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Understanding the Effects of Social Selfishness on the
Performance of Heterogeneous Opportunistic Networks

Pavlos Sermpezis and Thrasyvoulos Spyropoulos

Abstract

In Opportunistic Networks the majority of communication mechanisms make

use of relay nodes for delivering the messages. Any possible unwillingness

of the relay nodes to cooperate, can affect gravely the performance of routing

protocols and message dissemination techniques. In this paper we propose a

framework for analysing cases where the level of cooperation, or the selfishness

of nodes, is related to the social ties of the nodes or their mobility patterns. We

model selfishness in Heterogeneous Opportunistic Networks and investigate the

effect of it in communication performance. Specifically, we analyse and derive

expressions for important metrics, namely the message delivery delay, the aver-

age power consumption and the message delivery probability. We demonstrate

the applicability of our results in various application scenarios and validate their

accuracy with simulations on both synthetic and real-world networks.

Index Terms
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1 Introduction

Opportunistic Networks and Delay Tolerant Networks (DTNs) are envisioned to

support communication in challenging environments with total or partial absence

of infrastructure (e.g. emergency situations after a disaster, mobile sensor net-

works) and/or to enhance existing networks (e.g. offloading of cellular networks,

collaborative cloud computing). They are composed mainly of nodes moving in an

area much larger than their transmission range. Data exchange between nodes (i.e.

portable devices like smartphones, laptops, PDAs etc.) can take place only when

they are within transmission range of each other, or, as it is also called, when they

are in contact.

As a result, traditional end-to-end connectivity is very volatile, intermittent, or

often absent. Message dissemination from a source to a destination node could be

achieved by direct transmission [1], when source and destination come in contact.

Yet, this leads to large delivery delays, low throughput and high packet losses. To

improve the situation, other (“relay”) nodes could be used that carry the message

and forward it to the destination (or to other, better relays) when they contact with

it.

Many routing techniques have been proposed for Opportunistic Networks. In

social-oblivious (“random”) routing protocols, e.g. epidemic [2], two-hop [3],

spray and wait [4], replication is used as a diversity mechanism to improve per-

formance. A small or large number of relays, chosen randomly, receive a copy of

the message and can independently relay it. In utility-based or social-aware routing

(see [5] for a survey) “good” relays are selected based on social (or other) charac-

teristics. The main goal of these protocols is to achieve good performance (delay

and delivery probability) with the minimum amount of overhead (e.g. number of

transmissions or relays used per message), and many of them have been shown to

achieve very good tradeoffs in different mobility settings.

However, the vast majority of works proposing, modeling, or optimizing pro-

tocols for Opportunistic Networks assume cooperation of nodes in relaying mes-

sages: when the protocol dictates that a relay node should receive or transmit a

message (neither destined to nor originating from it), it does. In practice, a relay

node might: (i) never be willing to carry traffic for 3rd parties, (ii) be willing to

only perform some number of transmissions/receptions for relay traffic, or (iii) be

more willing to receive or transmit traffic from nodes it has some (social) “ties”

with. The reasons for this reluctance range from privacy concerns (e.g. not trusting

an exchange with unknown nodes) to resource consumption (e.g. battery deple-

tion). Such behaviors are natural, and could significantly degrade the predicted

performance of the above protocols.

To this end, some recent works have used both simulations and analysis to

study the effect of having some “selfish” nodes among “altruistic” nodes [6], or

the effect of nodes reducing the transmission probability for all relay traffic (e.g.

accepting or forwarding a packet with a probability p < 1) [7, 8]. Nevertheless,
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these works assume a mostly uniform behavior of relays when it comes to treating

contacts with different nodes.

Contrary to the above approach, everyday experience suggests that people take

into account the strength of their relation with a peer, when deciding whether to

cooperate or not (social selfishness). As a result, a node A may be more willing

to spend some energy (or take the risk) to forward a message of possible interest

to an encountered node B, if A and B have strong ties, than if B is unknown to A.

Furthermore, a long line of research has revealed that: (i) the strength of the “so-

cial” tie between two nodes (where “social” here may also be context-dependent)

can often be reasonably predicted by the contact rate between them [9, 10], and (ii)

the contact patterns and rates between mobile nodes exhibit significant amounts of

heterogeneity [11, 12].

This opens up a very large space of possible cooperation policies, whose per-

formance might be intimately related to the underlying mobility. E.g. a node might

choose to forward (or accept) messages only to (from) nodes that it encounters fre-

quently enough, or attempt to explore “weak ties” [13]. Alternatively, a node could

instead “modulate” the forwarding probability as a function of the encounter rate

with a given node. The following questions are then raised:

Q.1 Can we predict the performance of a routing mechanism, under a given co-

operation policy, if we only know some basic statistics about the underlying

heterogeneous mobility process?

Q.2 Can we improve performance by choosing the cooperation policy wisely, sub-

ject to a given constraint (e.g. power consumption rate for relay traffic)?

The former question is relevant, for example, when the policy is given (related

to external, e.g. security factors). One then might like to know what kind of per-

formance it should expect from the network, so as to choose the right protocol or

protocol parameters, without knowing the global network topology, or to decide

whether opportunistic networking is useful in this context or it is better to simply

use the infrastructure. The latter question is relevant when we can assume that the

average node is willing to contribute some fixed amount of resources (e.g. amount

of power spent for relay traffic) towards participating in an opportunistic network,

but we are interested in how to best use these resources to optimize network per-

formance.

Our main contributions in this paper are

• We propose a generic model for social selfishness (or cooperation) related to

mobility, which can capture a wide range of selfish behaviors and describe

cooperation policies proposed in past literature (Section 2).

• Towards answering the first question, we use our model to provide closed-

form expressions for the expected message delivery delay under a large class
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of mobility scenarios with heterogeneous contact rates; these expressions pro-

vide insights about the effect of the cooperation policy used and of the macro-

scopic mobility properties (mean value and variance of contact rates) (Sec-

tion 3).

• Towards answering the second question, we examine the achievable performance-

power consumption tradeoff regions under different cooperation policies. Specif-

ically, we show that (i) when considering an interesting class of Power-vs-

Delay tradeoffs, complex “social-based” policies cannot achieve better per-

formance than the simple uniform policy, while (ii) when we consider Power-

vs-Delivery-Probability tradeoffs, social cooperation policies can indeed be

optimized (Section 4).

• Finally, we show that the intuition of our framework can be useful also in

some real-world scenarios with significantly more complexity than the class

of heterogeneous mobility models that we consider for our analysis.

2 Preliminaries

2.1 Mobility Model

We consider a network N , with N nodes. We assume that the node transmission

range is much smaller than the total network area, so that each pair of nodes can

only communicate directly during the contact events of this pair (i.e. when the two

nodes come into the transmission range of each other). We model this sequence

of contact events for a pair of nodes {i, j} by a random point process1. Specifi-

cally, we will perform our analysis assuming the following class of heterogeneous

mobility models (or Contact Networks):

Definition 1 (Heterogeneous Contact Network). Inter-contact times between a

given pair of nodes {i, j} are exponentially distributed, with contact rate λij , and

independent of each other. The contact rates λij for each pair {i, j} are inde-

pendently drawn from an arbitrary distribution fλ(λ), with finite mean µλ and

variance σ2
λ (or coefficient of variation cvλ = σλ

µλ
).

With the choice of the above model we try to strike a tradeoff between realism

and usability. We will now motivate our choices above in a bit more detail.

