper Bound 

Lower Bound 

Answer 
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Magical reduction in difficulty of problem

Theorem: (Chen-Elia 2013) The DoF region

d1 ≤ 1, d2 ≤ 1

2d1 + d2 ≤ 2 + ᾱ(1)

2d2 + d1 ≤ 2 + ᾱ(2)

d1 + d2 ≤
1

2
(2 + β̄(1) + β̄(2))

is achievable for a large range of parameters.

Magically, result a function of just 4 statistical parameters!!!!

Complexity of the problem is captured by only 4 parameters 

h1  

h2  

hn  

ĥ1,1 

ĥ1,2 

ĥt,t’ 

ĥn,n 

 

 

β  

β  
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Specifically: Optimal DoF for sufficiently good delayed CSIT

Theorem: (Chen-Elia) The optimal DoF of the two-user MISO BC with a

CSIT process

{
ĥt,t′, ĝt,t′

}n

t=1,t′=1

of quality

{
(ht− ĥt,t′), (gt− ĝt,t′)

}n

t=1,t′=1
is given by

d1 ≤ 1, d2 ≤ 1

2d1 + d2 ≤ 2 + ᾱ(1)

2d2 + d1 ≤ 2 + ᾱ(2)

for any sufficiently good delayed-CSIT process such that

min{β̄(1), β̄(2)} ≥ min{
1 + ᾱ(1) + ᾱ(2)

3
,
1 + min{ᾱ(1), ᾱ(2)}

2
}
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Specifically: Optimal DoF for sufficiently good delayed CSIT1

d2

d1
0

C
A

B
1

1

d2

d1
0

C

B
1

1

D

(b) Case 2:(a) Case 1:

2

2
)1(

a+
)2(

2 a+

)2(

21 22 a+=+ dd

)1(

12 22 a+=+ dd

12
)2()1(

<-aa 12
)2()1(

³-aa

)1(

12 22 a+=+ dd

)2(

21 22 a+=+ dd

)2(

2 a+
2

2
)1(

a+

• Optimal DoF regions for the two-user MISO BC with sufficiently good delayed CSIT.
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DoF lower bound for case of ‘weak’ delayed CSIT

Proposition: For a CSIT process

{
ĥt,t′, ĝt,t′

}n

t=1,t′=1

for which min{β̄(1), β̄(2)} <

min{1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }, the DoF region is inner bounded by the polygon de-
scribed by

d1 ≤ 1, d2 ≤ 1

2d1 + d2 ≤ 2 + ᾱ(1)

2d2 + d1 ≤ 2 + ᾱ(2)

d1 + d2 ≤ 1 + min{β̄(1), β̄(2)}.

3

3

• We suspect loose outer bound

• Generalization of Lapidoth-Shamai-Wigger 2005 conjecture:

⋆ for β(1) = β(2) = α(1) = α(2) = 0) that d1 = d2 ∈ [12,
2
3]
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Symmetric case

Users have similar long-term feedback capabilities

ᾱ(1) = ᾱ(2) = ᾱ

β̄(1) = β̄(2) = β̄

d2

d1
0

1

1

No CSIT

2/3

2/3

ø
ö

è
æ

3
2,

3
2 aa

( )1,a

( )a,1

+ +

Delayed CSIT [MAT]

b+£+ 121 dd

3/)21( ab +³Current + delayed CSIT 

3/)21( ab +<Current + delayed CSIT 

E

F

C =

B =

D =
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MIMO BC

MIMO BC

What if I have many transmit and receive antennas?
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MIMO BC

Theorem: The optimal DoF region of the Two-user Symmetric M×(N,N)
MIMO BC with sufficiently good delayed CSIT 4

d1 + d2 ≤ 〈2N〉′

d1 ≤ 〈N〉′ ;
d1

〈N〉′
+

d2

〈2N〉′
≤ 1 +

〈2N〉′ − 〈N〉′

〈2N〉′
ᾱ(1)

d2 ≤ 〈N〉′ ;
d1

〈2N〉′
+

d2

〈N〉′
≤ 1 +

〈2N〉′ − 〈N〉′

〈2N〉′
ᾱ(2)

4〈•〉′ = min{•,M}. ‘Sufficiently good delayed CSIT’: min{β̄(1), β̄(2)} ≥ min{1,M −

N ′, N(1+ᾱ(1)+ᾱ(2))

〈2N〉′+N
, N(1+min{ᾱ(1)+ᾱ(2)})

〈2N〉′
}.
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MIMO Interference Channel

