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Abstract—This work introduces a new task preemption prim-
itive for Hadoop, that allows tasks to be suspended and resumed
exploiting existing memory management mechanisms readily
available in modern operating systems. Our technique fills the gap
that exists between the two extremes cases of killing tasks (which
waste work) or waiting for their completion (which introduces
latency): experimental results indicate superior performance and
very small overheads when compared to existing alternatives.

I. INTRODUCTION

Data-intensive scalable computing (DISC) frameworks,
such as Hadoop [1] and Spark [2], have received great attention
by both industry and academia, as they allow to design and
execute scalable algorithms to process large amounts of data,
with the ultimate goal of better understanding users, business
processes, and services, in a variety of application domains.

In many situations, organizations resort to separate clusters
to make sure that data exploration and algorithm tuning jobs
do not interfere with well-tested, production ones. Indeed, it is
common to differentiate jobs that are essential for the business
of an organization that runs them, from other jobs that can
be seen as “best-effort”: the latter category should not use
resources that high-priority jobs would need.

Clearly, physical partitioning of jobs and clusters entails
high overheads in terms of system administration, and an in-
efficient use of cluster resources. A more flexible and efficient
solution is to consolidate clusters, and (manually) define job
priorities to inform resource allocation. Unfortunately, while
systems such as Hadoop provide ways of setting priorities for
jobs, such techniques are imperfect since the only mechanisms
available to implement them impose a choice between waiting
for low-priority tasks' to finish before resources can be granted
to high-priority ones, or killing such tasks, thereby wasting the
work they have done so far.

The endeavor of this work is to provide a new, transparent
solution, that allows preempting running tasks, in order to run
high-priority tasks with low latencies while avoiding wasting
work. As we discuss in Section II, priorities that are manually
set by developers are not the only use case that benefits from
an efficient preemption primitive: preemption is important for
size-based and deadline-based scheduling, and for enforcing
fairness in resource allocation. Still in Section II, we discuss
preemption primitives that are available in Hadoop, with their
merits and their shortcomings.

Our solution, elucidated in Section III, uses operating sys-
tem (OS) mechanisms to suspend and resume tasks, which

!In Hadoop, and in DISC systems in general, a task is a unit of processing
work which is performed on a single machine. A typical Hadoop task can
last tens of seconds or minutes.

— in current DISC frameworks — are standard UNIX pro-
cesses. Coherently with the implementation of Hadoop, which
uses standard POSIX signals to communicate with processes,
we perform suspension and resuming with, respectively, the
SIGTSTP and SIGCONT signals.

With our approach, the state of tasks is implicitly saved
by the operating system, and kept in memory. If not enough
physical memory is available for running tasks at any moment,
the OS paging mechanisms saves the memory allocated to the
suspended tasks in the swap area. This step avoids overheads
due to systematic serialization and deserialization, and is
generally rare in systems with abundant memory.’

As the experimental results of Section IV show, our pre-
emption primitive outperforms current approaches in both our
performance goals: providing low latencies to high-priority
tasks and avoiding redundant work. Even when the available
memory is limited, the overhead due to paging is very small.

We further note that our preemption primitive has impli-
cations on both implementing Hadoop schedulers and writing
MapReduce programs. Hadoop schedulers have a better way to
perform task preemption, but they should decide which tasks
to evict; those who are writing MapReduce programs should
consider optimizing them in order to minimize the amount of
allocated memory. These issues are discussed in Section V.

In Section VI, we conclude and discuss further research.

II. RELATED WORK

Preemption is an important concept in scheduling in general,
and in addition to the manual priority settings we described
in the Introduction, there are several use cases in a system
such as Hadoop that can benefit from such a primitive. Job
schedulers, like the Hadoop FAIR and Capacity schedulers,
can use preemption to warrant fairness [4]: if a job starves
due to long-running tasks of another job, these latter may
be preempted. In deadline scheduling [5], preemption can be
used to make sure that jobs that are close to the deadline
are run as soon as possible. Size-based schedulers [6], [7] in
general attribute priorities to jobs according to a virtual or
real size, and preemption can guarantee that higher-priority
jobs are allowed to run earlier.

