
CCT: Connect and Control Things
A Novel Mobile Application to Manage M2M Devices and Endpoints

Soumya Kanti Datta, Christian Bonnet, Navid Nikaein
Mobile Communication Department, EURECOM

Biot, France

Emails: {dattas, bonnet, nikaeinn}@eurecom.fr

Abstract—This paper presents a novel application that allows

mobile clients to interact with M2M devices and endpoints in real

time. The application "Connect and Control Things" (CCT) is

designed to discover things, receive data from the sensors, control

the actuators and generate alarms in real time. The novel

capabilities of CCT are: (i) dynamic discovery of device and

endpoint, (ii) real time interaction with sensors and actuators

associated to M2M devices, (iii) benefit from Sensor Markup

Language (SenML) representation, (iv) supporting extension of

SenML capabilities for actuators and (v) learning actuators’

resources and control them. The architectural design, prototypes

implementation, flow of network operations and a real-life test

scenario are illustrated. The prototype Android application

registers higher CPU usage and power consumption due to

intense network operations and parsing sensor metadata

repeatedly. We have proposed several optimization techniques to

reduce the CPU load, network data usage and overall power

consumption. Two use cases of the application have been

discussed. Finally the paper summarizes the contributions and

concludes with the future research directions.

Index Terms— Android; Dynamic Discovery; M2M Device and

Endpoint; M2M Gateway; Mobile Application; SenML.

I. INTRODUCTION

The development in Internet of Things (IoT) ecosystem is

essentially driving the growth of Machine-to-Machine (M2M)

market [1, 2]. IoT has also opened new vistas in smart

metering, smart grid, smart city, automotive industry, e-Health,

sensor and actuator networks [3, 4, 5]. This tremendous growth

has made mobile applications for IoT ecosystems totally

indispensable. For example, in smart homes, M2M devices [6]

are able to detect if a light bulb is on while there is no one in

the room. That is reported to the user through a mobile

application and the user can send a command to switch off the

bulb from the same. The most common functionalities in such

mobile applications are: (i) connecting to M2M devices

containing sensors and actuator as endpoints, (ii) gather

periodic updates and (iii) control actuators from the mobile

clients.

This paper is focused on describing a mobile application

“Connect and Control Things” (CCT) that achieves the

mentioned functionalities while providing novel services. The

application enables real time interaction with M2M devices.

Each device manages a sensor and/or an actuator which are

also known as things or endpoints. One possible deployment

scenario of CCT is the usage of a M2M gateway between the

mobile clients and the M2M devices. The M2M devices and

endpoints are connected to the gateway over IP links. The

gateway is a collection of APIs implemented using RESTful

web services. The sensor measurements are represented using

Sensor Markup Language implementation
1
. SenML exists as a

work-in-progress draft and is defined by a data model for

sensor measurements along with a metadata about

measurements and devices. But SenML draft addresses only

sensors at the moment and its capabilities must be expanded to

support actuators.

Rest of the paper is organized as follows. Section II and III

provide a requirement analysis of the application and describe

SenML extensions respectively. Section IV explains the

architectural design and different modules of CCT including

the novel services. The prototype implementation, network

operations are illustrated in Section V while Section VI focuses

on performance evaluation and optimization techniques.

Section VII discusses two use cases that benefit from CCT.

Then the paper concludes with future research directions.

II. REQUIREMENT ANALYSIS

In order to achieve the mentioned functionalities, the

application is required to provide the following services:

• Dynamic discovery: This is one of the novel aspects

of the application. The application does not have a-

priori knowledge about M2M devices and endpoints.

Thus it must perform a discovery of the devices and

endpoints connected to the M2M gateway. M2M

devices might be added to or removed from the

gateway which will be reflected during the discovery

and reported to the users. The operations are thus

M2M gateway assisted.

• Real time interaction: The application must support

real time interaction with both sensors and actuators.

Also it must be able to raise alarms based on the local

computation on sensor measurements.

• Connecting to smart and legacy things: The things

could be smart (allows to read metadata using GET

request) or legacy (non-smart). The application CCT is

able to connect to both kinds of things and read

metadata using GET requests over HTTP.

