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Abstract—Optimization of a point-to-point (p2p) multiple- However, EH poses a new design challenge as the energy
input single-output (MISO) communication system is considered sources are typically sporadic and random. The main chgdlen
when both the transmitter (TX) and the receiver (RX) have jiag in ensuring the Quality of Service (Qo0S) constraintthef
energy harvesting (EH) capabilities. The RX is interested in network given the random and time varying energy sources
feeding back the channel state information (CSI) to the TX to ; g ) i ying - ay :
help improve the transmission rate. The objective is to maximize This calls for the intelligent management of various paramse
the throughput by a deadline, subject to the EH constraints involved in a communication system.
at the TX and the RX. The throughput metric considered is Recently, a significant number of papers have appeared
an upper bound on the ergodic rate of the MISO channel gy,qying the optimal transmission schemes for EH commu-

with beamforming and limited feedback. Feedback bit allocation . i t der diff t fi di h
and transmission policies that maximize the upper bound on MNCaU0ON SySIEMS under dilferent assumptons regardirg

the ergodic rate are obtained. Tools from majorization theory Nnode’s knowledge about the underlying EH process. Offline
are used to simplify the formulated optimization problems. optimization framework deals with systems in which non-
Optimal policies obtained for the modified problem outperform  causal knowledge of the EH process is available. Within this
the naive scheme in which no intelligent management of energy frame work, optimal transmission schemes are studied fr th
is performed. p2p fading channel [4], broadcast channel [5], [6], [7] and
Index Terms—Energy harvesting, Limited feedback, MISO, relay channel [8], [9]. See [10] for an extensive overview.
Offline optimization. To the best of our knowledge, a common aspect of all
prior works on EH communication networks is that the TX
|. INTRODUCTION is assumed to have access to perfect CSI. Knowledge of
Powering up terminals in communication networks byhe CS| at the TX is beneficial in designing the optimal
renewable ambient energy reduces the carbon footprint @fannel adaptation techniques and the TX filters in multi-
the information and communication technologies, which cafhtenna systems. However, recent studies have demodstrate
no longer be neglected with the exponential growth in th@iat although feedback enhances the system performance,
number of communication devices. Another advantage of BHedback resources, namely power and bandwidth, are imite
technology is that, it increases the autonomy of battery-rang must be spent wisely [11]. As a result, an important
communication devices. In traditional wireless networkides question arises: How do the EH constraints affect the design
get their energy from the power grid by always or periodicallof feedback enabled wireless networks?
connecting to it. While it is easy to connect the terminald® t | this paper, we study the optimization of a feedback
grid in some networks, in others, such as sensor networksgiapled EH MISO channel, where feedback is used to improve
cannot be done once after the deployment. Therefore, in sygB rate through array gain. The system model and the main
networks a node’s lifetime, and hence, the network lifefim@ssumptions in this paper are given in Section IlI. In Sectio
is constrained by the limited initial energy in the batteryy, we consider the optimization of the feedback policy unde
Providing EH capabilities to the communication nodes is gt constraints at the RX, while the TX is assumed to have
attraCtive Solution to the network ||fet|me problem [2] Ana constant power Supp'y The motivation iS to address the
EH node can scavenge energy from the environment (typi¢gfiowing: In the case of EH, the available energy at the RX
sources are solar, wind, vibration, thermal, etc.) [3].WMBH  yaries over time. Should the RX feedback same quality of CSI
nodes in the network, in principle, one can guarantee peapetat || times? If so, can the CSI feedback quality be improved
lifetime without the need of replacing batteries. by using more bandwidth in the low energy scenario? In the
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the element at théth row andj-th column of matrixD, and Harvested Harvested

|8| to denote the cardinality of the sBt The set of integers Enerey Enersy
from m to n, m < n, is represented bln : n]. The algorithm l
with name “Algo” is represented as [output arguments]= Algo E:jffj Energy
(input arguments). A circularly-symmetric complex Gaassi - Channel " puffer
distributed random variablg with zero mean and varianee L BN o s

is denoted byy ~ CN(0, 02). A ‘

Channel estimate h

[I. PRELIMINARIES
. . . . e Figure 1. MISO channel with feedback, where both the TX ansl RX
In this section, the basic notion of majorization is introéld  narvest and store ambient energy.

and some important inequalities on convex functions that ar
used in this work are stated. The readers are referred to

[12], [13] for a complete reference. We start by stating the el Binterl €u e el el
Edmundson-Madansky’s inequality.
Theorem 1{12] If f is a convex function and is a random S RN Y P SR L
variable with values in an intervak, b], then 1 1 i 4
%Tﬁ
1% p—a
E [f (33)} < mf (a) + b—a f (b) ’ Figure 2. Energy harvesting time frame structure.

wherey is the mean of.
Majorization theory formalizes the notion that the compo- [1l. SYSTEM MODEL
nents of a vectorr are “less spread out” than the components
of a vectory.
Definition 1: Let ¢ = [21,...,2Zn], Y = [Y1,---,Yn],
z,y € R" and letz(;) denote thei-th largest component of
x. Thenz is said to bemajorizedby y, denoted byr <y, if

We consider a p2p MISO fading channel as shown in Fig. 1,
where both the TX and the RX harvest energy from the
environment. Each node is equipped with an individual energ
buffer, i.e., a rechargeable battery, that can store thallioc
harvested energy.

