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Abstract—This paper provides lower bounds on the recon-
struction error for transmission of two continuous correlated
random vectors sent over a sum channel using the help of two
causal feedback links from the decoder to the encoders connected
to each sensor. This construction is considered for standard
normally distributed sources. Additionally, a two-way retrans-
mission protocol, which is a non-coherent dual-source adaptation
of the original work by Yamamoto [1] is introduced for an
additive white Gaussian noise channel. Asymptotic optimality
of the protocol is analyzed and upper bounds on the distortion
level are derived for two-rounds considering two extreme cases
of high and low correlation among the two sources. It is shown
by both the upper and lower-bounds that collaboration can be
achieved through energy accumulation.

Index Terms—Distributed communication, joint source channel
coding, detection/estimation, multiple-access channel (MAC)

I. INTRODUCTION

In this work we consider simple transmission strategies
for a network of sensors able to measure a physical phe-
nomenon from different locations. To illustrate this more
precisely, imagine the simplest scenario of one sensor node
tracking a slowly time-varying random sequence and sending
its observations to a receiver over a wireless channel. The
source is denoted by a random variable U of zero mean and
variance σ2

u = 1, representing a single realization of the
random sequence at a particular time t. The sensor should
be seen as a tiny device with strict energy constraints. The
communication channel between the sender and the receiver
is an additive white Gaussian noise channel. An important
question is how to efficiently encode the random variable U
for transmission, and what performance can be achieved upon
reconstruction as a function of the energy used to achieve
this transmission. We focus our attention on the case where
unitary samples of the source are transmitted sporadically due
to slow time-variation, and consequently we cannot perform
sequence coding. In [2], [3] the best-known lower-bound for
the reconstruction fidelity without feedback from the receiver,
coherent detection and unlimited channel bandwidth behaves
as e−E/2N0 for uniformly-distributed U where E is the energy
used for transmission of U . Moreover, several schemes can
achieve e−E/3N0 both with and without coherent detection
and for both normally and uniformly distributed U . One
such scheme based on scalar quantization and orthogonal
modulation was previously described in [4]. With feedback,
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coherent detection and unlimited channel bandwidth, the clas-
sical schemes described in [5] can asymptotically achieve
e−2E/N0 for normally distributed U which coincides with the
lower-bound from Goblick [6].

Here we consider a multi-sensor scenario as in [7] and [8]
which is an important generalization, where two correlated
normally-distributed random variables are transmitted over
a Gaussian multiple-access channel. The key element being
to exploit the correlation, which is assumed to be known,
both at the transmitter and the receiver. Moreover, we aim
to determine the operating regimes for such a multiple-access
system in terms of the role correlation plays in determining
the energy efficiency. In a similar vein, the authors in [9] and
[10] derive a threshold signal-to-noise ratio (SNR) through the
correlation between the sources so that below this threshold,
minimum distortion is attained by uncoded transmission in a
Gaussian multiple access channel with and without feedback,
respectively. In these works, the authors consider transmis-
sion of a bi-variate normal source and the distortion can be
characterized by two regimes as a function of the relationship
between the channel SNR and the source SNR. Through a
different approach lower bounds for transmission of correlated
sources over Gaussian multiple-access channels is considered
in [11].

The main results of the paper are summarized in two main
sections. Section II consists of the model description of the
addressed problem along with the information theoretic results.
In the first two subsections II-A and II-B, we describe the
channel and source models, respectively whereas in the last
part subsection II-C, we introduce three different lower bounds
on the reconstruction error of estimating the source vectors
based on different ranges in which the correlation coefficient
between the two sources is defined. Section III is focused
on the analysis of a two-way retransmission protocol for
transmitting correlated information of two Gaussian sources.
Here, we provide an upper bound on the reconstruction error
for estimating the source messages considering two extremes
levels of high and low correlation. Finally, we conclude the
paper in Section IV with the comparison of the theoretical
lower bounds and upper bounds from the achievable scheme.
The derivations of the information theoretic part can be found
in detail in Section V.

II. LOWER BOUNDS FOR THE GAUSSIAN MAC
A. Channel Model

Let us begin with the definition of the system model used
to analyze the addressed problem.