• Subscribe to PUSH notification: This is necessary to

receive updates over HTTP from the M2M gateway

when (i) sensor reading is changed and (ii) new

endpoints are added to or removed from it.

• SenML implementation: SenML is designed to be

very lightweight and can be parsed efficiently. Thus

SenML implementation is the natural choice to carry

the sensor metadata from M2M devices to the mobile

1 http://tools.ietf.org/html/draft-jennings-senml-10

clients. The implementation is done using JavaScript

Object Notion (JSON) which is more suitable for a

concise things representation against an XML-based

format.

• Actuator control: Currently SenML implementation

exists only for sensors. But we have extended the

capabilities of SenML so that the same JSON

implementation can be used to control actuators also.

This is a major innovation provided by the application

and is described in details in the following section.

• Cross platform approach: It is necessary to develop

the application for multiple mobile OS platforms to

reach out to maximum potential users and reduce the

time to market. Cross platform development provides

immense benefit in this respect. A comparative study

of most commonly used cross platform tools is

provided in [9]. CCT is developed using such

approach.

III. EXTENDING SENML CAPABILITIES

Current SenML capabilities are expanded to control

actuators. The main motivations behind such extensions are: (i)

to provide uniform representation of sensor and actuator

metadata and (ii) use the same software implementation

SenML to control actuators. We have introduced the following

attributes for actuators:

• An Interface Definition: It is necessary to distinguish

between a sensor and an actuator.

• Name of actuator: This is a unique name that

identifies the actuator and represented by base name.

• Type of actuator: It defines various types of actuator

e.g. temperature controlling actuator.

• Allowed range of values: The mobile clients must

know the allowed range of values in order to control

the actuators. The range could be continuous (e.g. for

a motor) or discreet values (e.g. 0/1 for LED).

• Unit: The unit of the values.

• Capabilities: It signifies whether an actuator is smart

or legacy endpoint. In case of a legacy actuator,

another M2M device must translate the instructions to

machine executable form.

• Semantic: It is used to associate a semantic notion of

the actuator operation and can be pre-configured for

the actuators.

Along with the above extensions, following two attributes

are also necessary.

• Location: It signifies the type of actuator location and

can be denoted by GPS co-ordinates, XY location or

semantic location (e.g. Room 313 or Building A).

• Destination: It denotes the URI of the actuator and

the control commands are sent to this URI from the

clients.

The IPSO Alliance Framework
2
 already defines generic

RESTful resource representations for actuators to be used with

2 http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-

04.pdf

SenML and they provide a way of switching on/off a LED

actuator. But our implementation extends the SenML

capabilities beyond that by adding name, type, unit, location,

destination, (a semantic for operation performed) and

capabilities for actuators. Current IPSO draft mentions only

discreet value of allowed range for actuators but we have added

support for continuous range of values. These extensions are

supported by all the components in the following architecture.

IV. ARCHITECTURAL DESIGN AND NOVEL SERVICES

IMPLEMENTATION

The overall architecture containing the mobile clients

(running CCT), M2M gateway, M2M device and endpoints are

shown in Figure 1. The smart M2M devices can directly

interact with the M2M gateway and exchange sensor metadata.

But the legacy devices have to be connected through another

intermediate gateway known as M2M sensor gateway. It is

used for data aggregation from the legacy things and is

configured with necessary information (unit, timestamp, name

etc.) to create metadata in SenML format. M2M sensor

gateway can be generalized to support different types of legacy

things. The M2M gateway contains several RESTful APIs to

manage the M2M devices, endpoints and their configuration

resources. Each such device must register its configuration

details along with those of endpoints to the gateway in order to

facilitate discovery phase of CCT.

Figure 1. Overall IoT architecture.

SenML along with its extensions provide a single

formalism to represent both sensor and actuator in the above

architecture. HTTP is used to carry SenML metadata, send

GET request and. The software architecture of CCT is depicted

in Figure 2 and can be broadly categorized into four modules

as described below.