l l
< . R _
;%) - ;y(l)’ viellin=1] A. Energy Harvesting Model

n n The total observation time is divided int6 equal length EH
Z T(i) = Z Y(i)- intervals. At the beginning of the-th EH interval k € [1 : K],
i=1 =1 energy packets of sizel, ¢}, units arrive at the TX and the
Definition 2:[13, 2.A.1] Ann xn matrix D with elements RX, respectively. At each node, this energy is first storeanin

d; ; is doubly stochastidf infinite size energy buffer, and used only for communication
’ purposes, i.e., TX sending data, and the RX feeding back the
dij >0,  Vi,je[l:n], CSI. We assume that alf,, ¢’s are known in advance by both

n _ n ‘ terminals. This model is suitable for an EH system in which
Y dij=1,Vjel:n]and» di;=1,Vi€[l:n]. the time-varying harvested energy can be accurately peatlic

i=1 j=1 [10].
Theorem 2{13, 4.A.1, 4.B.1] Forz,y € R™, the following

conditions are equivalent: B. Communication System Model
o« T =21.

) Each EH interval consists df data frames, each of length
« « = yD for some doubly stochastic matri2. T channel uses. We assume a block fading channel model. The
» For all continuous concave functions : R — R, channel is constant durin channel uses of each frame, but

Soim1 9 (@) > 300 g (i) changes in an independent and identically distributect().i

Definition 3:[13, 15.A.2] LetX andY be m x n real fashion from one frame to another. The time frame structuire i

matrices. TherX is said to bemajorizedby Y, written X < shown in Fig. 2. The TX had/ > 1 antennas, while the RX

Y, if X = YD, where then xn matrix D is doubly stochastic. has a single antenna. The received signal in a given channel
Theorem 3:[13, 15.A.4] LetX andY be m x n real use is given by

matrices. Then,X <Y if and only if y = hMws + 1, (1)
zn:g (x¢) > zn:g (%) whereh € CM*! represents the vector of channel coefficients
e A A from TX to the RX with i.i.d.CN(0,1) elementsw € CM*!

_ _ denotes the beamforming vector, the input symbol maxirgizin
for all continuous concave functiogs: R™ — R; hereaf and  the achievable ergodic rate in theth EH interval iss ~
y; denote thei-th column vector ofX andY, respectively.  eN(0,p,), andrn ~ CN(0, 1) represents the noise at the RX.



C. Feedback Model D. Optimization Problem

We assume that the RX perfectly estimates the channelThe problem of maximizing the sum throughput by the end
state at the beginning of each data frame, and feeds batkhe K-th EH interval can be formulated as
the quantized CSI to the TX within the same frame. In the
k-th EH interval, the frame structure is as follows: The RX K
in 7, channel uses sends the CSI through a feedback channelmax ZRk (5a)
(uplink) which is modeled as an additive white Gaussianeois **'**"™ =1
(AWGN) channel. In the remaining” — 7, channel uses, ! !
TX sends data to the RX (downlink) exploiting the obtained S.t. qui < Zef, Viell: K], (5b)
CSI. The feedback model represents the Time-Division Duple i=1 i=1
(TDD) system in which uplink and downlink use the same

l l
band in a time-sharing fashion, but the communication de- LT pi<) el VIe[l: K], (5¢)
vices are not self-calibrated, and hence, induce non-@cah i=1 =1
effects [14], [15]. In the above model, although the feeétbac 7 € [0,T), pr >0, andg > 0,Vk € [1: K].
overhead incurs a cost in the downlink bandwidth, a similar (5d)

trade-off in the resource allocation between the CSI feeklbaThe constraints (5b) and (5¢) guarantee énergy neutrality
quality and uplink data rate also arise in a Frequency-imis of the system, i.e., at each node, energy consumed can not be
Duplex (FDD) system [15]. Hence, the analytical resultmore than the energy harvested till that time. Also note that
obtained in this paper are applicable in general settingd, ar, impacts the achievable rafe, in each EH interval.
for instance, can be used to address the trade-off betwebn CSComing up with simple algorithms to solve the optimization
quality and effective data rate in an FDD system. problem is desirable in EH networks as the nodes may not have
In the k-th EH interval, quantization of the channel statéghe computational and energy resources for running complex
is performed using a codeboak, known at both the TX optimization algorithms. However, the ergodic rate exgie@s
and RX. The receiver uses Random Vector Quantizati@ged in the above optimization problem is not in closed form
(RVQ). The codebook consists 8f -dimensional unit vectors and offers little insight into the convexity of the problem
Ce 2 {fi,..., foor }, Whereb, is the number of bits used which is required to reduce the complexity of optimization.
for quantization. The RX chooses the beamforming vect®his motivates the use of convex bounds on (4) as the
according tow, = arg max \ﬁ”f|2, where h £ - objective function in the following optimization problems
Solving these modified problems provides an upper bound on
e throughput. Since the constraints in the original arel th
modified optimization problems are the same, the solution fo
the modified problem is also feasible in the original problem

compared to the channel coherence time (i.ds very large).
As a result, the achievable ergodic rate in kAth EH interval

's given by and if used in evaluating the exact rate expression in (4), we

T obtain a lower bound on the throughput. In some settings, we
Re=(1-)E log, [ 1+ —25 _||h|?y, -

k= T ) “lIRlZ vk | 1082 (1-%) k|1 show that the bounds used are very close to the ergodic rate.

