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Abstract

In opportunistic networks, direct communication between mobile devices

is used to extend the set of services accessible through cellular or WiFi net-

works. Due to their key role, mobility patterns and their impact in such

networks have been extensively studied. In contrast, homogeneous commu-

nication traffic between nodes is assumed in most studies. This assumption

is not generally true, as the mobility and social characteristics of nodes might

affect the traffic exchanged between them. In this paper, we consider hetero-

geneous traffic patterns, propose appropriate models, and analyse the joint

effect of traffic and mobility heterogeneity on the performance of popular

forwarding algorithms. For example, we show that an increasing amount

of (traffic and/or mobility) heterogeneity renders simple schemes, like direct

transmission, significantly more useful than normally considered and dimin-

ishes the added value of additional randomly sprayed copies. We further

validate these findings on datasets collected from real networks.

Index Terms

Opportunistic Networks, Heterogeneous Mobility, Heterogeneous Com-

munication Traffic, Performance Modeling, Dataset Analysis
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1 Introduction

Opportunistic or Delay Tolerant Networks (DTNs) [1] were initially envisioned to

support communication in challenging environments, where infrastructure is lim-

ited or absent (e.g. emergency situations after disasters, mobile sensor networks).

Lately, it has been suggested that they could also support or enhance existing net-

working infrastructure, e.g. by offloading traffic from cellular networks, enabling

novel social and location-based applications, or introducing peer-to-peer collabo-

rative computing [2, 3].

Opportunistic networks consist of mobile nodes (e.g. smartphones, laptops)

that exchange data directly when they are in contact (i.e. within transmission

range). Due to the limited range of direct communication (e.g. Bluetooth), com-

munication is not continuous, and maintaining end-to-end paths is problematic. If

nodes are not willing to relay 3rd party traffic, a message can only be transferred

from a source node to a destination node when they come in contact (direct trans-

mission routing [4]). If other nodes are willing to collaborate, they could copy the

message from the source (or another relay), store and carry it and, finally, forward

it when they encounter the destination node. Such replication and relaying schemes

could improve performance (relay-assisted routing, e.g. [5, 6]), albeit at increased

complexity and resource overhead.

Since message exchanges take place only during contacts between nodes, mo-

bility plays a major role both in the performance and the design of protocols and

applications. As a result, sophisticated utility-based schemes have been proposed

that select relays based on their mobility patterns and/or social characteristics [7].

Furthermore, a lot of effort has been made recently to capture the mobility patterns

of real networks in simulations and theory [8, 9, 10]. These mobility patterns can

often greatly affect the performance of different schemes.

Somewhat surprisingly, the communication traffic patterns used in studies of

opportunistic networks have not received an equal amount of attention. It is usu-

ally assumed, implicitly or explicitly, that all traffic is uniform: each pair of nodes

exchanges the same amount of messages. However, intuition suggests that traffic

between nodes, just like contacts, cannot be expected to be homogeneous either.

This is also supported by empirical studies on social networks [11, 12], where the

frequency of message exchanges might widely vary among pairs of nodes. Fur-

ther, nodes that have a social relation or reside/move in the same areas, often tend

to exchange more messages than others. Therefore, a number of interesting ques-

tions arise: How should one model the heterogeneity in communication traffic? Do

heterogeneous traffic patterns affect the performance of information dissemination

mechanisms and to what extent?

Towards answering this question, in this paper we investigate if, when and how

traffic patterns affect the communication performance in opportunistic networks.

Specifically:

• We examine what characteristics of traffic heterogeneity affect performance,
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and propose an analytically tractable model that can describe a large range

of non-uniform traffic patterns (Section 2).

• We derive analytical expressions for calculating the joint effect of traffic and

mobility heterogeneity in the performance of basic forwarding mechanisms

(Section 3).

• We use these expressions to show that the common understanding about

these mechanisms, e.g. the gains from having additional replicas, might

radically change when traffic is heterogeneous (Section 3.2).

• We validate our analytical findings through simulations (Section 4.1) and,

by applying them to datasets of real-world networks that contain informa-

tion about both the mobility and the communication patterns of participating

nodes (Section 4.2).

2 Network Model

2.1 Mobility

We consider a network N , where N nodes move in an area, much larger than

their transmission range. Data packet exchanges between a pair of nodes can take

place only when they are in proximity (in contact). Hence, the dissemination of a

message is subject to nodes mobility and the resulting contact events. To model this

sequence of contact events, we will assume the following class of heterogeneous

contact models.

Definition 1 (Heterogeneous Contact Network).

Assumption 1: Contact events between a pair of nodes {i, j} follow an indepen-

dent Poisson process with rate λij , i.e. inter-contact times are independent

and exponentially distributed with rate λij .

Assumption 2: Contact rates λij are independently drawn from an arbitrary dis-

tribution with probability density function fλ(x) (with finite mean µλ and

variance σ2
λ).

Assumption 3: Contact duration is negligible compared to the time between con-

tacts events, though sufficient for all data transfers to take place.

The assumption of Poisson contacts is pretty standard, and allows us to use a

Markovian framework for analyzing dissemination processes, similarly to the ma-

jority of previous studies in Opportunistic / Delay Tolerant Networks [8, 10, 13,

14], as well as in other fields involving networks and/or contacts [15]. Further-

more, analyses of real-world contact traces provide some support, suggesting that

the observed inter-contact time distributions (or, at least, their tails) can often be

approximated by exponential distributions [16, 17]. While this assumption can
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sometimes be relaxed, to our best knowledge this only allows to derive asymptotic

results [18, 19].

The second assumption introduces some heterogeneity in the standard model,

in an attempt to better align the model with the findings of real-world trace anal-

yses showing that the contact rates (or frequencies) of different pairs are largely

heterogeneous [9, 16]. Moreover, by allowing rates to be drawn from an arbitrary

distribution fλ, we can (i) emulate a very diverse set of contact (and thus mobility)

scenarios, e.g. a symmetric fλ (uniform, normal) implies a balanced number of

high and low rates, while a right-skewed fλ, like a Pareto distribution, describes

a network with most pairs having large intercontact times, but few meeting very

frequently, and (ii) fit this distribution to match the rates observed in a real trace.

The third assumption is equivalent to saying that there are no bandwidth con-

cerns in our framework. This is not always true [20], and, clearly, transmission

and storage capacity are important issues in DTNs [7]. Nevertheless, these are

mostly orthogonal issues to the topic of our study, so we don’t consider them in

our framework.

Summarizing, our main motivation for this model is to maintain the analytical

tractability properties of standard models, while also integrating some mobility

heterogeneity, whose joint effect with traffic heterogeneity we want to investigate.

