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Abstract—Smart meters are widely deployed to provide fine-
grained information pertaining to tenant power consumption.
These data are analyzed by suppliers for more accurate statistics,
energy consumption predictions and personalized billing. Indi-
rectly this aggregation of data can reveal personal information
of tenants such as number of persons in a house, vacation
periods and appliance preferences. To date, work in the area
has focused mainly on privacy preserving aggregate statistical
functions as the computation of sum. In this paper we propose
a novel solution for privacy preserving individual data collection
per smart meter. We consider the operation of identifying the
maximum consumption of a smart meter as an interesting
property for energy suppliers, as it can be employed for energy
forecasting to allocate in advance electricity. In our solution we
employ an order preserving encryption scheme in which the
order of numerical data is preserved in the ciphertext space.
We enhance the accuracy of maximum consumption by utilizing
a delta encoding scheme.

Index Terms—smart metering, privacy, security, data analysis

I. INTRODUCTION

Smart meters are devices deployed in households to measure
the energy consumption in specific time intervals. They do
not only measure electricity consumption but gas and water
commodity as well. The motivation for the wide deployment
of smart meters is many-fold. Suppliers can more precisely
learn the time intervals in which houses consume more energy
and thus tune appropriately the billing of each customer and
predict the potential energy demand. On the other hand, home
tenants can receive energy advices and can also change their
energy consumption habits. In particular, a customer learning
the period of the highest consumption may prefer to consume
in a more efficient way.

In tandem, various security concerns have been highlighted
from wide deployment of smart meters in households. The
European Data Protection Supervisor [19], [18] has already
raised potential privacy and security concerns. Frequent smart-
readings with inappropriate analysis by companies may leak
private information such as the number of people that live in
a place, the time period in which the house is empty and
personal habits that can be considered as a valuable asset
for marketing retailers [13]. These concerns have not passed
unnoticed. Several states in USA have banned the usage of
smart meters even if companies provide users with incentives
for the usage of them [20]. Radical solutions that substitute
electricity suppliers for home appliances with batteries to
hide electricity consumption have been proposed [14]. Albeit

this mitigation, it is still feasible to recover appliance energy
consumption [16].

In this paper, we consider the problem of computing some
statistics over meterings sent by individual smart meters in a
privacy preserving manner. We assume that both the supplier
and individual smart meters are interested in determining
the interval in which the smart meter consumes the most.
Such an operation cannot be performed by a smart meter
alone because of its lack of resources and in particular its
lack of memory: The smart meter would need an important
number of values in order to find out the maximum value
corresponding to a “continuous” consumption. On the other
hand, outsourcing these computations to the supplier will nat-
urally leak periodical consumptions which definitely are very
sensitive information. We therefore propose a solution where
smart meters send their periodical metering to the supplier in
a privacy preserving manner while still allowing this entity
to compute the time interval of the maximum consumption.
The proposed solution is based on the use of order preserved
encryption (OPE) which by definition preserves the order
of plaintext values after their encryption without revealing
any additional information. Additionally, in order to filter out
spontaneous peaks (due to some erroneous switch-on/switch-
offs of home devices for instance), the smart meter also
sends the differences of consecutive consumption values after
their obfuscation in an on-the-fly approach whereby the smart
meter does not need to store auxiliary information. Thanks to
the obfuscated differences the supplier is able to determine
the period of maximum consumption that is continuous. The
proposed solution is further proved secure by a reductionist
proof to the POPF-CCA assumption [3] which corresponds to
the security notion that characterizes the security of OPE.
Organization The paper is organized as follows: In Section
II we describe the problem this paper tackles. An overview
of the solution is presented in Section III. Section IV fully
describes our protocol. The security analysis is included in
Section V, while the feasibility of the protocol in real world
devices is analyzed in Section VI. Before concluding our paper
in Section VIII we give a quick overview of relation work in
Section VII.

II. PROBLEM DEFINITION

In this section we precisely define the problem we are trying
to address and the environment in which we envision our
protocol to run.



