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Optimal Streaming of Layered Video
Despina Saparilla Keith W. Ross

Abstract— This paper presents a model and theory for
streaming layered video. We model the bandwidth available
to the streaming application as a stochastic process whose
statistical characteristics are unknown a priori. The ran-
dom bandwidth models short term variations due to conges-
tion control (such as TCP-friendly conformance). We sup-
pose that the video has been encoded into a base and an en-
hancement layer, and that to decode the enhancement layer
the base layer has to be available to the client. We make
the natural assumption that the client has abundant local
storage and attempts to prefetch as much of the video as
possible during playback. At any instant of time, starva-
tion can occur at the client in either of the two layers. We
study the dynamic allocation of the available bandwidth to
the two layers. For the case of an infinitely-long video, we
find that the optimal policy takes on a surprisingly simple
and static form. For finite-length videos, the optimal pol-
icy is a simple static policy when the enhancement layer is
deemed at least as important as the base layer. When the
base layer is more important, we design a threshold policy
heuristic which switches between two static policies. We pro-
vide numerical results that compare the performance of no-
prefetching, static and threshold policies.

I. I NTRODUCTION

In recent years, streaming stored video has become a
popular Internet application [1–4]. We expect the traffic
emerging from streaming stored video to be a major, if
not dominant, Internet traffic type in the upcoming years
because (i) like the Web, it is an intrinsically appealing ap-
plication, (ii) each video stream generates a relatively large
amount of traffic, and (iii) increased deployment of high-
speed residential access networks (e.g., cable modems and
ADSL) will permit a greater number of users to stream
video at high rates.

One major technological trend that should be taken into
account in the design of streaming stored video applica-
tions is the phenomenal increase of disk capacity at local
client machines. Today, standard PCs are being sold with
tens of gigabytes, and if the current growth trend continues
they may be sold with hundreds of gigabytes in upcoming
years. This immense local storage capacity fully opens the
door to prefetching video during client playback.

The Internet itself also has three characteristics that need
to be taken into account when designing video stream-
ing applications. First, the Internet provides its users with
highly heterogeneous access rates. Second, the traffic load

over a link can wildly fluctuate over a broad range of time
scales [5]. And third, currently the dominant traffic type
is TCP, which has been designed to share bandwidth with
other traffic flows by appropriately limiting its transmis-
sion rate. The first two characteristics strongly suggest the
use of an adaptive transmission scheme at the server, such
as transmission of layered-encoded video. The third char-
acteristic suggests that streaming video should be designed
to cooperate fairly with existing TCP flows.

In this paper we develop a model that provides a frame-
work for high-level design of streaming stored video ap-
plications. We develop the model in the current context
of abundant local storage, heterogeneous user access rates,
fluctuating traffic load on links, and the need for the ap-
plication to conform to a congestion control mechanism
(such as TCP-friendly conformance). Given that there is
abundant local storage, we naturally allow for limitless
prefetching during client playback. Our theory permits the
video to be VBR-encoded, although the results remain in-
sightful for the special case of CBR video. The model sup-
poses that the bandwidth available to the video streaming
application is variable; it could, for example, be the fair-
share bandwidth determined by a TCP-friendly algorithm
[6–8].

We also suppose that the video is layered encoded. Lay-
ered encoding is useful in order to cope with the hetero-
geneity of user access rates and with the competing traffic
in the links between server and client. In this paper we
suppose that the video is encoded in two layers – a base
layer and an enhancement layer. At any instant of time,
starvation can occur at the client in either of the two lay-
ers. During periods of starvation, the client applies video
error concealment to hide the loss [9]. The fundamental
problem that we address in this paper is the dynamic al-
location of the available bandwidth to the two layers in
order to minimize the impact of client starvation. A con-
servative policy allocates all the available bandwidth to the
base layer until the entire base layer has been prefetched
(at which the available bandwidth is allocated to the en-
hancement layer); a more aggressive, optimistic policy is
to allocate the available bandwidth in proportion to the av-
erage consumption rates of the layers. The problem of
dynamically allocating bandwidth among the layers can
be formulated as an adaptive stochastic control problem
[10]. The fraction of bandwidth allocated to a layer can
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depend on a number of observable factors, including the
current and past available bandwidth, the current prefetch
buffer contents, and the dynamic consumption rates of the
videos. However, the statistical characteristics of the avail-
able bandwidth (e.g., mean and variance) are not given a
priori to the client-server system.

We study this dynamic allocation problem for two cases:
the case of an infinite-length video, which approximates
the important case of a long video with limited or no user
repositioning (as would be the case in a movie); and the
finite video case, which models the case of a shorter video
clip. For the infinite video case we find that the optimal
policy is surprisingly simple. It is a static policy that al-
locates a constant fraction of the bandwidth to each layer
throughout the transmission of the video. Although mak-
ing extensive use of prefetching, static policies do not need
to take into account current prefetch buffer contents. For
the finite video case, we find that the nature of the optimal
policy depends on the relative importance of the various
layers. When the enhancement layer is deemed as impor-
tant as the base layer, then the optimal policy is shown to
be a specific static policy. However, when the base layer
is relatively more important, then static policies are subop-
timal and, in fact, can perform poorly. For this important
case, we devise a simple heuristic which switches between
two static policies when the base-layer prefetch buffer ex-
ceeds a threshold. We provide numerical results which
show that threshold policies can provide significantly bet-
ter performance than static policies. The numerical results
also illustrate the importance of prefetching.