To ensure that our assumptions do not confound the conclusions drawn from our

analysis, we will validate our results against real measurement traces, where many

of these assumptions are known to not hold.

2.2 Communication Traffic

In addition to who meets whom and how often, another major question that should

be raised in opportunistic networks (but rarely is) is who wants to communicate

with whom and how much traffic do they exchange?

Intuitively, every pair of nodes cannot exchange the same amount of traffic

or with the same frequency. To support intuition, studies from fields related to

technological and social networks [11, 12, 21] have demonstrated the existence

of heterogeneous traffic patterns. This seems to argue for a more complex traf-

fic model (compared to a homogeneous one). The same studies further suggest

that this heterogeneity depends on the spatial and social characteristics of these

networks. Since location-based services [22] and social networking [23] are con-

sidered among the major applications supported by opportunistic networks, such

traffic dependencies on social and/or spatial factors are very probable to appear.

What is more, mobility characteristics have also been found to depend on spatial

and social characteristics [9, 21, 24]. We would thus expect that traffic and mobility

in such networks would exhibit some clear correlations [11, 12]. For instance, the

Pearson correlation coefficient between mobility (contact rates) and traffic (rates)

in a subset (i.e. in three cities) of the dataset analysed in [11], is presented in

Table 1, where it is evident that the correlation is significant.
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Table 1: Mobility-Traffic Correlation

Austin Oslo San Francisco

corr 0.91 0.65 0.92

Before we embark on choosing the right model features, one should consider

the following questions: What features of heterogeneous traffic, if any, have an

impact on the performance of opportunistic communication? Does the existence of

heterogeneous traffic per se suffice to affect performance?

Towards obtaining some initial understanding, we thus decided to compare the

performance of some well-known opportunistic protocols (direct transmission [4],

spray and wait [5], and 2-hop routing [14]) through Monte Carlo simulations on

two real traces (we will discuss these traces in more detail, later, in Section 4), for

three traffic scenarios: (i) homogeneous traffic: every pair of nodes exchange mes-

sages with the same rate; (ii) heterogeneous traffic that is mobility independent:

we assign randomly to each pair a different traffic rate (drawn from a uniform dis-

tribution in [1, 1000]); (iii) heterogeneous traffic that is mobility dependent: traffic

between two nodes is proportional to their contact rate.

Results for the mean message delivery delay are shown in Fig. 1. As is evi-

dent from these results, when traffic heterogeneity is independent of mobility, the

average delay is practically the same to the homogeneous case, for all protocols,

and across all scenarios (including additional ones we’ve tried). While this result

might seem somewhat surprising, it should not be. Since contacts between nodes

are the only way to move messages around the network, unless the traffic pattern

is correlated to mobility, this should not make a difference in the performance ob-

served. In contrast, Fig. 1 shows a clear difference in average delay for all scenarios

and protocols, compared to the homogeneous case, when traffic is heterogeneous

and correlated with the contact rates.

These results provide an initial answer to the above questions: it is not traffic

heterogeneity itself that affects performance, but rather the joint effect of mobility

and traffic (heterogeneity). This observation, together with the initial insight com-

ing from real datasets, motivates us to propose the following simple model for the

amount of traffic between node pairs, that we will use through our analysis. While

relatively simple, this model introduces the key feature, correlation between traffic

and mobility, and allows us to model a number of interesting traffic patterns and

amounts of (positive or even negative) correlations.

Definition 2 (Heterogeneous Communication Traffic). The end-to-end traffic de-

mand (per time unit) between a pair of nodes {i, j}, is a random variable τij , such

that E[τij ] = τ(λij), where τ(·) is a continuous function from R
+ to R

+.

Hence, traffic demand between node pairs can differ and is on average cor-

related with the nodes’ contact rate. However, τij itself is still random, allowing

some node pairs to have little traffic demand even if they meet often (e.g. “familiar
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Figure 1: Mean message delivery delay of three routing protocols, namely Direct

Transmission, Spray and Wait (SnW) and 2-hop, on the (a) Gowalla and (b) Strath-

clyde dataset.

strangers”). Furthermore, through the function τ(·) one can introduce a number of

different types and amounts of (positive or negative) correlations between traffic

and mobility. While real mobility and traffic patterns are clearly expected to have

a number of additional nuances and details, not captured by the models of Def. 1

and Def. 2, it turns out that these abstractions are still “rich” enough to allow us to

draw useful conclusions.

3 Analysis

Consider now an opportunistic network with mobility and traffic according to the

definitions of Section 2. To calculate a performance metric for this network, e.g.

the expected delay, one would consider a large number of messages generated be-

tween various source-destination pairs. However, when end-to-end traffic is het-

erogeneous (as in Def. 2) the effective contact rate between sources and destina-

tions of these message will be different than fλ (Def. 1), the contact rate between

a randomly chosen pair of nodes.

Proposition 1. The probability density function fτ of the contact rate between the

source and the destination {s, d} of a random message, in a network following

Definitions 1 and 2, converges in probability as follows:

fτ (x)
p
→

1

C
· τ(x) · fλ(x) (1)

where C = E[τ(λ)] =
∫ ∞
0 τ(x)fλ(x)dx

Proof. Consider a network N with N nodes. Let dλ = O
(

1
N

)

, and define the set

of nodes with contact rate λij ∈ [λ, λ + dλ):

N (λ) = {{i, j} : i, j ∈ N , λ ≤ λij < λ + dλ},

5



The total number of messages generated per time unit between pairs ∈ N (λ) is

equal to

T (λ) =
∑

{i,j}∈N (λ) τij (2)

where τij in the sum are i.i.d. random variables with mean τ(λ). Then, the proba-
bility that the contact rate λsd, between the source and the destination of a randomly
selected message, is in [λ, λ + dλ), is given by

P{λ ≤ λsd < λ + dλ} =
T (λ)

∑

i

∑

j τij

=

∑

{i,j}∈N (λ) τij
∑

i

∑

j τij

(3)

We can express Eq. (3) as following:

P{λ ≤ λsd < λ + dλ} =
T (λ)

‖N (λ)‖
·

‖N (λ)‖

N(N − 1)/2
·
N(N − 1)/2
∑

i

∑

i τij

where ‖ · ‖ denotes the cardinality of a set and
N(N−1)

2 is the total number of node

pairs in a network with N nodes. Let us further denote:

X1 =
T (λ)

‖N (λ)‖
, X2 =

‖N (λ)‖

N(N − 1)/2
, X3 =

∑

i

∑

i τij

N(N − 1)/2

Applying the weak law of large numbers [25], it holds that for a large network1

X1
p
→ τ(λ) and X2

p
→ fλ(λ) (4)

where
p
→ denotes convergence in probability.