Currently, two preemption strategies are available for
Hadoop. One technique is to wait for tasks that should be
preempted to complete: this is done using the wait strategy.
Another approach is to kill tasks, using the kill primitive.
Clearly, the first policy has the shortcoming of introducing

2 Ananthanarayanan et al. report that “the median and 95" percentile mem-
ory utilizations [in Facebook clusters] are 19% and 42%, respectively.” [3].



large latencies for high-priority tasks, while the second one
wastes work done by killed tasks. We refer to the work by
Cheng et al. [8] for an approach that strives to mitigate the
impact of the ki1l1 strategy by adopting an appropriate evic-
tion policy (i.e., choosing which tasks to kill). In Section IV,
we compare our new preemption primitive to wait and kill.
A recent preemption mechanism for Hadoop is Natjam [9]:
unlike in our work, where we use the OS to perform process
suspension and resuming, Natjam operates at the “application
layer”, and saves counters about task progress, which allow to
resume tasks by fast-forwarding to their previous states. Since
the state of the Java Virtual Machine (JVM) is lost, however,
Natjam cannot be applied seamlessly to arbitrary tasks: indeed,
many MapReduce programming patterns involve keeping track
of a state within the task JVM [10]; this problem is exacerbated
by the fact that many MapReduce jobs are created by high-
level languages such as Apache Pig [11] or Apache Hive [12]:
jobs compiled by these frameworks are highly likely to make
use of these “tricks”, which hinders the application of Natjam.
Natjam proposes to handle such stateful tasks with hooks
that systematically serialize and deserialize task state. Besides
requiring manual intervention to support suspension, this ap-
proach has the drawback of always requiring the overhead for
serialization, writing to disk, and deserialization of a state that
could be large. In contrast, our approach does not incur in a
systematic serialization overhead, since it relies on OS paging
to swap to disk the state of the tasks, if and when needed.

IIT. OS-ASSISTED TASK PREEMPTION

We now describe our preemption primitive, that implements
task suspension and resume operations. First, we outline
how process suspension and memory paging work in modern
operating systems. Then, we present the implementation of our
preemption mechanism. Note that this work focuses solely on
preemption primitives, and glosses over task eviction policies
that are within the scope of a job and task scheduler.

A. Suspension and Paging in the OS

Here we provide a synthetic description of the way OSes
perform memory management, which motivate our design
and implementation. A more in-depth description of such
mechanisms can be found, for example, in the work of Arpaci-
Dusseau [13, Chapters 20 and 21].

In general, system RAM is occupied by file-system (disk)
cache and runtime memory allocated by processes (including
map/reduce tasks); when RAM is full — for whatever reason —
the OS needs to evict pages from memory, either by reclaiming
space (and evict pages) from the file-system cache or by
paging out runtime memory to the swap area. Since Hadoop
workloads involve large sequential reads from disks, it is a best
practice to configure the Linux kernel to give precedence to
runtime memory, always evicting file-system cache first [14].
The system therefore only pages out runtime memory to avoid
“out of memory” conditions, i.e. when the memory allocated
by running processes exceeds the physical RAM.

To decide which pages to swap to disk, OSes generally
employ a policy which is a variant of least-recently-used
(LRU) [15]; clean pages — i.e., those that have not been
modified since the last time they have been read from disk —
do not need to be written and get prioritized when performing
eviction. Page-out operations are generally clustered to im-
prove disk throughput (and amortize on seek costs) by writing
multiple pages to disk in a batch. These implementation poli-
cies ensure that paging is efficient and with small overheads,
especially if a suspended processes leads to swapping. Most
importantly for our case, pages from suspended processes are
evicted before those from running ones.