Theorem: (Chen-Elia) The optimal DoF region of the Two-user Symmet-
ric (M,M )× (N,N) IC with sufficiently good delayed CSIT, is

d1 + d2 ≤ min{2M, 2N,max{M,N}}

d1 ≤ 〈N〉′ ;
d1

〈N〉′
+

d2

〈2N〉′
≤ 1 +

〈2N〉′ − 〈N〉′

〈2N〉′
ᾱ(1)

d2 ≤ 〈N〉′ ;
d1

〈2N〉′
+

d2

〈N〉′
≤ 1 +

〈2N〉′ − 〈N〉′

〈2N〉′
ᾱ(2)
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INSIGHT

INSIGHT
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Insight: more antennas for less CSIT quality

What is the role of MIMO in reducing necessary feedback
quality?

Can, having more receive antennas, allow for reduced
feedback quality?
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Insight: more antennas for less CSIT quality1
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• Previous results show that, to achieve d1 = d2 = 1, we need constantly
‘perfect’ feedback.

α
(1)
t = α

(2)
t = 1, ∀t ⇒ ᾱ(1) = ᾱ(2) = 1
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Insight: more antennas for less CSIT quality2

But what if we have more antennas?
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• Do we still need constantly ‘perfect’ feedback, to achieve the (respective)
optimal DoF?
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Insight: more antennas for less CSIT quality3
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Corollary: (Chen-Elia) A CSIT process with ᾱ(1)+ᾱ(2) ≥ min{M, 2N}/N ,
achieves the optimal sum-DoF associated to perfect feedback5.

5Interested in M > N (recall that if M ≤ N , then no CSIT is needed)
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Insight: more antennas for less CSIT quality4
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Example: M = 3, N = 2

• Note: perfect CSIT (ᾱ(1) = ᾱ(2) = 1) gives optimal sum-DoF of 3

• BUT: same sum DoF with ᾱ(1) + ᾱ(2) = 3/2

⋆ e.g. ᾱ(1) = ᾱ(2) = 3/4
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Insight: MIMO-IC

Rx 1

Channel 11

Rx 2

Tx 1

Tx 2

Channel 12

Channel 22

Channel 21

Corollary: In the IC, no CSIT is needed for the direct links.
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Insight: Minimizing the total number of feedback bits

Minimizing the total number of feedback bits

• Assume you want to feedback a certain i.i.d. channel process of duration n
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Assume perfect and immediate feedback

• Assume perfect and immediate feedback
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• Need to send n×X bits

• X is number of bits required to perfectly describe a channel scalar
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Now assume perfect but delayed feedback

• Assume same channel process
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Now assume perfect but delayed feedback

• Assume same channel process

• With perfect-quality BUT DELAYED feedback
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Now assume perfect but delayed feedback1

�

��

��

�������	
��	�

���
��	����

����	��

�

��

��

�������	���	�������	����

���

• Need to send ≈ n×X bits

• Just shifted the time-scale of the problem

• Did not drastically reduce feedback amount

• Need to reduce quality of delayed feedback also

• We will see more of this, later on, but for now...
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Insight: Reducing total number of feedback bits

Corollary: Having

min{β̄(1), β̄(2)} ≥ min{1,M−min{M,N},
N(1 + ᾱ(1) + ᾱ(2))

min{M, 2N} +N
,
N(1 + ᾱ(2))

min{M, 2N}
}

is like having perfect delayed CSIT (i.e., like having β̄(1) = β̄(2) = 1).
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Insight: how much delayed feedback is necessary?

• Along the same lines

 

 Channel 1 

 

  

  

 

  

  

 

Channel 2 

  

Channel 3 

 

 +1  1 2 3 4 … … … +1 

  

  

• Corollary: Having delayed-CSIT quality β ≥ 1+2ᾱ
3 is equivalent to having

perfect delayed CSIT.

• Corollary: If αTc
≥ 1+2ᾱ

3 , there is no need for any delayed CSIT (More later)

⋆ i.e., no need for feedback after coherence block.
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Insight: reduced ‘problem complexity’

Complexity of the problem is captured by only 4 parameters 

h1  

h2  

hn  

ĥ1,1 

ĥ1,2 

ĥt,t’ 

ĥn,n 

 

 

β  

β  
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Insight: reduced ‘problem complexity’1

• Gaussianity ⇒ Statistics of

{
(ht − ĥt,t′), (gt − ĝt,t′)

}n

t,t′=1

captured by

covariance matrix

Cov

(
vect(

{
(ht − ĥt,t′), (gt − ĝt,t′)

}n

t,t′=1

)

)
∈ C

2n2×2n2

• Diagonal entries of Cov(•) are

{
1
ME[||ht−ĥt,t′||

2], 1
ME[||gt−ĝt,t′||

2]

}n

t,t′=1

.