Also, X3 corresponds to the sample average of τij over all disjoints sets N (λ).
Thus, applying Cramér’s theorem (Theorem 6.5 in [25])2 and using the conver-

gence expressions of Eq. (4), we can get

X3
p
→

∫ ∞
0 τ(y)fλ(y)dy = E[τ(λ)] = C

Similarly, using Cramér’s theorem, it can be shown that the expression X1 ·X2 ·
1

X3

converges too, i.e.

X1 · X2 ·
1

X3

p
→ τ(λ) · fλ(λ) ·

1

C

Finally, denoting the probability density function of the source-destination contact

rate λsd as fτ (λ), i.e. P{λ ≤ λsd < λ + dλ} = fτ (λ)dλ gives us the desired

result.

1When N → ∞, then dλ = O
(

1
N

)

→ 0, and ‖N (λ)‖ = O
(

N(N−1)
2

dλ
)

= O (N) → ∞.
2Equivalently, one could use here the Continuous Mapping Theorem.

6



3.1 End-to-end Delivery Performance

An opportunistic routing protocol tries to deliver the end-to-end traffic demand τij ,

and we would like to consider the effects of different contact patterns fλ and traffic

patterns τ(λ) on its performance. There exists a very large abundance of proposed

schemes [7] and it would not be possible, nor would it provide any intuition, to

analyze the effect of heterogeneity on each and every one. Instead, we focus here

on some basic mechanisms to gain intuition.

The approach with the minimum overhead and complexity is Direct Transmis-

sion (“DT”): nodes wishing to exchange data or information with each other, may

do so, only when they are in direct contact, without involving any relays. Further-

more, this is the only feasible approach if nodes do not have incentives to relay

traffic they are not personally interested in, e.g. due to privacy or resource-related

concerns [26]. Nevertheless, Direct Transmission is known to suffer from long

delays and low throughput [27].

To improve the performance of direct transmission, replication or relay-assisted

schemes can be used. Extra copies can be handed over to encountered nodes, and

the destination can receive the message from either the source or any of the re-

lays, reducing thus the expected delivery delay. Taken to the extreme, schemes

like epidemic routing [28] forward the message at every possible encounter (deter-

ministically, probabilistically, or based on some utility-function). Yet these do not

usually scale well beyond networks with few tens of nodes, due to large resource

usage.

In networks with homogeneous mobility and traffic, it is known that using just

a few extra copies leads to significant performance gains. For example, in a net-

work of 1000 nodes, simply distributing 10 extra copies to the first 10 nodes en-

countered provides an almost 10-fold improvement in delay compared to direct

transmission [5]. Although this also comes with a 10-fold increase in the amount

of (storage and bandwidth) resources needed, it presents a very useful tradeoff to

DTN protocol designers.

However, when it comes to heterogeneous mobility and traffic, Proposition 1

suggests that, unlike the above example, the source is no longer equivalent with

other random relays, in terms of their probability of contacting an intended desti-

nation soon. It is thus of particular interest to examine whether the above trade-off

still holds, if one considers the joint effect of realistic mobility and communication

traffic patterns.

We thus consider, in the following, Relay-assisted routing, which is a simple

abstraction of schemes that use extra randomly chosen relays3. We derive expres-

sions for the maximum achievable performance gain compared to Direct Trans-

mission, in terms of delivery delay and delivery probability, the two main metrics

considered in related work. These results provide bounds for the maximum achiev-

able improvement by Relay-assisted routing, as a function of the number of extra

copies L.

3We will briefly consider utility-based schemes in Section 5.
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Result 1. Let R denote the ratio of the expected delivery delay of Relay-Assisted

routing, E[TR], over the expected delivery delay of Direct Transmission routing,

E[TDT ]. When L extra copies are used, then

R =
E[TR]

E[TDT ]
≥

1

E
[

τ(λ)
λ

] · E

[

τ(λ)

λ + L · µλ

]

(5)

where the expectations are taken over fλ.

Proof. Let Isd(t) be an indicator random variable that is equal to 1 if nodes s and

d are within transmission range at time t, and 0 otherwise. Let further Tsd denote

the random inter-contact time between node pair {s, d}:

Tsd = inf{t > 0 : Isd(0) = 1, Isd(0
+) = 0, Isd(t) = 1}.

Since we have assumed that contact duration is negligible (Assumption 3 of Def.1),

the contact process is essentially a point process, and the above could be simplified

to Tsd = inf{t > 0 : Isd(0) = 1, Isd(t) = 1}.

Assume now that end-to-end messages between {s, d} are generated at random

times and independently from the contact process. If TDT denotes the delay of

directly transmitting a message from s to d, and the contact rate between s and d
is λsd = x, then one can use renewal-reward theory [29] to show that

E[TDT |λsd = x] = E[T
(e)
sd |λsd = x] =

1

x
.

That is, the expected delay of direct transmission is equal to the mean of the resid-

ual (or excess) inter-contact time T
(e)
sd , which is an exponential variable with the

same rate x.

Using the property of conditional expectation and the distribution of λsd (Propo-

sition 1) we can get:

E[TDT ] =

∫ ∞

0
E[TDT |λsd = x]fτ (x)dx =

∫ ∞

0

1

x
fτ (x)dx

=
1

C

∫ ∞

0

τ(x)

x
fλ(x)dx =

1

E[τ(λ)]
· E

[

τ(λ)

λ

]

(6)

Assume now that the same messages, between {s, d} are routed using Relay-

Assisted routing, with L message copies given to L relays. Let T ∗
R denote the total

delay to deliver a message using Relay-Assisted routing, TR the remaining delay

after all L copies have been distributed, Tfwd the time to distribute the L copies

to the L relays, and pfwd = P (T ∗
R < Tfwd) the probability that the message is

delivered to the destination before L relay nodes have been found.

Since relays are selected randomly (e.g. [5]), pfwd = L
N

→ 0 for L ≪ N .

Similarly, if L2 ≪ N ,
Tfwd

TR
→ 0 [5]. We can thus focus only on TR, the time

after L relays have received a copy. Note that this assumption does not affect the

validity of the results (i.e. they still are bounds).

