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On User Availability Prediction
and Network Applications

Matteo Dell’Amico, Maurizio Filippone, Pietro Michiardi, and Yves Roudier

Abstract—User connectivity patterns in network applications
are known to be heterogeneous, and to follow periodic (daily
and weekly) patterns. In many cases, the regularity and the
correlation of those patterns is problematic: for network ap-
plications, many connected users create peaks of demand; in
contrast, in peer-to-peer scenarios, having few users online results
in a scarcity of available resources. On the other hand, since
connectivity patterns exhibit a periodic behavior, they are to some
extent predictable. This work shows how this can be exploited
to anticipate future user connectivity and to have applications
proactively responding to it. We evaluate the probability that
any given user will be online at any given time, and assess the
prediction on six-month availability traces from three different
Internet applications. Building upon this, we show how our
probabilistic approach makes it easy to evaluate and optimize
the performance in a number of diverse network application
models, and to use them to optimize systems. In particular,
we show how this approach can be used in distributed hash
tables, friend-to-friend storage, and cache pre-loading for social
networks, resulting in substantial gains in data availability and
system efficiency at negligible costs.

Index Terms—Predictive models, peer-to-peer computing, user
availability

I. INTRODUCTION

INTERNET application workloads, being direct conse-
quence of human activity, are very often characterized

by highly variable patterns of requests; daily, weekly and
seasonal patterns are ubiquitous in these applications, and have
been recorded in traces of file-sharing, instant messaging, and
distributed computing [1]–[6]. Despite this fact, in many cases
system design and modeling are performed without accounting
for periodic request patterns that are often very strong.

The fact that user behavior is often correlated – in the sense
that many users will behave similarly at the same time – is
especially problematic. “Flash crowds” – i.e., simultaneous
requests from many users at the same time – create strains on
application resources; on the other hand, the fact that many
users can go offline at the same time creates problems in peer-
to-peer applications, since sudden and unexpected variations
of available resources can happen. Many applications are
designed according to simple models of user availability (e.g.,
modeling availability with a uniform probability for all users
[1] or using simple Markovian models [7]) that fall short when
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modeling the complexity of human behavior; in real world
scenarios, then, systems should be largely over-dimensioned
in order to avoid potential problems.

Over-dimensioned systems can re-use excess resources in
other ways. However, alternative usages (which need to be
exploitable at any moment in time) are likely to provide less
added value than those for which the system was designed
in the first place. In addition, even when elastic resource
allocation is possible, it is not necessarily instantaneous. For
example, spawning and booting new virtual machines can take
some time – in particular in cases of heavy system load.
Systems able to predict request spikes can respond proactively
to increases in system load – allocating new resources when
load is still tolerable – rather than reactively.

In this work, we model user availability, i.e. whether
users are online, using past statistics of their uptime in order
to capture idiosyncratic behavior characteristics and obtain
personalized predictions for each of them. This allows us
to design systems that respond proactively to user uptime.
We focus on characterizing future user availability with an
individualized, long-term, probabilistic statistical model: a
(scalable) system which assigns a probability to the event of
any user being online at any time in the future.

We evaluate our long-term predictions in different network
applications. We use three different datasets (Section III)
containing traces of user availability spanning a time frame
of about six months in the domains of instant messaging, file
sharing, and home gateways.

Our statistical model (Section IV) adopts logistic regression
to combine several features capturing different periodic trends
of individual and global user availability patterns. By taking
a probabilistic approach, we are also able to quantify the
uncertainty in the estimation of model parameters and account
for it in predicting user availability. This is often useful: for
example, evaluating that a user will be online with probability
0.6 while for another user the probability is 0.9 can allow
applications to make different decisions for the two users;
conversely, a boolean predictor that would just output “online”
for both cannot allow for such differentiations.

The scalability of our approach allows us to assess the
performance of our predictions on datasets of several weeks
and with a large number of users (Section V). The charac-
teristics of the dataset impact the quality of predictions that
can be made, but our model remains consistently useful in all
cases; moreover, the quality of predictions does not decrease
substantially over time, even after several weeks. The most
relevant features are those capturing individual and periodic
long-term user behavior; this suggests that our approach can
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be adopted whenever users have a peculiar behavior which
is stable over time (e.g., online social networks, accesses to
email servers, TV/radio consumption even over IP, etc.).

Metrics for prediction quality, however, are not sufficient to
understand the impact that our method could have on system
design. We show that in Section VI, by presenting three
use cases in which our approach can be adopted to predict
system behavior and performance, and can be used to guide
system choices. By driving node placement and data placement
respectively in a distributed hash table and a friend-to-friend
storage application, resource usage can be reduced because it
is not necessary to perform excessive data replication to obtain
a desired level of data availability; by adopting connectivity
predictions in social networks, the efficiency of cache pre-
fetching can be significantly improved.

Within all classes of user behavior that can be predicted,
in this work we focus on user uptime because i) traces are
availabile and ii) as mentioned above, we can provide concrete
examples of exploiting availability prediction. In Section VII,
we conclude by mentioning other kinds of user behavior and
application use cases that could benefit from an approach
similar to the one described in this document.

II. RELATED WORK

Patterns of user availability are important in a large class of
applications since they impact the demand of resources; they
are essential in peer-to-peer (P2P) systems, where they also
determine the offer of available resources in the system. It is
therefore unsurprising that this issue has attracted particular
interest in the P2P literature, as we discuss next.

User Availability Modeling and Prediction: Various pa-
pers [4], [8], [9] focused on characterizing session length, i.e.
the amount of time a user will spend online after connecting.
Predicting session length is useful for cases where a node’s
disconnection triggers expensive operations, such as data
maintenance in distributed hash tables [10]; these techniques
do not leverage on periodicity, but rather model session length
with a probability distribution which is independent from
the moment in which the session begins. Our analysis is
complementary to this, since we focus on being able to predict
connectivity patterns in the long term.

Daily and weekly periodic behavior is a known feature
of essentially any trace of applications whose workloads
depend on human factors. This behavior has been reported, for
example, in file-sharing applications [1], [2], [5], [9], instant
messaging [3], and distributed computing [4]. In addition to
merely recognizing the presence of periodicity, in this work
we exploit it in order to enhance the quality of our predictions.

Mickens and Noble [5] predict future node uptime on
several traces, including cases where availability patterns are
dictated mostly by technical reasons such as failures (e.g.,
availability traces of nodes in PlanetLab). We implemented
this approach, and we devote Section V-A to show how
our approach outperforms it in terms of prediction accuracy,
scalability, and expressivity of the output.