Some of them are represented by the exponents

• But, the rest, plus the off-diagonal entries not used by scheme

• But, scheme meets outer bound that holds irrespective of these other
entries

• ⇒ exponents faithfully represent problem

• In the end only the four averages show up
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Insight: delayed CSIT?

Theorem: (Maddah-Ali and Tse) (Have seen). Completely obsolete feed-
back helps.

C
h
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n

e
l p
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ss h
t    t = 1

,2
,3

…
.. 

h1  

h2  

h3  

hn  

ĥ1,1 ĥ1,2 

t’=1 t’=2 t’=3 

ĥ1,3 

t’=n 

ĥ2,1 

ĥ3,1 

ĥ2,2 ĥ2,3 

ĥ3,2 ĥ3,3 

ĥ1,n 

ĥ2,n 

ĥ3,n 

ĥn,n ĥn,1 ĥn,2 ĥn,3 

Feedback process  ĥt,t’     t’ = 1,2,3….. 

t’ 
t  

Predicted estimates 

D
e

la
ye

d
 e

st
im

at
e

s 

Current estimates 
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Insight: predicted CSIT?

Corollary: (Chen-Elia) There is no DoF gain in using predicted CSIT6.
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…
.. 

h1  

h2  

h3  

hn  

ĥ1,1 ĥ1,2 

t’=1 t’=2 t’=3 

ĥ1,3 

t’=n 

ĥ2,1 

ĥ3,1 

ĥ2,2 ĥ2,3 

ĥ3,2 ĥ3,3 

ĥ1,n 

ĥ2,n 

ĥ3,n 

ĥn,n ĥn,1 ĥn,2 ĥn,3 

Feedback process  ĥt,t’     t’ = 1,2,3….. 

t’ 
t  

Predicted estimates 

D
e

la
ye

d
 e

st
im

at
e

s 

Current estimates 

6For sufficiently good delayed CSIT. Same conclusion also holds based on
inner bounds.
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Insight: Less feedback early, or more feedback later?

α�
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Evolving CSIT

Evolving CSIT with gradual feedback

• A useful tool

• Answering many fundamental questions
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Insight: Evolving feedback and block fading

 

 Channel 1 

 

  

  

 

  

  

 

Channel 2 

  

Channel 3 
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Evolving CSIT with gradual feedback

Evolving CSIT with gradual feedback7

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

• Feedback comes in steps

• A gradual accumulation of feedback bits can result in a progressively
increasing CSIT quality

⋆ As time progresses across the coherence period (T channel uses -
current CSIT), or at any time after

7Chen-Elia 2012
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General setting of evolving CSIT

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

• Block fading: coherence block of duration T

• Current estimates at time t
ĥt, ĝt

• Quality of current estimates: αt

E||h− ĥt||
2 = E||g − ĝt||

2 ≈ P−αt

• Delayed CSIT of quality β

• Evolving CSIT: 0 ≤ α1 ≤ α2 ≤ · · · ≤ αT ≤ β ≤ 1
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General setting of evolving CSIT1

evolving exponents

time t = 1 t = 2 t = 3 t = 4 · · · t = T t > T

quality exponent 0 ≤ α1 α2 α3 α4 · · · αT β ≤ 1

 

 Channel 1 

 

  

  

 

  

  

 

Channel 2 

  

Channel 3 

 

 +1  1 2 3 4 … … … +1 
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General setting of evolving CSIT2

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

• Example (recall: each coherence block has T channel uses)

⋆ If we send no feedback bits at t = 0

⋆ then send 1/3 logP bits at t = T/3

⋆ then send 1/3 logP bits at t = 2T/3

⋆ and 1/3 logP bits at any time t > T

• then the corresponding evolving CSIT quality exponents are

⋆ αt = 0, ∀t ∈ [0, T/3)

⋆ αt = 1/3,∀t ∈ [T/3 + 1, 2T/3)

⋆ αt = 2/3,∀t ∈ [2T/3 + 1, T ]

⋆ β = 1
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General setting of evolving CSIT3

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 

Approach unifies previous works

• No CSIT (β = αt = 0)

• Full CSIT (α1 = 1)

• Maddah-Ali and Tse

β = 1, αt = 0, ∀t ≤ T

• Imperfect current CSIT setting of Yang et al. and of Gou and Jafar

β = 1, α1 = · · · = αT > 0

• Asymmetric setting of Maleki et al.