First, the assumption of independent and exponentially distributed inter-contact

times (or equivalently Poisson contact processes) for each pair of nodes is needed

to allow an exact analysis of performance metrics of interest using a Markovian

framework. For this reason, it is a common assumption in most related works

for epidemic spreading on Opportunistic Networks [3, 11, 14, 15, 16]. Further-

more, analyses of real-world traces, suggesting that the exponential distribution

1We will ignore the actual contact duration for simplicity and assume that contacts are instanta-

neous, since bandwidth concerns are orthogonal to the problem we consider here.
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Figure 1: Epidemic spreading over a homogeneous network with N nodes

Figure 2: Epidemic spreading in a heterogeneous network with 4 nodes

can sometimes approximate the distribution of the inter-contact times [11, 12], or

at least the tail of it [17, 18]. The assumption of independence (or even station-

arity), while not that well supported by real traces, due to temporal or periodic

characteristics in real mobility scenarios [19, 20, 21], is also necessary for analyti-

cal tractability (and any hope for closed form expressions). To our best knowledge,

departing from the above assumptions (e.g. maintaining independence but allowing

for pareto inter-contact time distributions [22, 23]), can only be used for asymp-

totic, convergence analysis about the message delivery delay of a routing protocol,

i.e. if it achieves finite or infinite delay.

The second assumption is the heterogeneity of contact rates between different

pairs of nodes. In previous analytical works, homogeneous mobility (i.e. λij = λ
for each pair {i, j} ) is often considered, because under this assumption closed-

form results regarding the message delivery delay / probability can be found eas-

ily [3, 4]. For example, the message dissemination under epidemic routing can be

modeled in the homogeneous case by a Markov Chain of N states as depicted in

Fig. 1.

Unfortunately, study of real traces has provided strong evidence that contacts

between different pairs of nodes are in fact largely heterogeneous, with some pairs

never meeting each other and others meeting much more frequently [11, 12]. Simi-

larly, Passarella et al. [10], shown, using data from real-world social networks, that

(i) each person interacts and contacts its friends and acquaintances with higher rate

as closer their relationship is, and (ii) the contact rates, between any individual and

the other nodes, can be approximated by a distribution (which in our case is the

distribution fλ)2.

This motivates us to depart from the homogeneous mobility model, and try to

capture such heterogeneous rates. However, introducing different contact rates for

2Additionally, they found that the Gamma distribution matches well the observed distribution in

real networks.
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each pair of nodes complicates the problem. The message dissemination process

depends on which certain set of nodes have the message at each state. Hence,

the corresponding Markov Chain consists of 2N states (see e.g. Fig. 2) and only

numerical solutions (and only for N not large) [16] or upper bounds using rough

spectral arguments [15], are allowed. Nevertheless, in [24], we have shown that

analysis can also be extended for more complex cases, i.e. when contact rates are

independently drawn from a distribution fλ
3. Although this mobility class can-

not directly capture all types of macroscopic structure often observed in real-world

networks (e.g. assortativity and community structure [25, 9]), we can use any

valid probability density function fλ to create an infinite range of random con-

tact networks (in contrast to homogeneous models that correspond to only one

function, i.e. fHOM
λ (λ) = λ0 = const.). Different functions lead to classes of

contact processes with very different macroscopic characteristics. For example, an

fλ symmetric around µλ (e.g. uniform distribution) implies a balanced number of

high and low rates, while a right-skewed fλ (e.g. Pareto) describes a network with

most pairs having large intercontact times, but few meeting very frequently. Fur-

thermore, we can model networks with any level of sparsity by introducing in fλ

a finite probability mass at λ = 0 (i.e. with a delta function), modeling a chosen

percentage of pairs that never meet.

For these reasons, we believe the above model strikes a good tradeoff, and

as will see, allows us to explore the effect of different social-based cooperation

policies and derive interesting insights, which is the main goal of this work. When

possible, we will test these insights against real traces as well, to examine the extent

to which departures from the above assumptions affect our conclusions.

2.2 Selfishness Models

The store-carry-forward mechanism requires from the relay nodes to (i) receive

messages, (ii) store them, (iii) forward the messages they have to other relays

and/or the destinations. As it is evident, this mechanism requires the cooperation

of the relay nodes, and may put a heavy toll on their resources (bandwidth, storage

space, battery life, etc.), dependent on the network traffic and protocol used. Fur-

thermore, exchanging messages with unknown nodes may raise important security

and privacy concerns. These considerations may render wireless nodes reasonably

reluctant to relay traffic.

This unwillingness to cooperate might come in different flavors:

1. A node will not relay any traffic (individual selfishness).

2. A node will choose to relay each packet with some probability p. We will call

this uniform selfishness.

3. A node will relay packets preferentially to other nodes it has a social relationship

with (social selfishness).

3We will later provide some intuition about this result and we will modify it to consider node

selfishness policies in Section 3.
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The first case is an extreme case that could be handled with incentive or rep-

utation mechanisms [26, 27, 28, 29, 30]. Such mechanisms are orthogonal (but

possibly complementary) to our work. The second scenario has already been ad-

dressed in the past, with both theory and simulations, indicating that a low p can

significantly hurt performance (e.g. [7]). The third case is closer, in our opinion, to

human behavior. It is reasonable to assume that nodes are more willing to forward

messages to or receive messages from nodes with whom they have a social tie. A

social tie can be considered as a social relation in the real world (e.g. friendship),

as a relation that originates from a routing mechanism (e.g. common interests in

social-aware routing, SANE [31]), as a trust-relation that depends on how many

times they have met in the past or they have collaborated (e.g. message exchanges

or participation in a service composition) etc.

An important observation (for opportunistic networking) is that such social

ties seem to be related with the mobility patterns. Studies from sociology [32] and

social media [33] have shown that the stronger the social tie between two people

is, the more they tend to meet or contact each other. Another study of Social

Pervasive Networks [10], based on results from the anthropology field [34], shown

that a relation between social ties and contact frequency (e.g. interaction on the

respective social network) is supported in real networks. More recently, studies

have directly suggested that the actual physical contact (related to mobility) can

often serve as a good predictor for the strength of a social tie [35].

Combining the relations, we discussed above, between (i) selfishness and social

ties, and (ii) social ties and mobility patterns, it is reasonable to assume a social

selfishness model, where nodes decide to utilize a given contact opportunity with

a probability pij = p(λij), related to the contact frequency between the two nodes

involved {i, j} . Such a model has been taken into account in a number of studies

of routing protocols or message dissemination performance [13, 36, 37]. Some

proposed strategies are, for example, to give more emphasis to ”strong ties” or

”weak ties” (i.e. large or small λij): e.g. a node might decide to exchange messages

only with the nodes it contacts more frequently, or the probability for message

exchange to be linearly increasing with the contact rate of a pair of nodes, etc.

To be able to capture most of the above selfishness behaviors (and more), in a

simple and generic way, we choose to model this willingness to forward a message

(essentially, the existence of related constraints affecting this willingness), in a

probabilistic way.

Specifically, we propose two types of selfishness models, which correspond to

typical behaviors that can appear in an Opportunistic Network scenario.

Definition 2. [Selfishness: Type I] The probability for a message to be exchanged

in a contact event between two nodes i and j, depends on their meeting rate λij

and is described by the relation:

pij = p(I)(λij), pij ∈ [0, 1] (1)

6



Definition 3. [Selfishness: Type II] A pair of nodes i and j either can exchange

messages in every contact event with probability pij or can never exchange mes-

sages with probability 1 − pij . The probability pij depends on the meeting rate

between these nodes, i.e. λij , and is described by the relation:

pij = p(II)(λij), pij ∈ [0, 1] (2)

The probabilities for message exchange may depend, as described earlier, on

various factors, e.g. willingness of the nodes, routing protocol mechanism, bat-

tery constraints, duration of the contact. The above two models allows to capture

a number of such concerns. Furthermore, Type II selfishness is useful to capture

situations where nodes decide a priori whether they will interact with a given node

or not (e.g. due to security concerns), while Type I selfishness models situations

where the contact probability might be modulated according, for example, to cur-

rent battery level, content sensitivity, desire to control relay traffic, etc.