Applications: Understanding availability is fundamental
in P2P storage applications, where data is uploaded redun-
dantly to various peers; when enough of them are online, data

is accessible by other peers. In several cases, availability is
modeled under the assumption that the probability that any
node is online at any time is constant. In order to avoid
problems due to correlated downtimes, this probability has
to be estimated very conservatively, resulting in a dramatic
system overprovisioning (e.g., Bhagwan et al. [11] adopt the
lowest observed fraction of connected users in the history of
the system). In some approaches [5], [12], heterogeneity in
availability traces is exploited to increase load on nodes with
higher availabilities and optimize system performance. These
approaches inevitably result in an imbalance on requested
resources, penalizing the most available nodes. Unlike them,
we show that better performance can be obtained without
requiring additional resources from any node. Pamies-Juarez et
al. [13] show how better system performance can be obtained
without requiring usage of more resources from more available
nodes, but they validate their findings with synthetic experi-
ments that do not account for correlation in uptime, which is
extremely problematic for the envisioned storage application.
Finally, Kermarrec et al. [14] propose an ad hoc method for
data placement accounting for periodic availability patterns.
In Section VI, we show two use cases where optimization
strategies driven by availability predictions applied to peers
can substantially optimize data availability; in our scenario,
our method largely outperforms the one by Kermarrec et al.

User request patterns have regularities that can be used to
anticipate future user behavior and plan capacity accordingly.
Gürsun et al. [15] use a simple model of these regularities to
predict the total number of users that will request an individual
video file on YouTube the next day. With respect to their
work, we perform our predictions on a personalized basis,
and several weeks in advance. In Section VI-C we show how
our predictions can be used to drive a pre-fetching strategy for
newsfeeds in social networks: in this case per-user predictions
are needed, and non-personalized predictive approaches [16],
[17] cannot be applied.

Regularities of user requests are not limited to temporal
patterns: user location and social connectivity can also be
used to drive smart caching and pre-fetching strategies [18],
[19]. While considering these additional features is not within
the scope of this work, these efforts confirm that proactive
approaches to system design that anticipate user behavior are
feasible and efficient. We think that a probabilistic approach
similar to the one we present here could also be applied in the
design of systems such as those ones.

III. DATASETS

We evaluate our predictions on three availability traces
(i.e., informations about when users are online) from Internet
applications. These traces share three key properties that make
them suitable for our study.

First, they comprise thousands of users and they are long
enough (at least six months each) to let us test the quality of
predictions over several weeks.

Second, uptime depends on which motivations users have to
connect: the three datasets we use allow us to examine cases in
which the different nature of the application results in different
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motivations for users to be online. In addition to the simple
fact that users have to be connected to use the service, in the
Kad dataset there is an incentive mechanism that encourages
users to stay online even more.

Third, the traces we use present low or no sampling
bias [20], [21], since they are essentially uniform or full
samples of the users in each system.

To obtain a uniform duration between datasets, we consider
only the first 24 weeks. We use the first 18 weeks to extract
our features, and the remaining 6 weeks to test the predictive
performance of our model: more details can be found in
Section IV. We expressed each trace as an availability matrix
A by sampling the availability of each user with a period of
one hour. We denote Au,t = 1 if user u is available at timeslot
t, and Au,t = 0 otherwise.

The GW and Kad datasets are publicly available; since
IM may contain potentially sensitive informations about user
behavior, we cannot commit on making it public. To help
reproducibility and re-use of our experiments, our source code
is available in a public GIT repository.1

A. IM – Instant Messaging

The IM trace is extracted from the server logs of an
instant messaging server in Italy; one of the authors is an
administrator of the server. The trace contains the complete
log of connection/disconnection events on the server in the
period between January 10, 2010 and June 27, 2010; 1, 174
distinct users connected to the server in that time-frame. We
denote a user as “online” if at least one client software is
logged in with the user’s credentials, regardless of the status
set in the client (e.g., available, busy, invisible. . . ).

In this system, very strong daily patterns are observable. We
attribute this to two reasons: first, most users live in the same
timezone; second, they are likely to go online whenever they
are in front of their computer, in order to be reachable.

In the period of May 18–20, a large number of accounts
was registered by automatic tools; such accounts, being non-
human, had connectivity patterns that were fundamentally
different from those observed in the rest of the trace. Sep-
arating human and non-human behavior with means such as
CAPTCHAs and characterizing online behavior of automated
tools are both outside the scope of this work. This phe-
nomenon, however, does not affect the results shown in this
work: these accounts were registered only after our training
period (i.e., in the last six weeks of the trace). Availability
predictions for them have therefore neither been generated nor
tested.

B. GW – Gateways

The GW trace has been extracted by Serge Defrance et
al. [22]. It comprises traces from 24, 781 residential gateways
of the French ISP Free having a fixed IP address, and it
was obtained by pinging each gateway every 10 minutes.
The set of IP addresses was chosen randomly within the
address space allocated for these gateways, and a gateway was

1https://bitbucket.org/matteodellamico/uptime-prediction
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Fig. 1: CDF of per-user average availability.

included in the trace if it had answered to the ping message
at least once. In this work we consider availabilities in the
24-week interval between June 29, 2010 and December 24,
2010; four aberrations where most users appear offline due
to measurement artifacts are present in the dataset and are
acknowledged by the authors.2

The gateways provided by Free offer access to telephone
services, TV and DVR in addition to Internet access; for this
reason many users keep their gateways almost always on. As a
result, the average percentage of connected users is 86% over
the trace. Daily and weekly periodic behavior is still present,
with a number of users that disconnect their gateways mostly
during the night.

C. Kad

The Kad trace has been extracted by Steiner et al. [6], mea-
suring the connectivity on nodes on the Kad distributed hash
table, which is used by clients of the popular eDonkey2000
network. In Kad, nodes are identified by a randomly generated
128-bit identifier called Kad ID; the trace contains the result of
a zone crawl resulting in the availability trace (sampled every
5 minutes) of all the 400, 375 nodes sharing a common 8-bit
prefix appearing online in a six-month period. We consider
availability data between September 23, 2006 and March 10,
2007.

In the eDonkey2000 network, users are implicitly motivated
to stay online when they are downloading files; moreover,
there is an elaborate credit-based incentive scheme [23] de-
signed to reward users that stay online and upload data to
peers with faster download speeds.

D. First Observations

In Figure 1, we show the distribution of the per-user average
availability in each dataset (i.e., the distribution of the fraction
of time each user spends online). Because of the applications’
nature, these values are drastically different. It is interesting to

2http://www.thlab.net/~lemerrere/trace_gateways/
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Fig. 2: Availability patterns clustered through k-means. One week of data shown per dataset.

note that, even though an incentive scheme has been devised in
order to convince users to stay online more often, the Kad trace
is the one with lowest availability values overall. It appears
that the incentive mechanism present in the network has a
limited impact, and that the very nature of the applications
that encourages users to stay online to remain reachable to
receive instant messages (IM) or phone calls (Kad) plays a
much stronger role.

In Figure 2, we highlight the diversity of per-user availabil-
ity in each dataset. We took a sample week from each trace,
and sampled the availability of each user with a granularity of
one hour, to obtain a matrix where lines represents users and
columns timeslots. Each cell indicates whether the user was
online or not at that time.

