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About This Tutorial 

• Explore efficiency and scalability horizons 
in network emulation and simulation field 
– Execution time and runtime  
– Number of nodes, traffic load, and mobility 

 
• Applicability to popular simulation/emulation 

tools, 
– NS-3 

Introduction 
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Network Experiment  

• Simulation  
– No interaction with the external entities (closed environment) 
– Part or all of the elements of a network/system is modeled or 

abstracted  
• Emulation 

– Bring the external elements with their I/O streams (open 
environment) 

– Decision on which element is real or modeled depends on the 
use case and purpose of the experiments  

– At least one thing is modeled 
• Real testbed  field trial  

– All the elements are real 
– Part of the testbed maybe controlled  

Introduction 
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Network Experiment 
Human Perspective  

Live  Cyber-Physical? 

Virtual  Constructive  
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Network Experiment Introduction 
& Background 
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Analytical  

• UML 
• FreeMat 
• IDL 
• Matlab  
• SciLab 
• Octave 

Simulation 

• Sinalgo 
• NetSim 
• GloMoSim/Qualnet 
• NS3 
• Opnet 
• Omnet++ 

 

Emulation  

• NS3 
• NistNEt 
• CORE 
• USPR2 
• WARP 
• CMU-DSR 
• ORBIT 
• OAI 

Real Testbed 

• PlanetLab/OneLab 
• NITOS 
• GnuRadio 
• WARP 
• ORBIT 
• Sundance, BEE2, 

WiTestLab 
• USPR2 
• OAI 

Scalability                             Reproducibility                               Applicability 

Abstraction Level                                                                     Realism Level  
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Network Experiment  
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Network Experiment 
Introduction 
& Background 
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• Discrete event simulation model 
– Entity, e.g. node, packet, channel, proto, models 
– Link, e.g. relationships among entities  
– Event-driven discrete System, e.g. Event occurs at 

discrete point of time changing the state of the system  
• Components 

– State, clock, event list, counters,  configure, time and 
event routines 

• Primitives  
– run, stop, now, schedule, cancel, remove, release  
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Network Experiment 
Discrete Event Simulation 
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Introduction 
& Background 

static void my_function (MyModel *model) { 
//  
} 
 

 

Void main () { 
 mod model;  
 ev event;   
 initialize(&mod,&ev);  
 configure(&mod,&ev); 
 schedule(time, &my_func, &mod);   
 … 
 schedule_end_simu (ev);  
 run(); 
 release (); 
} 
 void Run() { 
    while (! end_of_simulation()) { 
 time=get_timestamp(); 
 ev = extract_event (global_event_list); 
 execute(ev);  
} 
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Discrete Event Simulation 

• A composition of a group of elementary  entities 
– Finite state machine per component 
– Event triggers state changes  
– System state evolves over discrete and atomic time   
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Introduction 
& Background 

• Sequential execution limits the scalability and efficiency 

Scheduler Generation Execution 
Event 
List 

New events 

Recursive/isolated  events 
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Parallel and Distributed Simulation 

• Simulations executing over multiple computing 
systems  
– Tightly and/or loosely coupled multiprocessor systems 

11 

Introduction 
& Background 
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Parallel simulation involves the 
execution of a single simulation 
program on a collection of tightly 
coupled processors (e.g., a shared 
memory multiprocessor). 

Distributed simulation involves the 
execution of a single or multiple 
simulation program on a collection of 
loosely coupled processors (e.g., PCs 
interconnected by a LAN or WAN). 
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Parallel and Distributed Simulation 

• Communication Mechanisms:  
– Message Passing 
– Unicast, multicast, broadcast; publish/subscribe 
– Shared Memory 
– Remote Procedure Call (RPC) 
– Remote Method Invocation (RMI) 

• Event Synchronization:  
– Clocks and Time 
– Event ordering 

12 

Introduction 
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Parallel and Distributed DES 

Parallel simulation 

• Typically Shared memory 
context 

• Several execution resources 
• Centralized scheduling 
• Memory-based 

communication mechanism 
• Local synchronization 

Distributed simulation 

• Typically several independent 
simulation instance 

• Different machines 
• Independent scheduling 
• Message-based 

communication 
• Distributed synchronization 
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Introduction 
& Background 

• Care must be taken for simulation correctness, 
synchronization overhead as well stability issues  
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Parallelism  Efficiency and 
auto-scaling Heterogeneity 

Hardware  Context 
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Hardware  Context 
GPU Features and Specification 

• Generally used for the graphical rendering. 
 