The paper is organized as follows. In Section 2 we pro-
vide further motivation for streaming layered-video and
prefetching. In Section 3 we precisely define the model.
In Section 4 we define and solve the problem of optimally
allocating available bandwidth to the base and enhance-
ment layers for infinitely-long video. In Section 5 we
study a similar problem for finite-length video. We de-
velop heuristics for the finite-length case and provide sim-
ulation results in Section 6.

II. STREAMING STORED VIDEO

One fundamental property of stored video, as mentioned
in the Introduction and observed in many other papers
[11–17], is that it is prefetchable. Prefetching is advan-
tageous for at least three reasons. First, it allows the client
to locally build up a reservoir in preparation for future
bandwidth droughts. Droughts can occur over short time
scales due to bursty Web requests, congestion avoidance
in competing TCPs, and the variable-bit rate transmissions
in competing video streams. Bandwidth droughts can also
occur on longer time scales due to changes in the number

of competing streams and Web surfers, and due to route
changes. A second motivation for prefetching is that when
the video stream is variable-bit-rate (VBR) encoded, then
future high-bit rate scenes can be prefetched when there
is excess available bandwidth. Finally, a third motivation
is to reduce (or eliminate) the re-buffering delay when the
user repositions playback at a point into the future.

A second property of video is that it is loss (i.e., star-
vation) tolerant. Sender-side (e.g., FEC) and receiver-side
(e.g., block repetition, prediction, interpolation) [9] tech-
niques can be used to reduce the visual effects of loss. A
third property of video is that it is often VBR encoded.
This implies that the rate at which the video data is drained
at the client fluctuates over many different time scales.
However, because the video is prerecorded and stored, the
rate fluctuations are knowna priori to the server.

When designing an application for streaming stored
video, we must also take into account the nature of the
Internet. Access rates to the Internet vary by several or-
ders of magnitude. Many users are restricted to dial-up
modem rates of 56 Kbps or less, whereas other users have
100 Mbps Ethernet access. Furthermore, the competing
network traffic load between server and client can widely
fluctuate over many different time scales.

These two Internet characteristics – heterogeneous ac-
cess rates and fluctuating network traffic – motivate the use
of layered encoding. With two layers, it may be possible
to quickly prefetch the base layer so that it is immediately
available after user repositioning. With layered encoded
video, when the long-term average available bandwidth is
insufficient to support all the layers, the server does not
transmit higher layers, which results in lower but often ac-
ceptable quality for the user.A critical property of layered
encoding is that in order to decode a layer, all the lower
layers must also be present at the client.

Fig. 1 illustrates how video is typically encoded into
two layers. First the video is compressed into a base layer.
Next, the base layer is de-compressed and subtracted from
the original uncompressed video. This difference is then
compressed to form the enhancement layer. At the re-
ceiver, the layers are independently de-compressed and
then added together. If packet loss occurs for either layer,
the client can attempt to conceal the loss using, for exam-
ple, block repetition, prediction and interpolation.

Another important characteristic of today’s Internet is
that dominant traffic types (HTTP, SMTP, NNTP, etc.) run
over TCP. TCP uses a congestion control mechanism that
forces connections to exhibit fair behavior [18]. Stream-
ing video applications should be designed to be coopera-
tive with the TCP connections by reacting to congestion
[19]. This can be done, for example, by probing to dis-
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Fig. 1. Layered encoding and decoding of video.

cover the fair-share of network bandwidth and transmit at
a rate that does not exceed this fair share. Applications
with this property are said to be “TCP friendly” [6, 7]. An
application’s fair share rate can be estimated by its round-
trip times and its loss rates [6–8].

A. Related Research

Rejaie et al [20, 21] consider a broad range of architec-
tural issues for streaming layered encoded video. They
argue for the need for end-to-end congestion control, qual-
ity adaptation and error control for streaming applications.
Their analysis assumes that (1) the congestion control
mechanism employs an additive increase multiplicative
decrease (AIMD) algorithm, (2) the video is encoded in
many layers, (3) the encoding is CBR. Furthermore, they
do not account for error concealment at the receiver, so a
complete layer must be available at the receiver to make
use of it. In the context of these assumptions, they develop
buffer allocation mechanisms that meet natural QoS goals.
Although our paper is similar in spirit to [21], the model
and the approach differs in many respects. Our model al-
lows for (1) a general evolution of the available bandwidth
(rather than one based on the AIMD algorithm), (2) partial
loss and error concealment at the receiver, and (3) VBR
as well as CBR encoded video. Our approach also differs
in that we formulate the problem as an optimal stochastic
control problem, and study the problem for both long and
short videos. Our goal is to gain fundamental insight into
the streaming of layered video in a broad context.

Podolsky et al [22] also formulate an interesting opti-
mization problem for streaming layered video. In their
model, the bandwidth between server and client is con-
stant, but packets are independently lost with a constant
probability. They do not explicitly consider extensive
client prefetching nor TCP-compliant transmission sched-
ules. Their focus is on optimal retransmission of lost pack-
ets from the different layers.

III. T HE MODEL

Video is stored in a server and is to be streamed across
the Internet to a client. Let the length (in seconds) of
the video be denoted byT . We suppose that the video

is VBR layered-encoded into a base layer and an enhance-
ment layer. Although we allow for VBR encoding of each
layer, the theory developed here remains insightful for the
case of CBR-encoded video. To simplify the notation, we
use a fluid model to represent the streaming of the encoded
video. (This theory can be converted to its discrete equiv-
alent without significant modification.) Letrb(t) denote
the encoded rate of the base layert seconds into the video;
similarly definere(t) for the enhancement layer.