2) Before tackling the above problem, first, we consider a
wherey,, = |iLHwk|2_ Note thatv, and||k||? are independent special case in which only the RX harvests energy. Later, the
[16]. By using the AWGN feedback channel model thg@eneral case with both the TX and the RX harvesting energy

number of feedback bits;, can be related to the energy usedp studied.

by the RX, qx, and the number of channel usesas follows: IV. EH RECEIVER

br = 71 log, (1 + qk2> , (3) In this setting, the RX harvests energy from the environ-

kO ment, whereas the TX is connected to the power grid so that

where o2 is the noise variance in the uplink. For analyticait has a fixed power supply at all times. Therefore, there are

tractability, we neglect the practical constraint thatshould no EH constraints at the TX, and constraints (5c) can be

be an integer. Using the ergodic rate expression given in [ignored. However, there is now a constraint on the average
Equation (27)] and (3), the ergodic raf&, = R (pr,qx,7x) transmission power at each data frame of i EH interval
is found to be i.e., pr < p,Vk. The expected value;, is given by [16], [17]
T - Elu] = 1 — 20 (20, 2 ©6)

Rk:(l—?)logge ekaEl-H(pk)_ ] =1~ "M_1)

=0

where S (z,y) denotes the beta function. Using the guantiza-
1—(1— )Mt N %e<%)EM ) P vy tion error bound in [17, Lemma 6], (6) can be boundet as
L
2

—

0

Vi

Vi
Vg M-1 —by,
E[Vk]gy}jél—( >2Ml. @)
1- 7k Tk M
where p, = ( T),N,C = <1+ q’“z) ,and E, (x T - _ . . , .
Pk TkO This bound is universal in the sense that it applies to @it quanti-

floo e~ ®tz~"dt is then-th order exponential integral. zation of an isotropically distributed vector, not neceibgdimited to RVQ.

(4
)



Applying Jensen’s inequality on (2), substituting (7) a8), ( wherep is the power constraint at the transmitter.
and using the fact that |k||> = M, an upper bound on the As the objective function is monotonic ig; and py,

ergodic rateR? £ R* (px, qx, %) i Obtained as

— T
peM M—-1 e \MT

1- 1
k M + Tk0'2 ’

)

Ry =tplog, |1+

wheret;, £ (1 — Z¢).

We now illustrate the tightness of the upper bound. Ap-
R, can be lower

plying the Jensen’s inequality on (2R} —
bounded as

R — Ry >ty log, <1 + ?Mu}j) —
g 9)
Lk Ejjp2 logy (1 + 22 |n)? E[Vk]>

Since (2) is a concave function of andz/k € [0, 1], applying
Theorem 1 on (2), we have

R By tog, (1+ 2P ) Bl (10)

Now using (10),R}: — Ry can be upper bounded as

RY — Ry < ty,log, <1 + f’“My;f) _
k

Pk
P ) Bl
k

Since bothlimy, , v} = 1 and limy, o E[vg] = 1 [16],
and using (9) and (11), we have,

11)
tr EHhHQ 10g2 (1 +

AR, 2 lim R} —

ty + pi M
m Ry =ty EHhW log, ( kT Pk )
1‘ o0

tr + p ||
(12)

Further, for all feasible, in the low power regime,

the constraint in (15b) must be satisfied with equality for
I = K, and the first constraint in (15¢) must be satisfied with
equality, i.e.,pr = p,Vk; otherwise, we can always increase
qx,pk, and hence, the objective function, without violating
any constraints. Now it remains to optimize over the vagabl
qr and 7.

The feasible set is represented as

5 = {q, 7|qr, 7. satisfy (15b), (15dyk} , (16)

whereq = [¢q1,...,q9x] andT = [r,...,7k]. To show that
the above problem is a convex optimization problem, we make
use of the following lemma.

Lemma 1:If the function f (z,¢) : R2 — R, is concave,
and g (y,z) : R2 — R, is concave and monotonically
increasing in each argument, then the functiofx,y,t) =

(1-%)g (ﬁ, w) is concavey (z,y) € R2,t € [0,T).
Proof: The proof is similar to that of showing the
perspective of a concave function is concave. See Appendix.
[ ]
Proposition 1: The objective function of the optimization
problem (15) is concave.
Proof: See Appendix. [ ]
Since the objective function in (15) is concave and the
constraints are linear, it has a uniqgue maximizer [18]. Ysie
concavity of the objective function, we show that the optima
energy allocation vector is the most majorized feasiblegne
vector.
Proposition 2: The global optimum of (15) is obtained at
(g*, "), whereg* < q,V(q,7) € §, and 7} is the solution
of the following equation

ORY

lim ARy = 0, (13) Br () = O VR E L K] (7
ot the i powez;kr—;glme Proof: Co_ns_ider_ thg following equivalent form of (15),
where the optimization is performed in two steps.
Jim ARy =ty (logy M = Fjjuyj2 log, [|h][*) a4 max U (q) StV (q,7) €3, (18)
< logy M — Ejjp2 log, ||R||*. !
From the above analysis, it can be seen that when the RX H\é{%ereu q) is obtained by
enough harvested energy to send large number of feedback ﬂ(q) = max U(g,T) st.V(g,T) €F. (19)

bits, in the low power regime the bound is tight, and in the
high power regime the difference is bounded by a constant.SincelU is a concave function over the convex ggtthe
For example, it is0.1958 for M = 4, and also note that function U (q) is concave, where the domain tfis the set
lim /o0 logy M — Ejjpj2 logy | [R]|* = 0. § = {ql (g, 7) € 3} [18, 3.2.51.U = Y i, RY is continuous,