 
• Current Trend 

• Able to ensures additional computing work. 
• Evolves on the sense of a co-processor 
• Large number of computing cores 
• Rapid dedicated memory 
• Hardware schedulers (threads and instructions) 

 
• GPU cores are grouped into several streaming 

multi processor SM (like SIMD processors) 
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Introduction 
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Parallelism  Distributed 

Software Context for HPC 
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Introduction 
& Background 
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GridMPI™ 

openMPI 
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Content of This Tutorial 

• Cunetsim: GPU-based simulation framework 
 

• Hybrid-scheduler: Conservative event scheduler 
targeting multi-target execution, both GPU & CPU. 
 

• CMW / GP-CMW: optimized distributed and parallel 
simulation model targeting very large scale scenarios 
 

• NS-3: proof-of-concept 
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General Idea 
Fully GPU based simulator 

• One dedicated GPU core per node. 
– At a given time Ti each node executes one event 

 
 

• Only GPU executes,  CPU controls 
• Master-Worker simulation model 

– CPU is the master 
– GPU is the worker 

Cunetsim 
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Classification Cunetsim 
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Approaches  

CPU based 

Sinalgo 

NS3 

Distributed 

QualNet 

Distributed 
NS3 

Accelerated 

GPU 

FPGA 

DSP 

GPU based 

Cunetsim 

17/03/2014 ©Navid Nikaein 2014 

htpp://www.eurecom.fr/


Event Descriptor 

• Representation of an event used for management 

21 

Cunetsim 

• Extend the event descriptor to support parallelism  
– Grouping info for the events that only differs in their data  
– Cloned Independent Events (CIE) represented as a single entry 
 

Descriptor Timestamps callback Arguments 

Descriptor Timestamps callback Arguments Grouping Info 

17/03/2014 ©Navid Nikaein 2014 

• Break the 1:1 relationship between an event and its descriptor 
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Event Descriptor 
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Cunetsim 

• Grouping info for  CIE events 

Descriptor Timestamps callback Arguments Grouping Info 
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Event Grouping Cunetsim 
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• Events are  
– Compressed during the generation (grouping info 

added) 
– Expanded during the execution by hardware scheduler  

 
• No strict order during  execution inside a group 

– Decision is made by the hardware scheduler  
– Events must be designed such that, the execution order 

of parallel events does not affect the correctness. 
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Workers 
 
 
 
 
 
 
 
 
 
 
 
 

Master 
 
 
 
 
 
 
 
 
 
 
 

Framework Architecture 
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Cunetsim 
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Evaluation Scenario  Cunetsim 

25 

• Benchmarking Scenarios 
– 4-64k Nodes 
– 1600x1600x1600(3D) 
– 600 seconds 
– RWP mobility 
– UDG Conectivity 

– Flooding Proto 
• Comparative Evaluation 

– NS-3 (distributed version- 6 LPs) 
– Sinalgo (asynchronous 6 threads ) 
– Cunetsim-CPU (OMP – 6 threads) (via openACC) 
– Cunetsim-GPU (1 master+ 1 GPU ) 

• Software context 
– CUDA for GPU dev (GTX 460) and PGI for compilation 

Scenario A Scenario B 
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Performance Results 
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• Gain obtained by grouped events  
– 6x on the CPU target  
– 100x on the GPU target 

 

Scenario A: Homogeneous nodes 
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Performance Results Cunetsim 
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Scenario B: Heterogeneous nodes 

• CPU-based grouping remains stable 
• GPU-based grouping runtime increased by a factor of 16  

– Higher number of isolated events 
– Cost of context switching and memory transfer 
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CPU Execution 

GPU Execution 

General Idea 
• Maximize the hardware usage rate for both CPU and GPU 

targets 
• Hybrid scheduling  

– Execute grouped events on the GPU 
– Execute isolated events on the CPU 

Hybrid 
scheduling 

29 

Hybrid 
Scheduler 

Generation FEL 

New events 

Recursive/isolated  events 

CPU Execution 

GPU Execution 

Recursive/isolated  events 

Isolated  events 

Grouped events 
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Related Works 
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Scheduling 
Approaches  
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oriented 