We seek for privacy preserving unique statistics scheme
(PPUS) for a set of smart meters. The smart meters are
sending their meterings to a supplier and the supplier should
identify the time interval at which each smart meter reports
the maximum consumption. The supplier learns nothing but
the time period of the maximum consumption.

A. Entities

1) Smart meters. We assume a set of N smart meters,
each one denoted as smi. These are deployed in separate
households across a geographical region. The smart
meters are universally programmed to send energy con-
sumption at a fixed time interval ti starting from time
t1 and ending at time te. Each smart meter has an
embedded private key in a tamper resistant hardware
module.

2) supplier. An energy supplier collects information from
each smart meter and computes the time interval corre-
sponding to the maximum consumption individually for
each smart meter.

Table 1 describes the notations used throughout the paper.

B. Protocol Definitions

Definition 1 (Privacy Preserving Unique Statistics)(PPUS)
A PPUS scheme consists of 2 polynomial time algorithms
Encrypt, Analyze defined as:
Encrypt(p

(j)
i , ski,mki) → (c

(j)
i , {gd

j
i+li
i }ni=0, g

li
i , si) Each

smart meter smi encrypts its meterings p(j)i for time interval
j using its secret encryption key ski. It also computes the
discretized differences of consecutive meterings {dji} while
obfuscating them with a secret value li which is different for
each smart meter. The output of the algorithm is the ciphertext
value (c(j)i ), the obfuscated discretized differences gd

j
i+li
i and

an integrity value si computed with a MAC key mki.
Analyze({c(j)i }, {g

dji+li
i }) → ti The supplier takes as in-

put encrypted meterings {c(j)i } and obfuscated differences

{gd
j
i+li
i } and it outputs a tag ti for each meter smi that

specifies an interval of the maximum consumption.

Definition 2 (Correctness) A PPUS scheme is correct if for
all individual smart meters smi that submit their meterings to
a supplier, after running Analyze({c(j)i }, {g

dji+li
i }) algorithm,

the supplier outputs the maximum consumption of smi with
probability 1.

C. Privacy Definition

We consider a honest-but-curious adversary model: Al-
though following the steps of the protocol correctly, the
malicious supplier will try to discover the content of the
meterings sent by each smart meter. Message forgery attacks
are prevented thanks to the use of existentially unforgeable
message authentication codes (MACs).

We namely present our privacy requirement:
Third party obliviousness(TPO). We adapt the security

notions of aggregate obliviousness in [17] to define our privacy

requirements: The third party, which in our environment is the
supplier, cannot learn anything more than the time interval of
maximum energy consumption. Consider an energy supplier
that receives the encryptions of each smart meter smi. The
supplier can only learn the time interval that corresponds to
the maximum consumption of each smi and not the metering
value in plaintext.

we now formulate the third party obliviousness privacy
definition with a game GameTPO, which is played between
the challenger C and a probabilistic polynomial time (PPT)
attacker ATPO:

Learning: ATPO submits encryption queries to C for
xi 6={0,1,2,3} and C returns to ATPO ci.

Challenge: ATPO submits two differences of plaintext
values d0 = x1−x0, d1 = x3−x2. C choses uniformly and at
random b ← {0, 1} and returns to ATPO the encryptions of
one pair corresponding to either the encryptions of (x1, x0) if
b = 0 or the encryptions of (x3, x2) if b = 1 .

Guess: At the end of the game the attacker should guess
with no negligible probability the value of b by outputting his
guess b′. The advantage of an adversary with respect to the
aforementioned game is defined as:

AdvTPOA = Pr[GameTPOA (0) = 1]−Pr[GameTPOA (1) = 1]

Definition 3 (Third party obliviousness). Let Υ =
(Setup,Encrypt,Analyze) be a PPUS scheme with associated
plaintext sizeM and ciphertext size N . Υ ensures third party
obliviousness if for all PPT adversaries A the probability of
winning the aforementioned game is negligible: AdvTPO

A ≤
1
2 + ε, where ε is a negligible function.