Fig. 1. Transmission of correlated Gaussian samples over GMAC with
feedback.

The considered system for the multiple-access is depicted
in Figure 1 where we note that the encoders can make use
of an ideal feedback link. The received signal Y = {Yi; i =
1, ..., N} and the energy constraints are given as

Yi = X1,ie
iφ1,i +X2,ie

jφ2,i + Z1,i + Z2,i (1)

1

K

N∑
i=1

E[|Xm,i|2] ≤ Em (2)

for m = 1, 2 and i, j = 1, ..., N , respectively. K is the
dimensionality of the source vectors and is assumed to be
finite (i.e. it cannot grow without bound with N ). The
criteria to satisfy is chosen as the squared-error distortion
measure, which is defined by d(um, ûm) = (um − ûm)2.
φm = {φm,i; i = 1, ..., N} denotes the random phases
which are assumed to be unknown both to the transmitter and
the receiver. The encoding functions are arbitrary mappings,
(Um, Y1, Y2, · · · , Yi−1)→ Xm,i for each channel input in the
case of causal feedback, and Um → Xm,i without feedback.

B. Source Model

The correlational relationship between the sources U1,U2

dimension of K is defined through the following expression

U2 = ρU1 +
√

1− ρ2U′2 (3)

where we denote the first source with U1 and the second
source with U2. U′2 here is an auxiliary random vector, which
is independent of the first source U1. The correlated sources
U1 and U2 are defined to be standard normal random vectors,
guaranteed by the auxiliary random vector U′2 which is also
normally distributed with zero mean and unit variance.

C. Derivation of the Bounds

In order to avoid repetition in the derivations of the
outer bounds, we will use the notation m to represent one
of the sources and m′ will be used to indicate the other
source.Furthermore, we note that the bounds are valid for
both the use of feedback-based encoders and those without
feedback.

1) Lower Bound I: In order to obtain a lower bound on
the reconstruction error in estimating U1,U2, we derive a
relatively simple mutual information between the mth source
Um and the output signal Y through two different expansions,
which depends on the sum energy and turns out to be appropri-
ate for the cases of high correlation between the sources. Two
different expansions of I(Um; Y) are derived first of which
is based on the output signal where the second expansion
depends on the sources. The two expansions of I(Um; Y)
are given by

I(Um; Y) ≤ N log

(
1 +

K(Em + Em′)
NN0

)
, (4)

I(Um; Y) ≥ h(Um)− h(Um − Ûm), (5)

respectively. The derivations of (4) and (5) can be found in
Appendix V-A together with the source entropies. Combining
(28) with (29) and substituting into (27) brings out the second
expansion based on the sources. Equating the outcome to (30)
provides the following lower bound on distortion level for the
mth source

DI,m ≥
(

1 +
K(Em + Em′)

NN0

)− 2N
K

(6)

Asymptotically in N , (6) becomes

DI,m ≥ e−
2(Em+E

m′ )
N0 . (7)

2) Lower Bound II: The main difference between this case
and the previous one treated high correlation is the mutual
information term to be used in order to come up with a bound
on the distortion level corresponding each source. Hence the
mutual information between the source Um and the output
signal Y will be expanded through two different ways when
the information of the other source Um′ is given, so that
the output signal expansion yields dependent on the indiviual
energy. The aim is to obtain a different bound when the
sources are not strongly correlated since Um does not have the
information of Um′ due to correlation. The two expansions of
I(Um; Y|Um′) are given as

I(Um; Y|Um′) ≤ N log

(
1 +

KEm
NN0

)
, (8)

I(Um; Y|Um′) ≥ h(Um|Um′)− h(Um − Ûm). (9)

The derivations of (8) and (9) are given in Appendix V-B. Note
that h(Um − Ûm) which is given by (29) in Appendix V-A
is common for both lower bounds I and II. Combining it with
(33) and substituting into (32) shapes the second expansion
based on the source entropies. Equating the outcome to (31)
results in the general form of the lower bound on the distortion

as DII,m ≥ (1 − ρ2)
(

1 + KEm
NN0

)− 2N
K

and asymptotically in
N , it becomes

DII,m ≥ (1− ρ2)e−
2Em
N0 . (10)



3) Lower Bound III: In addition to the lower bounds I and
II, the product distortion term DIII = D1D2 is bounded as
given in the following form

DIII ≥
(
1− ρ2

)
exp

(
−2(Em + Em′)

N0

)
. (11)

The derivation of the bound (11) given above can be found in
Appendix V-C. As done for the lower bounds I and II, DIII

is achieved through equating the expansions (35) and (36) of
the mutual information I(Um,Um′ ; Y).