Parallel LPs 

Event-
based 
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Parallelize Events 

• 3-dimensional array list  (3D-AL) data structure 
1. Timestamps : having sequential and strict order  
2. Foreign independent events: having the same timestamps  
3. Cloned independent events: having the same time stamp 

and instruction 

31 

Hybrid 
scheduling 
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Parallelize Events 

• 3-dimensional array list  (3D-AL) data structure 
1. Timestamps : having sequential and strict order  
2. Foreign independent events: having the same timestamps  
3. Cloned independent events: having the same time stamp 

and instruction 
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Events Flow and Stability  

• Approach of dynamic system where events are 
flowing between producers and consumers 
sharing buffers 
 

• System Bottleneck may change over time  
 
 use feedback to maintain dynamically event 
rate stability to maximize the simulation 
efficiency  
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Architecture 
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Hybrid 
scheduling 
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Validation Scenario 

• Experiment setup  
– Cunetsim framework 
– 3 independent  activity areas 
– 3 types of nodes  
– 525 K nodes per AA 
– 50 G packets each 128B 
– 600m3 Per AA 

• Hardware setup 
– i7 3730k (6cores) 
– 64 Go of RAM 
– 3 GPUs : GTX 680 

• Objective : Scalability  

Hybrid 
scheduling 
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Comparative Results 

36 

Hybrid 
scheduling 
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• H-Scheduler outperforms M-CPU by 150x and M-GPU by 2x 
• Higher scheduling cost for H-Scheduler  
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Discussion 

• Scalability gain achieved by  
– Maximizing the hardware usage rate in a shared 

memory context  
 

• Limitations  
– Simulation scalability due to limited memory size 
– Simulation instability due to data locality issue 

when swapping the target 
 

Hybrid 
scheduling 
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Locality Problem 

• Consider the locality between the data and 
the event to determine the execution target 

 
 
 

 

Hybrid 
scheduling 
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GPU 1 GPU 2 
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Comparative Results 
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Hybrid 
scheduling 

• Event rate stability is achieved (Event flow)  increase scalability 
• Small Gain of 10%  
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General Idea 
• Shared memory context limits the scalability  

 

• MW performs well in parallel or distributed simulation, 
but not in both at the same time  

 

• Coordinator-Master-worker CMW 
– CM is optimized for distributed simulation 
– MW is optimized for parallel simulation 

41 

CMW 
& GP-CMW 

Coordinator 
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Worker 

• Synchronization 
• Communication management  
• Load balancing 
• User interface  

 
• Synchronization  
• Hybrid scheduler 
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Related Works 
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CMW Model CMW 
& GP-CMW 
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Addressing Space   CMW 
& GP-CMW 
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CMW Synchronization 
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CMW 
& GP-CMW 
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Coordinator 
Time-driven clock 
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Validation Scenario 

• Extension of the H-scheduler scenario. 
• 250 M nodes  
• P2P interconnection.   
• 1-144 ELPs, 6002 seconds. 
• TGCC Curie Infrastructure 

– Hybrid Nodes (144) 
• 2 CPU (8 cores) 
• 2 GPU (1024 Cores) 

– 192 Tflops , 528 Go GRAM, 46 To RAM 
• Benchmarking: MW and CMW models 
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Result (simulation runtime) 
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CMW 
& GP-CMW 
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Number of ELP 
• Runtime stability is achieved 
• Gain of 10 times compared to MW 
• CMW introduces 3 times larger overhead as the number of ELP increases 
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General Idea 
• GP-CMW : Management overhead and locality 

– Priority Abstraction layer 
• Separates control plane from data plane 

– Hardware abstraction layer 
• Exploits data and communication locality 
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Event Lifecycle CMW 
& GP-CMW 
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CMW 
& GP-CMW Experiment Setup 

• Massive multi-player online game simulation 
– Command and conquer  

• 144worlds, 25k-50k players/world, 1-20 bases/ players, 
1-3 plans per base, 1-40 elements per plan 

• Only 10% of players communicate with different worlds 
Simulating one year of the game with 144 ELPs 

• Time stamp is 1 minute (1 Year is 525600) 
• TGCC Curie Infrastructure 
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Results 
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• GP-CMW outperforms CMW by 4.5 times  
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Conclusion 