3 Message Delivery Delay

Having defined the types of node mobility and the types of node selfishness that

we consider, we can now commence our analysis. Our goal is twofold:

1) To capture the combined effect of all nodes applying a given “selfishness” policy

(or cooperation policy, to be less negative) on the performance of basic opportunis-

tic routing protocols (e.g. epidemic routing, spray and wait, etc.).

2) To compare different cooperation behaviors and understand the impact of mo-

bility properties on absolute and relative performance.

We state upfront that an exact analysis of random opportunistic routing proto-

cols is already very challenging for heterogeneous mobility models (of the class

of Def. 1), as explained earlier, and it becomes significantly more complex when

social-selfishness policies are considered. While, in some cases, numerical analy-

sis could be applied for small networks, it does not offer the kind of insights we

are interested above. For this reason, we try instead to derive useful closed form

approximations, that can be directly used for performance predictions as well as

policy optimization.

3.1 Delay in Heterogeneous Networks

Before examining specific selfishness policies, we need first to consider how mo-

bility heterogeneity affects the performance of simple opportunistic routing proto-

cols. Let assume a Heterogeneous Contact Network N (Def. 1). Let also assume

that the spreading follows the rules of a random routing protocol P (e.g. epidemic,

direct transmission, 2-hop, Spray and Wait).
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When the spreading process is at state k (i.e. k nodes have the message), we

can use Ck to denote the set of nodes with a copy of the message4. To proceed to

the next state k + 1, a message needs to be exchanged between a node in Ck and

a node among the ones without a copy. The eligible pairs {i, j} of nodes whose

contact will take the process to the next step depends on the protocol P. Let us

denote the set of these pairs as Sk and give two examples:

• Epidemic Routing: Sk = {{i, j} ∈ N : i ∈ Ck, j /∈ Ck} and the cardinality

‖Sk‖ = k(N − k).

• Spray and Wait (SnW) with k copies, during its wait phase: Sk = {{i, j} ∈
N : i ∈ Ck, j = destination} and the number of eligible pairs is ‖Sk‖ = k.

Since (i) each inter-contact times of pairs {i, j} ∈ Sk are exponential and indepen-

dent of others (i.e. Poisson processes), and (ii) the delay to move to the next state,

Tk,k+1, is the time until the first pair {i, j} ∈ Sk comes in contact, it can be easily

shown that Tk,k+1 will be also exponentially distributed with rate
∑

{i, j} ∈Sk
λij .

Hence, its expectation will be:

E[Tk,k+1|Ck] =
1

∑

{i, j} ∈Sk
λij

(3)

and using the conditional expectation properties, we get:

E[Tk,k+1] =
∑

Ck

1
∑

{i, j} ∈Sk
λij

· P{Ck} (4)

It is evident that even the exact derivation of this delay is often not possible, as

it involves complex combinatorics (i.e. calculating P{Ck}). However, in [24] we

have shown that the delay can be accurately approximated for the broad mobility

class of Def. 1, as5:

Result 1. The expectation of the spreading delay from state k to state k + 1 for a

Heterogeneous Contact Network can be approximated with a series expansion as

E[Tk,k+1] =
1

M · µλ
·






1 +

(

σλ

µλ

)2

M
+ R






(5)

where M = ‖Sk‖, and R = O( 1
M2 ) corresponds to the impact of higher order

terms.

4For example, in Fig. 2, the set C2 (i.e. k = 2) could be one of the sets {#A, #B} or {#A, #C}
or {#A, #D}.

5This result becomes exact only as we increase network size N , but provides a very accurate

approximation for moderate network sizes. We refer the reader to [24] for the convergence conditions

and details, and state here the basic result for completeness.
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The above result corresponds to the first two terms of an approximation with

a series expansion (often referred to as the Delta method [38]). Depending on the

network size N and the variability of fλ, fewer (just the first) or more terms could

be used. We have observed that for moderate network sizes (N > 100), the first

term approximation already offers reasonable accuracy.

3.2 Effect of Selfishness

It is easy to see that, when we introduce (social) selfishness, not all contacts re-

sulting from the mobility model are useful in the spreading process, as was the

case above. For instance, a node pair {i, j} that meets with rate λij , may exchange

messages, on average, only half of the times (due to a Type I policy). Then, the

effective (i.e. useful) contact rate will be λ
′

ij = 0.5 · λij .

The following lemmas, whose proofs can be found in Appendix, give the mean

value and variance of the effective contact rates in networks with contact rate prob-

ability function fλ (with µλ and σ2
λ) and selfishness of Type I (Lemma 3.1) or Type

II (Lemma 3.2).

Lemma 3.1. The mean value, µ
(I)
λ , and the variance, σ

2(I)
λ , of the effective contact

rates in a network with contact rate probability function fλ (µλ, σ2
λ) and selfishness

of Type I, are given by

µ
(I)
λ = E

[

λ · p(I)(λ)
]

(6)

σ
2(I)
λ = E

[

λ2 ·
(

p(I)(λ)
)2
]

−
(

E
[

λ · p(I)(λ)
])2

(7)

where the expectations are taken over the p.d.f. fλ.

Lemma 3.2. The mean value, µ
(II)
λ , and the variance, σ

2(II)
λ , of the effective con-

tact rates in a network with contact rate probability function fλ (µλ, σ2
λ) and self-

ishness of Type II, are given by

µ
(II)
λ = E[λ · p(II)(λ)] (8)

σ
2(II)
λ = E[λ2 · p(II)(λ)] −

(

E[λ · p(II)(λ)]
)2

(9)

where the expectations are taken over the p.d.f. fλ.

Thus, when the network is characterised by social selfishness, we can use the

above expressions in Result 1 to calculate the delay E[Tk,k+1].
As discussed earlier, one can use one, two or more terms of Result 1 (and

the respective moments, e.g. µ
(I)
λ , σ

2(I)
λ , etc.) to increase accuracy. However,

by including many terms, expressions get complex and it might be difficult to be

used for optimization or to provide insights. Thus, without loss of generality and

in order to simplify our discussion, in the remainder we will use the simplest first
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order approximation, i.e. E[Tk,k+1] = 1

M ·µ
(I)
λ

for Type I selfishness (similarly for

Type II).

Having computed the delay E[Tk,k+1], we can now use the linearity of expec-

tation rule to calculate the expected message delivery delay under different random

routing protocols.

Result 2. The expected message delivery delay in an Heterogeneous Contact Net-

work can be approximated by

E[TD] =
c(N,L)

µeff.
λ

, (10)

where µeff.
λ is given by Eq. (6) or Eq. (8) for selfishness of Type I or Type II,

respectively, and c(N,L) is a constant dependent on the size of the network, N ,

the routing protocol P and the number of message copies, L. Values of c(N,L)
are given in Table 1 for three well-known routing protocols.

In other words, as a first order approximation, the message delivery delay un-

der random routing protocols is inversely proportional to the mean value of the

effective contact rates in the network. Furthermore, the effect of Type I and Type

II policies, with the same function p(λ), turns out to be equal. We will thus not

differentiate between the two policies, in the remainder, and simply refer to the

mean effective contact rate as µeff
λ .

Finally, it is interesting to note that the effect of the mobility heterogeneity, in

this first order approximation, when nodes are not selfish, affects performance only

through its mean and not its variance (We have confirmed this to be the case for

large N and non-heavy-tailed fλ). In contrast, as we will show in the following

sections, this is not the case when we introduce social selfishness in the spreading

process.