Combining all three bounds (7), (10) and (11) introduced
above, we obtain the following overall bound

Dm ≥


DI,m if 1− ρ2 ≤ min(Dm′ , e

−
2E
m′
N0 ),

DII,m if Dm′ ≥ e−
2E
m′
N0 and 1− ρ2 ≥ e−

2E
m′
N0 ,

DIII/Dm′ if 1− ρ2 ≥ min(Dm′ , e
−

2E
m′
N0 ).

(12)
The bounds given above predict that energy accumulation
cannot be achieved when the distortion resulting from the
estimation of one source realization using the other (i.e. 1−ρ2)
is more than the point-to-point distortion (Goblick bound
e−2E/N0 , [6]) incurred during transmission.

III. TWO-WAY PROTOCOL WITH DUAL GAUSSIAN
SOURCES

As in the original work [1] and its non-coherent version
studied in [7], the protocol comprises a data phase and a
control phase, which can be repeated up to two rounds. The
structure of the sources is defined as in (3) where U1 and U ′2
are independent of each other and normally distributed with
zero mean and unit variance. Here U ′2 is used as an auxiliary
random variable to define the relationship between the two
sources U1 and U2 with the joint probability density function
given below

f(u1, u2) =
1

2π
√

1− ρ2
exp

[
−u

2
1 − 2ρu1u2 + u2

2

2(1− ρ2)

]
(13)

for −∞ < u1 < ∞ and ∞ < u2 < ∞. The definition of
U2 ensures that the covariance between the sources equals the
correlation coefficient ρ.

The total energy to be used by protocol is fixed and we will
denote the energy used in the data phase of the ith round by the
jth source by ED,i,j , where i, j = 1, 2. In the same way, EC,i,j
denotes the energy used in the control phase of the ith round
by the jth source. The energy in the control and data phases
of the ith round (EC,i and ED,i, respectively) are defined as the
sum energy on both sources. The quantized source sample of
the jth source is encoded into 2B messages with dimension N .
The messages m1 and m2 will be discretized through uniform
quantization, i.e. the bins are located equidistantly from each
other and for each source the reconstruction points xj,n are the
midpoints of the intervals Ij,n which define each of the bins
for the jth source with n = 2, ..., 2B − 1. The quantization
intervals corresponding to the tails of the bell curve (Ij,1 and
Ij,2B for j = 1, 2) are considered as one bin for each side.
The rest of the partitioning is made for each source as Ij,n =

[−∆ + ∆(n)
2B−1−1

,−∆ + ∆(n+1)
2B−1−1

[, with ∆ = 2
√
B ln 2. Let us

set the quantization levels for each source as xj,1 = −∆ and
xj,2B = ∆.

In the data phase, the first source sends its message m1(U1)
to the receiver using the energy ED,1,1. The receiver detects m̂1

and feeds it back. And the second source sends m2(U2) with
energy ED,1,2. This encoding rule allows the second source
to exploit the correlation of its sample with that of its peer
and the energy used is chosen according to the likelihood of
the estimate fed back from the receiver. After the estimation
and feedback of m̂2, data phase of the first round ends and
the encoders enter the control phase to inform the receiver
about the correctness of its decision. For that, each source
sends ACK/NACK signals regarding its own message to the
decoder. According to the control signals, either the protocol
halts or goes on another round to do the retransmission of the
message which were not acknowledged in the control phase.
For the second data phase, the destination instructs the sources
to retransmit and re-detect their messages. The output signal
of the jth source in the data phase is

Yd =
√
ED,1,jejΦjSmj + Zj . (14)

We assume the random phases Φj to be distributed uni-
formly on [0, 2π), the channel noise Zj to have zero mean
and equal autocorrelation N0IN×N for j = 1, 2 and Smj
are the N -dimensional messages, where m = 1, 2, · · · , 2B .
We assume a detector of the form for the jth source as
ej = I

(
|yc,j |2 > λEC,1,j

)
with yc,j = Yc,j

HSc,j . Here λ
is a threshold value to be optimized and included within the
interval [0, 1).