8



Denote now with L the set of selected relays. Using a similar argument as in

the direct transmission case, and Assumption 1 of Def.1 we can easily show that,

TR ≡ min
i∈L∪{s}

Tid ∼ exp(Xr)

Xr = λsd +
∑

i∈L λid = λsd + XR

where XR =
∑

i∈L λid, and the expected value of TR will be

E[TR] =
1

Xr
=

1

λsd + XR
, (7)

where λsd ∼ fτ (Proposition 1) and XR ∼ fR = f
(∗L)
λ , the L-fold convolution of

fλ.

Then, from Eq. (7) and using the property of conditional expectation, we find:

E[TR] =

∫ ∞

0

∫ ∞

0
E [TR|λsd = x,XR = y] fτ (x)dxfR(y)dy

=

∫ ∞

0

∫ ∞

0

1

x + y
· fτ (x)dx · fR(y)dy

=
1

E[τ(λ)]

∫ ∞

0

∫ ∞

0

τ(x)

x + y
· fλ(x)dx · fR(y)dy (8)

where in the last equality we substituted the expression for fτ from Proposition 1.

Now Eq. (8) can also be written as

E[TR] =
1

E[τ(λ)]
·
∫ ∞

0
ER

[

1

x + y

]

· τ(x) · fλ(x)dx (9)

where the expectation ER[·] is taken over fR. Using Jensen’s inequality4 for the

function h(y) = 1
x+y

, we get:

ER

[

1

x + y

]

≥
1

x + ER[y]
(10)

where ER[y] is given by (as the expectation of a sum of L i.i.d. random variables

with expectation µλ) [29]:

ER[y] = E[XR] = E

[

∑

i∈L

λid

]

= L · µλ (11)

Hence, using Eq. (10) and Eq. (11) in Eq. (9), we get

E[TR] ≥

∫ ∞
0

τ(x)
x+L·µλ

· fλ(x)dx

E[τ(λ)]
=

E
[

τ(λ)
λ+L·µλ

]

E[τ(λ)]
(12)

Finally, dividing Eq. (12) with Eq. (6) gives Eq. (5).

4Jensen’s inequality for a convex function h(x): E[h(x)] ≥ h (E[x]).
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Result 2. Denote with P(src.) the probability that a message is delivered to the

destination by the source node, rather than by any of the relays. Then,

P(src.) ≥
1

E[τ(λ)]
· E

[

λ · τ(λ)

λ + L · µλ

]

(13)

Proof. Using similar arguments and notation as Result 1, the above event is equiv-

alent to the destination contacting the source before any other relay.

Then, P(src.) ≡ P{Tsd < Tr−d} (where Tr−d = mini∈L{Tid}), will be given

by the ratio λsd

λsd+XR
[29]. Conditioning on the the rates λsd and XR, we can write

P(src.) ≡ P{Tsd < Tr−d} =

=

∫ ∞

0

∫ ∞

0
P{Tsd < Tr−d|λsd = x,XR = y}fτ (x)dxfR(y)dy

=

∫ ∞

0

∫ ∞

0

x

x + y
· fτ (x)dx · fR(y)dy

=

∫ ∞

0

∫ ∞

0
ER

[

x

x + y

]

· fτ (x)dx (14)

and applying Jensen’s inequality as in Eq. (10), we get

P(src.) ≥
∫ ∞

0

x

x + L · µλ

· fτ (x)dx

=
1

E[τ(λ)]
·
∫ ∞

0

x · τ(x)

x + L · µλ

· fλ(x)dx (15)

which is equal to Eq. (13) and proves the result.

3.2 Insights for Real Opportunistic Networks

The expressions we derived in Result 1 are generic and can be used under any

mobility and traffic pattern (i.e. for any fλ and τ(·)). To obtain some further

insights, in this section, we consider specific classes of mobility and traffic patterns

that capture commonly observed characteristics of real networks.

Mobility

We will assume the contact rates to be gamma distributed (i.e. fλ ∼ Γ(α, β)).
Our choice is initially motivated by the findings of Passarella et al. [9], who

have shown, through statistical analysis of pervasive social networks’ datasets, that

the Gamma distribution matches well the observed contact rates. In addition, the

analytical findings of [9], further suggest that the choice of a Gamma distribution

can be supported in real opportunistic networks and can explain many of the ob-

served properties (e.g. distribution of aggregate inter-contact times). Finally, by

selecting appropriately the parameters α and β, we can assign any desired value to

the mean value µλ and the variance σ2
λ of the contact rates. This allows us to de-

scribe (or fit up to the first two moments) a large range of scenarios with different

mobility heterogeneities captured by CVλ = σλ

µλ
.
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Traffic

We further describe the traffic using a polynomial function of the form τ(x) = c·xk ,

c > 0.

As in the case of mobility, the reasons for our choice are as following. Obser-

vations of real networks have shown that the nodes with high contact frequencies

tend to exchange more traffic [11, 12], which is consistent with the above choice

when k > 0. In general, the value of k captures the amount of traffic heterogene-

ity. Furthermore, by choosing 0 < k < 1 (or k > 1) one can emulate concave (or

convex) functions and, thus, approximate different traffic patterns. Finally, one can

also consider negative correlations, by choosing k < 0. Although less common,

these could arise, for example, in applications where users want to communicate

more when they do not meet frequently (e.g. messaging).

Under the above assumptions, the following result for the relative performance

of the information dissemination mechanisms we consider in this paper, holds.

Result 3. In a Heterogeneous Contact Network where fλ ∼ Γ(α, β) with mean

value µλ and variance σ2
λ (coefficient of variation CVλ = σλ

µλ
) and τ(x) = c · xk,

it holds:

1 ≥ R =
E[TR]

E[TDT ]
≥ Rmin =

1 + (k − 1) · CV 2
λ

1 + k · CV 2
λ + L

(16)

for k > 1 − 1
CV 2

λ

, and

1 ≥ P(src.) ≥ Pmin =
1 + k · CV 2

λ

1 + (k + 1) · CV 2
λ + L

(17)

for k ≥ − 1
CV 2

λ

.

Proof. Eq. (5), for τ(x) = c · xk, is written as

R ≥
1

E[λk−1]
· E

[

λk

λ + L · µλ

]

(18)

The expectations in Eq. (18) are taken over the contact rates’(Gamma) distribution,

whose general form is [29]

fλ(x) = βα

Γ(α)x
α−1e−βx

where α > 0 is the shape parameter, β > 0 the rate parameter. Its mean value and

variance are given by µλ = α
β

and σ2
λ = α

β2 , respectively, and, equivalently, we can

write

α = 1/CV 2
λ , β = 1/

(

µλ · CV 2
λ

)

(19)
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To calculate Eq. (18), first we find an expression for E[λk−1]:

E[λk−1] =

∫ ∞

0

xk−1fλ(x)dx =

∫ ∞

0

xk−1 βα

Γ(α)
xα−1e−βxdx

=
Γ(k − 1 + α)

Γ(α)

1

βk−1

∫ ∞

0

βk−1+α

Γ(k − 1 + α)
x(k−1+α)−1e−βxdx

=
Γ(k − 1 + α)

Γ(α)

1

βk−1
(20)

where the integral in the second line is equal to 1 because the integrated function

is the pdf of a Gamma distribution with parameters α
′

= k − 1 + α (it must hold

that α
′

> 0, which means that k > 1 − α = 1 − 1
CV 2

λ

) and β
′

= β.