Using (8) as the objective function, the modified optimizadifferentiable and concave in, < [0,7'). Furthermore, for
tion problem can be written as follows, givengy, R} approachesog, (1 + p) and0, ast, approaches

% 0 andT, respectively. Therefore, the uniqgue maximizer of (19)

U = Z R lies in [0,7"), and it is obtained at

max (15a)
Pk,qk Tk
k= u
' oU s = aRk |T =0, Vke[l: K]. (20)
ary, T k
s.t. L i < Viell: K 15b )
Zq Ze b (15b) From above, as; is only a function ofqy,
Pk s D, andpk >0, Vk € [1: K], (15¢) K
7 €[0,T), and g, >0, Vke[l:K], (15d) q) =) R (21)
k=1



, o Input : EH intervalsK; Harvested energye; }
Output: Energy allocatioro*, Energy band indices
o —+—SNR 20 dB| | S—{B B B
= 0,51, |8\}
e st /1 initialization
g By :=0;
T 4[]
5 L fori=1:K do
52 ' ] for k=K:-1:(B;—1+1)do
2 ko v
2 ] () of = 221 e qp 41, k)
. ] it S0 or <Y e l=1,.., K then
B; =k;
% 10 20 30 40 50 60 70 80 Save{of, s, OZ}
Energy allocated in the k-th EH interval (q;) break.
end
Figure 3. Optimal number of channel uses for sending feedback. end
if B, == K then
where Ry £ R"(qx) = R“(qr, 7 (ax)). Using (21) and e\ndbreak,
Theorem 2,U(g*) > U(q),Vq € §. Finding the optimal
h b : end
energy allocation vectag* under the EH constraints turns ou

be a well known problem, and the algorithm to constiicis Algorithm 1. Optimal Energy Allocation (OEA) algorithm
given in various works [19]-[21]. The proof that the algbnit
constructs the most majorized feasible energy vector isngiv
in [21]. Since the optimal energy allocation vectorgis, the to send feedback in this interval. Therefore, without los o
optimal 7* is obtained by (17). m optimality we only consider EH profiles wheeé > 0. Other-
A brief description of the algorithm tailored to this work iswise, if there is an EH profile such thet = 0,k € [1 : m—1],
given next, while the details can be found in [19]-[21]. Therthenp;, = 0,k € [1 : m — 1] due to the constraints in (5c).
is no closed form expression for the solution of (17), hende these intervals the RX simply accumulates the harvested
we resort to numerical methods to obtaih. Fig. 3 shows the energy, and without loss of optimality we can have a new
behavior ofr} as a function of the allocated energy. EH profile withef = el . _,,Vi e [1: K —m+1], and
el => ey andel =el, . ,Vie[2: K—m+1] for
further analysis.

The ergodic rate upper bound in (8) is not concave, but

From Def'F““.O” 1, we can see tha‘t' the componenfs @bncave in each variable given the other variables are fixed.
the most majorized energy vector are "less spread out" t obtain a simple algorithm and an upper bound on the

any other feasible energy vector. Therefore, the algor'thfﬁ'roughput, we follow a similar approach as in the previous

esse_ntially tr_ies_ fo make the energy vector as equalized 2tion, and use a concave upper bound on (8) as the objective
possible. This is done by spreading the energy to fuwf&nction for throughput optimization.

intervals. However, note that the energy arriving in later _, . . . . . .
intervals cannot be spread to earlier intervals due to the EH-I._hIS bound is pbt_alned by using a _hypothetlcal system in
; ; : . which the transmission power iswatt higher than the actual
constraints. The Optimal Energy Allocation (OEA) algonith transmission power of the svstem. whichuis/t.. Pludain
given in Algorithm 1, divides the EH intervals int§| energy P y ' DB/ L 9ging

L . N
bands whose indices form the s&t= {B,, By,... Bjs|} this into the upper bound in (8), a new upper bouf =

A. Optimal Energy Allocation

" R (py,qr, ) On the ergodic rate is obtained:

where B; < Bj;,Vi < j, Bp = 0, and Bjs] =

The i-th energy band contains the EH intervals with indices

k € [B;—1 + 1 : B;]. Moreover, the optimal allocated energy R — ¢, log, <1 + <1 + p’“) f’“) , (22)
values in each EH interval belonging to ti#h energy band te ) t

are equal, and denoted ky,,. The energy vectog* obtained

£ g1 r i iag "
by [¢*, 8] = OEA(BK, {e] /LT}), has the following properties: wheret, £1— 7 and fi, & M — (M — 1) (1 n Tff;z(P T
(Pl) ¢t =q;; = %;iigl? Vk € [Bi_1+1: By We now illustrate the tightness of the upper bound in (22) in
i i—Bi—1) v ¢ . . .