We recall that it is necessary to make sure that the aggregate

memory size for all processes — both running and suspended
— does not exceed the size of the swap space on disk, because
in such a case the operating system would be forced to kill
processes. Since Hadoop tasks can only allocate a limited
amount of memory, this can be ensured by configuring the
scheduler so that also the number of suspended tasks per task-
tracker is limited.
Thrashing. Paging, in general, is not problematic unless
thrashing happens, a phenomenon where data is continuously
read from and written to swap space [16] on disk. Thrashing
is caused by a working set — i.e., the set of pages accessed by
running programs — which is larger than main memory.

In Hadoop, thrashing is avoided because two mechanisms
are in place: i) the number of running tasks per machine is
limited (and controlled via a configuration parameter); and ii)
the heap space size that a given task can allocate is limited
(and also controlled via configuration). Proper Hadoop con-
figuration can thus limit working set size and avoid thrashing.

The aforementioned mechanisms prevent thrashing in the
same way even when suspension is used. Memory allocated
by suspended processes is outside the working set and hence
cannot cause thrashing; pages allocated for the suspended
processes are paged out and in at most once, respectively
after suspension and resuming. Thrashing could only happen
if a given job is continuously suspended and resumed by the
scheduling mechanism: the moderate cost of a suspend-resume
cycle can be thus multiplied by the number of cycles. A
reasonable scheduler implementation should take into account
that suspending and resuming a job has a cost, and should
take measures to avoid paying it too often.

B. Implementation Details

The concepts that we illustrate here are valid for both
Hadoop 1 [1], which is the most widely used Hadoop im-
plementation in production, Hadoop 2, which uses a new
infrastructure for resource negotiation called YARN [17], and
even other frameworks such as Spark [2]. Currently, our
implementation targets Hadoop version 1.

Our preemption primitive exposes an API that can be used
both by users on the command line and by schedulers. Mir-
roring the implementation of the ki1l primitive in Hadoop,
we introduce i) new messages between the JobTracker (a
centralized machine responsible for keeping track of system



state and scheduling) and TaskTrackers (machines responsible
for running Map/Reduce tasks), and ii) new identifiers for task
states in the JobTracker.

JobTracker. Hadoop has a “heartbeat” mechanism where, at
fixed intervals and every time a task finishes, TaskTrackers
inform the JobTracker about their state.

As soon as the JobTracker receives the command to suspend
a task from the user or the scheduler, that task is marked as
being in a MUST_SUSPEND state. At the following heartbeat
from the involved TaskTracker, the JobTracker piggybacks the
command to suspend the task. The following heartbeat notifies
the JobTracker whether the task has been suspended — which
triggers entering the SUSPENDED state in the JobTracker — or
whether it completed in the meanwhile.

Analogous steps are taken to resume tasks, exchanging
appropriate messages and handling the MUST_RESUME state,
returning the state to RUNNING when the process is over.
TaskTracker. In Hadoop, Map and Reduce tasks are regu-
lar Unix processes running in child JVMs spawned by the
TaskTracker. This means that they can safely be handled with
the POSIX signaling infrastructure. In particular, to suspend
and resume tasks, our preemption primitive uses the standard
POSIX SIGTSTP and SIGCONT signals.

These signals are used because (unlike SIGSTOP) they

allow handlers to be written to manage external state, e.g.,
when closing and reopening network connections.
Job and Task Scheduler. We factor out the role of task
eviction policies implemented by the scheduler, which are
not the focus of this work, by building a new scheduling
component for Hadoop — a dummy scheduler — which dic-
tates task eviction according to static configuration files. This
allows to specify, using a series of simple triggers, which
jobs/tasks are run in the cluster and which are preempted.
In addition to executing jobs and preempting tasks with
our suspend/resume primitives, the dummy scheduler also
allows using the kill primitive and to wait, for the purpose
of a comparative analysis.

IV. EXPERIMENTAL EVALUATION

In our experiments, we evaluate preemption primitives
in terms of the latency they introduce and the amount of
redundant work they require. We show that our approach
outperforms other preemption primitives and has a small
overhead both when jobs are lightweight in terms of memory,
and when they are memory-hungry.