 
• GP-CMW combines parallel and distributed simulation in one 

optimized architecture 
– Introduce a Coordinator as a top level actor 

 
• Limitation 

– Worker migration (mobility conditions) 
– Load balancing  
– System observation overhead 
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Highlights 

• NS-3 : most popular DES network simulator. 
– Layered software architecture  
– Sequential execution 
– Scalability is achieved through distributed 

simulation (official branch) 

 
• When targeting parallel simulation  

the event scheduler is identified as the main bottleneck 

NS-3 as proof 
of concept 
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General Idea NS-3 as proof 
of concept 
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Explicit CPU 
parallelism 

Implicit CPU 
parallelism 

GPU 
offloading 

Hybrid 
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Proposed Modifications NS-3 as proof 
of concept 

56 

Event execution is made 
by a pool of threads. 

 The scheduler make the 
decision 

The event execution is 
made by a pool of threads 
but the scheduler see only 

one event (framework: 
OpenMP) 

Selected  events will be 
offloaded to the GPU 

(Framework: OpenACC) 

Selected events will be 
forwarded to dedicated 

process that choose their 
executed target. 

(OpenMP+MPI+OpenACC) 

17/03/2014 ©Navid Nikaein 2014 

htpp://www.eurecom.fr/


Explicit CPU Parallelism  NS-3 as proof 
of concept 
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Event execution is made 
by a pool of threads. 

 The scheduler make the 
decision 
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Implicit CPU Parallelism  
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NS-3 as proof 
of concept 

The event execution is 
made by a pool of threads 
but the scheduler see only 

one event (framework: 
OpenMP) 
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GPU Offloading  
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NS-3 as proof 
of concept 

Selected  events will be 
offloaded to the GPU 

(Framework: OpenACC) 
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Hybrid Scheduler  
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NS-3 as proof 
of concept 

Selected events will be 
forwarded to dedicated 

process that choose their 
executed target. 

(OpenMP+MPI+OpenACC) 

htpp://www.eurecom.fr/


Experiment Setup NS-3 as proof 
of concept 

61 

• Benchmarking Scenarios 
– 64k Nodes 
– 1600*1600*1600(3D) 
– RWP mobility,  
– UDG Connectivity 
– Flooding Proto 

• Fair comparison  
– Stop the simulation when reaching  250 M 

events 
– Limiting the modification to the scheduler 

or the event generator 
• Framework used  

– MPI, 
– OMP  
– OpenACC 
– PGI compiler 
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Performance Results 
(1K nodes, 250K events) 
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• Distributed architecture introduces an overhead but scales well 
• Explicit CPU parallelism caps with 8 cores (due to the scheduling bottleneck) 
• Implicit CPU parallelism handles easily large CPUs  
• GPU offloading provides a real gain if used as a co-processor 
• Hybrid  approach maximize the hardware usage and scale well with heterogeneous 

resources. 
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Conclusion 
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Conclusion & 
Future work 

Approach\ 
characteristic 

Efficiency Scalability Overhead Stability 

Hybrid 
Scheduling 

+++ 
 

++ -- -- 

GP-CMW +++ +++ +++ 

1. Event grouping  
2. Multi-target execution with locality 

consideration  
3. Overhead management  

– Separation of control and data plane 
– Simulation data aggregation  
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Conclusion 

• Recent hardware is heterogeneous and 
massively programmable.  
– Heterogeneous Execution 
– Smart usage of available resources allows a new 

scalability level.    
– To simplify the operation we need: 

• More high level API. 
• More intelligent IDE. 
• More integrated Hardware (SoC+ unified memory)   

Conclusion & 
Future work 
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Future Work 

• Massively parallel X86 processors 
– Hybrid execution of existing framework over such 

infrastructure guarantees a smooth migration to next 
software. 

• Efficient hardware abstraction  
– Automatic parallelism and hardware detection  
– Automatic memory management  

• Simulation as a service  
– Multi-target execution on virtual infrastructure 

without full knowledge of hardware  
• Hardware abstraction 
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Future Work 

• Tracing and Data management 
– With the increasing number of events the data 

size and the required throughput becomes 
imposing. 

• E.g. Layers-based compression  

• Worker migration  
• Load balancing across ELPs 
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