Table 1: The values of c(N,L) for three routing protocols.

Epidemic c(N, L) ≈ ln(N)
N

2-hop c(N, L) =
∑N−1

k=1

k2
·(N−1)!

(N−1)k+2·(N−k−1)!

SnW c(N, L) ≤
∑L−1

k=1

k2
·(N−1)!

(N−1)k+2·(N−k−1)!
+
(

L
N−1

+ 1
L

)

(N−1)!

(N−1)L·(N−L−1)!

10



Table 2: Mean effective contact rate, µeff.
λ = E[λ · p(λ)].

Policy A Policy B Policy C Policy D

Gamma: fλ(x) =
βa

Γ(α)
· xα−1 · e−βx

, α, β, x > 0
(

where α = 1
cv2

λ

, β = 1
µλ·cv2

λ

)

µλ · p0 µλ ·



p2 + (p1 − p2)
γ

(

1 + 1
cv2

λ

, λ0

µλcv2
λ

)

Γ
(

1 + 1
cv2

λ

)



 µλ · p1 ·
γ

(

1 + 1
cv2

λ

, λ0

µλcv2
λ

)

Γ
(

1 + 1
cv2

λ

) + p2 · λ0 · p0 µλ · p0 ·



1 −
1

(1 + m · µλcv2
λ)

1+ 1

cv2
λ





where γ

(

1
cv2

λ

, λ0

µλcv2
λ

)

= Γ
(

1
cv2

λ

)

· (1 − p0)

Exponential: fλ(x) =
1

µλ

· e
−

x
µλ , µλ, x > 0

µλ · p0 µλ ·

(

p1 + (p2 − p1) · p0 · [1 − ln(p0)]

)

µλ ·

(

p1 − p0 ·
(

p1 − (p2 − p1) · ln(p0)
)

)

µλ · p0 ·

(

1 −
1

(1 + m · µλ)2

)

Pareto: Fλ(x) =

(

β

x + β

)α

, α, β, x > 0
(

where α =
2·cv2

λ

cv2
λ
−1

, β = µλ ·
cv2

λ
+1

cv2
λ
−1

)

µλ · p0 µλ ·

(

p1 + (p2 − p1) · p0 ·

(

1 − α + α
1

p
1
α
0

))

µλ ·

(

p1 ·

(

1 − p0 ·

(

1 − α + α
1

p
1
α
0

))

+ p2 · p0 · β ·

(

1

p
1
α
0

− 1

))

N.A.



3.3 Case Studies

With the basic performance result now in hand, we can go ahead and consider

specific mobility processes, fλ, and selfishness policies, p(λ). To this end, we

have analysed four policies (Table 3), which can represent a wide (and diverse) set

of common behaviors for social selfishness and/or have been proposed before [13].

We will describe these policies only as Type I selfishness, but the analysis holds

for the respective Type II policies as well.

Policy A Uniform: Each pair of nodes exchanges messages with probability p0

every time they contact. The selfishness is not related with the contact rates

between nodes.

Policy B Strong / Weak ties: Each pair of nodes exchanges messages with proba-

bility p1 if they contact with rate less than λ0 and with probability p2 other-

wise. The values of p1 and p2 determine the level of selfishness between pairs

with strong and weak ties, respectively, while the value of λ0 corresponds to

the percentage of pairs that have strong (or weak) ties.

Policy C Limit - Rates: Each pair of nodes exchanges messages with probability

p1 if they contact with rate lower than λ0, and adjust the message exchange

probability if they contact with higher rate. Hence, for all pairs {i, j} with

λij > λ0, it will hold that p(λij) · λij = p2 · λ0 = const..

Policy D Exponential: Each pair of nodes {i, j} exchanges messages with proba-

bility p0 · (1− e−m·λij ), where λij is their meeting rate and p0 < 1 and m are

positive constants. The message exchange probability is higher for node pairs

that meet more frequently.

Table 3: Selfishness policies.

Policy A p(λ) = p0

Policy B p(λ) =

{

p1 : λ ≤ λ0

p2 : λ > λ0

F λ(λ0) = p0

Policy C p(λ) =

{

p1 : λ ≤ λ0

p2 ·
λ0

λ
: λ > λ0

F λ(λ0) = p0

Policy D p(λ) = p0 · (1 − e−m·λ)

To find the expected message delivery delay, for a certain network size and a

certain routing protocol, only the computation of the effective contact rates’ mean

value (µeff.
λ ) is needed (Result 2). In Table 2, we present the closed form expres-

sions for the µeff.
λ for these selfishness policies, under different mobility patterns.

Specifically, we considered three cases for the contact rates distribution fλ: (i)

Gamma, (ii) Exponential6 , and (iii) Pareto distribution. We chose to analyze these

6The Exponential distribution can be defined also as a Gamma distribution with parameters α = 1
and β = µ−1

λ . However, for clarity, we present the results separately.
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Figure 3: Delivery Delay in networks with N = 100 nodes and varying Mobility

characteristics (µλ = 1 and cvλ ∈ [0, 3]) for three different selfishness policies

and under epidemic routing. The theoretical values of Delivery Delay for two

parameters (p0) for each selfishness policy are denoted with dashed lines and the

corresponding simulations’ average delivery delays are denoted with dots.

distributions, because they capture a large range of contact variabilities, and (espe-

cially Gamma) were shown to match well the observed contact rates distributions

in real social networks [10].

Similar closed form expressions of µeff.
λ , which depend only on the selfishness

policy’s parameters, p(λ), and the first moments of the contact rates distributions,

fλ, can be found as well for other cases of p(λ) and fλ.

3.4 Validation

The results derived so far provide us with closed-form predictions for the perfor-

mance of various protocols and selfishness behaviors under a broad class of mobil-

ity models. In Section 3.4.1, we first validate their accuracy in (synthetic) scenarios

belonging to this mobility class, in order to isolate the effects of the various ana-

lytical approximations we have performed towards obtaining the expressions for

these otherwise very complex problems. Then, in Section 3.4.2 we further con-

sider trace-driven scenarios, where in addition to approximation errors, departures

from many, if not most, of the model assumptions are expected to introduce further

inaccuracies.

3.4.1 Synthetic Simulations

We developed a simulator that generates synthetic networks with mobility con-

forming to the mobility class of Def. 1: In each scenario, we assign to each pair

{i, j} a contact rate λij , which we draw randomly from fλ
7 and create a sequence

of contact events (according to a Poisson process with rate λij). We also assign to

{i, j} a probability pij according to the function p(λ). Then, we simulate a large

7In the results we present, the contact rates are drawn from a Gamma distribution, fλ ∼ Gamma,

with variable parameters µλ and cvλ (see Fig. 3).
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number of message exchanges, by choosing randomly for each message the source-

destination pair, and calculate the mean simulated delivery delay by averaging the

results.

In Fig. 3 we present, for networks with N = 100 nodes, how the mobility

heterogeneity (i.e. cvλ = σλ

µλ
) affects the message delivery delay, under different

selfishness policies.

The theoretical results (dashed lines) show (Fig. 3(a)) that in the case of uni-

form selfishness (Policy A), the mobility heterogeneity (i.e. cvλ) level does not

affect the message delivery delay. For the same parameters of p(λ) (i.e. p0), the ex-

pected message delivery delay is equal for different mobility heterogeneity scenar-

ios. However, for the non-uniform selfishness policies (Policies B and D), where

the selfishness depends on the pairs’ contact rates, mobility heterogeneity highly

affects the message delivery delay (Fig. 3(b) and Fig. 3(c)). For the same param-

eters of p(λ), the expected delivery delay decreases as the mobility heterogeneity

level increases.