A. Experimental Setup

Our suspend/resume primitives operate at the task level,
and behave in the same way for both Map and Reduce tasks.
We evaluate the behavior of the system in a simple setup: our
dummy scheduler runs two single-task, map-only jobs, called
tn and t; (h and [ stand for high and low priority respectively).
t; processes a single-block file stored on HDFS, with size
512 MB; tj, processes single HDFES input block of size 512
MB. Both jobs run synthetic mappers, which read and parse
the randomly generated input. We remark that this setup is
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Figure 1: Task execution schedules.

analogous to the one used by Cho et al., who evaluated their
preemption primitive using similar synthetic jobs created by
the SWIM workload generator [18].

In our experiments, our dummy scheduler preempts the low-
priority task ¢; after it has reached a completion rate r% (i.e.,
r% of the input tuples have been processed) and grants the
task slot to the high priority task ¢;,. Once t;, is completed,
the scheduler resumes ¢;, which can complete as well.

Next, we evaluate the behavior of our suspend/resume
preemption mechanism against the two baseline primitives
available in Hadoop: wait and kill. When waiting, task
tp, is simply executed after ¢; completes; when killing, task ¢,
is killed as soon as t;, is scheduled, and ¢; is rescheduled from
scratch after the completion of ¢;,. This simple experimental
setup is illustrated in Figure 1.

According to Hadoop configuration best practices, in our ex-
perimental setup we prioritize runtime memory over disk cache
and therefore limit swapping, as discussed in Section III-A, by
setting the Linux swappiness parameter to 0.

B. Performance Metrics

Our goals are ensuring low latency for high-priority tasks,
and avoid wasting work: we quantify them, respectively, with
the sojourn time of t; and the makespan of the workload.
Sojourn Time of ty, is the time that elapses between the moment
tp, is submitted and when it completes; makespan is the time
that passes between the moment in which the first task ¢; is
submitted and when both tasks are complete.

C. Results

We focus on experimental results in case of light-weight
tasks. This is the standard case for ‘“functional”, stateless,
mappers and reducers. In this case, the amount of memory
that tasks allocate is essentially due to the Hadoop execution
engine (i.e., JVM, I/O buffers, overhead due to sorting, efc.).

Stateful mappers and reducers, instead, can allocate non-
negligible amounts of memory; we thus complement our



experiments by studying our performance metrics and over-
heads for memory-hungry jobs, which represent a worst-case
scenario for our preemption primitive.

All our results are obtained by averaging 20 experiment
runs; we omit error bars for readability: in all data points
reported, minimum and maximum values measured are within
5% of the average values.

Baseline Experiments. Figure 2a on the next page illustrates
the sojourn time of ¢;: the arrival rate of ; is a parameter
defined as a function of ¢; progress, as shown on the x-axis.

The kill and our suspend/resume primitives achieve
small sojourn times, as opposed to wait, in particular when
t;, arrives early. However, they both incur in some overheads:
kill runs a cleanup task to remove temporary outputs of the
killed task; suspend/resume may slow down ¢; in case
paging out memory occupied by ¢; is needed. In our baseline
setup, both jobs are light-weight, hence the suspended process
resides only in memory. This explains the small advantage for
our mechanism, which outperforms all other primitives even
when t;, arrives at 90% completion rate of task ;.

Figure 2b on the following page illustrates our results for
the makespan metric, using the same setup described above.
In this case, the makespan is heavily affected by a preemption
primitive that wastes work. The wait policy, at the cost
of delaying tj, avoids supplementary work and achieves a
small makespan; the kill primitive, instead, wastes all the
work done by ¢; before preemption. Finally, our preemption
primitive behaves similarly to the wait policy, despite the
possible overhead due to page-out/page-in cycles.

