

Large-scale Network Simulation
over Heterogeneous Computing

Architecture
 Issues, Opportunities and Challenges

N. Nikaein and B. B. Romdhanne
Mobile Communication Department

Eurecom

2014

http://creativecommons.org/licenses/by-sa/3.0/

Outline

Introduction
& Background

Cunetsim Hybrid
scheduling

CMW
& GP-CMW

NS-3 as proof
of concept

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014 2

htpp://www.eurecom.fr/

About This Tutorial

• Explore efficiency and scalability horizons
in network emulation and simulation field
– Execution time and runtime
– Number of nodes, traffic load, and mobility

• Applicability to popular simulation/emulation

tools,
– NS-3

Introduction
& Background

3 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Network Experiment

• Simulation
– No interaction with the external entities (closed environment)
– Part or all of the elements of a network/system is modeled or

abstracted
• Emulation

– Bring the external elements with their I/O streams (open
environment)

– Decision on which element is real or modeled depends on the
use case and purpose of the experiments

– At least one thing is modeled
• Real testbed field trial

– All the elements are real
– Part of the testbed maybe controlled

Introduction
& Background

4 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Network Experiment
Human Perspective

Live Cyber-Physical?

Virtual Constructive

Introduction
& Background

5 17/03/2014 ©Navid Nikaein 2014

Source: M. Loper

Real Simulated

Re
al

Si

m
ul

at
ed

Sy

st
em

Human

htpp://www.eurecom.fr/

Network Experiment Introduction
& Background

6

Analytical

• UML
• FreeMat
• IDL
• Matlab
• SciLab
• Octave

Simulation

• Sinalgo
• NetSim
• GloMoSim/Qualnet
• NS3
• Opnet
• Omnet++

Emulation

• NS3
• NistNEt
• CORE
• USPR2
• WARP
• CMU-DSR
• ORBIT
• OAI

Real Testbed

• PlanetLab/OneLab
• NITOS
• GnuRadio
• WARP
• ORBIT
• Sundance, BEE2,

WiTestLab
• USPR2
• OAI

Scalability Reproducibility Applicability

Abstraction Level Realism Level

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Network Experiment

17/03/2014 ©Navid Nikaein 2014 7

Introduction
& Background

Evaluation
methodology

Channel PHY MAC TRP
&
NET

App

Real testbed

Emulation
Medium case1

Emulation
Medium case2

Emulation
App & protocol

Simulation

Channe
l

APP

TRP
&
Net

MAC

PHY

APP

MAC

PHY

TRP
&
Net

Small
scale

Large
scale

Node 1 Node 2

htpp://www.eurecom.fr/

Network Experiment
Introduction
& Background

8 17/03/2014 ©Navid Nikaein 2014

• Discrete event simulation model
– Entity, e.g. node, packet, channel, proto, models
– Link, e.g. relationships among entities
– Event-driven discrete System, e.g. Event occurs at

discrete point of time changing the state of the system
• Components

– State, clock, event list, counters, configure, time and
event routines

• Primitives
– run, stop, now, schedule, cancel, remove, release

htpp://www.eurecom.fr/

Network Experiment
Discrete Event Simulation

17/03/2014 ©Navid Nikaein 2014 9

Introduction
& Background

static void my_function (MyModel *model) {
//
}

Void main () {
 mod model;
 ev event;
 initialize(&mod,&ev);
 configure(&mod,&ev);
 schedule(time, &my_func, &mod);
 …
 schedule_end_simu (ev);
 run();
 release ();
}
 void Run() {
 while (! end_of_simulation()) {
 time=get_timestamp();
 ev = extract_event (global_event_list);
 execute(ev);
}

htpp://www.eurecom.fr/

Discrete Event Simulation

• A composition of a group of elementary entities
– Finite state machine per component
– Event triggers state changes
– System state evolves over discrete and atomic time

10

Introduction
& Background

• Sequential execution limits the scalability and efficiency

Scheduler Generation Execution
Event
List

New events

Recursive/isolated events

17/03/2014 ©Navid Nikaein 2014

Node

htpp://www.eurecom.fr/

Parallel and Distributed Simulation

• Simulations executing over multiple computing
systems
– Tightly and/or loosely coupled multiprocessor systems

11

Introduction
& Background

17/03/2014 ©Navid Nikaein 2014

Parallel simulation involves the
execution of a single simulation
program on a collection of tightly
coupled processors (e.g., a shared
memory multiprocessor).