We performed k-means clustering on the lines of this matrix,
resulting in a clustering of users (we chose k = 4 for plot
readability), and we plot the average number of per-cluster
available users. Each line corresponds to a cluster; in the
legend, we report the number of users belonging to each
cluster.

From Figure 2, we can obtain an intuitive grasp of the
behavior of some representatives groups of users in the cluster.
In all cases there are clusters of users who are mostly on and
mostly off, and others with different inclinations to connect:
mostly during weekdays or mostly during weekends. The
size of these clusters (shown in the legend) can explain the
distribution of per-user average availability values shown in
Figure 1 on the preceding page.

In the IM trace, it is interesting to note that some users tend
to connect during office hours (blue cluster), and others in free
time (early night and weekends, red cluster). The clustering
results show that such a phenomenon is less common for
GW and Kad, where the k-means clustering instead captured
groups of users whose availability pattern changed during the
week under scrutiny (green cluster for GW, red and green
clusters for Kad).

In summary, our datasets represent three different types of
network applications with markedly different user behavior;
moreover, IM clients [24], home gateways [22], [25], and
file-sharing clients [6] are all popular platforms for running
peer-to-peer applications, making these datasets ideal to test
the peer-to-peer application use cases shown in Sections VI-A
and VI-B.

IV. OUR MODEL

In this section we introduce the model that we use for
predicting user availability. We start with a set of features
that identify global and personalized periodic trends, and
combine them in a classifier, as we will see shortly. In
this work we adopt a fully probabilistic classifier based on
logistic regression, as it provides high descriptive power and
is quite flexible. We split the data sets in four non-overlapping
consecutive periods A, B, C, and D, each of duration of six
weeks. Inference on the parameters of the classifier is carried
out using A to compute the features and B to obtain the
corresponding labels. We use C and D to assess the predictive
performance of the probabilistic classifier. Now C is used
to construct features and D to obtain labels against which
classification performance is assessed.

The proposed procedure avoids any issues with reusing the
same data for inference and for assessing the quality of the
classifier, and preserves temporal information in the process
as if we were to apply this procedure in a real scenario.
Although this does not allow to evaluate some sort of cross-
validation error, we report results on three different scenarios
comprising thousands of users, that substantiate the hypothesis
that patterns of availability are largely predictable.

In several cases stemming from P2P applications [24], [26],
it is most interesting to consider “superpeers”, which are
nodes with a relatively high availability: for example, in the
Wua.la distributed storage application [27], data is stored on
peers that have spent at least an average of 4 hours per day
online in the past week. Mirroring this latter requirement, we
created restricted filtered datasets containing nodes that spend
on average at least 4 hours per day online. This filtering is
performed on period A for both period A and B, and on period
C for periods C and D: in other words, a node will appear in
the filtered dataset in period B (resp. D) if it has been available
on average at least four hours per day in period A (resp. C).
This process resulted in selecting 405 users in the IM dataset
for the A-B periods, and 408 nodes in the C-D periods. For
GW, the selected nodes are 22,620 (A-B periods) and 23,184
(C-D). For Kad, they are 11,472 (A-B) and 12,522 (C-D).

Filtered datasets allow us to evaluate the predictor quality
for use cases of interest ignoring easily predictable, mostly-
offline users. We use the filtered datasets for our application
use cases in Sections VI-A and VI-B.
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A. Features

User availability follows periodic daily and weekly trends
which affect the whole system. Moreover, each user has his/her
own particular daily and weekly trends (e.g. being more or
less likely to connect on nights and on weekends, as shown in
Figure 2 on the previous page), as well as different likelihood
to be online at all (see Figure 1 on page 3). We designed a
set of features aimed to capture each of these trends.

We are interested in creating a prediction for each user and
each timeslot in the future. For a user u and a timeslot t, we
identify a set of observations that are related to the trend we
want to identify with the feature at hand, and we simply count
the numbers non and noff of observations in which we find
nodes respectively online and offline. We then return as an
output of i-th feature the value

f
(i)
u,t =

non + 1

non + noff + 2
.

These values can be seen as the expected value of the posterior
of a Bernoulli trial assuming a flat prior Beta(1, 1). We point
out that it is computationally trivial to update these features
when new observations become available.

We define five different features, which differ by set of users
considered (individual or global) and by periodicity (daily,
weekly, and flat). Features differ only by the definition of the
set of observations which is taken into account in order to
compute f (i)

u,t:
1) Global daily. Observations of all users, same time of

day of t (e.g., if t is at 9:00 AM, observations taken
into account will be at all days at 9:00 AM).

2) Global weekly. All users, same time of day and same
day of week of t (e.g., if t is on a Monday at 9:00 AM,
observations taken into account will be at all Mondays
at 9:00 AM).

3) Individual flat. Exclusively user u, any observation in
the training set.

4) Individual daily. User u, same time of day of t.
5) Individual weekly. User u, same time of day and same

day of week of t.
It is possible to consider additional features accounting

for periodic behavior. We observed a sharp decrease in the
number of connections in holiday periods (i.e., the month of
August and the Christmas period). Unfortunately, our traces
are not long enough to allow us taking into account seasonal
variations. We consider it more than reasonable to assume,
however, that even longer traces would result in increased
accuracy.

In addition, we empirically observed that public holidays
result in availability patterns that are similar to those of
weekends. Unfortunately, since our traces comprise users from
different countries, it is difficult to define precisely which days
are public holidays.

B. Logistic Regression

The five features above are able to capture different aspects
of patterns of availability, and we are interested in combining
these pieces of information to accurately predict future user

availability. Moreover, we aim to assess the relative importance
of the five features in doing so. We propose a fully probabilis-
tic logistic regression classifier [28]. Adopting a probabilistic
classifier yields a probability of users to be online at a given
time. This reflects in the possibility to obtain a degree of how
certain the classifier is on the availability of users that can be
exploited in network applications.

In logistic regression, and more in general in a classification
problem, a set of labels y = {y1, . . . , yn} is associated with
a set of samples {x1, . . . ,xn}, each described by a set of
d features so that xi ∈ Rd. In our application the labels
yi ∈ {0, 1} represent Au,t, that is the availability of user
u at time t, and xi is the corresponding set of five features(
f

(1)
u,t , . . . , f

(5)
u,t

)
. The logistic regression classifier models the

labels yi as conditionally independent, and as draws from a
Bernoulli distribution with probability of “success” given by:

p(yi = 1|xi) = σ

β0 +

d∑
j=1

(xi)jβj

 ,

where σ denotes the logistic function σ(a) = 1
1+exp(−a) .

Note that we have introduced an intercept term β0 in the
linear combination to allow for a term in the combination
independent from the features. In order to keep the notation
uncluttered, we define the set of weights of the combination
together with the intercept term as β = (β0, β1, . . . , βd), and
with abuse of notation we redefine xi = (1,xi) so that the
linear combination becomes xT

i β. Also, we define l+i :=
p(yi = 1|xi) = σ(xT

i β) and similarly l−i := p(yi = 0|xi).
Finally, let X be the n× (d+ 1) matrix obtained by stacking
the vectors xi by row.