For light-weight jobs, we conclude that our primitive is su-

perior to both alternatives, as both sojourn times and makespan
are small. We note that the authors of Natjam measured an
overhead of around 7% in terms of makespan, in similar
experimental settings as ours. Our findings suggest that the
overhead in our case is negligible.
Worst-Case Experiments. The experiments discussed above
are valid for simple implementations of Map and Reduce
tasks, that carry out stateless computations on their input.
Stateful tasks can, however, allocate memory, which may force
the OS to swap. Since clusters often have plentiful available
memory [3], such a situation is unlikely to be frequent.
However, we still consider a “worst case” scenario to stress our
primitive: both ¢; and ¢}, allocate a large amount of memory (2
GB in our case; we note that this requires an ad hoc change to
the Hadoop configuration since Hadoop jobs are not generally
allowed to allocate such an amount of memory). This value
makes sure that, when running a single task the system does
not have to recur to swap;> conversely, when the two tasks are
present in the system at the same time, one of them is forced
to page out memory. We ensure that tasks allocate memory
and that the OS marks pages as “dirty”, by writing random
values to all memory at task startup, and reading them back
when finalizing the tasks.

3The physical memory of our system is 4 GB; the rest of the memory is
needed by the Hadoop framework and by the operating system services.

Figures 3a and 3b on the next page present the sojourn time

and the makespan for the worst-case experimental setup. While
our preemption primitive still outperforms both alternatives
with respect to both metrics, it is possible to notice that the
overheads related to paging are visible: with respect to the
sojourn time, the ki1l primitive achieves a slightly lower
value; similarly, the wait primitive achieves slightly smaller
makespan. Overall, the overhead due to our preemption prim-
itive is marginal: we further investigate and quantify it in the
next section.
Impact of Memory Footprint. We now focus on a detailed
analysis of the overheads imposed by the OS paging mech-
anism on the performance of our preemption primitive. To
do so, we vary the amount of memory a task allocates in
the setup phase.* In our experiments ¢; allocates 2.5 GB of
memory, and we parametrize over the amount of memory %y,
allocates. For each experimental run, we measure the number
of bytes swapped by the process executing ¢;, and compute
the degradation of sojourn time and makespan compared to
the kill and wait primitives, respectively.

Figure 4 indicates that the overheads due to paging are
roughly linearly correlated to the amount of data swapped to
disk. For the sojourn time, our preemption primitive degrades
when t; allocates more than 1.5 GB of RAM: in the worst-
case, sojourn time is 20% larger than with the ki11 primitive.
Similarly, for the makespan, our mechanism degrades when
ty, allocates more than 1.3 GB: in the worst-case, makespan
is 12% larger than with the wait primitive. Finally, we
note that swapped data grows more than linearly because
of an approximate implementation of the page replacement
algorithm in Linux (and other modern OSes), which can lead
to more swapping than strictly necessary [19, Chapter 17].

V. DISCUSSION

We now elaborate more on the implications of the new
preemption primitive we introduce in this work.

A. Scheduling and Eviction Strategies

As we discussed in the Introduction, our suspend prim-
itive gives one more opportunity to the developers of sched-
ulers, in order to perform more efficient preemption. As we
have shown with the results of Section IV, our primitive
generally performs close to optimally in most cases; however,
for freshly started tasks, it may be preferable to use the ki1l
primitive, and for tasks that are very close to completion it
may be better to simply wait for them to finish.

Task Eviction Policies. An important topic that falls under
the responsibility of the schedulers is to decide which task(s)
to evict once a high-priority job needs time to execute. Cho et
al. [9] propose to suspend tasks that are closest to completion,
in order to have all tasks of a job as close to each other
as possible, resulting in a good influx on job sojourn times.
If the goal is instead to avoid redundant work and reduce
makespan, another possible strategy may aim to suspend tasks

4This is where, generally, auxiliary data structures are created to maintain
an internal state in a task.
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with smaller memory footprints, which reduces overheads
according to our experimental results.
Resume Locality. In our implementation, a suspended process
can only be resumed on the same machine it was suspended
on. If the same task gets scheduled on a different machine, it
has to be restarted from scratch, losing work done so far: in
that case, the suspend is effectively analogous to a delayed
kill. We call this issue resume locality due to its similarity
with the data locality issue — i.e., the problem of running
mappers on the machines that have local copies of data.
Hadoop schedulers generally handle data locality by using
the simple technique of delay scheduling [20]: waiting a fixed

amount of time before scheduling non-local copies of data.
Only if that threshold is exceeded, a non-local mapper is run.
The same technique can be used for our resume locality issue.