Distributed simulation involves the
execution of a single or multiple
simulation program on a collection of
loosely coupled processors (e.g., PCs
interconnected by a LAN or WAN).

htpp://www.eurecom.fr/

Parallel and Distributed Simulation

• Communication Mechanisms:
– Message Passing
– Unicast, multicast, broadcast; publish/subscribe
– Shared Memory
– Remote Procedure Call (RPC)
– Remote Method Invocation (RMI)

• Event Synchronization:
– Clocks and Time
– Event ordering

12

Introduction
& Background

17/03/2014 ©Navid Nikaein 2014

Source: M. Loper

htpp://www.eurecom.fr/

Parallel and Distributed DES

Parallel simulation

• Typically Shared memory
context

• Several execution resources
• Centralized scheduling
• Memory-based

communication mechanism
• Local synchronization

Distributed simulation

• Typically several independent
simulation instance

• Different machines
• Independent scheduling
• Message-based

communication
• Distributed synchronization

13

Introduction
& Background

• Care must be taken for simulation correctness,
synchronization overhead as well stability issues

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Parallelism Efficiency and
auto-scaling Heterogeneity

Hardware Context

14

Introduction
& Background

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Hardware Context
GPU Features and Specification

• Generally used for the graphical rendering.

• Current Trend

• Able to ensures additional computing work.
• Evolves on the sense of a co-processor
• Large number of computing cores
• Rapid dedicated memory
• Hardware schedulers (threads and instructions)

• GPU cores are grouped into several streaming

multi processor SM (like SIMD processors)

15

Introduction
& Background

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Parallelism Distributed

Software Context for HPC

16

Introduction
& Background

17/03/2014 ©Navid Nikaein 2014

GridMPI™

openMPI

htpp://www.eurecom.fr/

Content of This Tutorial

• Cunetsim: GPU-based simulation framework

• Hybrid-scheduler: Conservative event scheduler
targeting multi-target execution, both GPU & CPU.

• CMW / GP-CMW: optimized distributed and parallel
simulation model targeting very large scale scenarios

• NS-3: proof-of-concept

17

Introduction
& Background

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Outline

Introduction
& Background Cunetsim Hybrid

scheduling

CMW
& GP-CMW

NS-3 as proof
of concept

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014 18

htpp://www.eurecom.fr/

General Idea
Fully GPU based simulator

• One dedicated GPU core per node.
– At a given time Ti each node executes one event

• Only GPU executes, CPU controls
• Master-Worker simulation model

– CPU is the master
– GPU is the worker

Cunetsim

19 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Classification Cunetsim

20

Approaches

CPU based

Sinalgo

NS3

Distributed

QualNet

Distributed
NS3

Accelerated

GPU

FPGA

DSP

GPU based

Cunetsim

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Event Descriptor

• Representation of an event used for management

21

Cunetsim

• Extend the event descriptor to support parallelism
– Grouping info for the events that only differs in their data
– Cloned Independent Events (CIE) represented as a single entry

Descriptor Timestamps callback Arguments

Descriptor Timestamps callback Arguments Grouping Info

17/03/2014 ©Navid Nikaein 2014

• Break the 1:1 relationship between an event and its descriptor

htpp://www.eurecom.fr/

Event Descriptor

22

Cunetsim

• Grouping info for CIE events

Descriptor Timestamps callback Arguments Grouping Info

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Event Grouping Cunetsim

23

Master
Scheduler

move<<<64,1>>>(T1, *position)

Si
m

ul
at

io
n

tim
e=

T1

Ea
ch

 su
bg

ro
up

 w
ill

 b
e

ex
ec

ut
ed

in

 a
 g

iv
en

 re
al

 ti
m

e

• Events are
– Compressed during the generation (grouping info

added)
– Expanded during the execution by hardware scheduler

• No strict order during execution inside a group

– Decision is made by the hardware scheduler
– Events must be designed such that, the execution order

of parallel events does not affect the correctness.