III. OVERVIEW OF PPUS

In this section we give a brief description of our solution.
Our PPUS scheme achieves data confidentiality and privacy
thanks to the usage of an appropriate encryption scheme that
is an order preserving encryption scheme in which the order
of numerical items in the plaintext space is preserved in the
ciphertext space as well. Each smart meter is equipped with
a tamper resistant hardware module in which a secret key is
embedded. This secret key is being used to encrypt meterings
at each time interval. Thanks to the cryptographic primitive of
order preserving functions a keyed order preserving functions
chosen uniformly and at random is indistinguishable from an
ideal one. Thus nothing more than the order is revealed to the
supplier who is acting as a data analysis entity.

For the accuracy of the analysis once the supplier has identi-
fied the time interval in which a smart meter has consumed the
maximum it can verify from the extra information composed
by the obfuscated differences between each consumption,
that actually there is a valid continuous maximum energy
consumption “around” this time interval. If the differences
converge to 0 then it has a strong indication that the meterings
around that particular interval showed a continuous maximum
consumption. Albeit the goal of the obfuscated differences
subprotocol is to add accuracy to energy suppliers, researchers
have raised the interest for the design of private protocols



Notations
smi Smart meter i
ti Time interval i
p
(j)
i Energy consumption of smart meter i at time interval j

c
(j)
i Encrypted Energy consumption of smart meter i at time interval j
miw Maximum interval window defined by the supplier
dji Difference of p(j)i - p(j−1)

i metering values

TABLE I: Protocol notations

for spike detections in order for energy operators to identify
overloaded power lines [7]. As such our solution is suitable
for this case as well. The advantage of our approach is that
the smart meters do not have to store the differences or the
ciphertexts in order to perform the analysis but these are
computed and sent immediately on-the-fly. From the supplier
perspective the verification of a maximum continuous con-
sumption interval is performed in a batch way with a single
operation as analyzed in equation (1). Moreover as it will be
established in section II-C, the differences do not jeopardize
the privacy requirements of the scheme.

The statistics from the process of identifying a continuous
energy consumption will improve the forecasts of energy
consumption and will allow better energy allocation in advance
from energy producers. Apart from this the information of the
maximum energy consumption interval can be sent back to the
tenants in order to transfer their increased energy habits into
low tariff periods. This operation cannot be performed locally
at each smart meter because their resources are not sufficient
for big data analysis operations. On the other hand, an integrity
mechanism is needed in order for the supplier to be assured
that the meterings are sent from existing and authenticated
smart meters.

IV. PROTOCOL DESCRIPTION

In this section we formally define our PPUS protocol.
Before describing our protocol in full details we give a brief
description of what an order preserving encryption scheme is.

A. Order preserving encryption (OPE)

Privacy preserving queries on databases have raised the
interest for non conventional symmetric encryptions[1]. Re-
cently, in [3], Boldyreva et. al. formally defined an Order
Preserving Encryption (OPE) scheme. An OPE leaks the order
of plaintext data and ideally nothing more. An order preserving
function (OPF) is a function f such that for a < b then
f(a) < f(b). A symmetric encryption scheme is then an order
preserving encryption scheme if the encryption function Enc is
an order preserving function. The construction is being based
on the observation that an OPF with domain D of size M
and range R of size N is a bijection of all combinations of
M out of N . The security of an OPE has been analyzed in
[4] with strict security definitions and bounds. The authors
described how an “ideal” random order preserving function
(ROPF) should behave. The new security definition employs
the notion of window one wayness. That is the probability of
the adversary to successfully identify the range of a plaintext

message given many randomly chosen ciphertexts. They also
introduce the notion of distance window one wayness where
the adversary is further restricted to identify the interval r
between two plaintexts given a large set of ciphertexts.