• Not-so-delayed CSIT setting of Lee and Heath

β = 1, α1 = · · · = ατ = 0, some τ < T
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Evolving CSIT: results

Directly from previous results: Let

ᾱ,
1

T

T∑

t=1

αt.

Then

• Theorem8: The optimal DoF region for symmetrically evolving current
CSIT and perfect delayed CSIT is

d1 ≤ 1, d2 ≤ 1

2d1 + d2 ≤ 2 + ᾱ

2d2 + d1 ≤ 2 + ᾱ

and corresponds to the polygon with corner points

{(0, 0), (0, 1), (ᾱ, 1), (
2 + ᾱ

3
,
2 + ᾱ

3
), (1, ᾱ), (1, 0)}.

8Chen-Elia 2013
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Evolving CSIT: results1

d2

d1
0

1

1

No CSIT

2/3

2/3

ø
ö

è
æ

3
2
,

3
2 aa

( )1,a

( )a,1

+ +

Delayed CSIT [MAT]

Evolving CSIT

ø
ö

è
æ

3
2
,

3
2
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Evolving CSIT: examples

EXAMPLE: How to achieve target DoF d1 = d2 = d′ = 7/9?

• Recall sequence

α1 ≤ α2 ≤ · · · ≤ αT︸ ︷︷ ︸
Progressive feedback

during coherence period

≤ β︸︷︷︸
Delayed feedback

after coherence period

• Optimal (symmetric) DoF was given:

d =
2 + ᾱ

3

⋆ where ᾱ = average(α1, α2, · · · , αT )

• Thus solve: We need

ᾱ ≥ 3d′ − 2 = 3 ·
7

9
− 2 = 1/3

• What are the feedback options?
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Evolving CSIT: examples1

ᾱ = 1/3: Option 1

α�
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α��� =1 
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Evolving CSIT: examples2

ᾱ = 1/3: Option 2

α
�

� ���
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���
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Evolving CSIT: examples3

ᾱ = 1/3: Option 3
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Evolving - Insight: Reducing total feedback

How to reduce total amount of feedback?

�

��

��

�������	
��	�
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• Must reduce delayed feedback quality (reduce β)
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Evolving - Insight: Reducing total feedback1

• How many (delayed) feedback bits must be gathered after channel changes?

• When is delayed feedback even necessary?

• Can imperfect delayed CSIT be as useful as perfect delayed CSIT?

• Can we achieve same performance as before with lesser total feedback?

 

 Channel 1 

 

  

  

 

  

  

 

Channel 2 

  

Channel 3 

 

 +1  1 2 3 4 … … … +1 
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Example: imperfect delayed feedback

Example:

• Can we achieve the MAT d = 2/3, with less than a total of logP (current
+ delayed) feedback bits?

⋆ I.e., with imperfect delayed feedback
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Corollary: MAT with fewer bits

• Corollary (Chen-Elia): MAT case (originally β = 1, α = 0):
β = 1/3 suffices to achieve the optimal region (d1 = d2 = 2/3)

�

�

���

���

�����	
�
	��

�
��	
�
��
	��
��

������

������

��

����
�����

������������

�

� ���

���� =1 

��

�

	
����
��
��

��� ���������

��
���
�� �
�����������

��
���
������� ���
� �

�

	

NEWCOM # Spring School - Petros Elia 164



Corollary: MAT with fewer bits1

d
2

d
1

0

1

1

No CSIT

2/30.5

2/3

0.5

4.0=a

5.0

3

21+
³

a

÷
ø

ö
ç
è

æ
3

2
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( )a,1 45.0b

÷
ø

ö
ç
è

æ +
2

1
,

2

1 bb

3/1³b
28.0=b
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2

1
,

2

1 bb

4.0=a

¢¢ ¢¢

a 0=

1£b

1b =

1b =

b =

a

=
=b

0=
a 0=
a 0=

a =
a 0= 4.

0 4.

b a 0= 4.

01£b a =

+ +

+ +

+

MISO BC with imperfect current and imperfect delayed CSIT.

β
′

= min{β, 13} and β
′′

= min{β, 1+2α
3 }.
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Corollary: MAT with fewer bits2

When is delayed feedback unnecessary?