Without loss of generality, we suppose that the client
begins to playback the video at timet = 0. Initially, we
exclude interactive actions such as pause/resume and repo-
sitioning. Thus at timet the client desires to consume base
layer video at raterb(t) and enhancement layer video at
ratere(t). To remove jitter and short time scale bandwidth
variations, most streaming systems build up a few seconds
of video before playback [1, 2]. Our model also allows
for an initial playback delay, denoted by�. Since play-
back begins at timet = 0, a playback delay of� seconds
means that the client requests the video at timet = ��.
Throughout this paper, we suppose that� is a fixed param-
eter (e.g., four seconds). We make the approximation that
the delay between the server and the client is zero; this is a
reasonable approximation since RTTs are relatively small.

Let X(t), �� � t, be the rate available to the stream
at time t. The server might determine the rateX(t), for
example, from RTTs and packet loss rates using one of the
TCP-friendly procedures [6–8]. The available bandwidth
X(t) can vary on short time scales due to competing Web
transfers, competing VBR streams, and competing TCPs
using congestion avoidance; it can also vary on long time
scales due to changes in the number of streams and users,
and due to route changes. At timet the server knows the
current available bandwidthX(t) and its past values, but
has no knowledge of its future values (although it can try
to predict them from the current and past values). We view
fX(t); t � ��g as a stochastic process.

We suppose that the server always transmits at the rate
allowed by the available bandwidth. When the available
bandwidth exceeds the aggregate consumption rate, the
system is prefetching into the client storage, which we
model as infinite. We also suppose that the server never
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Fig. 2. Allocating the available bandwidth to the two layers.

transmits data that have already missed their deadline for
timely consumption. Thus at timet the server transmits
video at rateX(t), and all of the transmitted video will
eventually be consumed by the client.

At each time instantt the server must allocate the avail-
able bandwidthX(t) among the base and enhancement
layers. Let�b(t) and�e(t) denote the fraction ofX(t)
that the server allocates to the base and enhancement lay-
ers, respectively. Of course,�b(t) + �e(t) = 1 for all t.
We refer to� = (�b(t); t � ��) as thestreaming policy.
As shown in Fig. 2, at timet the base-layer prefetch buffer
in the client is fed at rate�b(t)X(t) and, when nonempty,
is drained at raterb(t). An analogous statement is true
for the enhancement layer. Note that the client prefetch
buffers comprise a system of two fluid queues whose oc-
cupancy depends onX(t) and the prefetch policy�.

Throughout this paper we suppose that the server is
aware of the amount of data in the prefetch buffers. In
practice, the server could accurately estimate the buffer
contents from receiver reports. For example, if the the
server receives a report stating that at timet the contents
areYb(t) andYe(t), then it can estimate the contents at
time t + � as

Yb(t+ �) � Yb(t) +

Z t+�

s=t

[�b(s)X(s)� rb(s)]ds:

We consider prefetch policies in a general sense. The
policy allocation�b(t) can depend ont, onX(t) and its
entire past historyX(s); s < t, and on the past policy
allocations�b(s); s < t. BecauseYb(t) and Ye(t) are
uniquely defined byX(s); s � t and�b(s); s � t, the
policy can depend on the current and past prefetch buffer
contents as well. However, we make the natural assump-
tion that there is no a priori statistical characterization of
fX(t); t � ��g available.

Ideally, all of the base and enhancement layers are con-
sumed throughout playback, i.e., the encoded video is sent
to the client decoder at raterb(t)+re(t) for all 0 � t � T .
Due to limited and fluctuating available bandwidth, how-
ever, it may not be possible to deliver all data to the client
decoder by their deadline. Our goal is to identify the poli-
cies that minimize the loss in the base and enhancement
layers.

IV. I NFINITE-LENGTH VIDEO

We first study the dynamic bandwidth allocation prob-
lem among layers for infinite-length video. The infinite-
length case approximates the streaming of a full-length
movie for whichT is very large. Let�rb denote the average
encoding rate of the base layer, that is,

�rb = lim
T!1

1

T

Z T

0

rb(t) dt:

Similarly, define�re to be the average encoding rate of the
enhancement layer. For the infinite video case, we assume
thatfX(t); t � ��g is a stationary and ergodic stochastic
process. Let� = E[X(t)] denote the (a priori unknown)
average available bandwidth.

A. Loss Rates

Loss of data from the base layer can occur only when
Yb(t) = 0 and�b(t)X(t) < rb(t). We make the natu-
ral assumption throughout this paper that when these two
conditions occur, the data resulting from�b(t)X(t) can
be used to approximate the decoded video stream. (This
could be done, for example, by using an error conceal-
ment scheme such as replacing missing blocks of video
with blocks from earlier frames.) The rate at which loss
occurs whenYb(t) = 0 is [rb(t) � �b(t)X(t)]+. Thus the
long-run fraction of base-layer traffic lost is

P�
b = lim

T!1

R T
0
[rb(t)� �b(t)X(t)]+1(Yb(t) = 0) dtR T

0
rb(t) dt

:

P�
b should be interpreted as the long-run fraction of the

compressed video that is not consumed at the client. In a
similar manner we defineQ�

e to be the long-run fraction of
enhancement traffic lost:

Q�
e = lim

T!1

R T

0
[re(t)� �e(t)X(t)]+1(Ye(t) = 0) dtR T

0
re(t) dt

:

Q�
e is not an appropriate measure for the fraction of en-

hancement traffic that iseffectively lost from the video
stream. Recall that a critical property of layered video is
that to decode the enhancement layer, the base layer must
be available at the client. As a result, there is loss of en-
hancement traffic whenever there is loss of traffic from
the base layer, even ifYe(t) > 0. We first suppose that
when there is “partial loss” of base-layer traffic, there is
also “partial loss” of enhancement-layer traffic. In this
partial-loss model, the fraction of encoded enhancement-
layer traffic that is consumed can be as much as the frac-
tion of encoded base-layer traffic consumed. This model
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would be appropriate when many of the available blocks
in the enhancement layer of a frame are blocks available in
the base layer of the same frame. Note that the fraction of
base-layer traffic that is consumed during base-layer loss
is �b(t)X(t)=rb(t). The partial loss model supposes that
an equal fraction of enhancement-layer traffic is consumed
in the case whenYe(t) > 0 and there is loss of base-layer
traffic. Thus, in that case, enhancement-layer traffic is con-
sumed at ratere(t) � �b(t)X(t)=rb(t). More generally, we
define the long-run fraction of enhancement-layer traffic
effectively lost as

P�
e = lim

T!1

R T
0
[re(t)�H(t)]+ dtR T

0
re(t) dt

; (1)

whereH(t) is the consumption rate of enhancement-layer
traffic at timet, i.e.,

H(t) =

8>>>><
>>>>:

re(t) whenYb(t) > 0, Ye(t) > 0

�e(t)X(t) whenYb(t) > 0, Ye(t) = 0

re(t)
�b(t)X(t)

rb(t)
whenYb(t) = 0, Ye(t) > 0

minf�e(t)X(t); re(t)
�b(t)X(t)

rb(t)
g otherwise.

(2)

B. Feasible Region

Having defined the loss probabilitiesP �
b andP �

e , we
now identify the set of possible(P �

b ; P
�
e ) values. We show

that the loss probability tuple(P �
b ; P

�
e ) belongs to a fea-

sible set
, where
 is the set of all tuples(Pb; Pe) that
satisfy

Pe � Pb (3)

�rb(1� Pb) + �re(1� Pe) � � (4)

Pb � [1�
�

�rb
]+ (5)

The feasible set
 is shown in Fig. 3. Note that region
L represents an upper bound on the performance level that
can be achieved. The inequality (3) follows directly from
the definitions ofP �

b andP �
e . To prove (4), letP�

b (t) be
the fraction of base-layer traffic lost over[0; t] for a general
prefetch policy�. Similarly, defineQ�

e (t) for the enhance-
ment layer. The amount of base-layer traffic that has been
consumed up to timet is the amount of traffic that has
been delivered to the client up to timet minus the amount
of traffic that remains in the client prefetch buffer at time
t. Thus, we have

1� P�
b (t) =

R t
��

�b(s)X(s) ds� Y �
b (t)R t

0
rb(s) ds

=
1
t

R t

��
�b(s)X(s) ds� 1

t
Y �
b (t)

1
t

R t
0
rb(s) ds
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Fig. 3. Set of feasible loss probabilities

Similarly,

1� Q�
e (t) =

1
t

R t
��

�e(s)X(s) ds� 1
t
Y �
e (t)

1
t

R t

0
re(s) ds

Combining the above two equations and using�b(t) +
�e(t) = 1 gives

1

t

Z t

0

rb(s)ds [1� P�
b (t)] +

1

t

Z t

0

re(s)ds [1�Q�
e (t)]

=
1

t

Z t

��

X(s)ds�
1

t
[Y �

b (t) + Y �
e (t)] :

Taking the limit of the both sides of the above equation
gives

�rb(1� P �
b ) + �re(1�Q�

e ) = �:

The proof of (4) is completed by noting that by definition
P�
e � Q�

e . Relationship (5) follows from a similar argu-
ment and noting thatP �

b is minimized by setting�b(t) = 1
for all t.

Having shown that all tuples(P �
b ; P

�
e ) belong to
,

which tuples in this region provide the best performance?
The answer to this question depends on the relative im-
portance of the base and enhancement layers, which in
turn depends on the specific compression and error con-
cealment schemes employed. It may be desirable to trade
off small increases in base-layer loss for large decreases in
effective enhancement layer loss, thereby improving over-
all image quality. In any case, tuples falling onL dom-
inate tuples falling in
 � L: for any point belonging to

� L, there exists points onL that provide strictly better
performance. We therefore say that a policy� is optimal
if (P �

b ; P
�
e ) belongs toL. In the following subsection we

show that a very simple class of policies can achieve all
the points onL, attaining thereby optimal performance.
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C. Optimality of Static Policies

In this subsection we consider a specific class of poli-
cies for which the allocation�b(t) is constant. Let�b,
0 � �b � 1, denote such astatic policy. In the static al-
location scheme, a constant fraction of the available band-
width is allocated to each layer throughout the video trans-
mission. Thus, the base-layer prefetch buffer is fed at rate
�bX(t) and the enhancement-layer prefetch buffer is fed
at rate�eX(t), where�b + �e = 1. Furthermore, define
�̂ = �rb

�rb+�re
. Intuitively, the static policŷ� allocates trans-

mission rate to each layer in proportion to its long-run av-
erage consumption rate. A static policy is relatively easy
to implement as it does not depend on prefetch buffer con-
tents. The following theorem presents our first main result,
namely, static policies are optimal for the infinite-video
case. For this theorem, we assume thatrb(t) = Kre(t)
for some constantK; this assumption trivially holds for
the CBR case and is likely to roughly hold for the VBR
case.

Theorem 1: Each point on the dominating regionL is
achieved by some static policy witĥ� � �b � minf1; �rb

�
g.