Definition (m,n) is called a compatible pair if |ρU1−U2| < θ
is satisfied for ∀u1, u2 ∈ B where θ is an arbitrary constant.

This definition assures that, during the quantization process,
the correlation between the two sources would not allow the
second source to fall in a bin further than a certain distance. Jm
represents the set that n is assumed to be contained. Outside
of this set, the pair (m,n) becomes incompatible with the
corresponding probability of error (1−Pr(|U ′2| < θ

√
1− ρ2)).

In this case, the probability of having an error can be composed
by three different events; both sources to be detected wrong, û1

detected correctly as û2 detected wrong or vice versa. These
three events are summarized in two cases as only one source
to be in error or both. The receiver chooses

(m̂1, m̂2) ∼ argmax
(m̂1,m̂2)s.t.(m̂1,m̂2)∈Jm

|U(1)
m1
|2 + |U(1)

m2
|2 (15)

in the first round, whereas the detection rule is cumulatively
given by

(m̂1, m̂2) ∼ argmax
(m̂1,m̂2)s.t.(m̂1,m̂2)∈Jm

|U(1)
m |2 + |U(2)

m |2 (16)

for the second round where |U(1)
m |2 = |U(1)

m1 |2 + |U(1)
m2 |2 and

|U(2)
m |2 = |U(2)

m1 |2 + |U(2)
m2 |2. The overall distortion at the end

of the second round is defined as D = Dq(1 − Pe) + DePe
and bounded by (17) as given on the top of the next page
where ic and c in the subscripts represent the incompatible and
compatible pairs, respectively. Pe,ic,j is the error probability of
j incompatible sources being in error whereas Pe,c,j represents
the error probability of those which are compatible. De,ic,j



D ≤ Dq + (1− Pr(|U ′2| > θ
√

1− ρ2)) (De,c,1Pe,c,1 +De,c,2Pe,c,2) + Pr(|U ′2| > θ
√

1− ρ2)De,ic,1Pe,ic,1

+ Pr(|U ′2| > θ
√

1− ρ2)De,ic,2Pe,ic,2
(a)

≤ Dq +De,c,1Pe,c,1 +De,c,2Pe,c,2 + Pr(|U ′2| > θ
√

1− ρ2) (De,ic,1 +De,ic,2Pe,ic,2) (17)

and De,c,j denote the corresponding distortions for each case,
respectively. Note that, error probabilities and the correspond-
ing distortion levels for the case of both sources being in error
are assumed to be equivalent, i.e. Pe,c,2 = Pe,ic,2 = Pe,2 and
De,c,2 = De,ic,2 = De,2. It should be also noted that in step
(a) of eq. (17), the probability of error only one incompatible
source to be in error is upper bounded by 1. Pe,1 and Pe,2 are
defined by

Pe,1 ≤
⌈
2Bθ

√
1− ρ2

⌉
Pr(Ee→c,1)P2(1,

ED,1
2

)

+
⌈
2Bθ

√
1− ρ2

⌉
P2(2,

ED,1 + ED,2
2

) (18)

Pe,2 ≤
⌈
2Bθ

√
1− ρ2

⌉
2B Pr(Ee→c,1)2P2(2, ED,1)

+
⌈
2Bθ

√
1− ρ2

⌉
2BP2(4, ED,1 + ED,2) (19)

where

P2(L, γ) =
1

22L−1
e−γ

L−1∑
n=0

(
1

n!

L−1−n∑
k=0

(
2L− 1

k

))
γn

in round L given by the formula [12, eq:12.1-24] where
γ represents the SNR. Pr(Ee→c,1), error probability of an
uncorrectable error to occur in the first round, is defined as∑2
j=1 Pr(|

√
EC,1,j + zc,j |2 ≤ λEC,1,j). Explicitly, in the first

round for only one source being in error, the error probability
is obtained by P2(1) whereas P2(2) gives the probability for
both sources being in error. Accordingly P2(2) and P2(4)
represent the probabilities in the second round.