B. Description

The protocol consists of 2 phases. During the first phase
each smart meter encrypts with an OPE its meterings and it
sends it to the supplier along with a MAC. Afterwards, in
a second phase the supplier collects all the encrypted values
from each smi and sorts them. Since the encryption uses OPE
the supplier can discover the ordering of the ciphertexts. The
purpose of the protocol is for the supplier to identify high
energy consumption periods for each householder. As such
the supplier must not only recognize peaks for high electricity
consumptions but also confirm a continuous duration of the
maximum consumption. To address this requirement along
with its meterings, each smart meter smi sends obfuscated
discretized differences between consecutive meterings in such
a way that the supplier can only verify the interval where
the consumption differences equal 0 which is interpreted as a
continuous maximum energy consumption.

We now describe the protocol according to the definition in
section II-C :

Encrypt(p
(j)
i , ski,mki) → {c(j)i , {gd

j
i+li
i }ni=0, g

li
i , si} Each

smi encrypts its meterings p(j)i with its secret key ski using
an OPE scheme. For each ciphertext c(j)i for time interval j
it also sends j as auxiliary information associated with each
ciphertext. For each two sequential time intervals each smart
meter sends {{gd

j
i+li}ni=0} where gi is a group generator of

Z∗pi, pi is a prime number, and in Z∗pi the discrete logarithm
problem (DLP) is intractable. Each smart meter then applies
the MAC with the MAC key mki to the encrypted data c(j)i and

the obfuscated discretized differences {gd
j
i+li
i }ni=0, g

li
i } and

sends c(j)i ||MACmki(c
(j)
i , {gd

j
i+li
i }ni=0, g

li
i }) to the supplier.

Analyze({c(j)i }, {gd
j
i+li}ni=0, g

li) → ti : The supplier col-
lects at each time interval ti the encrypted smart meterings
from each smi. If the computed MAC by the supplier matches
the MAC it obtained from the smi then it continues with the
execution of the protocol otherwise it halts. Since the order is
preserved it can identify the maximum energy consumption at
time interval tj for each smi. To assure a continuous duration
of the maximum consumption, the supplier verifies:

wend∏
wstart

gd
j
i+li = g

∑wend
wstart

gd
j
i
+li ?

= (gli)n (1)



inside the miw that is specified by the supplier. The miw
interval has a starting point wstart and an end point wend. In
the beginning the wend is set to tj and wstart = tj −miw.
Inside this window the analyzer checks if equation (1) holds in
order to validate a continuous maximum energy consumption
around tj , where each di defines the differences of two
consecutive meterings. The differences from the meterings are
discretized in order to avoid inequalities from 0 even for small
variations. This requirement obviously captures spontaneous
switch on/offs of a high energy consumption appliance that
will erroneously record maximum consumptions. If equation
(1) does not hold it continuously checks the condition by
sliding the window one position to the right until wstart = tj .
By sliding the window 1 position we mean that we advance
the corresponding time frequency by 1. That is, if the smart
meter reports meterings every 1 second for instance, miw = k
and tj = 23h40m40s then the supplier will verify equation
(1) for wstart = tj − k and wend = tj and will move the
interval 1 second every time the condition does not hold. So
the second iteration would be from wstart = tj − k + 1 to
wend = tj + 1 until wstart = tj and so on. If none of the
corresponding delta differences inside miw does not satisfy
the condition then the second maximum tj is selected and the
procedure restarts. Algorithm 1 describes the Analyze phase.