Similarly to the derivation of Eq. (20), it can be shown that

E

[

λk

λ + L · µλ

]

=

=
Γ(k + α)

Γ(α)

1

βk
·

∫

∞

0

1

x + L · µλ

βk+α

Γ(k + α)
x

k+α−1
e
−βx

dx

=
Γ(k + α)

Γ(α)

1

βk
· Eλ′

[

1

λ′ + L · µλ

]

(21)

where λ′ follows a Gamma distribution with parameters α′ = k + α and β′ = β.

Since the function g(x) = 1
x+c

is convex, we can apply Jensen’s inequality to

Eq. (21) and get

E

[

λk

λ + L · µλ

]

≥
Γ(k + α)

Γ(α)

1

βk
·

1

E[λ′] + L · µλ

=
Γ(k + α)

Γ(α)

1

βk
·

1
k+α

β
+ L · µλ

(22)

where we substituted E[λ′] = α′

β′ = k+α
β

.

Thus, from Eq. (20) and Eq. (22), it holds for R (Eq. (18)):

R ≥ Γ(k+α)
Γ(k−1+α) ·

1
β
· 1

k+α
β

+L·µλ

and because of the Gamma function’s property Γ(z + 1) = z · Γ(z), we can write

R ≥ k−1+α
β

· 1
k+α

β
+L·µλ

(23)

and Eq. (16) follows easily by substituting α and β from Eq. (19) to Eq. (23).

Now, to find P(src.), at first, we set τ(x) = c · xk in Eq. (13)

P(src.) ≥
1

E[λk]
· E

[

λk+1

λ + L · µλ

]

(24)

Using Eq. (20) - Eq. (22) (where instead of k we consider k + 1), the result for

P(src.) follows similarly as before.
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The expressions of Result 3 depend only on 3 parameters (CVλ, k, L) and, thus,

could be used to tune Relay-Assisted schemes: At first, since mobility (CVλ) and

traffic (k) parameters are characteristics of the network, they either remain constant

or change slowly over a long time period. Hence, we can assume that nodes know

their values, or can estimate them (e.g. with a distributed mechanism, locally, etc.).

Then, the required number of relays L to achieve a certain expected delay, could

be easily estimated.

Practical Example: If the measured network characteristics are CVλ = 2 and

k = 2, then from Result 3 we get R = 5
9+L

. Therefore, to achieve delivery

delay two times faster than Direct Transmission, one extra copy should be used

(L = 1 → R = 0.5), while to achieve 4 times faster delivery, L = 11 relay nodes

are needed. In the latter case, if traffic/mobility heterogeneity has not been taken

into account [5], the prediction would be L = 3 and this would lead only to 2.5
(instead of 4) times faster delivery (i.e. R = 5

12 ).

3.3 Discussion and Implications

It is evident from the above example that traffic heterogeneity can have a major

impact on performance and thus protocol design. Table 2 formalizes this impact,

by considering how Rmin and Pmin (Eq. (16) and Eq. (17)) behave: the middle

column shows their monotonicity as traffic heterogeneity (k), mobility heterogene-

ity (CVλ), and amount of extra copies (L) increase; the right column gives their

values in the limit for large/small k or CVλ.

Some important observations that follow from Table 2 are:

O.1. A strong positive correlation (large k) between traffic and mobility reduces

the added value of extra copies (i.e. Rmin, Pmin increase), while a negative (or

weak positive) correlation increases the added value.

O.2. For high heterogeneity (traffic and mobility), our results imply that a unicast

message is likely to arrive to its destination at the time the source and destination

come in contact (i.e. within physical proximity). This raises questions about the

usefulness of opportunistic networking for unicast applications in which end-to-

end traffic is highly correlated with contact frequency (e.g. Facebook messaging).

In fact, as positive correlations and high mobility heterogeneity is what has mostly

been observed in measurement analyses [11, 12], the take home message might be

rather grim for unicast applications over opportunistic networks.

O.3. On the other hand, our results suggest that potential unicast applications

with an end-to-end traffic demand between nodes with non-frequent meetings (e.g.

social peers residing in different communities) could benefit a lot (more than nor-

mally assumed) by simple opportunistic networking solutions (e.g. replication-

based routing).

O.4. Finally, a positive message can be inferred for the feasibility of content-centric

applications (e.g. file sharing, service composition [2]), which normally rely on di-

rect encounters with nodes storing content of interest. This is due to the increased

relative performance of Direct Transmission, compared to the uniform traffic case.
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Table 2: Rmin, Pmin: Monotonicity and Asymptotic Limits

Parameter Monotonicity Limits fpr

x as x ր min{x} max{x}

mobility

heterogeneity:

CVλ ∈ [0,∞)

Rmin
ր if k > 1 + 1

L

ց otherwise

Pmin
ր if k > 1

L

ց otherwise

1
1+L

1
1+L

1 − 1
k

1 − 1
k+1

traffic

heterogeneity:

k ∈ [kmin,∞)

Rmin, Pmin ր 0 1

extra copies:

L (L ≪ N)
Rmin, Pmin ց -

However, a further treatment of content-centric traffic is beyond the scope of this

paper.

4 Model Validation

To validate our model and analysis, in this section we compare the theoretical

results against Monte Carlo simulations, on various synthetic scenarios and on

datasets of real networks.

4.1 Synthetic Simulations

We generate synthetic networks, conforming to the mobility and traffic models of

Section 2, as following: We assign to each pair {i, j} a contact rate λij , which we

draw randomly from fλ, and create a sequence of contact events (Poisson process

with rate λij). Since E[τij ] = τ(λij) (from Def. 2), we draw the traffic rate for

each pair {i, j} as τij ∼ Uniform[0, 2τ(λij)]. Then, we simulate a large number

of message exchanges, choosing randomly for each message the source-destination

pair according to the weights τij .

We created different scenarios (N, fλ, τ(·)) to verify our analysis under various

network parameters.