In all cases presented in Fig. 3, the synthetic simulations results (dots), are very

close to our theoretical predictions, despite the various assumptions and approxi-

mations we used in our theoretical analysis. We have also performed simulations

for larger networks (i.e. 300 and 1000 nodes), with similar findings.

3.4.2 Real-world Traces

In this section, we conduct simulations on the following sets of real mobility

traces8:

Cabspotting: GPS coordinates from 536 taxi cabs collected over 30 days in San

Francisco [39].

Infocom: Bluetooth sightings of 98 mobile and static nodes (iMotes) collected

during Infocom 2006 [40].

Sigcomm: Bluetooth sightings of 76 mobile users of the MobiClique application

at Sigcomm 2009 [41].

In Fig. 4 and Fig. 5 we show, for the Cabspotting and the Infocom trace, respec-

tively, how the delivery delay of SnW routing decreases as the cooperation between

nodes increases. Specifically, we present the relative delay decrease9 ,
E[TD]

E[T max
D

] , i.e.

the ratio of the average delivery delay in each scenario (E[TD]) over the delay of

the scenario with the highest level of selfishness (E[Tmax
D ]).

In Fig. 4(a) we simulated scenarios where nodes apply a Policy B selfishness

(Table 3) with parameters p1 = 0, p2 = 1 (i.e. only “strong” ties). In each scenario

different values of p0 (i.e. percentage of pairs that cooperate) are selected; higher

values of p0 correspond to scenarios with less selfishness. Results of scenarios

where nodes apply a Policy D selfishness are presented in Fig. 4(b). It can be

8Due to space limitations, we present here results only on the first two traces and we test our

predictions on the Sigcomm trace in following sections.
9We present relative values in order to allow a direct comparison between the two traces, whose

characteristics (network size, mobility statistics, etc.) differ significantly.
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Figure 4: Relative decrease of delay,
E[TD]

E[T max
D

] , of SnW routing, in scenarios with

(a) Policy B (p1 = 0, p2 = 1 and variable p0) selfishness and L = 10 copies, and

(b) Policy D (p0 = 0.2 and variable m) selfishness and L = 20 copies.

seen that for Policy B, the accuracy is significant, while for Policy D, the average

simulated delivery delay (red line) decreases slower than predicted (dashed blue

line). However, for both policies, the simulation results and theoretical predictions

agree qualitatively, even if not always quantitatively.

In the Infocom trace (Fig. 5), the theoretical predictions are less accurate than in

Cabspotting. The main reason for this, is that the mobility patterns of the Infocom

trace deviate from the assumptions of our mobility model more than the mobility

patterns of the Cabspotting trace. In particular, we observed higher community

structure and temporal characteristics that cannot be captured by a Poisson contact

process (i.e. during night, there are almost no contacts).

4 Performance vs Power Consumption

We have so far considered the effect of different selfishness policies on perfor-

mance, assuming that the actual policy is given (e.g. user preferences, security or

privacy concerns, etc.). However, it might be the case that a node’s reluctance to

always relay 3rd party traffic stems from resource-related concerns (e.g. spend-

ing energy). In this case, the selfishness policy could be seen as a way for the

node to control the amount of resources (e.g. transmission power) contributed to

participate in the network.

Moreover, nodes would not object to use a different policy, e.g. one that im-

proves the network-wide, and thus average node performance, if it wouldn’t result

in a higher expected resource consumption for them. For instance, if with a policy

x and a policy y, a node consumes the same energy, but the message delivery prob-

ability achieved by policy x is higher than this of y, i.e. Px > Py , then it could

choose to apply policy x in order to improve the overall network performance.
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Figure 5: Relative decrease of delay,
E[TD]

E[T max
D

] , of SnW routing, in scenarios with

(a) Policy B (p1 = 0, p2 = 1 and variable p0) selfishness and L = 20 copies, and

(b) Policy D (p0 = 0.2 and variable m) selfishness and L = 20 copies.

Table 4: Notation for the Communication Traffic Model
TTL Message lifetime

Nf Nb of flows

M Window length (in nb of messages)

E[Nmsg
t ] Avg nb of message transmissions per message and per node

T∞ Observation time

Nm Nb of generated messages during time interval [0, T∞]

E[Nt] Avg nb of transmissions per node in the time interval [0, T∞]

Et Avg energy consumption of a message transmission

P Avg power consumption

To this end, in this section, we examine the extent to which nodes could achieve

different tradeoffs between resource consumption and network performance, using

different policies, in two generic communication scenarios. At first, using a simple

communication traffic injection model, we investigate the tradeoff between Deliv-

ery Delay and Power Consumption (Section 4.1). In the second case, we turn our

attention to the possible Delivery Probability - Power Consumption tradeoffs that

can be achieved by an opportunistic content sharing mechanism (Section 4.2).

4.1 Delivery Delay vs Power Consumption

As mobile devices rely on their batteries, whose energy capacity is limited, power

consumption becomes a crucial issue. Nodes might prefer saving energy resources

than consuming a significant amount of them for network operations (i.e. storing

and relaying messages). Nevertheless, the total power consumption for relay traffic

does not only depend on the policy choice, but also on the total message load in
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the network, and the protocol used. In order for a node to be able to estimate the

expected power overhead of a given policy, we need to “level the ground”, in a

sense, and define a simple traffic model (see Table 4 for notation) that will allow

us to compare directly the power overhead of different policies.

Let us assume that there are (on average) Nf number of flows in the network,

i.e. Nf number of source-destination pairs that exchange messages (we assume

that sources are “backlogged”, i.e. always have messages to transmit). In order

to ensure that source nodes do not insert new messages (input rate) faster than the

network can deliver (output rate), some flow control mechanism is needed.

Some works suggest the use of an “out-of-band” channel (e.g. cellular net-

work) for acknowledgements [42]. In this case, each source node could be forced,

e.g. to not send a new message before the previous message is ACKed. In fact, we

could also assume a window of M messages per flow that can go unacknowledged

before a new message is send. Thus, if E[TD] is the expected delay of a message,

the total load per flow is M messages per E[TD] time units (assuming an instant

acknowledgement). If on the other hand, a slower “in-band” flow control is used,

the RTT could also be expressed as c · E[TD], c > 1.

Alternatively, each message can be assigned a message lifetime value, i.e. a

TTL, after which the message cannot be forwarded or delivered to the destination,

and nodes can drop any copies of it, in order to release valuable storage space10. To

achieve a high message delivery probability (i.e. PDR ≈ 1), the message lifetime

must be set as

TTL = cTTL · E[TD] (11)

and cTTL is large enough, such that the probability that the TTL expires before

the message is delivered to the destination is small (this is necessary since we are

interested in this section on the message delay).

Regardless of the exact flow control policy used (not of interest to this work),

the above discussion suggests that a reasonable model for (stable) traffic loads is to

assume that each source injects on average M new packets for each time interval

c ·E[TD] (with c dependent on the flow control policy). In following, without loss

of generality, we will assume a TTL flow control mechanism.

Under the condition of large c = cTTL (i.e. value of TTL such as PDR ≈ 1),

we can easily show that the average number of transmissions per message a node

has to perform, E[Nmsg
t ], depends only on the routing protocol, P, and the network

size, N , and is independent of the message delivery delay, i.e.:

E[Nmsg
t ] = ct (12)

where ct is a constant dependent on N and P. As an example, in Spray and Wait

routing with L copies, as there are in total approximately L messages transmissions

10The lack or volatility of end-to-end paths in opportunistic networks, implies that the implemen-

tation of a transport protocol with feedback per packet (e.g. as ACK messages in TCP), as described

above, might be either inefficient or infeasible. As a result, the TTL can often be used as an implicit

flow control, allowing up to M new packets per TTL for each flow.
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(L − 1 to relay nodes and 1 to destination node) before the expiry of the TTL, the

average number of message transmissions per message and per node is given by

E[Nmsg
t ] = L

N
.