A. Device and Endpoint Discovery Module

Upon launching, CCT establishes a connection to gateway

to initiate the dynamic discovery phase which takes place in

two steps. Firstly, this module sends a GET request over HTTP

to retrieve a list of M2M devices. The response contains the

description in terms of resource type and attributes including

location, id, name, and software version of the device [7, 8].

Secondly, after device discovery, the user must select a M2M

device to receive the list of attached endpoints. This is done

using another GET request which triggers endpoint discovery.

The response includes: (i) id – the resource identifier, (ii)

name: human readable name, (iii) device: a link to the M2M

device connecting the endpoint, (iv) location: URI of the

endpoint (v) senml – the SenML metadata and more fields. It is

to be noted that, for multiple M2M devices and/or endpoints,

the client receives multiple responses from the M2M gateway.

This drives up the amount of network operations. The

discovery phase is based on CoRE Link format [7, 8] while the

resource type of location is based on IPSO Alliance

Framework. This phase is also crucial to learn the description

of actuators using the SenML extensions.

Figure 2. Software architecture of CCT.

B. User Interface Module

After the discovery phase, CCT displays a list of available

sensors and actuators along with their attributes. The user can

select a sensor to receive the measurements. To provide

skeuomorphic user experience, every sensor and its values are

associated with both numeric and iconic (picture)

representation. An innovative aspect of the UI module is that,

certain components of the user interface can be dynamically

configured. For example, the value to be sent to an actuator

could be implemented using a slider, input text box or

checkbox with numeric values. The motivation behind this is to

drive the user interface components from the M2M gateway

depending on different types of endpoints.

C. Receive Sensor Measurement Module

This module of CCT can receive the most recent sensor

metadata by pulling the same from the M2M devices via the

M2M gateway. Also the application can subscribe to the

receive push notification from the M2M gateway which sends

automatically the updated metadata. This module can generate

alarms (vibration, sound) or alerts (SMS) based on predefined

rules applicable on received sensor measurements.

D. Actuator Control Module

During the discovery phase, CCT learns about the

actuators. This module supports the implementation of SenML

extensions for actuators. To control an actuator, the appropriate

value is set. Then the module generates the SenML

representation of the command containing name, value, unit,

location of actuator. The generated metadata is then sent to the

M2M gateway using POST over HTTP which forwards the

metadata to the corresponding M2M device containing the

actuator. The response code 204 is also received by this

module and is updated to the UI module to provide a feedback.

V. PROTOTYPE ANDROID APPLICATION

The prototype mobile application is implemented using

PhoneGap 2.9.0 and JQuery Mobile 1.3.1. The cross platform

approach allows building the application for multiple mobile

platforms and minimizes the cost of development and time to

market. The M2M gateway APIs are running in a Google App

Engine (GAE) server. The application establishes a connection

to the server for M2M device and endpoint discovery. But due

to current specification of CoRE Link, to receive the complete

list of resource types and attributes for devices and endpoints,

multiple GET requests are needed. This increases the load on

CPU and network operations. The sensor measurements can be

obtained either by pulling or push notification. For the Android

application, push notification service uses Google Cloud

Messaging (GCM). The service is portrayed in Figure 3 and is

explained below.

1. The Android application CCT registers the client with

Google Cloud Messaging (GCM) service.

2. GCM assigns a unique ID (UID) to each client and

sends the UID to the client.

3. The client then communicates the UID to the GAE.

This is the client registration at the GAE for push

notification.

4. In the event of a sensor measurement update, the GAE

receives the sensor metadata which is sent to the GCM

along with the UID. The GCM service pushes the

metadata to the client corresponding to the UID.

Figure 3. Push notification architecture for Android devices.

For the iOS clients, Apple Push Notification Service has to

be used instead of GCM and rest of the mechanism remains the

same. When the application is launched, there is an option to

register for the push notification which is denoted by “Receive

notifications” tab in Figure 4. "Registration status: ON"

denotes CCT is subscribed to the push notification service. The

"Current Address" is the URL of GAE server running the

RESTful APIs of the M2M gateway.