Proof: Note thatL is the boundary of feasible set
 at-
tained when (4) is binding (i.e., when it holds as an equal-
ity). By an argument similar to that in the proof of (4), it
can be shown that

P�
b = [1�

�b�

�rb
]+; (6)

and similarly,

Q�
e = [1�

�e�

�re
]+: (7)

It follows from the above two equations and from�b +
�e = 1 thatP�

b andQ�
e satisfy

�rb(1� P�
b ) + �re(1�Q�

e ) = �: (8)

Furthermore, it follows from (6) that as�b varies from1
to �̂, P�

b varies from[1� �
�rb
]+ to 1� �

�rb+�re
, where the last

two values are thePb values at the endpoints ofL. Thus,
to prove that all points onL are attained by static prefetch
policies with �̂ � �b � minf1; �rb

�
g, it suffices to show

that for this set of policies (4) is binding. Equation (8)
implies that this is clearly the case whenP �

e = Q�
e . To

complete the proof of the theorem it thus suffices to show
that for static policies witĥ� � �b � minf1; �rb

�
g

P�
e = Q�

e (9)

Fix a realizationfx(t); t � ��g of stochastic process
X(t). Additionally, fix realizationsfyb(t); t � ��g and
fye(t); t � ��g of the prefetch buffer content functions
Yb(t) and Ye(t), respectively. First, we define the nor-
malized buffer content functions as~yb(t) = yb(t)=�rb and

~ye(t) = ye(t)=�re. Taking derivatives of~yb(t) and~ye(t) we
obtain

~y0b(t) =

8<
:

�bx(t)�rb(t)

�rb
when~yb(t) > 0h

�bx(t)�rb(t)

�rb

i+
when~yb(t) = 0

(10)

and

~y0e(t) =

8<
:

�ex(t)�re(t)

�re
when~ye(t) > 0h

�ex(t)�re(t)

�re

i+
when~ye(t) = 0

(11)

By condition�b � �̂ and by noting thatrb(t) = Kre(t)
implies�rb = K�re, we obtain

�bx(t)� rb(t)

�rb
�

�ex(t)� re(t)

�re
for all t: (12)

We first claim that

~ye(t) > 0 implies ~y0b(t) � ~y0e(t): (13)

To see this, note that~ye(t) > 0 implies

~y0e(t) =
�ex(t)� re(t)

�re

�

�bx(t)� rb(t)

�rb
; (14)

where the equality follows from (11) and the inequality
follows from (12). Also from (10) we have

~y0b(t) �
�bx(t)� rb(t)

�rb
: (15)

Combining (14) and (15) we establish (13). We now prove
that

yb(t) = 0 impliesye(t) = 0: (16)

It suffices to show that

~yb(t) � ~ye(t) for all t: (17)

Fix a t � 0. Clearly, (17) is true when~ye(t) = 0. Now
suppose that~ye(t) > 0. Thent belongs to a busy period of
~ye(t). Let � denote the starting time of the busy period of
~ye(t); we have~ye(�) = 0. Furthermore~yb(�) � 0. Thus
at the beginning of the busy period,~yb(�) � ~ye(�). For all
s within the busy period~y 0b(s) � ~y0e(s) by (13). These two
facts imply that~yb(s) � ~ye(s) for all s in the busy period,
and in particular~yb(t) � ~ye(t), which establishes (17), and
in turn implies (16).

We now complete the proof of (9). Recall thatP�
e is

in general given by (1) and (2). By applying (16), (2) be-
comes

H(t) =

(
re(t) whenYe(t) > 0

�eX(t) whenYe(t) = 0
(18)
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Note that for the case whenYb(t) = Ye(t) = 0 in (2),
condition�b � �̂ implies that�e � re(t) � �b=rb(t), and
H(t) reduces to�eX(t). Using (18) in (1) yieldsP �

e =
Q�
e

Theorem 1 indicates that optimal performance is
achieved by a static policy. The specific optimal policy
�b 2 [�̂;minf1; �rb

�
g], however, depends on the relative

importance of the base and enhancement layers. As an ex-
ample, suppose that user perceived quality is maximized
by makingP �

b as small as possible. In that case, the op-
timal policy is to set�b = minf1; �rb=�g. To implement
this policy, the server does not need to keep track of the
prefetch buffer contents. The server must, however, have
an estimate of the average available bandwidth�. At any
time t, such an estimate can be based on the current avail-
able bandwidthX(t) and all its past values. For example,
the server can dynamically estimate� at timet as follows:

� =

R t
��

e��(t�s)X(s) dsR t
��

e��(t�s) ds
; (19)

for some damping factor�. Given the most recent estimate
for � , the server can then adjust the optimal value of�b.
Note, finally, that in the case when� exceeds the total av-
erage consumption rate�rb+�re, then a reasonable policy is
�b = �̂, regardless of the relative importance of the layers.

D. Total Loss Model

Our analysis of the bandwidthallocation problem for the
case of infinite-length video in the previous subsections
has been based on the assumption that during instants of
base-layer traffic loss, an equal fraction of enhancement-
layer traffic is lost, even ifYe(t) > 0. We referred to the
above as the partial-loss model. We now consider a second
model for enhancement-layer loss in whichno encoded
enhancement-layer traffic can be consumed when there is
loss of encoded base-layer traffic. We refer to this model
as thetotal-loss model. Note that this model still permits
partial decoding of the enhancement layer whenall of the
base layer is available. In this subsection we determine the
loss rates and the optimal streaming policy for this second
model. In the total-loss model, enhancement-layer traffic
is lost at ratere(t) whenYb(t) = 0 and�b(t)X(t) < rb(t).
The long-run fraction of enhancement-layer traffic that is
effectively lost is given by (1), where the effective con-
sumption rateH(t) whenYb(t) > 0 or rb(t) � �b(t)X(t)
is given by

H(t) =

(
re(t) if Ye(t) > 0

�e(t)X(t) if Ye(t) = 0

and byH(t) = 0, whenYb(t) = 0 andrb(t) > �b(t)X(t).