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Workers

Master

Framework Architecture

24

Cunetsim

Mobility

Connectivity

APP

Proto

Msg services

Mobility

Connectivity

APP

Proto

Msg services

Mobility

Connectivity

APP

Proto

Msg services

Mobility

Connectivity

APP

Proto

Msg services

Mobility

Connectivity

APP

Proto

Msg services

Channel
Msg Service

TRP/NET

Connectivity

Mobility

APP

GPU context

Generator

Scheduler

Tracer

Helper

Tester

CPU context

Hardware scheduler

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Evaluation Scenario Cunetsim

25

• Benchmarking Scenarios
– 4-64k Nodes
– 1600x1600x1600(3D)
– 600 seconds
– RWP mobility
– UDG Conectivity

– Flooding Proto
• Comparative Evaluation

– NS-3 (distributed version- 6 LPs)
– Sinalgo (asynchronous 6 threads)
– Cunetsim-CPU (OMP – 6 threads) (via openACC)
– Cunetsim-GPU (1 master+ 1 GPU)

• Software context
– CUDA for GPU dev (GTX 460) and PGI for compilation

Scenario A Scenario B

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Performance Results

1

10

100

1000

10000

100000

1k 4k 8k 16k 32k 64k

NS-3
Sinalgo
Cunetsim CPU
Cunetsim GPU

Cunetsim

26

• Gain obtained by grouped events
– 6x on the CPU target
– 100x on the GPU target

Scenario A: Homogeneous nodes

Ru
nt

im
e

(s
)

Number of nodes

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Performance Results Cunetsim

27

1

10

100

1000

10000

100000

8k 16k 32k 64k

NS-3

Sinalgo

Cunetsim CPU

Cunetsim GPU

Scenario B: Heterogeneous nodes

• CPU-based grouping remains stable
• GPU-based grouping runtime increased by a factor of 16

– Higher number of isolated events
– Cost of context switching and memory transfer

Ru
nt

im
e

(s
)

Number of nodes

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Outline

Introduction
& Background

Cunetsim Hybrid
scheduling

CMW
& GP-CMW

NS-3 as proof
of concept

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014 28

htpp://www.eurecom.fr/

CPU Execution

GPU Execution

General Idea
• Maximize the hardware usage rate for both CPU and GPU

targets
• Hybrid scheduling

– Execute grouped events on the GPU
– Execute isolated events on the CPU

Hybrid
scheduling

29

Hybrid
Scheduler

Generation FEL

New events

Recursive/isolated events

CPU Execution

GPU Execution

Recursive/isolated events

Isolated events

Grouped events

17/03/2014 ©Navid Nikaein 2014

Node

htpp://www.eurecom.fr/

Related Works

30

Scheduling
Approaches

CPU-
oriented

Parallel LPs

Event-
based

Thread-
based

GPU-
oriented

Thread-
based

Agent-
based

Data-
oriented

Distributed
FEL

Fault-
tolerant

Calendar

Hybrid

Hybrid
scheduler

Hybrid
scheduling

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Parallelize Events

• 3-dimensional array list (3D-AL) data structure
1. Timestamps : having sequential and strict order
2. Foreign independent events: having the same timestamps
3. Cloned independent events: having the same time stamp

and instruction

31

Hybrid
scheduling

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Parallelize Events

• 3-dimensional array list (3D-AL) data structure
1. Timestamps : having sequential and strict order
2. Foreign independent events: having the same timestamps
3. Cloned independent events: having the same time stamp

and instruction

32

Hybrid
scheduling

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Events Flow and Stability

• Approach of dynamic system where events are
flowing between producers and consumers
sharing buffers

• System Bottleneck may change over time

 use feedback to maintain dynamically event
rate stability to maximize the simulation
efficiency