Quantization distortion Dq is defined by

Dq =
2B∑
m=1

2B∑
n=1

∫
I1,m

∫
I2,n

[
(u1 − û1(m))2 + (u2 − û2(n))2

]
f(u1, u2)du2du1 (20)

which can be upper bounded by K1e
−2B ln 2 through substi-

tuting the value of ∆. In order to emphasize the exponential
term the rest of the factors are given by the coefficient K1

which represents O(B). Basically, the range within [−∆,∆]
is uniformly quantized whereas the tails are bounded as Q
functions. In the same way, for the distortion term De,2,
which is caused by the channel when both sources are in error
regardless of being compatible or incompatible, is defined as
given below.

De,2 < 2
(
4∆2 Pr(|uj | < ∆)

)
+ 2

(∫ ∞
∆

(uj + ∆)2f(uj)duj +

∫ −∆

−∞
(uj −∆)2f(uj)duj

)
(21)

We used uniform quantization for the area between the quan-
tization levels under the bell curve and the tails are bounded

using an approriate bound on Q functions. The distortion
caused by one source to be in error are given below for
compatible and incompatible pairs

De,c,1 <

2B∑
n=1

∫
Ij,n

(uj − ûj(n))2f(uj)duj + |2θ2
√

1− ρ2|2,

(22)

De,ic,1 <

2B∑
n=1

∫
Ij,n

(uj − ûj(n))2f(uj)duj

+

∫ ∞
u′2=θ

(
θ
√

1− ρ2 +
√

1− ρ2u′2
)2

f(u′2||U ′2| > θ
√

1− ρ2)du′2 , (23)

respectively. Due to space constraints, the derivations of the
distortions defined above cannot be given explicitly. But basi-
cally, regardless of being compatible both De,c,1 and De,ic,1

contain one source which is correctly decoded. Therefore
both distortion terms include Dq for one of the sources. The
inner part under the bell-curve, i.e. the range between the
quantization levels, and the tails are treated separately also for
the case of 1 source being in error conditioned to be inside
(for De,c,1) or outside (for De,ic,1) of the compatible zone
(|ρU1 − U2| < θ).

The overall distortion at the end of the second round (17)
is obtained by substituting error probabilities (18) and (19)
with corresponding distortion terms and given in the explicit
form as given on the top of the next page by (24) where
K2 = 1/2, K3,K4,K5,K6,K11 and ,K12 are O(ED,1) and
the rest of the factors are O((ED,1+ED,2)3) with ε(ρ) ∈ [0, 1).
For simplification in calculations, the energy used by a source
on a particular phase is assumed to be half of the energy on the
corresponding round, e.g. ED,1 = 2ED,1,1 = 2ED,1,2. Equating
the order of the exponentials for the case of low correlation,
i.e. θ > 2

√
B ln 2

(1−ρ2) , we can set the relations of the energies

as EC,1 =
ED,2

2(
√
λ−1)2

and ED,2 = (2 − µ)ED,1 where µ is an
arbitrary constant within the interval (0, 2).

Under this condition, the distortion (24) yields the bound
(25) where γ, ω and ϑ are functions of ED,1 and ρ and
arose from K3,K4, K5,K6,K9,K10 and K7,K8, respec-
tively. On the other hand for the highly correlated sources,
we set the relations of the energies as EC,1 =

ED,2
(1−
√
λ)2

and ED,2 = (2 − µ)ED,1 where µ is an arbitrary constant
satisfying µ ∈ (0, 2) and the final bound becomes as given by
(26) whereas α is a function of ED,1 which arose from K4,
K8, K12, K14 together with the distortion terms and given

by α(ED,1, ρ) =

(
4
√
ED,1
πN0

+ 16
ED,1
N0

)−2/3

. The amount of

energy used by the protocol is arbitrarily close to the energy



D ≤ K1Dq +K2De,ic,1e
− θ

2(1−ρ2)
2 +

(
K3θ

√
1− ρ2eB ln 2 +K4ε(ρ)

)
De,2e

(B−3) ln 2−
ED,1+EC,1(

√
λ−1)2

2N0

+
(
K5θ

√
1− ρ2eB ln 2 +K6ε(ρ)