Let Re denote the long-run fraction of enhancement-
layer traffic lost for the total-loss model. Naturally, the
optimal policy will favor more the base layer, as 100%
of enhancement-layer traffic is lost even if only a small
fraction of traffic is lost from the base layer. As with the
partial-loss model, the optimal streaming policy must en-
sure that the enhancement-layer prefetch buffer is empty
whenever there is loss in the base layer. Additionally, due
to the total-loss assumption, no enhancement traffic should
be streamed during times when there is loss in the base
layer. Using the techniques of subsection IV-B, it can be
shown that the tuple(Pb; Re) belongs to the feasible set

 as defined by equations (3)-(5). Now consider policy
�� = (��b (t); t � ��), which we define as follows:

��b (t) =

(
�b if Yb(t) > 0 or rb(t) � �bX(t)

minf1; rb(t)
X(t)

g otherwise.

Policy�� allocates a constant fraction�b of the bandwidth
to the base layer when eitherYb(t) > 0 or when the current
allocation exceeds the current consumption rate. When
the base-layer prefetch buffer is empty, policy�� may in-
crease the fraction of bandwidth allocated to the base layer
to avoid loss of base-layer traffic. This is done by either al-
locating to the base layer a fraction of the available band-
width equal torb(t)

X(t)
if rb(t) � X(t), or by allocating to the

base-layer all of the available bandwidth ifrb(t) > X(t).
In the former case, the allocation avoids base-layer loss,
but does not prefetch any enhancement-layer traffic. Note
that policy�� allocates no bandwidth to the enhancement
layer unlessYb(t) > 0. It can be shown in a manner sim-
ilar to the proof of Theorem 1, that under policy�� with
�b > �̂, Yb(t) = 0 impliesYe(t) = 0. This relationship in
turn implies that(Pb; Re) tuples for policy�� with�b > �̂

belong to regionL, as indicated in Fig. 3, i.e.,

�rb(1� Pb) + �re(1�Re) = �

The above relationship can be shown again by using simi-
lar arguments as in the proof of Theorem 1. Consequently,
(Pb; Re) tuples for policies�� with �b > �̂ dominate all
other points in
, thereby achieving optimality.

V. FINITE-LENGTH VIDEO

In this section we consider the layered prefetching prob-
lem for the case of finite-length video. The finite-length
case models the situation in which a short clip (i.e.,T is
relatively small) is to be streamed from server to client.
In this analysis, we again consider VBR-encoded video,
although our results remain valid for the special case of
CBR-encoded video.
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Recall that� = (�b(t); t � ��) denotes a general
streaming policy, where�b(t) is the fraction ofX(t) al-
located to the base layer at timet and�e(t) = 1 � �b(t)
is the fraction ofX(t) allocated to the enhancement layer.
For the finite-length case, we need to restrict the general
streaming policy� so that as soon as the streaming of a
layer is complete, the total available transmission rate is
allocated to the layer for which data remains to be sent.
To this purpose, we define parametersTb andTe that in-
dicate the times at which the streaming of each layer is
complete. AtTb, for instance, the portion of base-layer
data that remains to be consumed up through timeT has
been downloaded into the prefetch buffer. Specifically, we
define

Tb = minft : Yb(t) =

Z T

t

rb(s) dsg:

We define an analogous expression forTe. Note that in
the finite-length case, the bandwidth that is available be-
tweenmaxfTb; Teg and T is not utilized. LetP �

b be
the fraction of base-layer traffic lost. Furthermore, let
Tmin = minfTb; Teg. P�

b is given by

P�
b =

R T
0
[rb(t)�Hb(t)]+ dtR T

0
rb(t) dt

; where

Hb(t) =

8><
>:
�b(t)X(t) whenYb(t) = 0 for t < Tmin

X(t) whenYb(t) = 0 for Tmin � t � Tb

rb(t) otherwise.

Similarly,

Q�
e =

R T
0
[re(t)�He(t)]+ dtR T

0
re(t) dt

; where

He(t) =

8><
>:
�e(t)X(t) whenYe(t) = 0 for t < Tmin

X(t) whenYe(t) = 0 for Tmin � t � Te

re(t) otherwise.

Clearly, loss of base-layer traffic is only possible fort �

Tb. Note, however, that loss of enhancement-layer traffic
is possible fort � Te. AsQ�

e does not represent the actual
loss in the enhancement layer, we next determine the frac-
tion of enhancement-layer trafficP�

e effectively lost ac-
cording to the partial loss model. Recall that in the partial
loss model, the fraction of traffic lost from the enhance-
ment layer whenYe > 0 and there is loss of data in the
base layer equals the fraction of traffic lost from the base
layer. Specifically, the fraction of enhancement traffic ef-

fectively lost is

P�
e =

R T
0
[re(t)�H(t)]+ dtR T

0
re(t) dt

; (20)

where

H(t) = minf
re(t)

rb(t)
Hb(t); He(t)g: (21)

The above expression for the effective consumption rate
in the enhancement layer follows directly from the defini-
tions of the loss rates in the partial-loss model. Note that
these definitions imply that for any policy�

P�
e � maxfP�

b ; Q
�
eg: (22)

A. Preliminary Results

Having defined the loss probabilities for the stream-
ing of finite-length video, we now present some neces-
sary preliminary results, which will aid in the derivation
of the optimal streaming policies. For detailed proofs of
these results see [23]. For these results, we again as-
sume thatrb(t) = Kre(t) for some constantK. Let �rb
denote the average encoded rate of the base layer, i.e.,
�rb =

1
T

R T
0
rb(t) dt. Similarly define�re. We consider the

class of static policies and establish the following lemma,
which parallels the results obtained in Section IV-C for the
infinite-length case.