The goal of a classification approach is to tune or infer
the parameters β based on past user availability data, and use
this to predict future user availability. It is worth noting here
that, once the parameters β are inferred from data, they offer
an interpretation of the relative importance of the different
features in discriminating between the classes. We now report
the approach that we take to infer the parameters β and explain
how we predict future user availability.

1) Bayesian Inference: In this work we take a Bayesian
approach to infer the parameters of the logistic regression
classifier. The motivation for doing so is that the Bayesian
approach offers a sound quantification of uncertainty in param-
eter estimates and in predictions, as demonstrated in several
applications [29]. In a probabilistic setting, the predictive
distribution for a new test sample x∗ is obtained via the
following marginalization:

p(y∗|y, X,x∗) =

∫
p(y∗|x∗,β)p(β|y, X)dβ. (1)

Equation 1 requires the so called posterior distribution over
β after observing X and y. Note that this expression is quite
appealing as the uncertainty on the parameters a posteriori is
effectively averaged out when predicting future availability. As
a result, predictions no longer depend on model parameters.
This is in contrast to what would happen if we optimized the
parameters, obtaining say β̂, that would lead to predictions
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of the form p(y∗|y, X,x∗, β̂) that are conditioned on a spe-
cific choice of β. The core of quantification of uncertainty
in parameter estimates and predictions is therefore in the
posterior distribution over β. By Bayes theorem, p(β|X,y)
is proportional to p(y|X,β)p(β), namely the product of the
likelihood of the observed availability given the parameters,
and the prior distribution over the parameters. The log-
likelihood of the observations given the parameters is

log[p(y|β, X)] =

n∑
i=1

[
yi log(l+i ) + (1− yi) log(l−i )

]
.

We assign a Gaussian prior over β with mean m0 and features
S0. In this work we assume a rather flat prior over β; in
particular, we set m0 = 0 and S0 = αI with α = 104. Given
the amount of data and the variance of the prior, the Gaussian
assumption is not restrictive, but has the advantage of being
simple to deal with.

Given the form taken by the likelihood in the logistic regres-
sion model, it is not possible to obtain the posterior distribution
on β in closed form, and it is therefore necessary to resort to
some approximation. It is possible to approximate the posterior
distribution using deterministic approximations [28], [30], or
employ a Markov chain Monte Carlo (MCMC) approach
to obtain samples from the posterior distribution [31]. Here
we employ a deterministic Gaussian approximation technique
called Laplace Approximation.

2) Laplace Approximation: The LA algorithm is a deter-
ministic technique that approximates a function using a Gaus-
sian. This approximation places the approximating Gaussian
at the mode of the target distribution and sets its covariance
to the covariance of the target distribution [28]. Although it
can be argued that a Gaussian approximation can be very poor
when the target distribution is far from being Gaussian, in the
limit of infinite data the posterior distribution will tend to a
Gaussian (see, e.g., [32] for further details). In this application
we are dealing with very large amounts of data (in the order of
millions) and therefore the LA is appropriate in characterizing
the uncertainty on parameter estimates. Moreover, given that
the complexity of the whole algorithm is linear in the number
of data (see below), it scales well for large data sets.

In this work, we make use of the iterative Newton-Raphson
optimization strategy to carry out the Gaussian approxima-
tion, as it is commonly employed in logistic regression. The
Newton-Raphson optimization iteratively uses gradient and
Hessian of the logarithm of the target function to locate its
mode. Denoting with β′ the update of the parameters after
one iteration, the Newton-Raphson formula is

β′ = β − (∇β∇βL)−1∇βL.

This update is repeated until the gradient vanishes, which in
practice is assessed by checking that the norm of the gradient
is less than a given threshold. In the case of logistic regression,
the update equation is:

β′ = β + (XTΛX + S−1
0 )−1[XT(y − l+)− S−1

0 (β −m0)],

where we have defined Λ as a diagonal matrix with
Λii = l+i l

−
i . After convergence, we have an approximation

Algorithm 1 LA for inference in Logistic Regression
Input: Data: X , y - Prior: p(β) = N (β|m0, S0) - stopping
criterion θ
Output: Gaussian posterior: p(β|y, X) ' N (β|m, S)

β = 0
while (‖∇βL(β)‖ > θ)

β′ = β+(XTΛX+S−1
0 )−1[XT(y−l+)−S−1

0 (β−m0)]
β = β′

return m = β, S = ∇β∇βL(m)

Algorithm 2 Predictions with Gaussian posterior
Input: Data: X , y - Gaussian posterior: p(β|y, X) '
N (β|m, S) - test data: x∗
Output: Prediction p(y∗ = 1|y, X,x∗)

ma = xT
∗m

s2
a = xT

∗ Sx∗
return p(y∗ = 1|y, X,x∗) ' σ

[
(1 + πs2

a/8)−1/2ma

]
p(β|y, X) ' N (β|m, S), where m is the value of β at the
end of the optimization and S = (XTΛX − S−1

0 )−1 is the
covariance of L evaluated at m. The complexity of each update
of β is linear in the number of samples n, and cubic in the
number of parameters due to the inversion of a (d+1)×(d+1)
matrix. Given that in our application d = 5, the LA results in
a very fast method (reported in Algorithm 1) for inferring the
parameters of the model.

Note that the probabilistic framework allows one to carry
out the inference by processing data in batches. In particular,
this can be accomplished by simply treat the posterior on β
after processing one batch of data as the prior for β before
processing a new batch of data. We resorted to this option in
the case of the KAD data set only, where the data were split
in ten batches of several tens of millions of samples due to
limitations in storing all the data into memory.

3) Predictions: The predictive distribution is obtained by
solving the integral in Eq. 1, where now we have a Gaussian
approximation to p(β|X,y) ' N (β|m, S). Defining ma =
xT
∗m and s2

a = xT
∗ Sx∗, the predictive distribution results can

be approximated by

p(y∗ = 1|y, X,x∗) ' σ
[
(1 + πs2

a/8)−1/2ma

]
.

The complexity of evaluating this expression (in Algorithm 2),
once m and S are available, is linear in the number of
parameters.

C. Scalability

To compute predictions, our method performs two steps:
feature extraction and logistic regression. Computation is
lightweight: both steps scale linearly and they are dominated
by the speed at which input data is read and parsed. The feature
extraction component, which is the one dealing with the
largest input, can be easily parallelized; the logistic regression
component, in our prototype implementation, can handle the
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around 100 million data points of the GW dataset in around
one minute.

V. PREDICTION ACCURACY

We report two measures of performance for our classifier,
namely the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) and the geometric mean of
the likelihood on test data (GM).