Correctness. The correctness of PPUS depends on the
correctness of the order preserving encryption scheme and on
the fact that if the discretized differences of plaintext meterings
are equal to 0 then:

g
∑wend

wstart
gd

j
i
+li

= (gli)n

Indeed, consider a smart meter smi which detects the set
of plaintext values {pj1i , p

j2
i , p

j3
i , . . . , p

jn
i }. These plaintext

values after decreasing ordering, they form the ordered set
Op indexed by j which is the time interval . For every two
consecutive values pji , p

j+1
i the smi computes the difference

dji = pj+1
i − pji and then sends to the supplier along with

the encrypted values {cj1i , c
j2
i , c

j3
i , . . . , c

jn
i } the obfuscated

differences discretized by a parameter φ [dji ]φ. Thanks to
the OPE the supplier can reconstruct the same ordered set
Oc from the ciphertexts but instead of plaintext values it
obtains the corresponding for the time interval j ciphertext
values. If around the maximum time interval tj there are not
big difference variations then after the discretization of the

differences [dji ]φ = 0 and g
∑wend

wstart
gd

j
i
+li

= (gli)n.

V. PRIVACY ANALYSIS

Each smart meter is sending along with the ciphertext
resulting from an OPE function, differences of consecutive me-
terings. It is not hard to observe that if the differences are sent
in cleartext and the attacker has a good guess for a plaintext
value that depicts energy consumption then by the difference
provided in cleartext it can recover all the subsequent values in
clear. We mitigate this attack by forcing each smart meter smi

to chose a uniformly random element li and a multiplicative
group Z∗pi of prime order pi in which the discrete logarithm

problem (DLP) is intractable 1. Finally smi sends to supplier
{{gdi,j+lii }, glii }. By knowing also gli the supplier can verify
if the sum of all the differences {di,j} is 0. This can be verified
by checking

∏wend

wstart
gdi,j+li = g

∑wend
wstart

gdi,j+li ?
= (gli)n.

Recovering each di,j from gdi,j+li mainly is as hard as solving
DLP.

Although we have shown that the security of the Analyze
phase of the protocol is achieved thanks to the obfuscation of
differences in this section we give a stronger security definition
by proving that even if from auxiliary side information the
differences can be recovered this will not affect the privacy
requirement for third party obliviousness, which requires that
nothing more other than the interval in which the smart meter
has consumed the maximum energy for at least miw time
interval, is revealed. We assume that the OPE in our protocol is
instantiated as in [1] from the set of all possible OPE functions
fixed by the secret key of the smart meter. If the OPE acts as
a pseudorandom OPE fixed by a secret key then nothing more
than the ordering is revealed.

Theorem 1: The PPUS scheme presented in section IV
assures third party obliviousness under the POPF-CCA notion.

Sketch of the proof: Assume there is an attacker ATPO that
breaks the third party obliviousness as presented in section
section IV with non negligible probability ε. We show in what
follows that there exists an attacker B that uses ATPO to
break the POPF-CCA game with non-negligible advantage.
Due to lack of space we refer the reader to [3] for a full
description of POPF-CCA. For ease of exposition, we denote
OPOPF−CCA

encrypt , OPOPF−CCA
Corrupt , and OPOPF−CCA

C the oracles needed
for the POPF-CCA game and by OTPO

Encrypt,OTPO
Corrupt,OTPO

C the
oracles thatATPO has access to. Now to break the POPF-CCA
game, aggregator B simulates the aggregator obliviousness
game of our scheme for attacker ATPO as follows:
• Whenever ATPO submits queries to the OTPO

Corrupt oracle,
B calls the OPOPF−CCA

Corrupt oracle and returns the secret keys
of the smart meters skii6=0,1

.
• Whenever ATPO submits queries to the OTPO

Encrypt oracle
xii6=0,1

, B calls the OPOPF−CCA
Encrypt oracle and returns ci to

ATPO.
• B submits queries to the OPOPF−CCA

encrypt oracle to collect
valid encryptions of plaintext values {xi}i 6=0,1.

• B submits two plaintext values x0, x1 to the OPOPF−CCA
C

oracle, that have not been submitted at the OPOPF−CCA
encrypt

oracle in the previous phase.
• OTPO

C picks a randomly chosen bit b $← 0, 1 and sends B
encryptions of x0, c0 if b = 0 or encryptions of x1, c1 if
b = 1, respectively.