Upon clicking the "Sensors" tab, the discovery phase

begins. Figure 5 shows that only one M2M device (named T-

Aix) containing a temperature sensor having value 24 degree

Celsius and an actuator to control the temperature. The SenML

extensions for actuator are implemented in the backend. But it

is seen that to control the temperature, the desired value can be

set using the slider which is automatically configured with the

range of allowed values and the unit being same as the sensor.

This M2M device can be deployed to a room to monitor the

temperature and control it from CCT.

Figure 4. CCT launch screen.

Figure 5. M2M device with a sensor and an actuator.

To demonstrate the actuator operation, the temperature is

set to 10 degree Celsius using it. CCT sends the command

using SenML extensions for actuators. Once the temperature

change has taken place, CCT receives a push notification and

UI module of the app shows the updated temperature as

portrayed in Figure 6 and 7 respectively.

Figure 6. Push notification for sensor measurement update.

It is to be noted that the intermediate temperatures (23, 22,

…, 12, 11) are intelligently filtered out by the M2M gateway

and is not pushed to the device. When the temperature reaches

10 degree Celsius, the corresponding metadata is pushed to the

device. The intelligent filtering at the M2M gateway is done to

improve user experience, avoid unnecessary network

operations and reduce processing load on CCT.

Figure 7. Setting a new temperature using the actuator.

If a new M2M device (L-Aix) with light sensor is added to

the M2M gateway, CCT will receive a similar notification as

shown in Figure 6. Also the UI will be updated as shown in

Figure 8.

Figure 8. New M2M device with a light sensor added to M2M gateway.

The prototype application is tested in real life environment

with a M2M device and two endpoints. The overall flow of

operations of the test scenario is presented in Figure 9. Before

initiating the discovery phase, CCT subscribes to the push

notification service. Currently the prototype supports discovery

phase, receiving sensor measurements using pull & push and

sending instructions to control an actuator.

Figure 9. Flow of network operations for CCT.

VI. PERFORMANCE EVALUATION AND OPTIMIZATION

TECHNIQUES

As seen from Figure 9, most of the functionalities of CCT

like fetching the list of M2M devices & endpoints, sensor

metadata and actuator control depend on intense network

operations. Then the received responses from the gateway have

to be parsed every time to update UI. This drives up the CPU

load and operating frequency. As identified in [10, 11],

increased network operations and high CPU load are two key

factors responsible for higher power consumption in smart

devices. Thus we have evaluated the performance of CCT

based on the two mentioned metrics. The experiments are

performed on three Android devices – (i) Archos Tablet with

Android 4.0.3, (ii) Nexus S with Android 4.1.2 and (iii) Nexus

7 with Android 4.2.2.

A. CPU usage results

The CPU load is measured during four phases of operation

of CCT and the results are listed in Table I. The native part of

the executable is loaded at the beginning of application

execution. The discovery phase registers higher usage of CPU

as multiple GET requests are made and the received data are

parsed multiple times before the UI can be updated. For the

same reason the CPU load is higher for receiving and parsing

the sensor measurements. When CCT is just displaying a list of

endpoints or sensor measurements, it consumes limited CPU

resource as the application is not doing any network operations

and parsing.
TABLE I. CPU USAGE OF CCT

Android

Device

Native

part

loading

Device and

endpoint

discovery

Parsing

sensor

values

Sensor data

representation

in UI

Archos Tablet 24% 32% 37% 4%

Nexus S 51% 41% 40% 8%

Nexus 7 17% 35% 36% 3%

B. Power Consumption

The power consumption results are measured using another

Android application Power Tutor
3
 and tabulated in Table II.

Due to high amount of network operations and CPU intensive

parsing, the overall power consumption is significantly high on

all devices.
TABLE II. POWER CONSUMPTION RESULTS

Device Power consumption (mW)

Mobile Data Wi-Fi

Archos Tablet 723 592

Nexus S 819 718

Nexus 7 (Wi-Fi only) -- 479

C. Optimization Techniques

We propose the following optimization techniques to

improve CCT’s performance.