17/03/2014 ©Navid Nikaein 2014 33

Hybrid
scheduling

htpp://www.eurecom.fr/

Architecture

34

Hybrid
scheduling

17/03/2014 ©Navid Nikaein 2014

Event flow

htpp://www.eurecom.fr/

Validation Scenario

• Experiment setup
– Cunetsim framework
– 3 independent activity areas
– 3 types of nodes
– 525 K nodes per AA
– 50 G packets each 128B
– 600m3 Per AA

• Hardware setup
– i7 3730k (6cores)
– 64 Go of RAM
– 3 GPUs : GTX 680

• Objective : Scalability

Hybrid
scheduling

35 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Comparative Results

36

Hybrid
scheduling

N
or

m
al

ize
d

Sp
ee

du
p

1

10

100

1000

CPU M-CPU GPU M-GPU H-scheduler

Normalized Speedup

• H-Scheduler outperforms M-CPU by 150x and M-GPU by 2x
• Higher scheduling cost for H-Scheduler

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Discussion

• Scalability gain achieved by
– Maximizing the hardware usage rate in a shared

memory context

• Limitations
– Simulation scalability due to limited memory size
– Simulation instability due to data locality issue

when swapping the target

Hybrid
scheduling

37 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Locality Problem

• Consider the locality between the data and
the event to determine the execution target

Hybrid
scheduling

38

GPU 1 GPU 2

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Comparative Results

39

Hybrid
scheduling

• Event rate stability is achieved (Event flow) increase scalability
• Small Gain of 10%

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Outline

Introduction
& Background Cunetsim Hybrid

scheduling

CMW
& GP-CMW

NS-3 as proof
of concept

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014 40

htpp://www.eurecom.fr/

General Idea
• Shared memory context limits the scalability

• MW performs well in parallel or distributed simulation,
but not in both at the same time

• Coordinator-Master-worker CMW
– CM is optimized for distributed simulation
– MW is optimized for parallel simulation

41

CMW
& GP-CMW

Coordinator

Master

Worker

• Synchronization
• Communication management
• Load balancing
• User interface

• Synchronization
• Hybrid scheduler
• Communication services for workers

So
ft

w
ar

e
de

sig
n

Hw
/S

w

co
-d

es
ig

n

• Execution

Extended LP

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Related Works

42

CMW
& GP-CMW

Parallel & Distributed
Simulation

Shared
Memory

Parallel
Simulation

Pointer
based

Thread-
based

LP-based

Message
based

Realtine
Simulation

Generic
Architecture

HLA

Realtime
Experiment

Parallel and
Distributed

CMW

GP-CMW

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

CMW Model CMW
& GP-CMW

Coordinator

W1

W2

W3

B
u
f
f
e
r

Data & control flow

Master-Master service

Master

Master B
u
f
f
e
r

W1 W4
W4

W4
W1 W4

W4
W5

17/03/2014 ©Navid Nikaein 2014 43

htpp://www.eurecom.fr/

Addressing Space CMW
& GP-CMW

17/03/2014 ©Navid Nikaein 2014 44

htpp://www.eurecom.fr/

CMW Synchronization

45

CMW
& GP-CMW

17/03/2014 ©Navid Nikaein 2014

Work Unit 0 Work Unit 1 Work Unit 2

I 1 I 2 I 3 I 4 I I 6 I 7 I 8 I 9 I 10 I 11

I 7 E1 E2 E3 E4

Coordinator
Time-driven clock

Master
Time-driven clock +
Lookahead protocol

Worker
Event-driven clock

htpp://www.eurecom.fr/

Validation Scenario

• Extension of the H-scheduler scenario.
• 250 M nodes
• P2P interconnection.
• 1-144 ELPs, 6002 seconds.
• TGCC Curie Infrastructure

– Hybrid Nodes (144)
• 2 CPU (8 cores)
• 2 GPU (1024 Cores)

– 192 Tflops , 528 Go GRAM, 46 To RAM
• Benchmarking: MW and CMW models

46

CMW
& GP-CMW

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Result (simulation runtime)