Analogously to our approach, Natjam only supports local
resumes. As a future improvement, the authors suggest moving
the checkpoints used to mark task state and reduce inputs over
the network; a similar approach could be taken also in our
case, using process migration facilities such as CRIU [21].
However, extreme care should be taken before attempting to
use such a non-local resume in particular for reducers, since
the cost of moving non-local inputs can be very large.

B. Implications on Task Implementation

In most cases, our suspend/resume mechanism is trans-
parent towards the implementation, and task implementations
that correctly handle error conditions and the possibility of
being killed by the scheduler will also handle suspension
correctly. However, we add a few notes regarding tasks with
external state and ways in which task implementation can
control the memory footprint.

External State. In some cases, Hadoop jobs can interact with
the external world through more than inputs and outputs: they
can use network connections and/or use “Hadoop Streaming”,
whereby arbitrary executables can be used as mappers or
reducers, interacting with the Hadoop framework through Unix



pipes. In these cases, there are interactions that happen outside
the control of Hadoop; in the most common case, external
software would correctly pause waiting for the next input
from a suspended task; however, when the interaction happens
with a complex program, the fact that they correctly handle
suspended programs should be tested.

Controlling Memory Footprint. We have seen that the
memory footprint allocated by a process has an impact on
the overheads due to suspension; when writing task imple-
mentations, it is good measure to take this into account and
optimize for lower memory footprints.

Java garbage collectors differ in the way they are im-
plemented: some of them release memory to the OS when
they stop using it, others do not [22]. It is therefore a good
idea to configure Java to use a garbage collector that does
release memory, such as the new G1 implementation [23].
It is also possible to hint the garbage collector to run using
System.gc (); this is advisable after disposing of large
objects in memory.

VI. CONCLUSION

In this work we presented a new task preemption primitive
that improves over existing techniques to perform both manual
and automatic scheduling of Hadoop jobs.

The gist of our preemption primitive was to make use of
the memory management mechanisms readily available in the
OS to perform task suspension and resuming. Motivated by
the limitations of current approaches to task suspension —
that implement preemption at the “application level” — we
argued that an OS-assisted approach could provide a general
preemption mechanism that seamlessly supported a variety of
workloads, including stateful tasks.

We implemented our preemption primitive for Hadoop, and
discussed how to modify its core components to take into
acccount the suspended state of a task, and the signalling
mechanisms to trigger task suspension and resume.

Finally, we implemented a simple Hadoop scheduler that
allowed us to focus on the goals of our comparative analysis of
preemption mechanisms. In our experiments, we glossed over
the details and variety of task eviction policies implemented
by standard schedulers, and we compared the performance
of the kill, wait and suspend/resume mechanisms,
paying particular attention in quantifying the overheads due
to the OS memory management mechanisms. We did so
in a variety of experimental settings, including worst-case
scenarios of memory-hungry Hadoop jobs. We showed that our
technique fills the gap that exists between the two extremes
cases of killing tasks (which waste work) or waiting for their
completion (which introduces latency): performance is near-
optimal, while overhead is small in most cases.

We have preliminary results showing that our preemption
primitive performs well in the context of HFSP, our size-
based scheduler for Hadoop [24]. Our next steps involve a
comprehensive study of task eviction policies implemented in

standard Hadoop schedulers that make use of our preemption

primitive, a thorough experimental campaign with realistic
workloads, and the application of our technique to additional

DISC frameworks, such as Apache Spark.
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