AUC measures how well a probabilistic classifier balances
true and false positives, with the optimal value of 1 corre-
sponding to the case where all true positives are associated
probabilities larger than any true negative.

The GM score, instead, is calculated as

GM = |U||T |

√ ∏
u∈U,t∈T

l(u, t)

= exp

 1

|U ||T |
∑

u∈U,t∈T
log l(u, t)

 ,

where l(u, t) is the likelihood of the availability observation
Au,t for user u and time t given a predicted probability of
Pu,t: l(u, t) = Pu,t if Au,t = 1, else l(u, t) = 1 − Pu,t.
GM is a value between 0 and 1 and it is larger for classifiers
that assign correct predictions with high confidence, measured
through the predictive probability. GM complements the AUC
metric by accounting for the confidence level of the output of
the classifier.

In Table I on the next page, we show our error metrics
evaluated on all datasets, for our combination of all features,
along with a breakdown – for each of them – of the error
metrics achievable by using a single feature in the classifier.
We also report the mean and the standard deviation of the
posterior over β obtained by the logistic regression classifier
using all the features normalized to have unit variance.

From Table I, we notice that the combined predictor is
consistently better or equivalent to the other ones, showing that
the combination effectively integrates information from the
five features that capture basic trends. Error metrics are worse
on datasets like IM filtered and Kad filtered, because they lack
nodes that are mostly offline and that are therefore easier to
predict. This effect is stronger on the GM metric, showing
that the classifier correctly assigns very low probabilities of
connectivity to nodes that are mostly offline, and it is less
confident on nodes with more irregular behavior.

Table I also shows that global features consistently perform
worse than individual ones: even if global trends can be clearly
identified and they are useful in characterizing availability, it is
clear that information about individual trends is simply more
important. However, the accuracy of the classifier using all
the features is higher than the one for the classifiers using a
single feature, indicating that combining all the features using
logistic regression is beneficial.

As examples of prediction performance, in Figure 3 we
show predictions (dotted lines) and availability traces (solid
lines) on the six weeks of test data for six typical users,
two from each dataset. We selected these users to provide
concrete examples of typical per-user availability patterns in
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Fig. 3: Examples of observed availability (solid lines) and
predictions (dotted lines) for six representative users (top to
bottom: IM, GW, Kad filtered).

the different datasets and of the way our model captures them.
Since our predictor has a weekly period, we show a week of
predictions and the corresponding average availability (same
time of day and day of week) over the six weeks of the test set.
In IM filtered, nodes frequently have strong daily periodicity
(top left), often accompanied by a different behavior in the
weekend (top right). These features can be easily recognized
by our classifier, and this explains the particularly good
performance of the predictors using only the individual daily
and weekly features. In GW, nodes are frequently mostly
on, with sporadic disconnections due either to failures or the
measurement artifacts mentioned in Section III-B (center left);
however, some users turn on their gateways only occasionally
and mostly during the day (center right). This explains the
good performance of predictors using individual daily and
flat features. In Kad filtered, many nodes have availability
patterns with varying daily periodicity (bottom): even though
predictions using the “individual daily” feature perform best,
the confidence level – as expressed by the GM metric – is low.

The values of β in Table I are expected to be large when
associated to features with high predictive quality, unless
some of them convey redundant information. We only observe
positive values for individual features; some negative values
are instead associated to global features. The net result of this,
when associated with higher positive values on the correspond-
ing individual feature, is a case where the deviations of a node
from the global trend are essentially given more importance
and therefore amplified. In all cases, the standard deviation
expressing the level of uncertainty associated to β is low due
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IM GW Kad
AUC GM β (st. dev.) AUC GM β (st. dev.) AUC GM β (st. dev.)

ALL .939 .785 .916 .807 .826 .933
Individual daily .938 .779 0.47 (.01) .912 .806 1.04 (.00) .826 .933 0.38 (.00)
Individual flat .914 .756 0.52 (.01) .915 .805 0.17 (.00) .816 .931 0.12 (.00)
Individual weekly .918 .776 0.60 (.01) .896 .803 0.04 (.00) .755 .931 0.11 (.00)
Global daily .583 .617 -0.06 (.01) .522 .659 0.02 (.00) .532 .914 -0.06 (.01)
Global weekly .593 .618 0.29 (.01) .523 .659 -0.01 (.00) .530 .914 0.14 (.01)

IM filtered GW filtered Kad filtered
AUC GM β (st. dev.) AUC GM β (st. dev.) AUC GM β (st. dev.)

ALL .901 .666 .845 .823 .730 .599
Individual daily .890 .652 0.54 (.01) .834 .822 0.71 (.00) .728 .599 0.65 (.00)
Individual flat .815 .611 0.28 (.01) .841 .821 0.18 (.00) .691 .589 0.05 (.00)
Individual weekly .889 .653 0.69 (.01) .802 .819 0.02 (.00) .706 .592 0.20 (.00)
Global daily .612 .510 -0.17 (.01) .539 .762 0.02 (.00) .532 .560 -0.21 (.00)
Global weekly .627 .513 0.32 (.01) .543 .760 -0.01 (.00) .534 .560 0.23 (.00)

TABLE I: Prediction accuracy.
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Fig. 4: ROC curves corresponding to the logistic regression
classifier using a combination of all features for our data sets.

to the amount of data processed, and guarantees that the above
considerations on the relative importance of individual features
are robust.

To understand the achievable false positive/false negative
rates, we plot in Figure 4 ROC curves for our non-filtered
datasets. The classifier has a good overall performance for
IM; in contrast, it is difficult to recognize online users in Kad:
this is because several users go online only sporadically and
rather unpredictably. Conversely, in the GW dataset, for many
users it is the downtime which is sporadic and unpredictable.

In Figure 5, we show the evolution of our error metrics
over the test period, averaged on a running window of one
week in order to discount daily and weekly periodic behavior
– except for GW, where we use a window of one day since the
clearly visible measurement artifacts reported in Section III-B
would otherwise make the plot unreadable. While there is a
decreasing trend – i.e., prediction quality becomes worse as
predictions are made farther into the future – this decrease
is only marginal: it is, indeed, possible to predict node
availability even on the long run.

To summarize, the main results of this evaluation are
two: first, individual periodic availability patterns enable an
effective prediction of user availability even in the long term;
second, the extent to which user availability is predictable is
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Fig. 5: GM as a function of time.

strongly dependent on the nature of the application, and in
particular to the implicit and explicit incentives for availability
offered by each application.

A. Comparison with Mickens and Noble

As discussed in Section II, the method proposed by Mickens
and Noble (MN hereafter) [5] is the most closely related piece
of work, being the only one that explicitely tries to predict
single nodes’ availability.

Before even discussing accuracy, we remark that our method
has two advantages:
• Scalability. Our approach is suitable for large amounts of

data (e.g., the 1.6 billion data points of the Kad dataset).
Conversely, MN requires training and generating predic-
tions for a set of several predictors for each user and at
each timeslot; this requires rather expensive operations
(e.g., matrix inversion) for each data point. Due to these
factors, we found our method to be able to process data
at a speed which is faster by 4-5 orders of magnitude.