• Avoid multiple GET requests: This is an extension to

CoRE Link specification and another proposed

innovation. According to the current implementation of

the CoRE Link specification, multiple GET requests

are necessary to complete the discovery phase. But we

propose that the complete list of resource types and

attributes of devices and endpoints can be stored in a

3 http://ziyang.eecs.umich.edu/projects/powertutor/

database in the M2M gateway. During the discovery

phase, the entire list of resource types and attributes

can be included in the response from GAE. It will limit

network operations and the CPU need to parse the

response only once, reducing power consumption.

• Intelligent filtering at M2M gateway: The amount of

network traffic can be further reduced by examining

and filtering out unnecessary endpoint metadata at the

M2M gateway.

• Reducing metadata content: If the user is interested

in a particular set of sensors and their measurements,

then the metadata content can be reduced by the

gateway. For example, if the user is subscribed to the

temperature sensor (in Figure 1), then the SenML

metadata is as follows:

{“e” : [

 { “n”: “Temperature1”, “v”: “22”, “u”: “Cel” }],

 “bn” : “http://device1.mydomain.net/”,

 “bt” : “1320078429,

 “ver” : 1,

 “ut” : “300”

}

The notations follow the SenML work-in-progress

draft. The sensor provides measurements every 5

minutes which are pushed to the mobile client. Instead

of pushing the above metadata all the time, some of

the constant parts (“bn”, “ut”, “ver”, “u”) could be

stripped off at the M2M gateway. This will reduce the

network data usage and parsing time which will

reduce the CPU load and consequently result in

prolonging battery life.

• MQTT based implementation: Adopting MQTT

implementation
4
 which is lighter than its HTTP

counterpart further reduces the network data

consumption and is power efficient. The SenML is

currently carried as payload in RESTful

implementation. Thus SenML implementation will not

be affected at all when carried over MQTT. Just the

MQTT implementation has to be developed for the

Android application.

• Brightness Control: The user interaction time with

CCT may vary. But if the interaction time is higher,

then the application may reduce the screen brightness

during the lifetime of the application [11]. This will

also optimize the power consumption.

VII. USE CASES

We present two scenarios which perfectly suits the use of

CCT.

• Use of IoT based services in agricultural domain is

growing [12, 13]. In this case sensors can be deployed

to measure the dryness of the fields continuously. The

M2M devices containing such sensors will update the

4
https://www.ibm.com/developerworks/community/blogs/sowhatfordevs/entr

y/using_mqtt_protocol_advantages_over_http_in_mobile_application_develo

pment5?lang=en

farmers through the M2M gateway. If the land

becomes too dry, the application will prompt to switch

on a motor for irrigation. Controlling the motor

corresponds to actuator control part. Such application

scenario will be particularly helpful in rural farming

lands.

• Hospitals can use the application in connection with a

digital thermometer having Bluetooth. Such devices

can be fitted on the wrist of the patients and will report

their body temperatures to doctors via a gateway. The

mobile application will raise an alarm if the

temperature rises above a threshold.

The discovery phase, SenML implementations and real

time interaction with sensors and actuators are very necessary

in the above cases. Thus CCT can be perfect solution as mobile

application to the clients. The application can also be used in

several other practical scenarios.

VIII. CONCLUSION

This paper presents an innovative mobile application that

enables real time interaction with smart and legacy things

through the M2M gateway. The application performs dynamic

discovery of the M2M devices and endpoints, benefits from the

SenML. The innovations to support actuator control through

SenML extensions are discussed and are supported in the

application. The Android application registers high CPU load

and power consumption which are attributed to intense

network operations and parsing the responses. Several

optimization techniques are proposed to improve the

performance of CCT. The application is also ported for iOS

platform and will be tested based on the mentioned two

metrics. Currently the architecture only uses HTTP but support

for several other protocols like CoAP
5
 and DDS

6
 will be added

to provide wider choice of protocols to the users. We will also

extend the discovery phase for M2M gateway discovery which

forms the basis of collaboration among such gateway leading

to Social IoT. Another important study is to examine the

scalability issue to determine the scale of endpoints that can be

operated within the architecture. Internet of Things and such

mobile applications are vulnerable to new security challenges

and end-user privacy [14, 15]. We will definitely experiment

with such challenges to provide greater impact with the

application.