Hence, if we observe our network with communication traffic as described

above, for a long time period T∞, it follows easily that the expected number of

generated messages is

Nm = Nf · M ·
T∞

c · E[TD]
. (13)

As the number of transmissions per generated message a nodes does is E[Nmsg
t ],

the total number of transmissions a node does in the time interval [0, T∞] is

E[Nt] = Nm · E[Nmsg
t ] = Nf · M ·

T∞

c · E[TD]
· ct (14)

where we substituted from Eq. (12) and Eq. (13)

Then, the power consumption rate can be calculated as

P =
Total Energy Consumption in [0, T∞]

T∞
=

Et · E[Nt]

T∞
(15)

where Et is the average energy for a single message transmission. The following

result follows after substituting Eq. (14) in Eq. (15).

Result 3. The average node power consumption is inversely proportional to the

average message delivery delay and is given by

P = cp ·
1

E[TD]
(16)

where cp =
Et·Nf ·M ·ct

c
.

In Result 3, cp is a constant that depends on the (i) network size N , (ii) the

protocol used P, (iii) the message size (Et) and (iv) the traffic intensity (Nf ,M ).

However, cp is independent of the selfishness policy and the mobility of the nodes.

Therefore, the main implication that comes of Result 3, is that:

Corollary 4.1. In a Heterogeneous Contact Network, no matter how simple or

sophisticated the selfishness policy used, the achievable power-delay operating

regimes are exactly the same; In other words, whatever power-delay tradeoff can

be achieved by some socially selfish policy, can also be achieved by the simple

uniform policy.

The above conclusion is somewhat surprising at first, given the range of strate-

gies available under our social selfishness definition. However, we will try to shed

some light on this counter intuitive result: Let assume a relay node i with some

messages in its buffer. At the next contact event, i will forward each of the mes-

sages, e.g. to node j, with some probability, which depends on the protocol and the
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state of j (i.e. if j has the message or is the destination, etc.)11. It, then, follows that

the more (effective) contact events a node has, the more messages it will transmit

(i.e. power consumption). Since all nodes apply the same policy, the average num-

ber of contact events per time unit (and thus the power consumption) is the same

for every node and ∝ E[p(λ) · λ] ≡ µeff.
λ . Now, considering the discussion and

results in Section 3, which show that the delivery delay is inversely proportional to

µeff.
λ , the relation suggested by Result 3 becomes evident.

To this direction, we can derive the following result (by simply combining

Results 2 and 3) that relates the power consumption with the selfishness policy and

mobility characteristics:

Result 4. The average node power consumption in an Heterogeneous Contact Net-

work is approximately given by

P =
cp

c(N,L)
· µeff.

λ (17)

where c(N,L) and cp are defined in Results 2 and 3, respectively.

Thus, the expressions in Table 2 can be used to compute the average node

power consumption, under the selfishness policies of Table 3.

4.1.1 Validation
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Figure 6: Power consumption - message delivery delay trade off. Synthetic sim-

ulations with (a) uniform and (b) non-uniform selfishness policies. Simulations

on the (c) Infocom and (d) Sigcomm real traces of both uniform and non-uniform

selfishness policies scenarios.

From Result 3 we can see that the relation between power consumption and

message delivery delay can be described by a reciprocal function or by a curve of

the form y = a
x

.

To investigate how accurate this prediction is, we first consider a heterogeneous

mobility scenario (fλ ∼ Gamma, µλ = 1, cvλ = 1), consisting of 100 nodes. We

11Similarly, i will receive a message from j with some probability. Since we assume backlogged

sources, the number of messages in the buffer of each node will be on average the same.
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generate communication traffic between node pairs, according to the rules of the

traffic model described in Section 4.1, and select SnW with L = 10 copies as

the routing protocol. We perform Monte Carlo simulations. At first, we simulate

scenarios with the uniform selfishness policy (Policy A) and choose values for

the selfishness intensity (i.e. p0) spanning the range (0, 1), i.e. for minimum to

maximum power consumption. Fig. 6(a) shows the simulation results for some

sample values of p0. It can be seen there that these exactly match our theoretical

predictions.

We then simulate scenarios with different, non-uniform selfishness policies, in

order to examine whether the delay-power curve is indeed the same or not. As is

evident by Fig. 6(b), the simulated results for both non-uniform policies consid-

ered also coincide with the theoretical curve, which is also the delay-power curve

for the uniform policy. In other words, by changing selfishness policies and their

parameters, one can only achieve a shift on the theoretical curve.

To further examine the validity of this interesting finding, we test our pre-

dictions also in two real-world scenarios, the Infocom and Sigcomm traces. In

Fig. 6(c), we use SnW routing with L = 5 copies in the Infocom trace and we

create traffic conditions as described earlier. We measured the delivery delay of

the messages and the power consumption of the nodes and plot the achievable

delay-power tradeoff points for different policies. As it can be seen, our qualitative

finding also holds here (i.e. all policies seem to have the same achievable region),

and experimental values are quite close to the theoretically predicted curve. Sim-

ilar observations can be made for the results of simulations on the Sigcomm trace

(Fig. 6(d)). In this trace, although the theoretical curve seems to be a slightly dis-

placed, it is clear that all policies also lie on the same tradeoff curve, as predicted.

4.2 Delivery Probability vs Power Consumption

In the previous section, we showed that the region of possible tradeoffs between

Delivery Delay and Power Consumption is not affected by the selfishness policy.

A key question arising then is: is there not a way to achieve better performance-

power tradeoff regions, e.g. compared to the uniform policy, by intelligently choos-

ing the selfishness policy?

In order to further explore this question, we turn our attention to another metric

of high importance, namely the delivery probability of a message (or Probability

Delivery Ratio, PDR). Thus, in this section, we investigate the PDR - Power Con-

sumption tradeoffs using another example application, namely content sharing in

opportunistic networks. The rationale behind this choice is twofold: first because

content-centric applications have attracted increasing attention in both wired and

wireless networks, and second to demonstrate the applicability of our framework

to non end-to-end communication scenarios.
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4.2.1 Opportunistic Content Sharing

In content sharing scenarios, new messages might be useful only for some fixed

amount of time (e.g. related to the content nature), and interested nodes would like

to access such messages before this time. We assume that there are NA(≤ N)
nodes, in the network, that hold a content A for which another node i is interested

in. This content can be data (e.g. a map, news, video, etc.) or even a service that

these nodes can provide (e.g. Internet access or a computing service [43]). We also

assume that this content can be only delivered directly when node i contacts any of

the NA nodes with the content, and not through relay nodes (this assumption might

related to protocol complexity, but often comes very natural, as for example, when

the content is an actual computing service the NA providers can offer)12.

The following result, whose proof can be found in C, gives the probability for

a node i to successfully access content A by some time T .

Result 5. In a Heterogeneous Contact Network with selfishness policy p(λ), if NA

nodes hold a content A, then the probability for another node to access the content

by a time T , is given by

PA{T} = 1 −
(

E
[

e−λ·p(λ)·T
])NA

(18)

where the expectation is taken over fλ.

Closed form expressions for the probability PA{T} under different selfishness

policies (Table 3) and mobility patterns (fλ) can be found in Table 5.

12Note that the selfishness policy applies even in this direct case, since e.g. content providers

might not be equally willing to service or forward to any interested node.

21



Table 5: Probability a node to access the content by time T , PA{T}.