(P2) The entrieg, are strictly monotonic, i.eqf,, < ¢y < the low and high power regimes. For all feasibig p; and

< anD. qr, we can see thai < ¢, <1 and1 < f;, < M. Consider

2+t
V. EH TRANSMITTER AND RECEIVER R’ — R =t log, (’mm) — tr log, (tr)
bk + ik

In this section, we consider the general case where both the (23)
TX and the RX harvest energy. Note that if the TX is silent ilNote that (23) is decreasing j, for fixed 7, and g,. Since
the k-th interval, i.e.,pr = 0, there is no incentive for the RX 7, fr are bounded, for fixed;, and ¢z, in the low power



regime where R¥® £ R (pi, qi) = R (pr, i, 77 (Pres ai))-

lim R™ — RY = t,log, 1+ Jr In order to g.et an |n§|ght on_how the opt]mgl sollut|on of
pr—0 t (24) (27) may look like, consider a simple scenario in which there
<log, (1+ M), is only a sum power constraint at the TX and the RX, i.e., the

constraints in (26b), (26¢) has to be satisfied for dniy K. In
this case, by Jensen’s inequality, the uniform power atlona
lim Ry® — Ry = —txlog,(ty) < 0.5. (25) at the TX and the RX is optimal However, due to the EH

o constraints, this may not be feasible. Using this intuitioe
From the above analysis, it can be seen that, (23) decreiaseéaz?1 see that the optimal policy tries to equalize the powers a

the power IS mgreased, a”f’ itis bounded by,""_l constant in trtﬁ%ch as possible, while satisfying the EH constraints. Next
h'gh_ power regime. BY using (22), the modified throughp%e consider the case in which the EH profiles at the TX and
maximization problem is formulated as the RX are similar, and show that the optimization problem is
considerably simplified.

and in the high power regime,

Pk qk>Tk

K
max Uy =Y Ry (26a)
k=t A. Similar EH Profiles

! 1
s.t. LZ% < Zef,w el: K], (26b) The EH profiles are similar in the sense that the most
i=1 i=1 majorized feasible vectors obtained from the EH profiles of

the TX and RX,p* and ¢*, have the same structure, i.e., if

l l
LTY pi<) el Vle[l: K], (26¢) pr = ¢1,Vi € [m : n, theng} = cp,Vi € [m : n] for some
i=1 i=1 constantsc;, c; > 0. We now give a formal definition.
7 €[0,T), pr >0, & >0, andVk € [1: K]. Definition 4: By using the OEA algorithm, lefg*,8,] =

(26d) OEA(K,{e;/L}) and [p*,8;] = OEA(K,{e!/LT}). EH
Since the objective function is monotonic i and p;, the profiles at the TX and the RX are said tosienilarif 8, = 8;.
constraints in (26b) and (26c) must be satisfied with equalit From Section Il, we can see that the definition of majoriza-
for | = K, otherwise, we can always increagg, px, and tion for the vector case does not directly extend to the matri
hence the objective function, without violating any coastts. case. If OEA algorithm is used at the TX and RX separately,
The feasible set is represented as we get the most individually majorized power vectors, which
N _ in general may not be the optimal solution of (27). However,
3 =1(p,q, 7) pk, qx, 7. satisfy (26b), (26¢) and (26djk}, \ve now show that if the EH profiles are similar, the above

where p = [p1,...,px], ¢ = |q,....qx] and + = mentioned approach is indeed optimal.
[T, TK] Proposition 4:1f the EH profiles at the TX and the RX are

Proposition 3: The objective function in the optimizationsimilar then(g*, p*, 7*) is the global optimum of (26), where
problem (26) is concave. q* < q,p* <p, V(g,p,T) € J, andr; is the solution of

Proof: See Appendix. u SR
Since the objective function in (26) is concave and the con- k. (viairt) = 0, Vke[1: K]. (31)
straints are linear, it has a unique maximizer [18]. Conside Ori \PhtieTe
the following equivalent form of (26), where the optimizati Proof: See Appendix. [ ]
is performed in two steps.
max Uy (p,q) stV (p,q,7) €3, (27) B. Different EH Profiles
- ma Unfortunately, we could not find a simple algorithm to solve

wherelU, (p, q) is obtained by (26) in a general setting where the EH profiles are not similar

(28) In (30), if one variable is fixed, optimizing over the otheriva

able has directional or staircase water-fillinginterpretation
Sincell; is a concave function over the convex 3gthe func- [4], [19], however, the difficulty lies in the fact that theie
tion U; is concave with domaiy = {(p,q)|(p,q,7) € J} no closed form expression fd?gb. Nonetheless, based on the
[18, 3.2.5].U; = Zszl R is continuous, differentiable andconvexity of the objective function, some properties of the
concave inr;, € [0,7). Furthermore, for givep,, andgy, R¥®  optimal solution are given below.