 

 Channel 1 

 

  

  

 

  

  

 

Channel 2 

  

Channel 3 
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• Corollary: Having delayed-CSIT quality β ≥ 1+2ᾱ
3 is equivalent to having

perfect delayed CSIT.

• Corollary: When αT ≥ 1+2ᾱ
3 , there is no need for any delayed CSIT, i.e.,

do not send feedback after the end of the coherence block.
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Universal encoding-decoding scheme

Universal encoding-decoding scheme
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Half the key of success

Half the key of success

Schemes must lim-optimally utilize each and every bit feedback
no matter how erroneous, delayed or premature
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Universal encoding-decoding scheme

• Challenge: design scheme of duration n, that utilizes a CSIT process
{
ĥt,t′, ĝt,t′

}n

t=1,t′=1

• Get the help of quality exponents

• Novel schemes with a phase-Markov structure

⋆ Schemes often meet outer bounds

⋆ Apply in various settings (e.g. frequency selective: Hao-Clerckx 13)
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Universal encoding-decoding scheme1

 

Common 

information

 

User 1 private 

information

 

 

Phase s Phase  (s+1)

Used

R
e
s
id

u
a
l

 
 

Common 

information

 

 

Used

R
e
s
id

u
a
l

 

Quantized 

Interference 

Quantized 

Interference 

User 2 private 

information

 

User 1 private 

information

 

User 2 private 

information

 

Map Map Map

Encoding and decoding phase-Markov scheme:

• Accumulated quantized interference bits of phase s, can be broadcasted
to both users inside the common information symbols of the next phase

• while also a certain amount of common information can be transmitted to
both users during phase s, which will then help resolve the accumulated
interference of phase (s− 1).

• All parameters (power and rate allocation, etc) are functions of the (de-
clared) quality exponents
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Universal scheme: decoding

Phase 

(s-1)
Phase  

s

Interference 

cancellation
Interference 

reconstruction

Common 

information 

joint decoding

Private 

information 

decoding
help

StepStep

Step

Step

Phase  

(s+1)

Step

help
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An information theoretic look to Block-Markov encoding

Shayevitz&Wigger Scheme for Generalized Feedback Ỹ (ISIT’10, IT-Trans March 2013)

(ISIT’10, IT-Trans March 2013)

. . .

fresh data fresh datafresh data fresh data

update info.update info. update info.update info.

Block 1 Block 2 Block 3 Block B Block B + 1

• Block-Markov strategy

• In each block use Marton’s nofeedback scheme to send fresh data M1,b,M2,b

& update infos J0,b−1, J1,b−1, J2,b−1

• Update infos J0,b−1, Ji,b−1 for Receiver i: compression indices for Marton-

codewords and feedback-outputs (U0,b−1, U1,b−1, U2,b−1, Ỹb−1) given receiver-
SI Yi,b−1 → Vi,b−1

• Backward decoding:

1. Use J0,b, Ji,b, Yi,b to reconstruct compression Vi,b

2. Decode Mi,b, J0,b−1, Ji,b−1 based on improved outputs (Yi,b, Vi,b)
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An information theoretic look to Block-Markov encoding1

Theorem:[Region for Generalized Feedback Ỹ ](Shayevitz-Wigger’10)

Achievable Region: (R1, R2) achievable, if for some
PQPU0U1U2|Q, PX|U0U1U2Q, PV0V1V2|U0U1U2Ỹ Q:

R1 ≤ I(U0, U1; Y1, V1, Q)− I(U0, U1, U2, Ỹ ;V0, V1|Y1, Q)

R2 ≤ I(U0, U2; Y2, V2, Q)− I(U0, U1, U2, Ỹ ;V0, V2|Y2, Q)
R1 + R2 ≤ I(U1;Y1, V1|U0, Q) + I(U2; Y2, V2|U0, Q) + min

i∈{1,2}
I(U0;Yi, Vi|Q)

−I(U0, U1, U2, Ỹ ;V1|V0, Y1)− I(U0, U1, U2, Ỹ ;V2|V0, Y2)

−I(U1;U2|U0, Q)− max
i∈{1,2}

I(U0, U1, U2, Ỹ ;V0|Yi, Q)

R1 + R2 ≤ I(U1, U0; Y1, V1, Q) + I(U2, U0;Y2, V2, Q)− I(U1;U2|U0, Q)

−I(U0, U1, U2, Ỹ ;V0, V1|Y1, Q)− I(U0, U1, U2, Ỹ ; V0, V2|Y2, Q)
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An information theoretic look to Block-Markov encoding2