To keep up with the analysis of Section 3.2, we used the Gamma distribution as

the contact rates distribution fλ and traffic functions of a polynomial form, τ(x) =
c · xk.

Fig. 2 shows the simulation results for the ratio of delivery delays R (Fig. 2(a))

and the probability of delivery by the source P(src.) (Fig. 2(b)) along with the the-

oretical bounds Rmin and Pmin (dashed lines). The results correspond to two dif-

ferent traffic scenarios, namely (i) τ(x) = c ·x2 and (ii) τ(x) = c ·x4. Similarly, in
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Figure 2: Comparison of Direct Transmission and Relay Assisted routing in two

traffic scenarios under varying mobility heterogeneity: (a) The ratio R and the

theoretical bound Rmin, (b) The probability P(src.) and the theoretical bound

Pmin. Simulation results are denoted with markers and theoretical predictions

(lower bounds) with lines.

Fig. 3 we present the results for two different mobility scenarios with (i) light het-

erogeneity CVλ = 0.5 and (ii) heavy heterogeneity CVλ = 2, under varying traffic

heterogeneity. As expected, our predictions are always lower than the simulation

results and the bounds are tight, except for some cases with heavy heterogeneity

both in mobility and traffic. Also, as our results predict (Table 2), for increasing

mobility and traffic heterogeneity, the lower bounds (and the actual simulated val-

ues as well) increase, demonstrating that the gain of the extra copies diminishes

under such conditions. For example, from Fig. 2(a) we can see that, while for al-

most homogeneous mobility (CVλ = 0.1) the expected delay of Relay-Assisted

routing (L = 5) is 5 times lower than this of Direct Transmission, i.e. R = 0.2,

when mobility becomes very heterogeneous (CVλ = 2.5), delay is improved less

than 1.25 times, i.e. R ≥ 0.8.

In Fig. 4 and 5 we present more simulation results for R and P(src.) under

different scenarios. In all the scenarios the results are consistent with our theory.

We can see that as Table 2 predicts, for very high values of mobility and traf-

fic heterogeneity Direct Transmission can achieve comparable performance with

Relay-Assisted routing, i.e. R and P(src.) become almost 1.

Till now, we presented the two metrics (R and P(src.)) for the relative perfor-

mance of Direct Transmission and Relay-Assisted routing. However, our analysis

allows to calculate absolute values too (Eq. (6) and Eq. (12)). In Fig. 6 and Fig. 7

we present the message delivery delay under Direct Transmission, E[TDT ], and

Relay-Assisted routing (in our simulations we used the Spray and Wait routing

protocol [5]), E[TR], under scenarios with varying mobility and traffic heterogene-

ity. From these plots, it becomes evident that the previously observed changes
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Figure 3: Comparison of Direct Transmission and Relay Assisted routing in two

mobility scenarios and under varying traffic heterogeneity: (a) The ratio R and

the theoretical bound Rmin, (b) The probability P(src.) and the theoretical bound

Pmin. Simulation results are denoted with markers and theoretical predictions

(lower bounds) with lines.
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Figure 4: Comparison of Direct Transmission and Relay Assisted routing for dif-

ferent traffic scenarios (τ(x) = c · xk) under varying mobility heterogeneity: (a)

The ratio R and the theoretical bound Rmin, (b) The probability P(src.) and the

theoretical bound Pmin. Simulation results are denoted with markers and theoret-

ical predictions (lower bounds) with lines.

16



  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =0.1

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =0.5

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =1

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =2

(a) R = E[TR]
E[TDT ]

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =0.1

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =0.5

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =1

  0 0.5   1   2   3   4
0

0.5

1

k

 

 

CV
λ
 =2

(b) P(src.)

Figure 5: Comparison of Direct Transmission and Relay Assisted routing for differ-

ent mobility scenarios (CVλ) under varying mobility heterogeneity: (a) The ratio

R and the theoretical bound Rmin, (b) The probability P(src.) and the theoretical

bound Pmin. Simulation results are denoted with markers and theoretical predic-

tions (lower bounds) with lines.

in relative performance (R and P(src.)) are mainly due to the decrease of Direct

Transmission delivery delay. In contrast, the delay of Relay-Assisted routing is

less affected by heterogeneity.

An important observation is that for scenarios with low traffic heterogeneity(i.e.

k < 1), as the mobility heterogeneity increases, Direct Transmission becomes in-

efficient and its expected delivery delay can become very large. This shows clearly

the reasons why previous studies, which assumed homogeneous traffic patterns

(i.e. k = 0), found Direct Transmission to be inefficient. However, this does not

hold under any conditions. Under heterogeneous traffic, the perfomance of Direct

Transmission improves significantly and this indicates that Direct Transmission

can be an efficient solution under scenarios/applications where users that contact

frequently tend to exchange more messages.

Moreover, considering the accuracy of our predictions (Eq. (6) and Eq. (12)),

Table 3 contains the relative error between our prediction (Eq. (6)) and the simu-

lation results for the exact delay of Direct Transmission, and the tightness of the

predicted bound (Eq. (12)) for the Relay-Assisted routing delivery delay. We can

see that the accuracy is significant and increases with the network size. This is

because the condition L ≪ N we assumed in our analysis, holds better for larger

networks.

4.2 Real-World Networks

After validating our results in synthetic scenarios, in order to investigate to what ex-

tent they can be applied in real-world networks, we conduct simulations on datasets
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Figure 6: Expected message delivery delay of Direct Transmission and Relay-

Assisted (Spray and Wait) routing. Scenarios with different traffic functions, i.e.

k = 0, 0.5, 1, 2, 3, 4 (from left to right and up to down), and under varying mobility

heterogeneity (CVλ).

Table 3: Delay Predictions: Average Relative Differences

Synthetic Scenarios

N = 1000 N = 100

Direct Transmission 0.2% 0.3%

Spray and Wait 1.4% 13.9%
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Figure 7: Expected message delivery delay of Direct Transmission and Relay-

Assisted (Spray and Wait) routing. Scenarios with different mobility heterogeneity,

i.e. CVλ = 0.1, 0.5, 1, 2 (from left to right and up to down), and under varying

traffic heterogeneity (k).
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Table 4: Datasets Information

Dataset Network Size Contacts Traffic

Gowalla / Twitter (AU) 1004 Check-ins Tweets

(SF) 479

Strathclyde 24 Bluetooth Proximity Calls / SMS

collected from online social networks (Gowalla / Twitter dataset [11]) and a mobile

phone usage experiment (Strathclyde dataset [30]). In following we decribe some

main features of the datasets, which are also presented in Table 4.