U (p.q) = max Uy (p,q,7) StV(p,q,7)€J.

approachesog, (2 + px) and 0, as 7, approached) and T, Lemma 2:Under the optimal policy, the transmission power
respectively. Therefore, the unique maximizer of (28),vk pg, and the energy used to send the feedbagckare non-
lies in [0,7"), and it is obtained as decreasing ik, Vk € [1 : KJ.
Nl IR Lemma 3:Under the optimal policy, at the time instants at
—— | = | =0, Vhe[1: K]. (29) which R** changes, the energy buffer of either the TX or the
aTk k aTk k . .
. ) . RX is emptied.
As 7. is only a function ofg; andpy, (27) can be written as  the proofs of the above lemmas are given in Appendix.
K
max ﬂl = Z E}ib s.t.VEk, (pr,qx) € i (30) 2In this section, with slight abuse of terminology we use thente RX
Pk Gk power and RX energy interchangeably.

k=1
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VI. NUMERICAL RESULTS

We start by considering the case in which the RX harvests

energy, while the TX has a constant power supply. We assume o OEA 000,

that the RX is equipped with a solar EH device. Following ol gfgmh o

[22], solar irradiance data is taken from the database tegor =% bitrounding| g o

in [23]. Each EH interval is of duratio = 1 hour, 7’ = 200 — 8l otonding 55060661
ms, resulting inL = 18000 frames. The harvested power from a : sooooao
the irradiance data can be calculatedias,., = I[Watt/m?] x g S
Area[m?] x p, wherep is the efficiency of the harvester. A 3 NN
hypothetical solar panel of variable area is assumed. Tée ar S T
of the panel is adjusted such that we have the EH profile shown o1
in Fig. 4 at the RX. In Fig. 4, the harvested power to noise il o L
ratio (HPN) in each EH interva% is shown. Looooe ET ;ilg{)

Using this EH profile, throughput of different feedback 0
policies is shown in Fig. 5. In Fig. 5, OEA represents the
proposed policy in which the energy vector is obtained Q¥gure 6. Feedback load at downlink SNR If dB, M = 4.
using the OEA algorithm, and then the optimal time span
of feedbackr; is obtained by solving (20). In the greedy
scheme, the consumed energy is equal to the harvested endéngyallocated energy is equal to the harvested energy in that
in that interval, i.e.,qx = €}/L, and then optimization is interval, i.e., at the TXp, = €, /LT, at the RXq; = €} /L,
performed only overrg, given g,. The performance of the and then optimization is performed only ovef, given p;
above policies when the feedback bits are rounded to thedg;. The difference in throughput between the greedy and
largest previous integer is also shown. We can see that tBEA is small when the average HPN is low, and it increases
proposed approach outperforms the greedy policyl loydB  with the HPN. In contrast to the OEA scheme, using the
at a rate oft bits/s/Hz. Also the rate loss due to bit rounding igreedy approach with the solar EH profile results in some EH
negligible. In Fig. 6, feedback bit allocation is shown foet intervals being allocated zero energy, and therefore doés n
above mentioned policies for a downlink SNR18fdB. From scale by increasing the harvester area. This particulartsh
Fig. 6, we can see that with the proposed strategy, feedbdbk greedy policy’s throughput in the high HPN regime as the
bit allocation is equalized as much as possible. multiplexing gain (pre-log factor) is reduced.

We now consider the case in which both the TX and the Finally, we consider a case with non-similar EH profiles,
RX harvest energy, with similar EH profiles. The same EMhere the EH profiles are generated independently at the
profile in Fig. 4 is separately used at both the RX and the TXX and the RX, and they are i.i.d. with exponential distri-
hence the EH profiles are similar. In Fig. 7, the throughpbution. EH profiles are verified not to be similar according
of different schemes is shown at various mean HPN valuestat Definition 4. Similarly to Fig. 7, in Fig. 8, the mean
the TX. The mean HPN at the TX is varied by increasing thdPN at the TX is varied by multiplying the EH profile by
harvester area at the TX, i.e., the EH profile is multiplied by constant, while keeping the same shape. Since we could
a positive number (area), while keeping the same shape amd find a simple algorithm in this case, CVX solver is used
efficiency. In Fig. 7, OEA represents the proposed policy ito solve the optimization problem [18], and is denoted as
which the energy vector at the TX and the RX is obtained l§VX in Fig. 8. As we can see, the heuristic of using the
using the OEA algorithm, and then the optimal time span @EA approach performs quite well even in the non-similar
feedbackr; is obtained by solving (29). In the greedy schemé&H profile scenario. The energy allocation at the TX and the

5 10 15
EH interval index (Time of Day) [hrs]
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Figure 9. Energy allocation at the TX and the RX, = 4.

—e— upper bound remark that the result obtained in Proposition 4 is genarad,
T A g\é’; ' | for example, it can be used in a network setting in which a
61 | —»— greedy ] concave utility is to be maximized in the presence of EH nodes

with similar harvesting profiles and infinite size energyfers.
Numerical results show that the proposed policies not only
outperform the greedy policy, but also achieve performance
very close to the theoretical upper bound. Our work sheds
light on the design of feedback-enabled multi-antennaesyst
when the nodes depend on EH devices for their energy.

Average rate [bits/sec/Hz]
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N
T

-
T

APPENDIX
‘ ‘ ‘ ‘ ‘ A. Proof of Lemma 1
-5 0 5 10 15 T
Average HPN per data frame at the TX [dB] Let X; = [xl Y1 tl] , Xo = [1'2 Yo to

h(AX1+ (1 —\) Xa)
6 (Ay1+<1—A>y2 f(x,t)>

1", we have

Figure 8. Ergodic rate for non-similar EH profiledf = 4.