Comments on the Shayevitz-Wigger’10 Region

• Update info should have common part J0,b useful to both rxs

• Tradeoff: update-info sent at expense of fresh data! → Identifying good
update info/compression is hard in general

• Scheme applies to stale state information: Ỹ = S → Maddah-Ali&Tse’10:

Q =





0 w.p. 1/3

1 w.p. 1/3

2 w.p. 1/3

, V0 = Vi =





∅ if Q = 0

Y1 if Q = 1

Y2 if Q = 2

, X =





U0 if Q = 0

U1 if Q = 1

U2 if Q = 2

→ Yang/Kobayashi/Gesbert/Yi’11: Q ∼ Bern(2/3),

V0 = Vi =

{
∅ if Q = 0

(η̂1, η̂2) if Q = 1
, X =

{
U1 + U2 if Q = 0

U0 + U1 + U2 if Q = 1

→ Chen&Elia’13:V0 = V1 = V2 = (¯̌l(1), ¯̌l(2)), X = U0 + U1 + U2
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An information theoretic look to Block-Markov encoding3

Wu-Wigger Scheme ’13 ITW 2013, Arxiv Jan. 2014

• Feedback rate-limited to Rfb, (receivers can code over feedback links)

• Scheme based on superposition coding and following ideas:

⋆ feedback allows to occupy unused resource in superposition scheme

⋆ new way to construct common info. useful for both receivers

Theorem:

(R1, R2) achievable, if for some PUPX|UPŶ1|UY1
:

R1 ≤ I(U ;Y1) (1)

R2 ≤ I(X ; Ŷ1Y2|U) = I(X ;Y2|U) + I(X ; Ŷ1|U, Y2)︸ ︷︷ ︸
purely beneficial

(2)

and I(Ŷ1;Y1|U, Y2) ≤ min{Rfb, I(U ;Y2)− I(U ;Y1)}.

• Any Rfb > 0 increases capacity of strictly less-noisy DMBCs

⋆ Ex.: BSC-BC or BEC-BC with unequal cross-over/erasure prob.
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Similar channel model: K-user MISO BC

K-user MISO BC
A wide range of open problems

h

Feedback

y
1

y
K

Tx

User 1

User KFeedback

1

hK
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Similar channel model: K-user MISO BC

h

Feedback

y
1

y
K

Tx

User 1

User KFeedback

1

hK

y1,t = hT

1,txt + z1,t
y2,t = hT

2,txt + z2,t
...

yK,t = hT

K,txt + zK,t

• M -transmit antenna, K single-antenna users

• xt transmitted vector at time t

• Power constraint E[||xt||
2] ≤ P (SNR)

• zk,t AWGN noise
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Same DoF measure of performance

di = lim
P→∞

Ri

logP
, i = 1, 2, · · · , K

• (R1, R2, · · · , RK): achievable rate tuple

• Corresponding DoF region: The set of all achievable DoF tuples
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Some prior work: Imperfect and delayed feedback

Emphasis on the K-user case (K ≥ 2)

• ...

• Delayed CSIT [Maddah-Ali and Tse 10]

• Not-so-delayed CSIT [Lee and Heath 12]

• Alternating CSIT [Tandon et al. 12]

• ...
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K-user MISO BC with only delayed feedback

Theorem: (Maddah-Ali and Tse) The optimal sum-DoF

dΣ,
K∑

k=1

dk

of the K-user MISO BC with delayed feedback, takes the form

dMAT ,
K

1 + 1
min{2,M} +

1
min{3,M} + · · · + 1

min{K,M}
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K-user BC with only delayed feedback

Glass half-full or half-empty

Corollary 1 (Maddah-Ali and Tse) When M ≥ K → ∞ then

dMAT ≈
K

lnK

• Recall that no feedback gives dΣ = 1

• Recall that perfect feedback gives dΣ = K

• Good news:

dMAT ≈
K

lnK
>> 1 (scales with K)

• Bad news:

dMAT

K
≈

1

lnK
→ 0 (unbounded gap from optimal performance)
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K-user BC with only delayed feedback1

K-user problem largely open

• Strong need for understanding role of current feedback

d∑ 

0

MAT
d

Current 

CSIT Cost Cost* 

maxd

?