)
De,c,1e

−
ED,1+2EC,1(

√
λ−1)2

4N0 +
(
K7θ

√
1− ρ2eB ln 2 +K8ε(ρ)

)
De,2e

(B−7) ln 2−
ED,1+ED,2

2N0

+
(
K9θ

√
1− ρ2eB ln 2 +K10ε(ρ)

)
De,c,1e

−
ED,1+ED,2

4N0 +
(
K11θ

√
1− ρ2eB ln 2 +K12ε(ρ)

)
De,2e

B ln 2− θ
2(1−ρ2)

2
−
ED,1+EC,1(

√
λ−1)2

2N0

+
(
K13θ

√
1− ρ2eB ln 2 +K14ε(ρ)

)
De,2e

B ln 2− θ
2(1−ρ2)

2
−
ED,1+ED,2

2N0

(24)

Dlow ≤ e−
ED,1(1−µ/4)

2N0 γ(ED,1, ρ) + e
−
ED,1(1−µ/3)

2N0 δ(ED,1, ρ) + e
−
ED,1(3−µ)

4N0 ϑ(ED,1, ρ) (25)

Dhigh ≤ e−
ED,1(1−µ/3)

N0 α(ED,1) +K6e
−
ED,1(9−2µ)

4N0 +K10e
−
ED,1(7−µ)

4N0 (26)

consumed by the first data phase assured by vanishing error
probability in this round. The exponential behaviour observed
in (26) is the same with a single source yields in [7]. Note that
there is a difference of factor 1/2 in the exponentials of the
significant term in (26) and the information theoretic bound
given by (7) where both upper and lower bounds represent the
case of highly correlated sources.

IV. CONCLUSION

We derived lower bounds on the reconstruction error for the
transmission of two correlated analog sources in the presence
of causal feedback. The bounds are specialized to the case of
wideband channels. We obtained improvement with respect to
the performance achieved in [6] in terms of the asymptotic
behaviour of the derived bounds on distortion with additional
feedback. We then introduced a low-latency two-way protocol
for the transmission of two correlated random variables over
a wideband channel and analyze its asymptotic behaviour
with non-coherent detection for Gaussian distribution. The two
extremes considered here (25) and (26) show the effect of
correlation on the reconstruction fidelity at the receiver. The
high correlation case yields the exponential behaviour of the
single-source case [7] and benefits from energy accumulation,
or the collaboration of the two sources. Low-correlation results
insignificantly reduced energy-efficiency. In a large network
scenario as in [13], nodes with highly-correlated samples (in
the above sense) would collaborate through joint detection at
the receiver in order to optimize the energy efficiency of the
network.

V. APPENDIX

A. Appendix I- Lower Bound I

The mutual information I(Um; Y) is derived through two
different expansions where the first expansion is

I(Um; Y) = h(Um)− h(Um − Ûm|Y)

≥ h(Um)− h(Um − Ûm). (27)

The entropies of the two sources are given by

h(Um) =
K

2
log 2πe. (28)

The final term required to derive the first expansion of (27) is
given by

h(Um − Ûm) ≤
K∑
j=1

h(Um,j − Ûm,j)

≤ K

2
log

(
2πe

K

K∑
j=1

E[(Um,j − Ûm,j)2]

)
≤ K log

(√
2πeDm

)
(29)

The expansion of I(Um; Y) given above is independent of the
source number. On the other hand, for the second expansion
of the same mutual information we have

I(Um; Y) ≤ I(Um; Y,Φm,Φm′)

= h(Y|Φm,Φm′)− h(Y|Um,Φm,Φm′)

=

N∑
i=1

h(Yi|Y i−1,Φm,Φm′)−
N∑
i=1

h(Yi|Y i−1,Um,Φm,Φm′)

≤
N∑
i=1

h(Yi|Y i−1,Φm,Φm′)

(a)

−
N∑
i=1

h(Yi|Y i−1,Um,Xme
jφm ,Xm′e

iφm′ ,Φm,Φm′)

=

N∑
i=1

h(Yi|Y i−1,Φm,Φm′)−
N∑
i=1

h(Zi)

≤
N∑
i=1

log

(
1 +
Em,i + Em′,i

N0

)

≤ N log

(
1 +

∑N
i=1(Em,i + Em′,i)

NN0

)

≤ N log

(
1 +

K(Em,i + Em′,i)
NN0

)
. (30)

where in step (a), Xme
jφm is introduced due conditioning

on (Y i−1,Um,Φm) in the case of a feedback link between
the decoder and the encoder and simply (Um,Φm) when no



feedback is present. Xm′e
iφm′ can be added since conditioning

reduces differential entropy.