• Expressivity. The output of our method is a probability
of encountering a user online, while MN just outputs
predictions without a probability. MN’s prediction of “on-
line” (or “offline”) does not give any estimation over the
degree of certainty of that prediction. As such, it would
be impossible to use MN in the place of our approach in
any of the applications we consider in Section VI.
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With these considerations in mind, we proceed describing
our experiments and comparing the prediction accuracy of
each approach. We implemented the MN approach and used
it with the parameters of [5, Section 4.1]. Due to the limited
scalability of the MN method, we create a training set for both
our proposal and MN where user availability is sampled every
6 hours; we train our model as before, while the training period
for MN is the first 18 weeks (corresponding to periods A, B,
and C of Section IV). For the smaller IM dataset, we evaluate
both approaches on all users and bin them in five availability
classes according to the average ratio of time spent online
in the test period: [0, 0.2) . . . [0.8, 1). Similarly, for the larger
GW and Kad datasets, we create a sample of 100 users for
each one of the ten availability class [0, 0.1) . . . [0.9, 1). For
our approach, we predict that the user will be online when the
predicted probability is greater than 0.5, and offline otherwise.

In Figure 6 on the next page, we show the per-class accuracy
for the predictions in each each of the availability classes.
Besides noting that extreme (e.g., almost always on or off)
cases are easier to predict in both cases, we note that our
method obtains in most cases better performance than MN, in
particular for the most frequent instances (i.e., mostly-on nodes
in GW and mostly-off nodes in Kad). It can be noted that
both approaches involve the combination of various features;
an analysis of the possible benefits obtained by using the
predictors from MN as additional features is in our plans for
future work.

VI. APPLICATIONS

In this section, we report three examples of application use
cases; they should be regarded as proofs of concept, with the
goal of showing how probabilistic availability prediction can
easily and effectively be integrated in a large class of realistic
systems.

A. Node Placement on DHTs

Distributed Hash Tables (DHTs) are data structures for
decentralized systems that store key/value pairs and provide an
efficient lookup function. We consider a DHT holding a large
amount of data (large values and/or very large quantities of
key/value pairs), where information is stored on a long-term
basis. In this case, data is not erased from nodes between
online sessions; hence, data maintenance is required only
when peers abandon the system for good. In such a situa-
tion, reaching high availability for data is very expensive in
terms of resources: it is generally obtained by increasing data
redundancy, which is an expensive strategy because it entails
increased usage of both bandwidth and storage space on peers.
Here, we show how a simple data placement policy informed
by our predictions can result in higher data availability without
requiring increased resource usage.

Mickens and Noble also proposed using availability pre-
diction to optimize DHTs [5]. They considered a case where
each (transient) disconnection triggers data maintenance, and
proposed to alleviate the maintenance load by storing data only
on the most available peers. This approach has the obvious
weakness of overloading the most stable nodes, providing

Algorithm 3 Node identifier assignment in a DHT.
Input: prediction matrix P
Output: mapping M from nodes to identifiers

function PA(n,M):
return average availability on neighbor

sets of n using Equation 2

N ← 1, 000 # number of iterations
M ←mapping with a random id per node
for i ∈ 1, . . . , N:

for each node n:
choose a random node n′

a0 ← PA(n,M) + PA(n′,M)
M ′ ←M switching the ids of n and n′

a1 ← PA(n,M ′) + PA(n′,M ′)
if a0 < a1: M ←M ′

return M

them an incentive to lower their availability. Differently from
such approach, we focus on improving data availability with-
out imposing any additional burden on any peer.

As in Chord [33], persistent node identifiers and hash values
for keys are placed on a logical ring topology, and each
key/value pair is replicated on a neighbor set of n nodes,
whose identifiers are the closest successors to the hash value
of the key in the ring.

In general, node identifiers in DHTs are chosen randomly.
We propose instead a smart policy that maximizes data avail-
ability, i.e. the fraction of time slots in which at least one peer
in a neighbor set is available. For example, it would be wise
to distribute two replicas of the same piece of data on a node
which is often available during the day and another which is
available at night.

For a given neighbor set N and a set of time slots T , we
compute the predicted data availability (i.e., the probability
that at least one node holding a replica is online) as a function
of the prediction P :∑

t∈T 1−
∏

n∈N (1− Pn,t)

|T |
. (2)

It is important to note that, by using the above formula, we
are assuming that the probabilities of being available for two
nodes in the same timeslot are independent. This assumption is
not true when, for example, two nodes are disconnected at the
same time for the same reason, such as a network outage or an
external event, so this might introduce discrepancies between
the predicted and observed availability distributions.

Our procedure for assigning node identifiers (Algorithm 3)
works by starting with a randomly assigned identifier per node,
iteratively considering for each node another random one,
and verifying (based on Equation 2) whether exchanging their
identifiers would enhance, on average, the average predicted
data availability for the involved neighbor sets. If so, their
identifiers (and hence positions in the ring) are exchanged.

This policy can be easily implemented in a decentralized
network, if each node starts with an availability prediction
for itself. Any node can easily find candidates for exchanging
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Fig. 6: Accuracy comparison with Mickens and Noble’s algorithm.

Dataset Random Prediction-based ρ
IM 97.86%± 0.51 [0.77] 99.95%%%± 0.06 [0.11] 392%
GW 99.18%± 0.26 [0.20] 99.54%%%± 0.13 [0.12] 12%
Kad 95.17%± 0.86 [0.77] 96.30%%%± 0.86 [0.76] 37%

TABLE II: Data availability for the DHT simulation.

positions by performing a lookup of a random key in the
DHT; the availability prediction according to Equation 2 can
be computed if each node shares its availability predictions
with neighbors. To avoid performing too many expensive
data exchanges, nodes can start accepting data once their
identifier is sufficiently stable. In addition, this method can
adapt over time as new nodes join and predictions get updated
by continuing to look for candidates for switching positions.
We assume that nodes correctly follow the protocol specified
here: the design of detection and incentive mechanisms is
outside the scope of this work.

Experiments: In this use case, it is recommendable to
only store data on nodes with reasonably high availability:
because of this, we performed these experiments on the three
filtered datasets. We trained our model on the A, B and C
periods, and we executed Algorithm 3 to assign node iden-
tifiers based on the D period predictions. We then measured
predicted and simulated data availability according to the data
placement outcome, repeating each instance of the experiment
100 times. The smallest filtered dataset is IM, with 408 users
in the C and D periods. To have experiments of the same
size, we chose a random sample of 408 nodes for GW and
Kad in each instance of the experiment. We set a priori the
neighbor set size n based on the average availability a of
nodes in period C (0.488 for IM, 0.377 for Kad and 0.939
for GW), choosing the smallest n satisfying (1− a)

n
< 0.01.