⋆ [Tandon et al. 12] [Lee and Heath 12]

• Strong need for outer bounds [Tandon et al. 12][Chen-Yang-Elia 13]
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Same problem formulation

• Communication of duration n (n is large)

• An arbitrary channel fading process (random)
{
hk,t

}K n

k=1, t=1

• An arbitrary feedback process (CSIT)
{
ĥk,t,t′

}K n n

k=1, t=1, t′=1

⋆ ĥk,t,t′: CSIT estimate at any time t′, of channel hk,t (at time t)

• A ‘primitive’ measure of feedback ‘goodness’
{
(hk,t − ĥk,t,t′)

}K n n

k=1, t=1, t′=1
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Same notation

Quality of current CSIT for channel hk,t at time t

α
(k)
t ,− lim

P→∞

E[||hk,t − ĥk,t,t||
2]

logP
(user k)

• ĥk,t,t′: CSIT estimate at any time t′, of channel hk,t (at time t)

Quality of delayed CSIT for channel hk,t at time t

β(k),− lim
P→∞

E[||hk,t − ĥk,t,t+η||
2]

logP
(user k)

For any sufficiently large finite integer η > 0.
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Same notation1

Quality range (WOLOG)

0 ≤ α
(k)
t ≤ β(k) ≤ 1

• β
(k)
t = 1 → perfect delayed CSIT (about channel hk,t at time t)

• α
(k)
t = 1 → perfect current (full) CSIT (about channel hk,t at time t).
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Average of exponent sequences {α
(k)
t }nt=1

• Averages of the quality exponents (current CSIT cost)

ᾱ(k) ,
1

n

n∑

t=1

α
(k)
t , k = 1, 2, · · · ,K

• π denotes a permutation of the ordered set {1, 2, · · · ,K}, π(k) denotes
the k th element of set π.
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New outer bound (DoF Region)

For general setting: general channel process (large duration n), general
feedback process

Theorem: [DoF region outer bound] (Chen-Elia): The DoF region of the

K-user M × 1 MISO BC with a general CSIT feedback process, is outer
bounded as

K∑

k=1

dπ(k)

min{k,M}
≤1+

K−1∑

k=1

(
1

min{k,M}
−

1

min{K,M}

)
ᾱ(π(k))

dk ≤ 1, k = 1, 2, · · · , K
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New outer bound (Sum DoF)

Corollary: [Sum DoF outer bound] For the K-user M × 1 MISO BC, the
sum DoF is outer bounded as

dΣ ≤ dMAT +

(
1−

dMAT

min{K,M}

) K∑

k=1

ᾱ(k)
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Current CSIT cost vs sum DoF

d∑ 

0

MAT
d

Current 

CSIT Cost Cost* 

maxd

?

What is the current CSIT cost for a certain dΣ ∈ [dMAT, dmax]?

• E.g, for the case with M = 2,K = 3 (dMAT = 3
2, dmax = 2)

⋆ What is the current CSIT cost for dΣ = 7
4 ?

⋆ What is the current CSIT cost for dΣ = 5
3 ?
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Current CSIT cost vs sum DoF

Theorem: [Optimal cases, dΣ vs ᾱ] For the K-user MISO BC with M ≥ K
or with M = 2,K = 3, and given a current CSIT cost ᾱ, the optimal sum
DoF is characterized as

dΣ = dMAT +

(
K −

KdMAT

min{K,M}

)
min

{
ᾱ,

min{K,M}

K

}
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Current CSIT cost vs sum DoF1

d∑ 

1

K

0

MATPMAT
ddKd +-=

å
d)(

MAT
d

P
d

Optimal sum DoF dΣ vs. ᾱ =: δp for the MISO BC with M ≥ K
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Current CSIT cost vs sum DoF2

d∑ 

2/3

2

3/2

0 P
d

Optimal sum DoF (dΣ) vs. ᾱ =: δp for the MISO BC with M = 2, K = 3

(ᾱ = 1/3 for dΣ = 7
4) and (ᾱ = 2/9 for dΣ = 5

3 )
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Novel outer bounds

• Challenge: Outer bound for general K-user MISO BC (with general
feedback process)

⋆ Best known bound 1: for two-user [Yang et al., Gou and Jafar, Tandon
et al., Chen and Elia, 12]

⋆ Best known bound 2: for K-user, only for the maximum sum DoF
point, i.i.d channel [Tandon et al. 12]

• Techniques

⋆ Degraded BC construction

⋆ Gaussian input maximizes the weighted difference of two (degraded)
differential entropies [Weingarten et al. 09]

⋆ MIMO techniques

⋆ Statistical techniques
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Global CSIR

Global channel state information at receivers
(global CSIR)

h

g

Feedback

y (1)

y (2)