• In order B to simulate the OTPO
C submits to ATPO the

values cb and c2.
The attacker A cannot tell whether it is interacting with the

actual oracles or with attacker B during this simulated game.
As a matter of fact, the messages that A receives during this

1DLP: Given a prime p, a generator g of Z∗
p and an element y, find x such

that y = ax mod p



simulation are correctly computed.
Now at this time, A outputs a guess b∗ for the bit b. Note

that if A has a non-negligible advantage ε in breaking the
third party obliviousness of our scheme, then this entails that
it outputs a correct guess b∗ for the bit b with a non-negligible
advantage ε. Notably, If b∗ = 0, this means that it learns the
encryption of x0. Thus B verifies if cb = c0 and it outputs
b = 0, otherwise it outputs b = 1. If, now, b∗ = 1, then ATPO
can recover the encrypted values c2 and c1. As such B checks
if cb = c1 and outputs b = 1 if this is the case or b = 0 if not.

To conclude, if there is an attacker A which breaks the
third party obliviousness of our solution, then there exists an
attacker B which breaks the POPF-CCA game of [3] with the
same non-negligible advantage ε.

VI. FEASIBILITY

A. Smart Meter Computation Cost

Real-world smart meters that are deployed in houses are
equipped with low-cost, ultra-low power microcontrollers
(MCU). We assume the utility of the widely used 16-bit RISC
MSP430X MCU. They consist of flash memory that can be
extended up to 256KB, read-only-memory and a distinct clock
rate for their CPU that ranges from 8MHz to 25MHz. Some
of them are equipped with a radio frequency transceiver for
wireless communication. For the metering procedure they have
sensors that measure energy and an analog-to-digital converter.
We analyze the feasibility of the protocol with respect to
space and time overhead based on a 16-bit RISC MSP430
MCU, with 256 flash memory, 20 MHz clock rate and an
AES instruction set coming in the AES accelerator hardware
module that can speed up AES encryption in CTR mode up
to 8 times [9].

In table II, we show the computational and storage overhead
of our solution. Since our OPE like in [3] is based on the sim-
ple use a symmetric block cipher, we refer to the performance
analysis of AES in counter mode on a 16-bit RISC MSP430
MCU with an AES accelerator module described in [9] and
further compute the cost of our solution. Results are shown in
a per day analysis considering different time slots.

To compute the storage overhead of the solution we observe
from real data [2] that the maximum energy consumption of
smart meters deployed in a 1700 square foot home do not
exceed 1000kW and therefore can be represented by 2 bytes.
Since the minimum block size for AES is 128 bits (16 bytes)
a metering value can be considered as 1 AES block. Thus the
computational considers the cost of 1 block AES encryption.
I.e: the first row of table II shows that in 1 day we can have
24∗60∗60 = 86400 meterings that correspond in 86400∗2 =
172.8 Mbytes for a total computational cost of 13.3 million
cycles for the OPE encryption of all the meterings.

In addition to symmetric encryption each smart meter has to
perform one exponentiation for the computation of glii and one

exponentiation for the obfuscation of each difference {gd
j
i+li
i }.

TABLE II: Per day computational and storage overhead of
OPE

Frequency (seconds) #Meterings Flash(KB) Time (Mcb)
1 86400 172.8 13.33
2 43200 86.4 6.32
3 28800 56.6 4.08
4 21600 43.2 2.99
5 17280 34.5 2.35
6 14400 28.8 1.93
7 12343 24.6 1.63
8 10800 21.6 1.41
9 9600 19.3 1.24
10 8640 17.2 1.10

TABLE III: Space and computation analysis. Mcb denotes
megacycles per block

B. Server Computation Cost

The procedure that dominates the computational overhead
of the server is the sorting of the meterings. The server must
first sort all per user encrypted meterings in a separate data
structure. Each encrypted smart metering c

(j)
i is associated

with a tag which is the time interval j. We consider that the
server holds a binary search tree (BST) for each user. The BST
provides an efficient way to keep a set of elements sorted [6].
In the average case it has O(logN) complexity for insertions
and O(logN) to find the maximum element of the BST. Thus
the computational complexity per smart meter for m metering
is O(logm).