Gowalla / Twitter dataset

Gowalla was5 a location-based social network, where users were able to check-in

at ”spots” (bars, shops etc.) through their mobile phones. In addition, a user could

connect her Gowalla account to her Twitter account. Hence, from this dataset, we

could retrieve information related both to nodes’ mobility (Gowalla check-ins) and

communication traffic (tweets).

Mobility

Considering node mobility, our framework focuses on the contact events between

nodes, because message exchanges can take place only during these events. Thus,

in the dataset, we consider as a contact event the time when two users reside in

the same ”spot” simultaneously6 . The contact rates λij can be computed from

the number of the contact events and the inter-contact time intervals. Then, to

incorporate this information in our model, we fitted the contact rates distribution

fλ with a known probability distribution f̂λ. Specifically, in the two cities, Austin

(AU) and San Francisco (SF), for which we have the most users’ records (1004
and 479 nodes, respectively), the experimental CCDF (complementary cumulative

distribution function) of the contact rates λij can be approximated by a straight

line on a log-log axes plot. This implies that fλ can be approximated with a Pareto

distribution (Fig 8(a) and Fig. 8(b)).

Communication Traffic

As an indication for the communication traffic that two nodes would exchange in

an opportunistic network, we use the number of tweets (#tweets) in which they

are both involved. Hence, for each pair {i, j} we set its traffic rate τij equal to

the number of tweets it exchanges, i.e. τij = #tweetsij . Then, we approximate

5It was launched in 2007 and closed in 2012.
6Since Gowalla users only check in and do not check out, we cannot infer directly this informa-

tion. Therefore, following the methodology of [11], we assumed that each user remains at a spot he

visited for 1 hour
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Figure 8: Fitting contact rates CCDF F λ for the Gowalla (a) Austin, (b) San Fran-

cisco, and (c) Strathclyde dataset.

Table 5: Fitting traffic functions for the Gowalla dataset

Scenarios: S1 S2 S3

τij

√

#tweetsij #tweetsij (#tweetsij)
2

τ̂(x) (AU) c · x0.6 c · x0.83 c · x0.79

τ̂(x) (SF) c · x0.31 c · x0.35 c · x0.37

the observed relation between traffic and contact rates (τij ∼ λij) with a function

τ̂(x), in order to use it in our theoretical expressions. Furthermore, to investigate

more possible correlations between the opportunistic traffic (τij) and the Twitter

traffic (#tweets), we create scenarios where we set τij =
√

#tweetsij and τij =
(#tweetsij)

2. The approximative functions τ̂(x) for each scenario are presented

in Table 5, where we can see that τ̂(x) are of the form c · xk with exponent k < 1.

Strathclyde dataset

The Strathclyde dataset was collected in an experiment, in which 277 high school

students were selected and given modified smartphones, which recorded proximity

events (through Bluetooth), calls and sms exchanged between the phone user and

the other participants.

7Unfortunately, due to malfunctioning devices, only the data of 24 users are reliable.
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Mobility

In this dataset the meeting events were already recorded and, thus, we did not have

to preprocess the data as in the Gowalla dataset. We followed the same methodol-

ogy to calculate the contact rates λij and fit their distribution with a function f̂λ,

where f̂λ is here a Gamma distribution (Fig. 8(c)).

Communication traffic

We consider three scenarios, in each of which we use a different communication

traffic metric: (i) total number of calls and sms, i.e. τij = #callsij + #smsij , (ii)

total duration of calls, i.e. τij = T calls
ij , and (iii) total length of sms (in characters),

i.e. τij = Lsms
ij . For each scenario, we fitted a function τ̂(x) as before, through the

relation τij ∼ λij . The traffic functions are of the form τ̂ (x) = c · xk · e−β·x.

Simulations

In both datasets and for each traffic scenario, we generate 10000 messages at ran-

dom time points, choosing each time the source - destination pair according to the

weights τij . We consider both Direct Transmission and Spray and Wait routing [5]

with L = 2, 5, 10, 20 copies per message. In the analytical expressions we use the

fitted functions f̂λ(x) and τ̂(x).
In Fig. 9 we present the ratio R, the probability P(src.) and the corresponding

theoretical lower bounds Rmin and Pmin. We consider homogeneous and het-

erogenous (denoted with ∗) traffic scenarios in the Gowalla/Twitter (AU and SF)

and Strathclyde (St) datasets. Two main observations that confirm (both quantita-

tively and qualitatively) the validity of our results are: (i) the theoretical bounds are

always lower than simulation results, and (ii) the predictions follow the tendency

(increasing with traffic heterogeneity) of real networks’ behavior.

To demonstrate further to what extent our results can capture the effect of

traffic heterogeneity in real scenarios, in Table 6 we compare the theoretical pre-

dictions (Rmin and Pmin) between pairs of different simulation scenarios for the

Gowalla/Twitter dataset8. Specifically, in cases where the performance improves

(or degrades), if the theoretical results also indicate a performance improvement

(or degradation), the prediction is assumed to be correct. For example, in the sce-

narios AU-S1 and SF-S3 the ratios R are R(AU−S1) = 0.89 and R(SF−S3) = 0.94,

i.e. R(AU−S1) < R(SF−S3). For the theoretical predictions it holds also that

R
(AU−S1)
min = 0.64 < R

(SF−S3)
min = 0.68 and, thus, the prediction is assumed to

be correct. The “correct” predictions are denoted with Xand the “incorrect” with

×. The elements above the diagonal refer to the ratio R (and Rmin), whether the

lower triangular part refers to the probability P(src.) (and Pmin) predictions.

8We denote with S1, S2 and S3 the corresponding scenarios presented in Table 5 and with HOM

the scenarios with homogeneous traffic. In each city, we chose the scenarios with the highest differ-

ence in traffic heterogeneity, k.
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Figure 9: Simulated and Theoretically predicted R and P(src.) for homogeneous

and heterogeneous (∗) traffic scenarios on the datasets

Table 6: Comparison of predictions for the metrics R and P(src.) between different

scenarios on the Gowalla dataset

* R AU SF

P(src.) * HOM S1 S2 HOM S1 S3

HOM * X X X X X

AU S1 X * X X X X

S2 X X * × X X

HOM X X X * X X

SF S1 X X × X * X

S3 X X × X X *
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Table 7: Comparison of predictions for the metrics R and P(src.) between different

scenarios on the Strathclyde dataset

* R St

P(src.) * S1 S2 S3

S1 * X X

St S2 X * X

S2 X X *

It is evident that in the majority of the cases we consider, the theoretical results

can capture the relative changes in network performance, even between different

environments (i.e. between AU and SF). Moreover, in the Starthclyde dataset,

all the respective comparisons were found to be correct (X), as it can be seen in

Table 7.