Lemma 1: (a) Fix a static policy�b. If �b � �̂, then
(i) Yb(t) = 0 impliesYe(t) = 0; (ii) T�

b � T�
e ;

(iii) P�
e = Q�

e .
(b) If �b � �̂, then (i) Ye(t) = 0 implies Yb(t) = 0;
(ii) T�

b � T�
e ; (iii) P�

e = P�
b .

From Lemma 1, we haveT�̂
e = T �̂

b ,i.e., under policŷ�
streaming for both layers ends at the same time. To sim-
plify notation, writeTc for T �̂

e . We next present a second
important result, which establishes a key property of the
static policy�̂.

Lemma 2: maxfT�
b ; T

�
e g � Tc for any policy�.

Lemma 2 states that policŷ� maximizes the streaming
duration for both layers, thereby utilizing available band-
width for at least as long as any policy�. As we shall see,
in the case when both layers are equally important, this
property is key in achieving optimality.

B. Optimization Problem

We now use the results in the previous subsection to de-
termine the optimal streaming policy. We approach this
problem by formulating and solving the following opti-
mization problem:

max
�

J� = E[db(1� P�
b ) + de(1� P�

e )]; (23)
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in whichdb andde are fixed constants and denote the rela-
tive importance of the encoded base and enhancement lay-
ers. Note that whendb = �rb andde = �re, we are opti-
mizing the expected sum of base and enhancement layer
average throughputs. Throughout this section we suppose

de

db
�

�re
�rb
: (24)

Condition (24) implies that the enhancement layer has a
greater (or equal) impact than the base layer on the quality
of the decoded video. We thus seek the optimal streaming
policy� that maximizes the expected weighted fraction of
traffic consumed in both layers, for the case when the en-
hancement layer is considered at least as important as the
base layer. For this case, we shall show that the static pol-
icy �̂ = �rb

�rb+�re
achieves optimality. We consider the opti-

mization of the same objective function when the encoded
base-layer stream has a greater impact on quality than the
enhancement-layer stream in a following subsection.

We approach the optimization problem in (23)-(24) by
first solving the simpler problem

max
�

F� = E [�rb(1� P�
b ) + �re(1� P�

e )] ;

and then showing that the obtained solution is also optimal
for (23)-(24). The following theorem states that policy�̂
optimizes functionF� .

Theorem 2: The policy�̂ is optimal forF�, i.e.,F�̂ �

F� , for any policy�.
Proof: Using the results of Lemma 1, and the definitions
for the loss probabilities, it can be shown that

F�̂ = E

�
1

T

Z Tc

0

X(t) dt

�
:

Additionally, it can be shown that

F� � E

�
1

T

Z maxfT�

b
;T�
e
g

0

X(t)dt

�
:

Applying Lemma 2 to the right-hand side of the above two
relationships yields

E

�
1

T

Z Tc

0

X(t) dt

�
� E

�
1

T

Z maxfT�

b
;T�
e g

0

X(t)dt

�
;

which implies thatF�̂ � F�

We now turn to the maximization problem in (23)-(24).
Using Theorem 2 we derive the following (see [23]).

Corollary 1: The policy�̂ is optimal forJ�, i.e.,J�̂ �
J� for any� when de

db
�

�re
�rb

.
The above corollary states that when the enhancement

layer has an equal effect on the quality of the decoded
video as the base layer, the optimal policy is a specific

static policy, namely, the optimal policy allocates a con-
stant fraction of bandwidth to each layer in proportion to
each layer’s transmission rate. Again, the optimal policy
utilizes prefetching when possible, but is independent of
the prefetch buffer contents.

VI. H EURISTICS FORFINITE-LENGTH VIDEO

Having solved the layered streaming problem for the
case when the enhancement layer has a relatively high im-
pact on quality, we now consider the important case in
which the base layer has a greater impact on quality than
the enhancement layer. We suppose throughout this sec-
tion that

de

db
<

�re
�rb
: (25)

Under this condition , the complexity of the optimiza-
tion problem in (23) increases significantly. In this pa-
per, we do not provide an analytical solution to the optimal
streaming problem under condition (25). Instead, we de-
velop heuristic streaming policies and investigate the per-
formance of these policies through a simulation study. Our
results show that static policies can perform poorly when
(25) holds.

A. Bounds on Performance

There are upper bounds on the best possible perfor-
mance that can be achieved by any streaming policy. In
this subsection we derive two types of upper performance
bounds. We will later compare these bounds to the perfor-
mance of our heuristic streaming policies for finite-length
video. A first bound results from a traffic conservation
relationship. It can be shown using a simple traffic conser-
vation statement (see [23]) that the following holds

�rb(1� P�
b ) + �re(1�Q�

e ) =
1

T

Z maxfT�

b
;T�
e
g

��

X(t) dt:

Using P �
e � maxfP�

b ; Q
�
eg and Tc � maxfT�

b ; T
�
e g

(from Lemma 2), and taking the expectation of both sides
gives the bound

�rb(1� E[P �
b ]) + �re(1� E[P �

e ]) � C1; (26)

where

C1 =
1

T
E[
Z Tc

��

X(t) dt]: (27)

Note thatC1 in this bound is a constant and does not de-
pend on policy�.