S} e
RX are shown in Fig. 9 for the above mentioned policies at @
an average per frame HPN of5 dB at the TX. Different > oy (Ayl +1=X vz A+ (=X f2)
from Fig. 7, in Fig. 8 the rate scaling with average HPNSs is © o (32)
same for both the greedy and the OEA policies. For the greedy  _ O1y1 i O2y2 O1f1 n Oz f2
policy, the allocated energy in an EH interval scales with th N Oa; Oas ’ Oay Oay
increasing mean HPN, in contrast to the solar EH profile, for () v fi Yo fo
which the allocated energy is zero in some intervals. O19 (a, ) + O29 (, )
1 Q2 Q2
(

X1)+ (1 =N h(Xs),
)\.’bl

> 01
= M\h
VIl. CONCLUSION

o _ where 7 £ + (1=XNazo, T 2 M1 + (1= N)to,
In contrast to the existing literature on the design of eyner%1 2 f(xi,th), f2 2 f(z2,82), ©1 2 A(1-4) and
harvesting communication systems, we have assumed in IS 2 (1)) (1-%2),0 = 0 + 0y, ay 2 (1-4),

paper that the perfect channel state information is availah, 2 ; _ Lz) Here
only at the receiver side; and we have studied the proble ) foIIowsTfrom the fact thaf (z, £) is concave, ang (y, )
of CSI feedback design in a p2p MISO channel under E is monotonically increasing ’in each argun,went ’
constraints at both the TX and the RX. Since the exact expregjg follows from the fact tha2t + €2 — 1, andg (’y o) is
sions of throughput are complicated, concave upper boun concave. e © ' ’
have been used in the optimization problems. We have first

considered the case in which only the RX harvests energy, 88d proof of Proposition 1

optimized the feedback policy under EH constraints. Laker, . : . L
general case, in which both the TX and the RX harvest energyéRﬁg\r/Zducmg the ergodic rate bound in (8) with= P, vk,
is analyzed. We have shown that, if EH profiles are similar, N Pf

the optimization problem can be considerably simplified. We R" (qk, k) = trlogy (1 + tk> J (33)



where t;, = Zofe & (M—(M-1)(1+ 2 )%) whereB;’s are the energy band indices as explained in Section
Sinceby in (3) is concave |qu and 7y, it can be eaS|Iy seen IV-A.

e is convex, and hencef is Applying (39) fori = 1, and remembering thdg, = 0, we

that 2~ 71 — (1+

Tk0'2 get
concave. Using Lemma 1 with(y, z) = log, (1 + 2) and fy, L L K
we can see thaR]' is concave. Since the objective function Z(jj = qu;‘di_j < V. (40)
in (15) is the summation ofz}'’s, it is also concave. J=1 J=1i=1

By (P1) and (P2) in Section IV-Ag} = ‘JEH) + L;, where
C. Proof of Proposition 3
LIZO V’LE[lBl]

First, we show thay (y,z) = logy (1 + (1 +y) 2), (y,2) € . ’ (41)

R? is concave fory > 0,z > 1. The Hessian of is given by Li>0 Vie[B +1:K].
5 1 /22 1 34) From (40) and (41)
B\l —(+y)? ZZ . Z Z . )
q(1ydig + Lid;; <

where 8 = log,2(1+ (1 +y) z)2 > 0. Consideru™Ju = =1 =1 W J=li=B 41 ?

1(,.2.,2 2 2 _ _ T
B (a 07 (1+y) 2ab)' where u = [ab]" € Using the fact thatD is doubly stochastic and by (P1),
R2. It can be easily seen thatTJu < 0 for ab <

quz‘l) = V4, and we have
0. For ab > 0, since z(1+y) > 1, uTJu

—1 [(az = b(1+9)) +2ab (s (1+y) —1)] < 0. As Hes- d o 43
sian is negative semidefinitg,(y, z) is concave. Reproducing Z; ‘_; X g = (43)
the ergodic rate bound in (22), we have ImhEh

From (41) and (43), we get

ub __ fk
R _t’“k’g?(H(Htk) ) (35) d;=0, Vic[Bi+1:K],Yje[l:Bl].  (44)

wheret;. and f;, are as defined before. As D is doubly stochastic, using (P1) and (44),
By following the similar steps in Proposition }¥; can be

shown to be concave. Using Lemma 1 wijtty, z) and f, . . o sy .
we can see thaR!’ is concave. Since the objective function %~ ; ) Z;divj =ay = ¢;,Vi € [1: Bi].
in (26) is the summation oR}’s, it is also concave. = =

B, B,
(45)

SinceD is doubly stochastic, using (44), we get

D. Proof of Proposition 4 i

di ;=B di;=1,Yje[l:B].
First, (p*, ¢*) is shown to be the solution of (30) and then Z Z & b Z 7 el 1 (46)

T* is obtained by (31). Before solving (30), we prove that = =t

X We can rewrite (46) as

* *) 5 X AR
(p*,q") aggplﬁix ;Q(leq}c) (36) szi,jzzzdm—"z Z d;j, (47)

S.t. Yk, (P, qr) ej,g €c, i=1j=1 i=1 j=1 i=1j=B1+1

where¢ is the set of all continuous concave functions. As (3650m which it follows that
is a special case of (36)p*, ¢*) is also the solution of (30).
Before starting, we note that the notations and properties Z Z dij =0, (48)
of the OEA algorithm discussed in Section IV-A are used i=1j=B1+1
throughout the proof By contradlcnon let us assume et and hence,

exists a[pT ¢T]" # [p*T q*T] and (p, ) be the solution

of (36). Then, by Theorem 3 we have, dij =0, Vie[l:B],Vje[Bi+1:K]. (49)
[ﬁT QT}T =< [pT qT]T7 V(p,q) € 3. 37) Then applying (39) for = 2,
Since(p*, g*) € 3, by (37) and Definition 3, i 4 = Z S gids; < Vi (50)
I qT]T _ [p*T q*T:|TD' (38) j=B1+1 j=B1+1 i=1