This corresponds to a simple uniform availability model to set
redundancy aiming for similar starting conditions in the three
datasets, and it results in n = 2 for GW, n = 7 for IM, and
n = 10 for Kad.

We note that all three datasets can be representative of
systems where a DHT is run: an instant messaging application
to look up data about users, a file-sharing application, or a P2P
application running on high-availability set-top-boxes [25].

In Table II we show predicted and real data availability
(i.e., the measured percentage of time slots in which at least a
replica is online, averaged over each neighbor set) on the test
period D (see Section IV). We report the average availability
and standard deviation between instances of the experiment.

In square brackets, we show the average difference between
predicted and real data availability for the whole system.

From Table II, we note that our optimized data placement
strategy consistently performs better than the standard random
placement of nodes in a DHT; however, the increase in
availability varies between the different datasets: it is most
significant in IM, where the average time that a piece of data
is unavailable drops from around 3.5 hours to five minutes per
week; it is instead less impressive in Kad, where unavailability
decreases from around eight to six hours per week. We
attribute this to the difference between the datasets: when
behavior is strongly periodic and easy to predict, optimized
data placement results in much better availability. However,
a decrease in unavailability by around a quarter is still de-
sirable, in particular because it is obtained without any extra
requirement on any node.

Reaching high availability in online storage is very expen-
sive. Using the common availability model that assumes homo-
geneous storage nodes and independent failures (e.g., [11]) the
required redundancy for replicated storage is directly propor-
tional to the “number of nines” for required data availability.
More formally, in that model data availability is computed as
a = 1− (1− an)r, where an is the availability of any storage
node and r is the replication factor. It is easy to derive [34]
that in order to increase data availability from a0 to a1, the
replication factor has to increase by a ratio of

ρ =
r1 − r0

r0
=

log(1− a1)

log(1− a0)
− 1.

In order to help interpreting the results of our evaluation, in
Table II we provide the values of ρ, which is determined
solely by the availability values observed in our trace-driven
simulations, and can be interpreted as an “equivalent redun-
dancy increase”: i.e., the ratio of additional redundancy (and
corresponding overhead in terms of bandwidth and storage
space) that should be injected in the system in order to obtain
an equivalent increase in availability. The improvement in IM
can be considered as equivalent to an almost 400% increase in
redundancy; even in the less impressive GW and Kad cases,
the value of ρ is far from negligible in terms of resource
economy.

Based on the numbers in square brackets in Table II, we
also notice that there is a reasonable match between predicted
and real availability values. This would not happen if there
were strong dependencies between availabilities of different



11

Algorithm 4 Data placement for F2F storage.
Input: prediction matrix P , per-node capacity k
Output: mapping M such that p1 ∈ M(p2) if p1 holds data
for p2

function PA(F ):
return predicted availability

for data stored in friend set F

function ∆ (F, n):
# increase in availability due to n
return PA (F ∪ {n})− PA (F \ {n})

# random initialization of M
for each node n:
F ← k random friends of n
for each f ∈ F:
M(f)←M(f) ∩ {n}

# optimization
while true:
c←false # have changes been made?
for each node n:
F0 ← friends of n such that n ∈M(f)
f0 ← arg minf∈F0

∆ (M (f) , n)
F1 ← friends of n such that n /∈M(f)
f1 ← arg maxf∈F1

∆ (M (f) , n)
if ∆ (M (f0) , n) < ∆ (M (f1) , n):
c←true
M (f0)←M (f0) \ {n}
M (f1)←M (f1) ∪ {n}

if not c: return M

nodes (e.g., two users disconnecting at the same time because
of the same external event); as such, we believe the hypothesis
of independence we used in Equation 2 to be sensible.

B. Data Placement for F2F Storage

We now show that our probabilistic classifier can be used to
drive data placement in other declinations of P2P storage. We
now consider a use case where data is still stored on users’
machines, and we still want to optimize data availability by
ensuring that at least one replica of the data is online; however,
we have more constraints on data placement.

Friend-to-friend (F2F) storage is an interesting instance of
P2P storage. In these systems, nodes are constrained to store
data only on machines owned by “friends”, with recipro-
cal real-world trust bonds. These trust relationships can be
leveraged to obtain guarantees of dependability, privacy and
security, since trusted users are unlikely to behave maliciously,
selfishly or anyway deviating from the expected behavior [35],
[36].

In our simplified simulation, each node has to store a data
object of unitary size on friend nodes, and has a storage
capacity of k units, which is not sufficient to store the data
for all the friends. Similarly to what we propose for DHTs
in Section VI-A, we optimize the choice of nodes for which
to store data in order to enhance the overall data availability.

Algorithm 5 R&A algorithm for F2F storage.
Input: availability matrix A, per-node capacity k
Output: mapping M such that p1 ∈ M(p2) if p1 holds data
for p2

function C (n1, n2): # correlation
return

∑
t∈T (1 if An1,t = An2,t, else 0)

# free storage per node
S ←mapping s.t. S(n) = k for each node n
while

∑
n S(n) > 0:

for each node n:
F ←friends of n s.t. S(r) > 0
if |F | = 0: skip to next n
r ←random element of F
M(n)←M (n) ∪ {r};S(r)← S (r)− 1
if |F | = 1: skip to next n
a← arg minf∈F

∑
t∈T C(r, f)

M(n)←M (n) ∪ {a}; S(a)← S (a)− 1
return M

Dataset R&A Prediction-based ρ
IM 99.64%± 0.09 99.90%%%± 0.04 [0.04] 23%
GW 97.09%± 0.52 99.45%%%± 0.17 [0.13] 47%
Kad 95.89%± 0.74 96.34%%%± 0.91 [0.67] 4%

TABLE III: Data availability for the F2F simulation.

The predicted data availability can be computed again from
Equation 2 on page 9, using the set of friends storing replicas
of a nodes’ data object as the neighbor set N .

Algorithm 4 optimizes data availability as follows: each
node starts by storing the pieces of data of a random subset of
n friends; afterwards, iteratively, each node considers erasing
the piece of data that would impact less its predicted avail-
ability, and exchanging it with the one that would improve
most its predicted availability. If the net effect on system
availability is positive, then the switch is performed. The
algorithm continues until it stabilizes, when no pieces of data
are switched anymore.

Assuming once again that nodes have access to their own
availability predictions and share them with friends, this al-
gorithm is simple to implement in a decentralized system. In
this case, some level of security is guaranteed by the fact that
all communication happens among trusted peers. Exchanges
of data can remain virtual until the algorithm has reached
convergence, sparing the cost of needless uploads of data that
will be subsequently erased.

Kermarrec et al. have proposed an availability-aware data
placement policy for peer-to-peer storage systems called
“R&A” (Random & Anti-correlated) [14], which aims to store
data replicas on sets of nodes whose availability is pairwise
anti-correlated. We implemented that policy in our system
with constraints on resources and on eligible data holders
(Algorithm 5).