47

CMW
& GP-CMW

0

2000

4000

6000

8000

10000

12000

14000

1 4 8 16 32 48 64 80 96 112 128 144

MW
CMWRu

nt
im

e(
s)

Number of ELP
• Runtime stability is achieved
• Gain of 10 times compared to MW
• CMW introduces 3 times larger overhead as the number of ELP increases

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

General Idea
• GP-CMW : Management overhead and locality

– Priority Abstraction layer
• Separates control plane from data plane

– Hardware abstraction layer
• Exploits data and communication locality

48

CMW
& GP-CMW

Coordinator

Master

So
ft

w
ar

e
de

sig
n

Hw
/S

w

co
-d

es
ig

n

PAL

HAL

Master

Worker
Worker

Worker

Worker
Worker

Worker

CPU

GPU

HAL

Worker
Worker

Worker

Worker
Worker

Worker

CPU

GPU

Extended LP

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Event Lifecycle CMW
& GP-CMW

17/03/2014 ©Navid Nikaein 2014 49

htpp://www.eurecom.fr/

CMW
& GP-CMW Experiment Setup

• Massive multi-player online game simulation
– Command and conquer

• 144worlds, 25k-50k players/world, 1-20 bases/ players,
1-3 plans per base, 1-40 elements per plan

• Only 10% of players communicate with different worlds
Simulating one year of the game with 144 ELPs

• Time stamp is 1 minute (1 Year is 525600)
• TGCC Curie Infrastructure

50 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Results

51

Ru
nt

im
e

(h
)

CMW
& GP-CMW

1

10

100

1000

1 4 8 16 32 64 144

GP-CMW
CMW
MW-CPU

Number of world

• GP-CMW outperforms CMW by 4.5 times

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Conclusion

• GP-CMW combines parallel and distributed simulation in one

optimized architecture
– Introduce a Coordinator as a top level actor

• Limitation

– Worker migration (mobility conditions)
– Load balancing
– System observation overhead

52

CMW
& GP-CMW

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Outline

Introduction
& Background

Cunetsim Hybrid
scheduling

CMW
& GP-CMW

NS-3 as proof
of concept

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014 53

htpp://www.eurecom.fr/

Highlights

• NS-3 : most popular DES network simulator.
– Layered software architecture
– Sequential execution
– Scalability is achieved through distributed

simulation (official branch)

• When targeting parallel simulation

the event scheduler is identified as the main bottleneck

NS-3 as proof
of concept

54 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

General Idea NS-3 as proof
of concept

55

Explicit CPU
parallelism

Implicit CPU
parallelism

GPU
offloading

Hybrid
scheduling

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Proposed Modifications NS-3 as proof
of concept

56

Event execution is made
by a pool of threads.

 The scheduler make the
decision

The event execution is
made by a pool of threads
but the scheduler see only

one event (framework:
OpenMP)

Selected events will be
offloaded to the GPU

(Framework: OpenACC)

Selected events will be
forwarded to dedicated

process that choose their
executed target.

(OpenMP+MPI+OpenACC)

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Explicit CPU Parallelism NS-3 as proof
of concept

57

Event execution is made
by a pool of threads.

 The scheduler make the
decision

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Implicit CPU Parallelism

17/03/2014 ©Navid Nikaein 2014 58

NS-3 as proof
of concept

The event execution is
made by a pool of threads
but the scheduler see only

one event (framework:
OpenMP)

htpp://www.eurecom.fr/

GPU Offloading

17/03/2014 ©Navid Nikaein 2014 59

NS-3 as proof
of concept

Selected events will be
offloaded to the GPU

(Framework: OpenACC)

htpp://www.eurecom.fr/

Hybrid Scheduler

17/03/2014 ©Navid Nikaein 2014 60

NS-3 as proof
of concept

Selected events will be
forwarded to dedicated

process that choose their
executed target.