ACKNOWLEDGMENT

The work is sponsored by French research project WL-

Box 4G Pole SCS. The authors would like to thank the project

partners from Mios, Gemalto and iQSim for setting up the

components of the test scenario.

REFERENCES
[1] Handong Zhang; Lin Zhu, "Internet of Things: Key technology,

architecture and challenging problems," IEEE International

Conference on Computer Science and Automation Engineering

(CSAE), 2011.

5 http://tools.ietf.org/html/draft-ietf-core-coap-18
6 http://portals.omg.org/dds/

[2] Glitho, R.H., "Application architectures for machine to machine

communications: Research agenda vs. state-of-the art,"

Broadband and Biomedical Communications (IB2Com), 2011

6th International Conference on, pp.1-5, 21-24 Nov. 2011.

[3] Jixuan Zheng; Gao, D.W.; Li Lin, "Smart Meters in Smart Grid:

An Overview," Green Technologies Conference, 2013 IEEE,

pp.57-64, 4-5 April 2013.

[4] Sanchez, L.; Gutierrez, V.; Galache, J.A.; Sotres, P.; Santana,

J.R.; Casanueva, J.; Munoz, L., "SmartSantander:

Experimentation and service provision in the smart city,"

Wireless Personal Multimedia Communications (WPMC), 2013

16th International Symposium on, pp.1-6, 24-27 June 2013.

[5] Liu Tenghong; Yuan Rong; Chang Huating, "Research on the

Internet of Things in the Automotive Industry," Management of

e-Commerce and e-Government (ICMeCG), 2012 International

Conference on, pp.230-233, 20-21 Oct. 2012.

[6] ETSI Technical Specification on Machine-to-Machine

Communications; Functional Architecture, ETSI TS 102 690,

V2.1.1 (2013-10).

[7] Constrained RESTful Environments (CoRE) Link Format, IETF

RFC 6690.

[8] Work-in-Progress Draft on CoRE Interfaces,

http://tools.ietf.org/html/draft-shelby-core-interfaces-05

[9] Dalmasso, I.; Datta, S.K.; Bonnet, C.; Nikaein, N., "Survey,

comparison and evaluation of cross platform mobile application

development tools," Wireless Communications and Mobile

Computing Conference (IWCMC), 2013 9th International

Conference on, pp.323-328, 1-5 July 2013.

[10] Datta, S.K.; Bonnet, C.; Nikaein, N.; "Android power

management: Current and future trends," Enabling Technologies

for Smartphone and Internet of Things (ETSIoT), 2012 First

IEEE Workshop on, pp.48-53, 18 June 2012.

[11] Datta, S.K.; Bonnet, C.; Nikaein, N., "Minimizing energy

expenditure in smart devices," Information & Communication

Technologies (ICT), 2013 IEEE Conference on, pp.712-717, 11-

12 April 2013.

[12] Fu Bing, "Research on the agriculture intelligent system based

on IOT," Image Analysis and Signal Processing (IASP), 2012

International Conference on, pp.1-4, 9-11 Nov. 2012.

[13] Ji-chun Zhao; Ju-feng Zhang; Yu Feng; Jian-xin Guo, "The

study and application of the IOT technology in agriculture,"

Computer Science and Information Technology (ICCSIT), 2010

3rd IEEE International Conference on, vol.2, pp. 462-465, 9-11

July 2010.

[14] Lan Li, "Study on security architecture in the Internet of

Things," International Conference on Measurement, Information

and Control (MIC), 2012.

[15] Hui Suo; Jiafu Wan; Caifeng Zou; Jianqi Liu, "Security in the

Internet of Things: A Review," Computer Science and

Electronics Engineering (ICCSEE), 2012 International

Conference on, vol.3, pp.648-651, 23-25 March 2012.