For the verification of the maximum continuous interval the
server also has to perform one exponentiation ((gli)n) and
n multiplications (

∏wend

wstart
gd

j
i+li ) per smart meter, where n

is the number of differences provided by smart meter inside
the miw. The miw is orders of magnitude smaller than the
meterings. Thus n multiplications and one exponentiation are
performed in the best case in which the server identifies a max-
imum continuous energy consumption inside the miw. In the
worst case the server has to compute O((n−1)· TotalDurationmiw )
multiplications where TotalDuration corresponds to the
overall metering duration.

VII. RELATED WORK

A very large number of privacy preserving solutions have
been proposed for smart meters. As to the best of our knowl-
edge none of them can be positioned with respect to our work
we briefly present some of them:

In [8], the authors proposed a protocol for secure aggrega-
tion of data using a modified version of Paillier homomorphic
encryption. The aggregator which is interested in learning the
aggregate sum of data is able to decrypt without knowing the
decryption key. The idea behind the scheme is a secret sharing
mechanism executed between users such that the aggregation
of encrypted data reveals the sum if and only if all users’ data
is aggregated. However, this scheme suffers from an increased
communication cost due to secret share exchange between
users.

The authors in [15], [5], [10] studied privacy preserving
data collection protocols with differential privacy. The combi-



nation of differential privacy with non conventional encryption
schemes can provide an acceptable trade-off between privacy
and utility. In [15], a secret sharing mechanism and additively
homomorphic encryption are employed together with the addi-
tion of appropriate noise to data by the users. Upon receiving
the encrypted values a second round of communication is
required between users and aggregator to allow for partial
decryption and noise cancellation. At the end of the protocol,
the aggregator learns the differential private sum. Jawurek and
Kerschbaum [10] eliminate this extra communication round
between the users and the aggregator by introducing a key
manager which unfortunately can decrypt users’ individual
data.

Chan et al. [5] devised a privacy preserving aggregation
scheme that computes the sum of users’ data, and handles
user joins and leaves of smart meters and arbitrary user
failures. The decrypted sum is perturbed with geometric noise
which ensures differential privacy. Nonetheless, this solution
calls for a fully trusted dealer that is able to decrypt users’
individual data. The authors in [12] presented a solution to
tackle the issue of key redistribution after a user joins or leaves.
The propounded solution is based on a ring based grouping
technique in which users are clustered into disjoint groups, and
consequently, whenever a user joins or leaves only a fraction
of the users is affected.

Song et al. [17] employs an additively homomorphic en-
cryption scheme with differential noise to ensure aggregator
obliviousness. The proposed solution is based on a linear
correlation between the keys which is known to the untrusted
aggregator. However the decrypted sum is encoded as an
exponent, thus forcing a small plaintext space. Whereas Joye
et al. [11] designed a solution that addresses the efficiency
issues of [17]. Notably, Joye et al. [11] introduced a nifty
solution to compute discrete logarithms in composite order
groups in which the decision composite residuosity problem
is intractable.

VIII. CONCLUSION

In this paper we presented a secure framework for per-
sonalized statistics in a smart grid environment by showing
that a reconciliation of privacy and utility is achievable. The
solution is based on an encryption scheme that preserves the
order of the plaintexts in the ciphertext space along with an
appropriate delta encoding scheme. We proved the privacy
of the protocol with a reduction proof to the POPF-CCA[3]
assumption of the OPE. The space and computational cost of
the protocol is analyzed with real data. For the analysis we
assumed real world microcontrollers. This is the first design
of a framework for unique and personal statistics of smart
meters which comes in contrast with existing solutions that
compute private aggregate statistics for a large number of
data producers. Moreover the framework can be employed for
profiling habitants based on the duration of their maximum
consumption as this information will classify them.
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