Experiments: In order to have simulation results that
are comparable with the DHT experiments, we have defined
parameters that are analogous to the ones described in the
previous section. We adopted the three filtered datasets, and



12

samples of 408 nodes for each run of the experiment; the
k value describing the storage space on each node is set
analogously to the redundancy value for the DHT simulation
(k = 7 for IM, k = 2 for GW, and k = 10 for Kad). To
create a synthetic model of a social network, we generated
a network according to the Watts-Strogatz small-world model
[37], with average degree (i.e., number of friends per user) 20
and rewiring probability 0.5.

The results on data availability for this setting are reported
in Table III on the previous page. By comparing it with Table II
on page 10, we note that without the proposed approach we
obtain a slightly lower availability with respect to the DHT
after optimization; we attribute this to the lower flexibility in
this scenario: while a node can take any position in the DHT,
it can only store data for friends in the F2F case.

The R&A placement strategy suffers from the fact that this
approach does not allow re-allocating data when poor choices
have already been made, in particular for the GW case where
a few pieces of data are replicated 0 or 1 times. By adopting
a more accurate model of data availability and by reclaiming
already allocated space in order to use it better, our proposal
obtains noticeably better performance.

Discussion: The two scenarios of DHT node placement
and F2F data placement bear strong similarities with each
other. In both cases data availability can be modeled as a
function of node availability and a design choice (respectively,
choice of node identifiers and data placement). Probabilistic
availability predictions make it easy to create cost functions
such as Equation 2, which is fed to optimization algorithms.
We point out that such an approach can be extended in several
ways, including for example erasure coding, plus different
application settings and storage constraint variants.

We evaluated local optimization algorithms, which optimize
for predicted availability by changing only part of the solution
at a time; they can get stuck in local optima. The study and
evaluation of more elaborate techniques to find better solutions
is outside the scope of this work, and a direction for further
research.

C. Newsfeed Pre-Loading
We now move away from the peer-to-peer use cases, and

consider a case in which we predict the availability of users
behaving as clients; in this case, we use availability prediction
to drive pre-loading of data for users that are most likely to
connect shortly.

On social networking websites, users are often presented
with some sort of “newsfeed” personalized page including
recent updates by friends or followed contacts. Generating
such pages involves serious scalability problems, since – due
to the sheer size of databases involved – information about
contacts is scattered across a large amount of servers in a
data center; creating a newsfeed page requires obtaining data
from a large fraction thereof. Hence, two approaches have
been discussed [38] to address this issue: pull-on-demand and
push-on-change.

The pull-on-demand approach queries all the relevant
servers when the user requests a page: this approach re-
quires pulling information from a large number of servers

Fig. 7: Ratio of requested newsfeeds.

concurrently, which may result in congestion and ultimately
high latency in returning the result. It could be possible to
mitigate this problem with an additional layer of caching,
which would however be an expensive solution having cache
eviction problems [38].

Alternatively, with the push-on-change approach, a set of
servers responsible for serving newsfeeds are sent user updates
when they are generated. With push-on-change, information
is already in a single place when the newsfeed is requested,
making it more efficient to serve. Clearly, this approach entails
data duplication, since each update generated by a single user
will be sent to the servers responsible for each of its contacts.
With push-on-change, newsfeeds are essentially pre-loaded for
all users, whether or not they access the system.

Without the pretense of providing a complete system design,
we sketch a hybrid solution combining both behaviors. Pull on
demand is the default, as many users will connect sparingly
to the system and generate few, albeit expensive, requests; the
push-on-change approach is enabled for the periods of time
in which a user is predicted to be more likely to connect.
This approach allows to increase efficiencies for the most
predictable accesses, while limiting the data duplication that
would be generated by enabling push-on-change for all users.

Since the predicted availability for users varies over time,
the set of users who are enabled for push-on-change uploads
also varies; when a user becomes enabled for profile pre-
loading, old updates by contacts will also need to be sent
to them.

Experiments: We consider a system that enables push-
on-change mode towards n users that are not connected at
the moment. For each timeslot in the IM and Kad traces
(where there are frequent connections and disconnections in
user traces), we enable push-on-change for the n disconnected
users that are predicted to be most likely to connect in the
following one. A higher availability ratio for them in the
subsequent timeslot corresponds to better performance for the
system. We compare this to a baseline approach that constantly
enables push mode for the n disconnected users that were most
available in the training period C.
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The prediction-based approach, by incorporating periodic
availability patterns in the choice, outperforms the baseline;
the difference is higher in the IM dataset – where user behavior
is more regular – than in the Kad dataset. The first few users
chosen by both approaches actually have a low probability of
coming online. This is because users with very high predicted
availability that are offline are likely to be always-on nodes that
get disconnected for rather long periods of time, probably due
to failures rather than ordinary user behavior. This would be
taken into account by an approach that differentiates between
ordinary and extraordinary downtimes which is a possible
topic for further work.

VII. CONCLUSION

Motivated by the need of a range of Internet applications to
address the problem of resource provisioning, the main focus
of our work was to design an efficient model to produce prob-
abilistic, long-term forecasts of user uptime. Having realized
that user connectivity patterns are regular and correlated, we
built a range of features and combined them with logistic
regression, to estimate the probability for each individual
user to be online in a future time instant. By adopting a
probabilistic treatment of logistic regression, we were also able
to assess the importance of individual features in predicting
user availability.

We have shown that our method is scalable and we validated
it with trace-driven experiments for three different Internet
applications. In particular, we assessed our predictions on six-
month long datasets comprising a large number of users, in
order to validate our methods on real scenarios. Our study
shows that prediction quality is variable across datasets, and
that the best results were obtained for user-traces characterized
by strong periodic behavior. Finally, we demonstrate that the
prediction accuracy of our model fit our goals: prediction
quality decreases only slightly in the long term.

In Section VI we also presented three representative ap-
plication scenarios and we showed that they all consistently
benefit from the ability to predict user online availability.
Using simple probabilistic models and trace-driven numerical
simulations, we obtained substantial improvements in terms of
the most important performance metrics of each application
domain. Essentially, we showed that current Internet applica-
tions can incorporate and benefit from the predictions of future
user availability with little or no cost.

We focused on availability prediction because traces were
available to evaluate it; there are, however, other types of
user behavior that are very interesting to predict. Scellato
et al. [18] and Traverso et al. [19] show that social and
location-based features can effectively be used to drive caching
and pre-fetching for video serving systems. We conjecture
that a predictive and probabilistic approach similar to ours
could be applicable to a larger class of use cases where other
types of user behavior in addition to connectivity are taken in
consideration.

In conclusion, this work shows that the availability of users
is predictable to a large extent and with good accuracy, and
that applications might benefit from anticipating, rather than

reacting to user demand. Human-generated workloads go be-
yond simple intermittent availability patterns: we believe that
the ability to predict what a user will do with an application,
in addition to when, is a challenging and useful topic that can
enable better system design.
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