(OpenMP+MPI+OpenACC)

htpp://www.eurecom.fr/

Experiment Setup NS-3 as proof
of concept

61

• Benchmarking Scenarios
– 64k Nodes
– 1600*1600*1600(3D)
– RWP mobility,
– UDG Connectivity
– Flooding Proto

• Fair comparison
– Stop the simulation when reaching 250 M

events
– Limiting the modification to the scheduler

or the event generator
• Framework used

– MPI,
– OMP
– OpenACC
– PGI compiler

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Performance Results
(1K nodes, 250K events)

1

10

100

1000

1 Core 4 Cores 8 Cores 16 Cores 32 Cores

Distributed
Explicit CPU
Implicit CPU
GPU Offloading
Hybrid

17/03/2014

• Distributed architecture introduces an overhead but scales well
• Explicit CPU parallelism caps with 8 cores (due to the scheduling bottleneck)
• Implicit CPU parallelism handles easily large CPUs
• GPU offloading provides a real gain if used as a co-processor
• Hybrid approach maximize the hardware usage and scale well with heterogeneous

resources.

Ru
nt

im
e

(s
)

NS-3 as proof
of concept

©Navid Nikaein 2014 62

htpp://www.eurecom.fr/

Outline

Introduction
& Background

Cunetsim Hybrid
scheduling

CMW
& GP-CMW

NS-3 as proof
of concept

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014 63

htpp://www.eurecom.fr/

Conclusion

64

Conclusion &
Future work

Approach\
characteristic

Efficiency Scalability Overhead Stability

Hybrid
Scheduling

+++

++ -- --

GP-CMW +++ +++ +++

1. Event grouping
2. Multi-target execution with locality

consideration
3. Overhead management

– Separation of control and data plane
– Simulation data aggregation

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Conclusion

• Recent hardware is heterogeneous and
massively programmable.
– Heterogeneous Execution
– Smart usage of available resources allows a new

scalability level.
– To simplify the operation we need:

• More high level API.
• More intelligent IDE.
• More integrated Hardware (SoC+ unified memory)

Conclusion &
Future work

65 17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Future Work

• Massively parallel X86 processors
– Hybrid execution of existing framework over such

infrastructure guarantees a smooth migration to next
software.

• Efficient hardware abstraction
– Automatic parallelism and hardware detection
– Automatic memory management

• Simulation as a service
– Multi-target execution on virtual infrastructure

without full knowledge of hardware
• Hardware abstraction

66

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

Future Work

• Tracing and Data management
– With the increasing number of events the data

size and the required throughput becomes
imposing.

• E.g. Layers-based compression

• Worker migration
• Load balancing across ELPs

67

Conclusion &
Future work

17/03/2014 ©Navid Nikaein 2014

htpp://www.eurecom.fr/

	�Large-scale Network Simulation over Heterogeneous Computing Architecture� Issues, Opportunities and Challenges
	Outline
	About This Tutorial
	Network Experiment
	Network Experiment�Human Perspective
	Network Experiment
	Network Experiment
	Network Experiment
	Network Experiment�Discrete Event Simulation
	Discrete Event Simulation
	Parallel and Distributed Simulation
	Parallel and Distributed Simulation
	Parallel and Distributed DES
	Hardware Context
	Hardware Context�GPU Features and Specification
	Software Context for HPC
	Content of This Tutorial
	Outline
	General Idea�Fully GPU based simulator
	Classification
	Event Descriptor
	Event Descriptor
	Event Grouping
	Framework Architecture
	Evaluation Scenario
	Performance Results
	Performance Results
	Outline
	General Idea
	Related Works
	Parallelize Events
	Parallelize Events
	Events Flow and Stability
	Architecture
	Validation Scenario
	Comparative Results
	Discussion
	Locality Problem
	Comparative Results
	Outline
	General Idea
	Related Works
	CMW Model
	Addressing Space
	CMW Synchronization
	Validation Scenario
	Result (simulation runtime)
	General Idea
	Event Lifecycle
	Experiment Setup
	Results
	Conclusion
	Outline
	Highlights
	General Idea
	Proposed Modifications
	Explicit CPU Parallelism
	Implicit CPU Parallelism
	GPU Offloading
	Hybrid Scheduler
	Experiment Setup
	Performance Results�(1K nodes, 250K events)
	Outline
	Conclusion
	Conclusion
	Future Work
	Future Work