Policy A Policy B Policy C

Gamma: fλ(x) =
βa

Γ(α)
· xα−1 · e−βx

, α, β, x > 0
(

where α = 1
cv2

λ

, β = 1
µλ·cv2

λ

)

1 −
(

1 + p0 · T · µλ · cv2
λ

)−
NA

cv2
λ 1 −







γ

(

1

cv2
λ

,

(

p1·T+ 1

µλcv2
λ

)

·λ0

)

Γ( 1

cv2
λ

)·(1+p1·T ·µλ·cv2
λ)

1

cv2
λ

+
Γ( 1

cv2
λ

)−γ

(

1

cv2
λ

,

(

p2·T+ 1

µλcv2
λ

)

·λ0

)

Γ( 1

cv2
λ

)·(1+p2·T ·µλ·cv2
λ)

1

cv2
λ







NA

1 −







γ

(

1

cv2
λ

,

(

p1·T+ 1

µλcv2
λ

)

·λ0

)

Γ( 1

cv2
λ

)·(1+p1·T ·µλ·cv2
λ)

1

cv2
λ

+ e−p2λ0·T · p0







NA

where γ

(

1
cv2

λ

, λ0

µλcv2
λ

)

= Γ
(

1
cv2

λ

)

· (1 − p0)

Exponential: fλ(x) =
1

µλ

· e
−

x
µλ , µλ, x > 0

1 − (1 + p0 · T · µλ)−NA 1 −

(

1−p
1+p1·T ·µλ
0

1+p1·T ·µλ
+

p
1+p2·T ·µλ
0

1+p2·T ·µλ

)NA

1 −

(

1−p
1+p1·T ·µλ
0

1+p1·T ·µλ
+ p

1+p2·T ·µλ
0

)NA



We know from Result 4 that the average power consumption is proportional

to µeff.
λ . However, the expression for the content delivery probability (Result 5)

relates to the mobility pattern and the selfishness policy in a non-linear way, that

is also more complex than the case of delay. The first observation is that it’s not

easy to deduce a simple relation between the power consumption and the PDR,

under generic mobility and selfishness characteristics, as was the case for power

and delay (Result 3). The non-linearity also implies that it might now be possible

indeed to change (and ultimately improve) the achievable power - performance

(PDR) region.

4.2.2 Evaluation

To obtain some useful evidence, we will focus here on two selfishness policies,

namely the uniform policy (Policy A) and the limit-rates policy (Policy C). Our

choice for the specific non-uniform selfishness policy is based on the fact that it

was proposed in [13] as a policy designed for a content dissemination application,

which resembles the application we study.

From its definition (Table 3), we can see that Policy C limits the average num-

ber of effective contacts for pairs that contact more frequently than a certain thresh-

old. The intuition behind this mechanism, is that a node i avoids communicating

every time with the nodes j with whom it meets frequently, because (i) each ef-

fective contact incurs some energy consumption, and (ii) as they meet frequently,

the probability node j to hold a content message in which node i is interested in

and which did not exist in the memory of j their previous contact event, is small.

Thus, limiting the effective contact events with frequently met nodes would result

in a better PDR-power tradeoff.

Our theoretical predictions among with simulated results from two scenarios

where we assign a content to random nodes and measured the delivery probabil-

ity of it to a certain node, are presented in Figures 7 and 8. These confirm the

intuition about the superiority of Policy C regarding content sharing applications.

In Fig. 7(a) we present the PDR values in scenarios with uniform and rate-limit

selfishness policies, where only one node holds the content message. As it can

be seen, Policy C achieves always higher PDR than policy A for the same power

consumption values. Specifically, Fig. 7(b) shows the improvement (i.e. the ra-

tio PDRC−PDRA

PDRA
) in PDR we achieve with Policy C, which, for some values of

power consumption, is almost 30%. In some other scenarios we simulated, this

improvement was even up to 70%.

Fig. 8 present the comparison of the two policies, in a scenario with more

heterogeneous mobility (cvλ = 2) where M = 5 nodes hold the content. The

observations about the performance of the two policies remain the same.

Finally, it is evident by both Fig. 7 and 8 that simulations results for the syn-

thetic heterogeneous model (red dots) match our theoretical predictions very well.

As a final step, we test again the accuracy of our findings in two real-networks,

the Sigcomm and Infocom traces. We simulated scenarios with different number
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Figure 7: (a) Probability Delivery Ratio of a content of policy A selfishness (blue)

and policy C selfishness (black) for different power consumption levels. (b) Rel-

ative difference of the Probability Delivery Ratio between Policy C and Policy A

selfishness, i.e. PDRC−PDRA

PDRA
. Number of content copies M = 1 and T = 10

µλ
.

Mobility characteristics: µλ = 1, cvλ = 1.

of content holders and for the same selfishness policies as before. The results are

presented in Fig. 9 and compared to the theoretical prediction. As it can be ob-

served, while the absolute values do not match exactly, Policy C again outperforms

the uniform policy, and the relative performance improvement follow the shape of

the theoretical curve quite well (this is very important when considering finding

optimal operating points, using the theoretical curve).

Hence, we can conclude that our model can provide quite accurate predictions,

even for real network scenarios. Finally, it is clear that, unlike the case of delay-

power tradeoff, using social selfishness wisely can improve performance here, and

our model could be used in order to predict the relative performance of different

policies and, consequently, for policy optimization.

5 Related Work

The feasibility of communication over an opportunistic network highly depends on

the willingness of nodes to cooperate. To this end, many techniques and protocols

were proposed in order to motivate nodes to act as relays for messages that are

not generated by or destined to them [26, 27, 28, 29, 30]. In [26] a reputation

mechanism is used to encourage nodes to cooperate in order (i) to be able to receive

the messages destined to them, and (ii) the other nodes to offer them their services

(i.e. relay their messages). Another approach, which results in growing incentives

to nodes for acting as relays, is followed in [29], where each node i is willing to

forward the messages of another node j, according to the number of messages node
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Figure 8: (a) Probability Delivery Ratio of a content of policy A selfishness (blue)

and policy C selfishness (black) for different power consumption levels. (b) Rel-

ative difference of the Probability Delivery Ratio between Policy C and Policy A

selfishness, i.e. PDRC−PDRA

PDRA
. Number of content copies M = 5 and T = 5

µλ
.

Mobility characteristics: µλ = 1, cvλ = 2.
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(a) Sigcomm, M = 3,

T = 20
µλ
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(b) Sigcomm, M = 5,

T = 20
µλ
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(c) Infocom, M = 3,

T = 10
µλ
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(d) Infocom, M = 5,

T = 10
µλ

Figure 9: Relative difference of the Probability Delivery Ratio between Policy C

and Policy A selfishness, i.e. PDRC−PDRA

PDRA
, in the Sigcomm trace with (a) M = 3,

(b) M = 5 number of copies and T = 20/µλ, and in Infocom trace with (c)

M = 3, (d) M = 5 number of copies and T = 10/µλ.
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j has forwarded already for it. Finally, credit-based mechanisms are presented in

[27] and [28], as well as barter-based mechanisms in [30].

Furthermore, many analytical and simulation-based studies investigate the ef-

fects of node selfishness on communication performance [7, 44, 45, 8, 6]. In [7] au-

thors investigate, through simulations, how the performance of epidemic schemes

is affected when the network comprises of non-cooperative nodes. They consider

two kinds of selfishness: in each contact event either nodes are unwilling to copy

a message with probability pnc or they are unwilling to forward it with probability

pnf . For a similar scenario, Karaliopoulos [44] models probabilistic selfish behav-

ior of nodes in homogeneous networks (i.e. constant contact rate λ for every pair

of nodes). In [45] authors extend the work of [44] in terms of multicast applica-

tions. The authors of [8] model selfishness in a different scheme, where each node

transmits its own message (operates as a source) with probability p and transmits

one of the messages it has as a relay with probability 1-p. They assume that only

one message can be exchanged per contact event and use only 2-hop routing. An-

other approach of selfishness is tackled in [6], where authors propose a selfishness

model where each node is either selfish or altruist (modeled as a probability pi for

each node i) regarding all its contacts (i.e. i shows the same selfishness for ev-

ery other node j, pij = pi) and investigate through simulations the effect on the

communication throughput.