A second performance bound can be obtained by noting
that loss in the base layer is always minimized when all
of the available bandwidth is allocated to the base layer,
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until this layer is fully prefetched. Applying static policy
�b = 1 (see [23]) yields

E[P �
b ] � 1�

E[
R T 1

b

��X(t) dt]R T
0
rb(t) dt

= C2; (28)

whereT 1
b isT�

b with � = 1. Note thatC2 does not depend
on�.

B. Threshold Policies and Simulation

We now consider heuristic streaming policies for finite-
length video. We begin by defining a heuristic threshold
policy denoted bŷ�, which varies the fraction of band-
width allocated to each layer according to current prefetch
buffer contents. In particular, when the content of the base
layer prefetch buffer is below a certain constant threshold,
denoted byqthres, policy �̂ allocates all of the available
bandwidth to the base layer. When the base layer prefetch
buffer content exceeds the threshold, policy�̂ decreases
the fraction of the bandwidth allocated to the base layer to
�̂. Once the base layer has been entirely prefetched, the
policy allocates all available bandwidth to the enhance-
ment layer. Thuŝ� = (�b(t); t � ��), where�b(t) at
time t is given by

�b(t) =

8><
>:
1 whenYb(t) < qthres

�̂ whenYb(t) � qthres

0 whenYb(t) >
R T

t
rb(s) ds

A key issue in the implementation of the threshold policy
is making a reasonable choice for the value of the thresh-
old. High threshold values may lead to overly conservative
policies that result in unacceptable losses in the enhance-
ment layer for insignificant improvement in the base layer
losses. On the other hand, very low thresholds may re-
sult in unsatisfactory performance in terms of the losses
incurred in the base layer. The development of heuristics
for determining appropriate threshold values is an area of
ongoing work.

We have investigated the performance of a number of
streaming policies, including the threshold policies defined
above, in a simulation study. In this study we used a spe-
cific stochastic model forX(t). Specifically, we letX(t)
vary randomly among two constant levelsC1 andC2, with
probabilityp and (1 � p), respectively. We letX(t) re-
main in each of the two states for a random period of time.
We denote�1 and�2 for the mean duration in each state of
X(t). Note thatp = �1

�1+�2
. We define the system utiliza-

tion by� = E[X(t)]

(�rb+�re)
.

Fig. 4 shows the results of a simulation study in which
� = 1. Each of the three graphs plots the expected loss

probability in the enhancement layer versus the expected
loss probability in the base layer for two classes of stream-
ing policies: static policies and threshold policies . Differ-
ent static policies were evaluated by varying the value of
�b and different threshold policies were evaluated by vary-
ing the value ofqthres. Note that graph (a) also includes
an additional class of streaming policies, namely, policies
that do not employ prefetching. Graph (b) on the right
simply represents a zoomed-in version of graph (a). Graph
(c) was obtained by varying�1=T , while maintaining all
other critical parameters such as�, p andT constant. Note
that as�1=T increases, the likelihood of entering a long
period during whichX(t) remains in the same state also
increases. As we shall see, the existence of long periods
during whichX(t) is constant has adverse consequences
on performance. In graph (a),�1=T = 0:01. The results
illustrate that no-prefetching policies result in poor perfor-
mance. For policies that employ no prefetching,(Pb; Pe)
tuples are always dominated by(Pb; Pe) tuples resulting
from static or threshold policies. This result confirms the
significant benefits of prefetching. We see that the static
policy �̂, which allocates bandwidth to the layers in pro-
portion to their consumption rates, minimizesPe for all
cases. This is consistent with the results in subsection V-
B, where it was shown that policŷ� is optimal when the
enhancement layer is at least as important as the the base
layer. Graph (a) also illustrates the performance of thresh-
old policies for differentqthresvalues. Clearly, when base-
layer loss must be minimized, threshold policies attain sig-
nificantly better performance than static policies.

The improvements attained by threshold policies are
better seen in the zoomed in version of graph (a) on the
right. A threshold policy resulting in expected base-layer
loss of 0.5% gives aPe near 4%. A static policy with aPb

of 0.5%, however, results in aPe greater than 8.5%. Note
that the zoomed-in version includes the upper performance
bounds derived in section VI-A. The diagonal bound in the
graph represents the bound in (26) obtained from the traf-
fic conservation statement. The vertical bound in the graph
indicates the minimum expected loss in the base layer de-
termined by (28). As illustrated by the graph, the perfor-
mance of threshold policies approximates the performance
of the two bounds combined.

Graph (c) was obtained by setting�1=T = 0:1. Increas-
ing the value of�1=T has a negative effect on the perfor-
mance of static and threshold policies, as seen in graph
(b). A higher�1=T increases the likelihood of situations
in which there are sustained periods of insufficient band-
width. During these periods, video can not be prefetched
and losses often become unavoidable. See [23] for addi-
tional numerical results.
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Fig. 4. (Pb; Pe) tuples for three types of streaming policies: no-prefetching polices, static policies and threshold policies.

Note that the heuristic threshold policŷ� relies on a
constant threshold level for the content of the base-layer
prefetch buffer. A natural extension of the threshold pol-
icy is to utilize a dynamic threshold level. We are cur-
rently studying dynamic threshold policies and have a sim-
ple conservative estimate for the threshold value, which
depends on the future base-layer consumption rate and on
dynamic estimates for the future available bandwidth [23].
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