B. Appendix II- Lower Bound II
The first expansion is

I(Um; Y|Um′) ≤ I(Um; Y|Um′ ,Φm,Φm′)

= h(Y|Um′ ,Φm,Φm′)− h(Y|Um,Um′ ,Φm,Φm′)

=

N∑
i=1

h(Yi|Y i−1,Um′ ,Φm,Φm′)

−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Φm,Φm′)

(b)
=

N∑
i=1

h(Yi|Y i−1,Um′ ,Xm′e
iφm′ ,Φm,Φm′)

(c)

−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Xme
jφm ,Xm′e

iφm′ ,Φm,Φm′)

(d)
=

N∑
i=1

h(Xm,ie
jφm,i + Zi|Y i−1,Um′ ,Φm,Φm′)−

N∑
i=1

h(Zi)

≤
N∑
i=1

h(Xm,ie
jφm,i + Zi)−

N∑
i=1

h(Zi)

≤ N log

(
N∑
i=1

log(V ar(Xm,ie
jφm,i + Zi))− log(V ar(Z))

)

= N log

(
1 +

KEm
NN0

)
. (31)

In step (b), Xm′e
iφm′ comes from conditioning on

(Y i−1,Um′ ,Φm′) in the case of feedback and from condition-
ing on (Um′ ,Φm′) when no feedback is present. Similary step
(c) stems from conditioning on (Y i−1,Um,Um′ ,Φm,Φm′).
And in (d), Xm′e

iφm′ is subtracted from the output signal,
which provides Xme

jφm together with the noise term in the
next step. For the second expansion based on the sources, we
have

I(Um; Y|Um′) = h(Um|Um′)− h(Um|Um′ ,Y)

= h(Um|Um′)− h(Um − Ûm|Um′ ,Y)

≥ h(Um|Um′)− h(Um − Ûm). (32)

The conditional entropy of one source given the other is obtained as

h(U1|U2) = −I(U1; U2) + h(U1)

(e)
= −h(U2) + h(U2|U1) + h(U1)

= h(U2|U1)

=
K

2
log(1− ρ2)2πe (33)

where in the step (e), we used the equality of the entropies
between two standard normal random vectors.

C. Appendix III- Lower Bound III
The mutual information I(Um,Um′ ; Y) is obtained as

I(Um,Um′ ; Y) ≤ I(Um,Um′ ; Y|Φ)

= h(Y|Φ)− h(Y|Um,Um′ ,Φ)

= h(Y|Φ)−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Φ)

(f)

≤
N∑
i=1

h(Yi|Φ)−
N∑
i=1

h(Yi|Y i−1,Um,Xme
jφm ,Um′ ,Xm′e

iφm′ ,Φ)

=

N∑
i=1

h(Yi|Φ)−
N∑
i=1

h(Zi). (34)

Note that, in (f) the additional terms in the second
differential entropy stem from conditioning on
(Y i−1,Um,Um′ ,Φm,Φm′) in the case of feedback
and (Um,Um′ ,Φm,Φm′) when no feedback is present.
The variance of the received signal Yi becomes∑N
i=1 V ar(Yi) = K(Em + Em′) + NN0 and the desired

mutual information is obtained as

I(Um,Um′ ; Y|Φ) ≤ N log(1 +
K(Em + Em′)

NN0
). (35)

And for the second expansion of I(Um,Um′ ; Y), we have

I(Um,Um′ ; Y) ≥ I(Um,Um′ ; Ûm, Ûm′)

≥ h(Um,Um′)− h(Um − Ûm)− h(Um′ − Ûm′)

≥ K

2
log(2πe)2(1− ρ2)− K

2
log(2πe)2DmDm′

=
K

2
log

(
(1− ρ2)

Dp

)
. (36)
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