Tx

User 1

User 2

Feedback

• Global CSIR: A user must know the channels of the other users
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The challenge of global CSIR

Great challenge in distributing perfect global CSIR (see
Kobayashi-Caire ISIT 2012)

• Training and limited-capacity/limited-reliability feedback links

• Challenge extreme as number of users increases

• Problem: Achilles’ heel of delayed-CSIT approaches

Consider imperfect and delayed global CSIR

h

g

Feedback

y (1)

y (2)

Tx

User 1

User 2

Feedback

t = T 

Current channel (1) 

t = 0 

Much later: completely 

different channel 

Immediate and 

imperfect  feedback 

(quality  α < 1)

Immediate and 

perfect  feedback 

(quality  α = 1)

Not-so-delayed 

feedback 

Delayed and (possibly) 

imperfect feedback for 

channel 1 (quality � � 1) 
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Imperfect and delayed Global CSIR

Imperfect and delayed Global CSIR9

• CSIT: No current, imperfect delayed (α = 0, 0 ≤ β ≤ 1)

• Global CSIR: No current, imperfect delayed (β)

• No receiver access to CSIT estimates at transmitter

Theorem: DoF inner bounds

{(0, 0), (0, 1), (
1 + β

2
,
1 + β

2
), (1, 0)}, β <

1

3

{(0, 0), (0, 1), (
2

3
,
2

3
), (1, 0)}∗, β ≥

1

3

∗ Optimal and previously associated to perfect delayed CSIT and perfect global CSIR

9Chen-Elia 2012
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Open problems regarding Global CSIR

Open problems regarding Global CSIR

• How to use imperfect and delayed global CSIR when there are many
users?

• How to use imperfect and delayed global CSIR when α > 0?

• Tightening of existing bounds

• How to use imperfect and delayed global CSIR in interference settings?
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Open problems in the K-user setting

h

Feedback

y (1)

y (K)

Tx

User 1

User KFeedback

(1)

h
(K)

• TDMA (No CSIT) d = 1/K

• Perfect CSIT d = 1

• Only delayed CSIT [Maddah-Ali and Tse]

d ≈ 1/ lnK, for large K
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Open problems in the K-user setting1
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• Glass half full or half empty?

• How best to complement delayed feedback?

• Novel schemes (index coding)

• Novel information theoretic bounds:

⋆ GRAND CHALLENGE: outer bounds and constructions
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Open problem in K-user interference setting

Tx1

Tx2

TxK

Rx1

Rx2

RxK

K-pair interference channel

• Before: TDMA d = 1/K

• Some extensions of seen work by Yang et al. (from BC to two-user IC)

⋆ Most approaches are limited to two-user IC
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Interference alignment with delayed CSIT

A promising direction:
Interference alignment with delayed feedback

• Interference alignment (IA) [Cadambe and Jafar 08] d = 1/2

⋆ “Each user gets half of the cake”

⋆ IA concept first introduced for the X channel by Maddah-Ali, Mota-
hari and Khandani

⋆ Powerful tool but!

⋆ Global and perfect CSIT is required for IA
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Interference alignment with delayed CSIT

Some existing approaches

• With delayed CSIT 3× 3 SISO IC can achieve 9
8 sum DoF

⋆ [Maleki, Jafar and Shamai 11]

• With delayed CSIT 3× 3 SISO IC can achieve 36
31 sum DoF

⋆ [Abdoli, Ghasemi and Khandani 11]

The main open problem:

What is optimal DoF for K ×K SISO IC with delayed CSIT?
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Extension to X channel

Tx1

Tx2

TxK

Rx1

Rx2

RxK

X channel: Each transmitter has a message to be communicated with each receiver

• With perfect global CSIT, M×N SISO X channel has sum DoF MN
M+N−1

⋆ [Cadambe and Jafar 2009]

⋆ Example: 2× 2 : sum Dof = 4
3
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Extension to X channel1

• With delayed CSIT 2× 2 SISO X channel can achieve 8
7 sum DoF

⋆ [Maleki et al. 2011]

• With delayed CSIT 2× 2 SISO X channel can achieve 6
5 sum DoF

⋆ [Ghasemi, Motahari and Khandani 11]

• With delayed CSIT 3× 3 SISO X channel can achieve 5
4 sum DoF

⋆ [Ghasemi, Motahari and Khandani 11]

The main open problem:

What is optimal DoF for K ×K SISO X channel with
delayed and imperfect CSIT?
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