The above protocols and studies, assume (under different models) that every

node is either totally selfish or not. However, the assumption that users are selfish

and are not willing to forward packets for anyone else, might not always hold. In

this direction, the notion of social selfishness appears. In social selfishness, the

nodes might be selfish only regarding some other nodes with which they have a

weak (or even a strong) social relation (”tie”) [36, 13, 37]. In [36] authors use a

model of a network with two communities and introduce the notion of selfishness

that depends on the contact rate between nodes. For nodes with high contact rate

(e.g. within the same community) the selfishness is characterised by the probability

pi and for nodes with low contact rate another value po for selfishness is consid-

ered. They build a Markov Chain and investigate the effect on the performance

through simulations. In [13] the authors investigate the role of the ”weak ties”

(i.e. pairs of nodes that contact infrequently, which in our case means the pairs

of nodes with small contact rate λij) in a content updating/dissemination scenario.

Finally, in [37] a routing protocol, designed for networks where nodes have social

selfishness behaviors, is proposed.

Our work, being the first to provide a theoretical framework and analytical

closed-form results, complements previous studies on the effect of social selfish-

ness on communication performance, which are limited to evaluation through sim-

ulations [13, 37] or analytical modeling of specific cases [36]. Moreover, not only

the heterogeneous mobility model we consider can capture much wider range of

scenarios than the models used in previous analytical studies [44, 8, 36], but also

our results were shown to capture (either qualitatively or quantitatively) the much

more complex characteristics of real-networks’ mobility.
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6 Conclusion

In this paper, we analysed the effect of social selfishness on opportunistic commu-

nications. At first, we proposed a framework for modeling heterogeneous mobility,

which further allowed us to build a generic model that can describe a wide range

of common social selfishness behaviors (related to privacy concerns, ressources

consumption, etc.). Based on our mobility / selfishness framework, we derived

closed form results for predicting the message delivery delay in a network with

(socially) selfish nodes. Furthermore, we investigated how selfishness affects the

performance - power consumption tradeoffs in a network, under two communica-

tion scenarios. We derived results that show if and when it is possible to optimize

a selfishness policy in order to achieve better tradeoffs.

Due to the lack of existing solutions fighting social selfishness, we deem as

essential to have an analytical framework for it and predict the performance degra-

dation it causes on message dissemination, which as shown depends on various

factors (selfishness behaviors and mobility). We believe that our work can be a

useful tool for the design of novel protocols and applications for socially selfish

environments.

A Proof of Lemma 3.1

Proof. As defined in Def. 1, the contact process for a pair {i, j} is a Poisson pro-

cess with rate λij . Thus, if, according to Def. 2, in each of the contact events a

message can be exchanged with probability pij (independently of what happened

in the previous or following contact events), then the effective contact events are de-

scribed by another Poisson process, which results after thinning the initial contact

process. The rate of the new, thinned, Poisson process is then

λ
(I)
ij = λij · pij = λij · p

(I)(λij)

Hence, the mean value of the rate of the effective contact events, is given by

µ
(I)
λ = E

[

λ(I)
]

=

∫

∞

0

E
[

λ(I)|λij = x
]

· fλ(x) · dx

=

∫

∞

0

(

x · p(I)(x)
)

· fλ(x) · dx = E
[

λ · p(I)(λ)
]

Similarly the second moment, is given by

E

[

(

λ(I)
)2
]

=

∫

∞

0

E

[

(

λ(I)
)2

|λij = x

]

· fλ(x) · dx

=

∫

∞

0

(

x · p(I)(x)
)2

· fλ(x) · dx = E
[

λ2 ·
(

p(I)(λ)
)2
]

and, finally, the variance can be computed as:

σ
2(I)
λ = E

[

(

λ(I)
)2
]

−
(

µ
(I)
λ

)2

= E

[

λ2 ·
(

p(I)(λ)
)2
]

−
(

E
[

λ · p(I)(λ)
])2

27



B Proof of Lemma 3.2

Proof. According to Def. 3, a pair of nodes {i, j} that contacts with rate λij , either

can always exchange a message during a contact event, with probability pij =
p(II)(λij), or never exchanges messages during its contact events, with probability

1−pij . The equivalent of this constraint mechanism, is a network where some pairs

of nodes contact with their initial rate, i.e. λ
(II)
ij = λij , and some never contact,

i.e. λ
(II)
ij = 0.

Thus, we can compute the mean value of the effective contact events as follow-
ing:

µ
(II)
λ =

∫

∞

0

E
[

λ(II)|λij = x
]

· fλ(x) · dx

=

∫

∞

0

(

x · p(II)(x) + 0 · (1 − p(II)(x))
)

· fλ(x) · dx

=

∫

∞

0

(

x · p(II)(x)
)

· fλ(x) · dx = E[λ · p(II)(x)]

Similarly,

E

[

(

λ(II)
)2
]

=

∫

∞

0

E

[

(

λ(II)
)2

|λij = x

]

· fλ(x) · dx

=

∫

∞

0

(

x2 · p(II)(x) + 02 · (1 − p(II)(x))
)

· fλ(x) · dx

=

∫

∞

0

(

x2 · p(II)(x)
)

· fλ(x) · dx = E[λ2 · p(II)(x)]

and finally

σ
2(II)
λ = E

[

(

λ(II)
)2
]

−
(

µ
(II)
λ

)2

= E
[

λ2 · p(II)(λ)
]

−
(

E
[

λ · p(II)(λ)
])2

C Proof of Result 5

Proof. Let us denote Pa{j, T} the probability the node i to contact a node j ∈
[1, ..., NA] and exchange messages with it (i.e. effective contact event) before a

certain time T . Obviously Pa{j, T} (i) depends on the contact rate λij and the

selfishness policy p(λ), and (ii) as the inter-contact intervals are exponentially dis-

tributed it is given by13

Pa{j, T |λij , p(λij)} = 1 − e−λij ·p(λij)·T

13The CDF of an exponential distribution with rate λ is given by F (x) = 1 − e−λ·x.
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Since the probability a node to have the content is the same for all nodes, we can
write

Pa{j, T } =

∫

∞

0

Pa{j, T |λij , p(λij)} · fλ(x)dx

=

∫

∞

0

(

1 − e−λij ·p(λij)·T
)

· fλ(x)dx = 1 − E
[

e−λ·p(λ)·T
]

where the expectation in is taken over fλ.
Node i will not access the content by time T , only if it does not contact any of

the NA nodes. Hence, we can write for the probability that i will get the content
by time T :

PA{T } = 1 − PA{T } = 1 −
NA
∏

j=1

P a{j, T } = 1 −
NA
∏

j=1

(1 − Pa{j, T })

where P denotes the probability of the complementary event. Now, combining
the above two equations and the fact that the nodes j with the content (and the
respective contact rates λij) are independent, it follows

PA{T } = 1 −
NA
∏

j=1

(

1 −
(

1 − E
[

e−λ·p(λ)·T
]))

= 1 −
NA
∏

j=1

E
[

e−λ·p(λ)·T
]

= 1 −
(

E
[

e−λ·p(λ)·T
])NA
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