Finally, Table 8 gives the relative difference between our theoretical predictions

(Eq. (6) and Eq. (12)) and the simulation results for the expected message delivery

delay of Direct Transmission and Spray and Wait routing. We consider all the

scenarios presented in Table 5 for the city of Austin (AU) and San Francisco (SF)

from the Gowalla/Twitter dataset. As it can be seen, the accuracy of the predictions

for E[Td] (Direct Transmission) is significant for most of the scenarios. The errors

for E[Tr] (Spray and Wait) in most cases are higher than in Direct Transmission,

though still satistying.

Table 8: Relative Difference of Expected Delivery Delay Predictions in the

Gowalla dataset

AU SF

S1 S2 S3 S1 S2 S3

Direct Transmission 18% 13% 1% 8% 6% 8%

Spray and Wait 16% 36% 29% 22% 24% 23%

5 Extensions

We have tried to present our results in the context of simple schemes (e.g. unicast

traffic, random relay selection), to keep analysis tractable and illustrate key prin-

ciples. In this section, we discuss how our framework could be applied in some

additional cases. Although far from complete, we believe this set of examples,

further underlines the utility of our analysis.

Utility-based schemes are often used to select good relays for the intended

replicas, rather than picking random ones, e.g. [6, 31, 32]. Although one could

modify our Results 1, 2 and 3 to capture such schemes, e.g. by multiplying L
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Figure 10: P(src.) of utility-based routing in (a) synthetic scenarios with varying

mobility (CVλ) and traffic heterogeneity (k), and (b) real networks with homoge-

neous and heterogeneous traffic.

with an appropriate factor cu (the actual improvement depending on the contact

graph, and the protocol), it is beyond the scope of this paper to perform the detailed

analysis. Instead, we demonstrate some preliminary simulation results suggesting

that our conclusions hold also for utility-based routing.

We use a variant of the protocol presented in [32], in which the higher the con-

tact rate λid between a node i and the destination d, the higher the probability that

node i is selected as a relay. In Fig. 10(a) we present simulation results for the de-

livery metric P(src.) on synthetic scenarios with varying mobility (CVλ) and traffic

(k) heterogeneity. Similarly to the random replication case, for increasing hetero-

geneity (in mobility and/or traffic) the gain of the extra copies clearly decreases

(i.e. P(src.) increases) under utility-based schemes. In Fig. 10(b) we compare the

probability P(src.) of scenarios with and without traffic heterogeneity in real net-

works. As before, the results are in agreement with our theory, i.e. the performance

of Direct Transmission improves even compared to protocols that use more sophis-

ticated techniques for relay selection. In these scenarios, similar results hold also

for the ratio R which are presented in Fig. 11.

We have also been assuming unicast messages between a {s, d} pair. How-

ever, our results apply also to multicast [13] or anycast (e.g. content sharing or

service composition applications) [2] messages from s, with d being one of the

destinations, since similar mechanism are often used for their dissemination. To

demonstrate this, in Table 9 we present simulation results for two multicast scenar-

ios, with homogeneous (HOM) and heterogeneous (HET) traffic (τ(x) = c · x4),

under varying mobility heterogeneity. A source sends messages to 5 destinations

(each selected with a probability ∝ τij) either by Direct Transmission or by Relay-

Assisted routing with L = 5 copies. As delivery delay, we consider the delay till all

the destinations get the message. It is evident that R and P(src.) (i) increase signif-
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mobility (CVλ) and traffic heterogeneity (k), and (b) real networks with homoge-
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Table 9: Multicast Communication

CVλ 0.1 0.5 1 1.5 2

HOM R 0.18 0.12 0.01 0 0

P(src.) 0.01 0.01 0.01 0.01 0.01

HET R 0.18 0.26 0.39 0.52 0.61

P(src.) 0.01 0.03 0.12 0.26 0.41

icantly with mobility heterogeneity when traffic is heterogeneous, and (ii) become

much larger compared to the homogeneous case (where R decreases and P(src.) is

constant), which is in agreement with our results.

6 Related Work

Useful implications for opportunistic networking have arisen from the investi-

gation of mobility/social ties and social ties/communication traffic correlations,

which have been studied extensively and under different disciplines, like anthro-

pology [24], sociology [33], social media [21] or pervasive social networks [9]. For

example, [21] shown that the amount of exchanged communication traffic between

users of OSNs depends on their social relationships. On the other hand, the com-

munication traffic/mobility correlation has not been given similar attention. There

exist only a few works [11, 12] studying it in a framework relevant to opportunistic

networking. In [11], Hossmann et al. collected and analysed two datasets from

online social networks (Facebook and Gowalla / Twitter), and investigated the re-

lations among three dimensions: mobility, social ties, communication traffic. With

respect to our study, they found that there is strong dependence between mobility
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and traffic, and, specifically, node pairs that contact during the experiments’ dura-

tion, communicate with higher probability than the other pairs. Correspondingly,

authors in [12] analysed a massive dataset of Call Detail Records (CDRs) of 6

million users and shown a positive correlation between the mobility and communi-

cation traffic patterns. Not only they shown that the higher the contact rate (λij) of

a node pair is, the higher the probability that the nodes communicate intensively,

but also found that information inferred by the mobility patterns can work as a

good predictor for future communication events.

However, despite the fact that [11, 12] show clearly that communication traffic

is heterogeneous (and correlated to mobility), to our best knowledge, its effects on

information dissemination mechanisms have not been studied previously.

7 Conclusion

Motivated by (i) recent findings indicating heterogeneous traffic patterns in mobile

social networks and (ii) the lack of related studies, in this paper, we modelled traffic

heterogeneity and studied how it affects the performance in opportunistic network-

ing. We found that the effects can be significant, changing our understanding of

common design principles in DTNs, such as the added value of relays. This indi-

cates a necessity for revisiting the evaluation of protocols in scenarios that entail

diversity in the traffic exchanged between different nodes. Moreover, our results

seem to have some interesting implications about the usefulness of opportunistic

networking for end-to-end applications.

Based on the initial understanding offered by our analysis, in future work we

intend to investigate further traffic characteristics and study the implications of

traffic heterogeneity for content-centric applications.

Acknowledgment

We would like to thank the authors of [11] for providing us the dataset they have

collected, which was essential for the validation of our model and results in real

networks’ scenarios.

References

[1] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: data

forwarding in disconnected mobile ad hoc networks,” Comm. Mag., IEEE,

vol. 44, pp. 134–141, Nov. 2006.
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