By (P1) and (P2), we havg' = qE‘Q) + L;, where
By the feasibility constraint in (26b),
_ ‘ L, <0 Yiel[l: By],
Z G <Vi= Z " /L, (39) L;=0 Yie[B1+1: By, (51)
j=Bi 141 j=Bi_1+1 L;>0 Vie[By+1:K].



From (50) and (51),

B> K Bo K
Z ZLidi,j+ Z Zqzz)di,jﬁvz-

10

Since the objective function is concave, by Jensen’s iflégua
the new policy strictly increases the objective. Finallysial-
ering the case wherg, < pri1,qx > qr11, We can construct

(52) . :
j=Bi+1i=1 j=B1+1i=1 another feasible policy,
Since D is doubly stochastic, by (P1), we obtain Pk = Pk Pk+1 = Pk+1, 61)
(B2 — B1) q{yy = Va2, and using (49) and (51) in (52), we dk = Qk+15 Qk+1 = k-
et
g B, K The functionR*® with variablesp, ¢, 7 can be written as,
Z Z Lidi,j <0,L; >0. (53) b 1 p
j=B1+1i=Ba+1 R" (p,q,7) = tlog, (1 + (t + 252> f) ) (62)
From (51) and (53) it can be concluded that .
‘ , where f £ M — (M —1)(1+ %)™, ¢t £ 1- % and
dij=0, Vie[By+1:K], Vj€[Bi+1:Bs]. (54) (<7< T.Thesecond order partial derivative B (p, ¢, 7)

As D is doubly stochastic, using (P1) together with (49) an

(54), we have

B,

G =qly >, dij=aly =4 ,Yji€[Bi+1:By. (55
1=B1+1

Again, sinceD is doubly stochastic, using (49) and (54),

B K

> > dij=B,- B,
i=B1+1 j=1

Bs

Z di}j:L VjE[Bl‘i‘l:Bg].
i=B1+1

(56)

We can rewrite (56) as

Bs K
YD diy=

B2

Bo Bo K
Yoo digt Y Y di

i=B1+1 j=1 i=B1+1j=B1+1 i=B1+1 j=Ba+1
(57)
From (57) we can see that
B> K
o> diy=0, (58)
i=B1+1 j=Ba2+1
and hence,
di;=0,Yie[Bi+1:By] andVj e [Bo+1:K]. (59)

Continuing this approach for = 3,...,(|8,| — 1), we get
q = q*. Since the EH profiles are similar, i.68, = §;,
replacingg by p andej by e§c/T in the above proof, we
reach the similar conclusion fgb, i.e., p = p*. Therefore,

~T ~T1T * «T1T
T ¢"] =[p*" ¢ .

E. Proof of Lemma 2
Assume that at least one of thg, g, is not monotonically

increasing ink. Without loss of generality (w.l.0.s) we consider

the cases in whichy, > pi11, i > qr+1 andpy < prr1,qx >

i& given by,

82Rub %{;
- - (63)
opdq  t(1+ f/t+ pf/t?)

Since f is monotonic ing, (63) is positive. Asagp—’g: > 0, by
the definition of derivative,
R (p,q,7)+ R (p+6,q+a,71)>
R“(p+0d,q,7) + R*® (p,q+a,7), §,a > 0.

Since (64) holds for ald < 7 < T, we have 4
R (p,q) + R*® (¢4 6,q +a) >
B+ 6,0)+ RO pgta),
where R“? is obtained by,
R (p,q) = max R* (p,q, 7). (66)

Finally, using (61) and (65) we can see that the newly
constructed policy strictly increases the objective.

F. Proof of Lemma 3

Let us assume that the transmission rates in khih
and thek + 1-th intervals are different, i.eR"® (px, q) #
Rub (Pk+1, qx+1). Before thek+1-th interval, the energy in the
buffers of TX and the RX aré\, 2 > er —L5°F ¢, and
A2 el LT Y | p;, respectively. W.l.o.s, we assume
that A, < A;. We can construct another feasible policy

prL = pr + 0, D = -9,
ka Dk p~k+1 Pr+1 (67)
Gk = qr + 0, Gr+1 = Qrt+1 — 0,

where ¢ is chosen such that < A, and g, < §dr+1. Now,
(67) can be written as

Pr = apr + (1 — ) prt1, Drs1 = (1 — @) pr + apr1,
Gk = agqp + (1 — @) grg1, Q1 = (1 — @) g + aqrq1,

Qk+1- In the case opy > pr+1, 9k > qr+1, We can construct wherea =1 — 8/ (qr1 — qi)- Using Jensen’s inequality

a new feasible policy,

. Pkt Dyl
Pk =Pl =~

~ ~ qk + Qk+1
qk = Qk+1 = 5

(60)

(68)
k+1 B k+1 B
> R (By,q5) > Y R (pj.q5) (69)
j=k i=k

which concludes the proof.
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